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1. Introduction

The search for supersymmetry (SUSY) [1,2] is a central part of the experimental program at

the Large Hadron Collider (LHC). Models of weak-scale SUSY provide a promising solution

to the hierarchy problem of the Standard Model (SM) and predict new supersymmetric

particles (sparticles) with masses in the TeV range. If they exist, the coloured sparticles,

squarks (q̃) and gluinos (g̃), would be produced copiously in hadronic collisions and thus

offer the strongest sensitivity for supersymmetry searches at the LHC. In the context of the

minimal supersymmetric extension of the Standard Model (MSSM) [3, 4], these particles

are produced in pairs due to R-parity conservation.

Searches for squarks and gluinos at the proton-proton collider LHC, which has been

operating at
√
S = 7 TeV in 2010 and 2011, have placed lower limits on squark and gluino

masses around 1 TeV [5, 6]. Once the LHC reaches its design energy of
√
S = 14 TeV,

SUSY particles with masses up to 3 TeV can be probed [7, 8].

Accurate theoretical predictions for inclusive squark and gluino cross sections are

needed both to set exclusion limits and, in case SUSY is discovered, to determine SUSY

particle masses and properties [9, 10]. The inclusion of higher-order SUSY-QCD correc-

tions significantly reduces the renormalization- and factorization-scale dependence of the

predictions. In general, the corrections also increase the size of the cross section with re-

spect to the leading-order prediction [11,12] if the renormalization and factorization scales
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are chosen close to the average mass of the produced SUSY particles. Consequently, the

SUSY-QCD corrections have a substantial impact on the determination of mass exclusion

limits and would lead to a significant reduction of the uncertainties on SUSY mass or pa-

rameter values in the case of discovery. The squark-antisquark production processes have

been known for quite some time at next-to-leading order (NLO) in SUSY-QCD [13, 14].

Electroweak corrections to the O(α2
s ) tree-level processes [15] and the electroweak Born

production channels of O(ααs) and O(α2) [16] are in general significant for the pair pro-

duction of SU(2)-doublet squarks q̃L and at large invariant masses, but they are moderate

for inclusive cross sections.

A significant part of the NLO QCD corrections can be attributed to the threshold

region, where the partonic centre-of-mass energy is close to the kinematic production

threshold. In this region the NLO corrections are dominated by soft-gluon emission off

the coloured particles in the initial and final state and by the Coulomb corrections due

to the exchange of gluons between the slowly moving massive sparticles in the final state.

The soft-gluon corrections can be taken into account to all orders in perturbation theory

by means of threshold resummation techniques [17, 18]. The Coulomb corrections can be

summed to all orders by either using a Sommerfeld factor [19–22] or by employing the frame-

work of non-relativistic QCD, where bound-state effects can be included as well [22–27].

In addition, a formalism has been developed in the framework of effective field theories

that allows for the combined resummation of soft and Coulomb gluons in the production

of coloured sparticles [28,29].

Threshold resummation has been performed for all MSSM squark and gluino pro-

duction processes at next-to-leading-logarithmic (NLL) accuracy [30–34]. For squark-

antisquark production, in addition to soft-gluon resummation, the Coulomb corrections

have been resummed both by using a Sommerfeld factor [31] and by employing the frame-

work of effective field theories [29]. Furthermore, the dominant next-to-next-to-leading or-

der (NNLO) corrections, including those coming from the resummed cross section at next-

to-next-to-leading-logarithmic (NNLL) level, have been calculated for squark-antisquark

pair-production [35].

In this paper we consider threshold resummation at NNLL accuracy for squark-anti-

squark pair production at the LHC. Compared to the NLL calculation the new ingredients

are the one-loop matching coefficients, which contain the NLO cross section near threshold,

and the two-loop soft anomalous dimensions. Studies for the pair production of top quarks

suggest that the effect of the matching coefficients can be significant [36] and that NNLL

resummation can reduce the scale dependence considerably [35,37–40]. We will discuss the

impact of the corrections and provide an estimate of the theoretical uncertainty due to

scale variation. In addition we will study the impact of the Coulomb gluons on the cross

section. We exclude top squarks from the final state in view of potentially large mixing

effects and mass splitting in the stop sector [41]. The other squarks are considered as being

mass degenerate and all flavours and chiralities are summed over.

The structure of the paper is as follows. In section 2 we discuss the NNLL resumma-

tion for squark-antisquark pair-production. In section 3 we present the calculation of the

hard matching coefficients required for the NNLL resummation. The numerical results are
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presented in section 4. We show predictions for the LHC with centre-of-mass energies of√
S = 7 TeV and

√
S = 14 TeV. We will conclude in section 5.

2. Threshold resummation at NNLL

In this section we briefly review the formalism of threshold resummation for the production

of a squark-antisquark pair. The inclusive hadroproduction cross section σh1h2→q̃ ¯̃q can be

written in terms of its partonic version σij→q̃ ¯̃q as

σh1h2→q̃ ¯̃q

(

ρ, {m2}
)

=
∑

i,j

∫

dx1dx2 dρ̂ δ

(

ρ̂− ρ

x1x2

)

× fi/h1
(x1, µ

2) fj/h2
(x2, µ

2)σij→q̃ ¯̃q

(

ρ̂, {m2}, µ2
)

, (2.1)

where {m2} denotes all masses entering the calculations, i, j are the initial parton flavours,

fi/h1
and fj/h2

the parton distribution functions and µ is the common factorization and

renormalization scale. The hadronic threshold for inclusive production of two final-state

squarks with mass mq̃ corresponds to a hadronic centre-of-mass energy squared that is

equal to S = 4m2
q̃ . Thus we define the threshold variable ρ, measuring the distance from

threshold in terms of energy fraction, as

ρ =
4m2

q̃

S
.

The partonic equivalent of this threshold variable is defined as ρ̂ = ρ/(x1x2), where x1,2
are the momentum fractions of the partons.

In the threshold region, the dominant contributions to the higher-order QCD correc-

tions due to soft-gluon emission have the general form

αn
s log

mβ2 , m ≤ 2n with β2 ≡ 1− ρ̂ = 1 −
4m2

q̃

s
, (2.2)

where s = x1x2S is the partonic centre-of-mass energy squared. The resummation of the

soft-gluon contributions is performed after taking a Mellin transform (indicated by a tilde)

of the cross section,

σ̃h1h2→q̃ ¯̃q

(

N, {m2}
)

≡
∫ 1

0
dρ ρN−1 σh1h2→q̃ ¯̃q

(

ρ, {m2}
)

=
∑

i,j

f̃i/h1
(N + 1, µ2) f̃j/h2

(N + 1, µ2) σ̃ij→q̃ ¯̃q

(

N, {m2}, µ2
)

. (2.3)

The logarithmically enhanced terms are then of the form αn
s log

mN , m ≤ 2n, with the

threshold limit β → 0 corresponding to N → ∞. The all-order summation of such loga-

rithmic terms is a consequence of the near-threshold factorization of the cross sections into

functions that each capture the contributions of classes of radiation effects: hard, collinear

(including soft-collinear), and wide-angle soft radiation [17, 18, 36, 42–44]. Near threshold

the resummed partonic cross section has the form:
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σ̃
(res)

ij→q̃ ¯̃q

(

N, {m2},µ2
)

=
∑

I

σ̃
(0)

ij→q̃ ¯̃q,I

(

N, {m2}, µ2
)

Cij→q̃ ¯̃q,I(N, {m2}, µ2)

× ∆i(N + 1, Q2, µ2)∆j(N + 1, Q2, µ2)∆
(s)

ij→q̃ ¯̃q,I

(

Q/(Nµ), µ2
)

, (2.4)

where we have introduced the hard scale Q2 = 4m2
q̃ . Before commenting on the different

functions in this equation, we recall that soft radiation is coherently sensitive to the colour

structure of the hard process from which it is emitted [36,42–46]. At threshold, the resulting

colour matrices become diagonal to all orders by performing the calculation in an s-channel

colour basis [28,30,31]. The different contributions then correspond to different irreducible

representations I. For the qq̄ → q̃ ¯̃q process, the s-channel basis consists of a singlet 1

and an octet 8 representation, while for the gg → q̃ ¯̃q process it contains a singlet 1,

an antisymmetric octet 8A and a symmetric octet 8S representation as presented in e.g.

Ref. [28, 30,31].

In Eq. (2.4), σ̃
(0)

ij→q̃ ¯̃q,I
are the colour-decomposed leading-order (LO) cross sections in

Mellin-moment space. The functions ∆i and ∆j sum the effects of the (soft-)collinear

radiation from the incoming partons, while the function ∆
(s)

ij→q̃ ¯̃q,I
describes the wide-angle

soft radiation. Schematically the exponentiation of soft-gluon radiation takes the form

[17,18]

∆i∆j∆
(s)

ij→q̃ ¯̃q,I
= exp

[

Lg1(αsL) + g2(αsL) + αsg3(αsL) + . . .
]

. (2.5)

This exponent captures all dependence on the large logarithm L = logN . Keeping only

the g1 term in Eq. (2.5) constitutes the leading logarithmic (LL) approximation. Including

also the g2 term is called the NLL approximation. For the NNLL approximation also the g3
term needs to be taken into account. Explicit expressions for the g3 term and its ingredients

are given in Refs. [47–49]1 and are listed in appendix A.

We also need the matching coefficients C, which contain the Mellin moments of

the higher-order contributions without the log(N) terms. To NNLL accuracy, this non-

logarithmic part of the higher-order cross section near threshold factorizes into a part that

contains the leading Coulomb correction CCoul,(1) and a part that contains the NLO hard

matching coefficients C(1) [29]:

CNNLL =
(

1 +
αs

π
CCoul,(1)(N, {m2}, µ2)

) (

1 +
αs

π
C(1)({m2}, µ2)

)

(2.6)

The calculation of the NLO hard matching coefficients C(1) and the Coulomb contribu-

tion CCoul,(1) for the squark-antisquark production processes will be discussed in detail in

section 3.

Having constructed the NNLL cross-section in Mellin-moment space, the inverse Mellin

transform has to be performed in order to recover the hadronic cross section σh1h2→q̃ ¯̃q. In

order to retain the information contained in the complete NLO cross sections [14], the

NLO and NNLL results are combined through a matching procedure that avoids double

1One has to correct for an extra minus sign in front of all DQQ̄ terms in Eq. (A9) of [49].
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counting of the NLO terms:

σ
(NLO+NNLL matched)

h1h2→q̃ ¯̃q

(

ρ, {m2}, µ2
)

= σ
(NLO)

h1h2→q̃ ¯̃q

(

ρ, {m2}, µ2
)

(2.7)

+
∑

i,j

∫

CT

dN

2πi
ρ−N f̃i/h1

(N + 1, µ2) f̃j/h2
(N + 1, µ2)

×
[

σ̃
(res,NNLL)

ij→q̃ ¯̃q

(

N, {m2}, µ2
)

− σ̃
(res,NNLL)

ij→q̃ ¯̃q

(

N, {m2}, µ2
)

|
(NLO)

]

.

We adopt the “minimal prescription” of Ref. [50] for the contour CT of the inverse Mellin

transform in Eq. (2.7). In order to use standard parametrizations of parton distribution

functions in x-space we employ the method introduced in Ref. [51].

3. Calculation of the matching coefficients

In this section we will discuss the calculation of the matching coefficients C at one loop.

As discussed in equation (2.6), the NNLL matching coefficient CNNLL factorizes into the

Coulomb contribution and the hard matching coefficient. For NNLL resummation, both

terms are needed up to NLO accuracy.

The terms in the NLO cross section which give rise to the Coulomb corrections CCoul,(1)

in N -space do not have the usual phase-space suppression ∝ β, in view of the Coulombic

1/β enhancement factor. After performing an expansion of the NLO cross section in β,

the hard matching coefficients C(1) are determined by the terms in the NLO cross section

that are proportional to β, β log(β) and β log2(β). Terms that contain higher powers of

β are suppressed by powers of 1/N in Mellin-moment space and do not contribute to the

matching coefficient C. In contrast to the case of top-pair production in Ref. [52], there

is no full analytic result for the real corrections to squark-antisquark production, so we

cannot take the explicit threshold limit. For the virtual corrections, which also contain the

Coulomb contribution, we will use the full analytic expressions, but for the real corrections

we need a different approach.

To obtain the virtual corrections for squark-antisquark production we start from the

full analytic calculation as presented in Ref. [14]. As described in detail in Ref. [14],

the QCD coupling αs and the parton distribution functions at NLO are defined in the

MS scheme with five active flavours, with a correction for the SUSY breaking in the MS

scheme. The masses of squarks and gluinos are renormalized in the on-shell scheme, and

the top quark and the SUSY particles are decoupled from the running of αs.

To obtain the virtual part of the hard matching coefficients, we first need to colour-

decompose the result and then expand it in β. For the first step we only need the colour

decomposition of the LO matrix element. Due to the orthogonality of the s-channel colour

basis, the full matrix element squared is then automatically colour-decomposed:

|M|2NLO,I = 2Re(MNLOM∗
LO,I).

We are now left with an expression in terms of masses, Mandelstam variables and scalar

integrals. Since we need the cross section to O(β), we have to expand |M|2 to zeroth order
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in β. For the squark-antisquark production processes the factors that multiply the integrals

do not contain negative powers of β, so we do not have to expand the scalar integrals beyond

zeroth order in β.

The number of integrals that need to be expanded can be reduced. By using the fact

that the two outgoing momenta are equal at threshold, we can reduce some of the three-

and four-point integrals to two- and three-point integrals respectively. This procedure can

be used only for integrals that contain both outgoing momenta. The result of the remaining

integrals is explicitly expanded to zeroth order in β.

Special attention has to be paid to the Coulomb integrals. First, in order to calcu-

late the Coulomb corrections CCoul,(1) in N -space, we need to know the Coulomb part of

the NLO correction in β-space, corresponding to the leading terms in β of the Coulomb

integrals. These leading terms are given by [19–22]:

σ
Coul,(1)

ij→q̃ ¯̃q,I
= −αs

π

π2

2β
κij→q̃ ¯̃q,Iσ

(0)

ij→q̃ ¯̃q,I
(3.1)

with κ colour coefficients that depend on the process and the dimension of the representa-

tion. For the qq̄-initiated process they are given by [31]:

κqq̄→q̃ ¯̃q,1 = −4

3
and κqq̄→q̃ ¯̃q,8 =

1

6

while for the gg-initiated process they are:

κgg→q̃ ¯̃q,1 = −4

3
, κgg→q̃ ¯̃q,8A

=
1

6
and κgg→q̃ ¯̃q,8S

=
1

6
.

The Mellin transform σ̃Coul,(1) of Eq. (3.1) is presented in appendix B. The function CCoul,(1)

can be obtained by dividing σ̃Coul,(1) by the Mellin transform of the LO cross section, which

can be found in Ref. [31].

Secondly, the next term in the β-expansion of the Coulomb integrals contributes to

the hard matching coefficients. Due to their 1/β behaviour Coulomb integrals cannot be

reduced to lower-point integrals, so they need to be expanded explicitly.

To obtain the integrated real corrections at threshold, the key observation is that

they are formally phase-space suppressed near threshold unless the integrand compensates

this suppression. Therefore we can construct the real corrections at threshold from the

singular behaviour of the matrix element squared, which can be obtained using dipole

subtraction [53,54]. We will briefly review the procedure of dipole subtraction and specify

how only the singular contributions survive in the threshold limit.

Dipole subtraction makes use of the fact that the cross section can be split into three

parts: a part with three-particle kinematics σ{3}, one with two-particle kinematics σ{2},

and a collinear counterterm σC that is needed for removing the initial-state collinear sin-

gularities. These parts are well-defined in n = 4 − 2ǫ dimensions, but their constituents

diverge for ǫ → 0. With the aid of an auxiliary cross section σA, which captures all singu-

lar behaviour, all parts are made finite and integrable in four space-time dimensions. This
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auxiliary cross section is subtracted from the real corrections σR at the integrand level to

obtain σ{3} and added to the virtual corrections σV, which defines σ{2}:

σNLO =

∫

3

[

dσR − dσA
]

ǫ=0
+

∫

2

[

dσV +

∫

1
dσA

]

ǫ=0
+ σC ≡ σ{3} + σ{2} + σC

We will first argue that we can neglect σ{3}. Compared to the case of two-parton kinematics,

the phase space of σ{3} is limited by the energy of the third, radiated massless particle.

Near the two-particle threshold, the maximum energy of the radiated particle, and thus

the available phase space, equals Emax =
√
s − 2mq̃ ∝ β2. Since after subtracting σA no

divergences are left in the integrand of σ{3}, the leading contribution of σ{3} is at most

proportional to β2 and can thus be neglected. This leaves us with:

σNLO,thr = σ{2},thr + σC,thr = σV,thr + σC,thr + σA,thr,

so at threshold the real radiation is indeed completely specified by the singular behaviour

contained in σA. In Ref. [54] the general form of σA is determined by summing over dipoles

that correspond to pairs of ordered partons. These dipoles describe the soft and collinear

radiation and reproduce the matrix element squared in the soft and collinear limits. To

obtain the cross section, the dipole functions need to be integrated over phase space and in

particular over the momentum fraction x that is left after radiation. In the threshold limit

the available phase space sets the lower bound of the x-integral to 1− β2, while the upper

bound equals 1. Therefore we cannot get a result of O(β) unless the integrand diverges at

x = 1, which is the case only for soft-gluon radiation. As a result we only need to take into

account the dipoles that describe gluon radiation.

Special attention has to be paid to the massive final-state dipole function. In Ref. [54]

this dipole function has been rewritten in order to simplify the integration. Unfortunately

this results in a deformation of the phase space integration which changes exactly the finite

terms that we are looking for. Therefore the expression given in Eq. (5.16) of Ref. [54]

cannot be used for our calculation and we have to use the original dipole function instead.

A more detailed argument can be found in appendix C. The divergent part of the dipole

function is completely determined by the soft limit. Using the eikonal approximation we

obtain the final-state dipole function that correctly reproduces the soft limit at threshold.

Its behaviour is given by:

〈Vgj,l〉|div ∝
∑

j

1

pg · pj
∑

l 6=j

(

pj · pl
pg · pj + pg · pl

− 1

2

m2
j

pg · pj

)

Tj · Tl , (3.2)

where pg is the gluon momentum and the sums run over final-state particles with momenta

pj,l, masses mj,l and colour charge operators Tj,l that are defined in Ref. [54]. This ex-

pression vanishes at threshold, so the final-state dipoles do not contribute in the threshold

limit. For the other dipole functions and the collinear counterterm we can use the equations

in [54] and take the threshold limit.

After combining the real and the virtual corrections the hard matching coefficients can

be obtained by taking the Mellin transform and omitting the Coulomb corrections and the
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log(N) terms. The complete expressions for the hard matching coefficients of the squark-

antisquark production processes can be found in appendix D. Their behaviour for varying

gluino mass is shown in Fig. 1. For the gg → q̃ ¯̃q process the antisymmetric octet 8A

(a)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

500 1000 1500 2000 2500 3000

C
(1

)
q
q̄
→

q̃
¯̃ q,

I

mg̃

singlet
octet

(b)

-0.1

0
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0.4
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500 1000 1500 2000 2500 3000

C
(1

)
g
g
→

q̃
¯̃ q,

I

mg̃

singlet
antisymmetric octet

symmetric octet

Figure 1: Gluino-mass dependence of the colour-decomposed NLO hard matching coefficients for

the qq̄ initiated channel (a) and the gg initiated channel (b). The squark mass has been set to

mq̃ = 1.2 TeV, while the common renormalization and factorization scale has been set equal to the

squark mass. The top quark mass is taken to be mt = 172.9 GeV.

contribution to the cross section vanishes because it yields a p-wave contribution, which

vanishes at threshold.

These matching coefficients have been checked numerically using PROSPINO [14] and

agree within the numerical accuracy of PROSPINO. They also agree with the a1 coefficients

presented in Ref. [35] to the percent level.

4. Numerical results

In this section we present numerical results for the NNLL-resummed cross sections with

and without the Coulomb contributions. We show the results for squark-antisquark pair-

production at the LHC for centre-of-mass energies of 7 TeV and 14 TeV. In order to evaluate

hadronic cross sections we use the 2008 NLO MSTW parton distribution functions [55] with

the corresponding αs(M
2
Z) = 0.120. We have used a top quark mass ofmt = 172.9 GeV [56].

The numerical results have been obtained with two independent computer codes.

It should be noted that the Coulomb effects can be screened by the width of the sparti-

cles depending on the specific SUSY scenario. For consistency we will stick to the approach

adopted in the NLO calculations, where this screening is not taken into account. In or-

der to study the effects from the hard matching coefficients and the Coulomb corrections

separately, we will compare several cross sections with the NLO result and discuss their

contribution:

• The NLL matched cross section is based on the calculations presented in [30–32] and

will be denoted as σNLO+NLL.

• The NNLL matched cross section without Coulomb contributions to the resumma-

tion σNLO+NNLL w/o Coulomb contains the soft-gluon resummation to NNLL accuracy
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matched to the full NLO result. The matching is performed according to Eq. (2.7).

The Coulomb correction to the resummation is not included, so CCoul,(1) in Eq. (2.6)

is set to zero.

• The NNLL matched cross section σNLO+NNLL does include the Coulomb contribution

CCoul,(1) from equation (2.6). Also in this case Eq. (2.7) has been used to match the

cross section to the complete NLO result.

The NLO cross sections are calculated using the publicly available PROSPINO code [57],

based on the calculations presented in Ref. [14]. The QCD coupling αs and the parton

distribution functions at NLO are defined in the MS scheme with five active flavours. The

masses of squarks and gluinos are renormalized in the on-shell scheme, and the SUSY

particles are decoupled from the running of αs and the parton distribution functions. No

top-squark final states are considered. We sum over squarks with both chiralities (q̃L
and q̃R), which are taken as mass degenerate. The renormalization and factorization scales

µ are taken to be equal.

We first discuss the scale dependence of the cross sections. Figure 2 shows the squark-

antisquark cross section for mq̃ = mg̃ = 1.2 TeV as a function of the renormalization and

factorization scale µ. The value of µ is varied around the central scale µ0 = mq̃ from

µ = µ0/5 up to µ = 5µ0 and results are shown for the LHC at CM energies of 7 TeV (a)

and 14 TeV (b).
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NLO+NLL
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σ ( pp → q̃¯̃q +X ) [pb]
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Figure 2: The scale dependence of the LO, NLO, NLO+NLL and NLO+NNLL (both with the

Coulomb part CCoul,(1) and without it) squark-antisquark cross sections for the LHC at 7 TeV (a)

and 14 TeV (b). The squark and gluino masses have been set to mq̃ = mg̃ = 1.2 TeV.

For both collider energies we see the usual scale reduction going from LO to NLO. In-

cluding the NLL correction and the NNLL contribution without the Coulomb part CCoul,(1)

improves the behaviour for moderate values of µ/µ0, but a fairly strong scale dependence

for small values of µ/µ0 remains. Upon inclusion of the Coulomb corrections CCoul,(1) the

scale dependence stabilises over the whole range.
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Figure 3 shows the mass dependence of the scale uncertainty for the NLO, NLO+NLL

and NLO+NNLL cross sections at the LHC. The squark and gluino mass have been taken

equal and the scale has been varied in the range mq̃/2 ≤ µ ≤ 2mq̃. As was to be expected

from figure 2, the scale uncertainty reduces as the accuracy of the predictions increases. In

the range of squark masses considered here, the NNLL resummation without the Coulomb

corrections CCoul,(1) already reduces the scale uncertainty to at most 10% for the LHC at a

CM energy of 7 TeV and to even lower values for a CM energy of 14 TeV. The inclusion of

the Coulomb term CCoul,(1) in the resummed NNLL prediction results in a scale uncertainty

of only a few percent for both collider energies. The effect of the threshold resummation is

more pronounced for a collider energy of 7 TeV, which is due to the fact that the sparticles

are produced closer to threshold in that case.
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Figure 3: The scale uncertainty of the NLO, NLO+NLL and NLO+NNLL (both with the Coulomb

part CCoul,(1) and without it) squark-antisquark cross sections for the LHC at 7 TeV (a) and

14 TeV (b). The common renormalization and factorization scale has been varied in the range

mq̃/2 ≤ µ ≤ 2mq̃ and the squark and gluino masses have been taken equal.

Finally we study the K-factors with respect to the NLO cross section:

Kx =
σx

σNLO
,

where x can be NLO+NLL, NLO+NNLL w/o Coulomb or NLO+NNLL. In figure 4 we

study the mass dependence of the K-factor for equal squark and gluino masses.

At the central scale µ = mq̃ the K-factor, and thus the theoretical prediction of the

cross section, increases as more corrections are included. Also, the effect becomes more

pronounced for higher masses. This was to be expected, since in that case the particles are

produced closer to threshold. As can be seen in figure 4(a), the NNLL resummation without

the Coulomb corrections CCoul,(1) already results in a 25% increase of the cross section with

respect to the NLO cross section for squarks of 2 TeV and a CM energy of 7 TeV. The

contribution from the Coulomb term to the resummed NLO+NNLL cross section is larger

than the contributions provided by the g3 term in the exponential and the hard matching
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Figure 4: The K-factor with respect to the NLO cross section of the NLO+NLL and NLO+NNLL

(both with the Coulomb part CCoul,(1) and without it) squark-antisquark cross sections for the LHC

at 7 TeV (a) and 14 TeV (b). The squark and gluino masses have been taken equal and the common

renormalization and factorization scale has been set equal to the squark mass.

NLO+NNLL, r = 2.0
NLO +NNLL, r = 0.5
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Figure 5: The K-factor with respect to the NLO cross section of the NLO+NNLL squark-

antisquark cross sections with and without the Coulomb contributions CCoul,(1) for the LHC at

7 TeV. Different ratios of the squark and gluino mass are shown, while the common renormaliza-

tion and factorization scale has been set equal to the squark mass.

coefficient C(1), yielding a total K-factor of 1.45. For the case of a CM energy of 14 TeV,

which is shown in figure 4(b), the size of the NNLL contributions is smaller, since the

sparticles are produced further away from threshold. However, for masses of 3 TeV, the

K-factor for the NNLL contribution without the Coulomb correction CCoul,(1) still yields

1.13, whereas the inclusion of the Coulomb corrections increases this to 1.25. Although the

effect from the Coulomb corrections could be somewhat smaller in reality due to the finite
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lifetime of the squarks, figure 4 suggests that the NNLL contribution will remain large.

Figure 4 only contains the numbers for equal squark and gluino masses, but the effect

of the gluino mass is small, as can be seen in figure 5. In figure 5 the mass ratio r = mg̃/mq̃

has been varied. Although some effect can be seen, it is negligible compared to the size

of the NNLL corrections. It turns out that this conclusion also holds for a collider energy

of 14 TeV. Consequently the NNLL-resummed results are relatively independent of the

relation between squark and gluino masses.

The scale dependence of the cross section shows the best stability after including both

the hard matching coefficients C(1) and the Coulomb contributions CCoul,(1). This indicates

that all these contributions should be taken into account to achieve the observed cancel-

lation, see also figure 9 in [29]. However, the observed reduction in the scale dependence

might be modified somewhat by the inclusion of the width of the particles or by match-

ing to the full NNLO result, which is not available. In this context we note that, as a

consequence of the NNLL accuracy of resummation, our matched cross section receives ad-

ditional non-logarithmic NNLO contributions, which would have been consistently treated

if matching to NNLO had been possible. A very conservative estimate of the scale un-

certainty is provided by the NLO+NNLL w/o Coulomb results, which do not include the

Coulomb corrections.

5. Conclusions

We have performed the NNLL resummation of threshold corrections for squark-antisquark

hadroproduction. In particular, the previously unknown hard matching coefficient C(1),

needed at this level of accuracy, has been calculated analytically. We have also numerically

evaluated the NNLL resummed cross section, matched to the NLO fixed-order expression,

for squark-antisquark production at the LHC with CM energies of 7 and 14 TeV. At

both collider energies the total cross section increases at the central scale. At 7 TeV

collision energy and for a squark mass of 2 TeV, the NLO+NNLL squark-antisquark cross

section is larger than the corresponding NLO cross section by as much as 45%. The

correction is reduced to 25% if the contributions due to Coulombic interactions are not

taken into account. In addition, the scale dependence is reduced significantly, particularly

after inclusion of the Coulomb corrections. This information should be used to improve

current limits on SUSY masses or, in the case that SUSY is found, to more accurately

determine the masses of the sparticles.

Acknowledgments

This work has been supported in part by the Helmholtz Alliance “Physics at the Terascale”,

the Foundation for Fundamental Research of Matter (FOM), program 104 “Theoretical

Particle Physics in the Era of the LHC”, the DFG SFB/TR9 “Computational Particle

Physics”, and the European Community’s Marie-Curie Research Training Network under

– 12 –



contract MRTN-CT-2006-035505 “Tools and Precision Calculations for Physics Discoveries

at Colliders”.

A. The NNLL functions

In the following we list the explicit expression for the NNLL function g
(3)

ij→q̃ ¯̃q,I
, cf. Refs. [47,

49]. Expressions for the LL and NLL functions can be found in Refs. [31, 36].

The NNLL functions g
(3)

qq̄→q̃ ¯̃q,I
and g

(3)

gg→q̃ ¯̃q,I
read

g
(3)

ij→q̃ ¯̃q,I

(

λ, 4m2
q̃ , µ

2
)

=
A

(1)
i b21
πb40

1

1− 2λ

[

2λ2 + 2λ log(1− 2λ) +
1

2
log2(1− 2λ)

]

(A.1)

+
A

(1)
i b2
πb30

[

2λ+ log(1− 2λ) +
2λ2

1− 2λ

]

−2A
(1)
i b1γE
πb20

[2λ+ log(1− 2λ)]

1− 2λ
+

4A
(1)
i

π

(

ζ(2) + γ2E
) λ

1− 2λ

−A
(2)
i b1
π2b30

1

1− 2λ
[2λ(λ + 1) + log(1− 2λ)]

+
4A

(2)
i γE
π2b0

λ

1− 2λ
+

2A
(3)
i

π3b20

λ2

1− 2λ
− D

(2)
i

π2b0

λ

1− 2λ

+
D

(1)

ij→q̃ ¯̃q,I
b1

2πb20

[2λ+ log(1− 2λ)]

1− 2λ
−

2D
(1)

ij→q̃ ¯̃q,I
γE

π

λ

1− 2λ

−
D

(2)

ij→q̃ ¯̃q,I

π2b0

λ

1− 2λ

+

[

A
(1)
i b1
πb20

2λ+ log(1− 2λ)

1− 2λ
− 4A

(1)
i γE
π

λ

1− 2λ

]

log

(

4m2
q̃

µ2

)

+
A

(1)
i

π

λ

1− 2λ
log2

(

4m2
q̃

µ2

)

− 2A
(2)
i

π2b0

λ

1− 2λ
log

(

4m2
q̃

µ2

)

+
D

(1)

ij→q̃ ¯̃q,I

π

λ

1− 2λ
log

(

4m2
q̃

µ2

)

with λ = b0αs(µ
2) log(N), µ the common renormalization and factorization scale, and γE

Euler’s constant. The coefficients of the QCD beta function are denoted by bn and the first

three coefficients are given by [59,60]

b0 =
11CA − 2nl

12π
, (A.2)

b1 =
17C2

A − 5CAnl − 3CFnl

24π2
,

b2 =
1

(4π)3

[

2857

54
C3
A − 1415

54
C2
Anl −

205

18
CACFnl + C2

Fnl +
79

54
CAn

2
l +

11

9
CFn

2
l

]

,

– 13 –



where nl denotes the number of light quark flavours, CA = Nc and CF = N2
c−1
2Nc

with Nc the

number of colours. The universal, process independent coefficients up to NNLL accuracy

are given by [47]

A
(1)
i = Ci , (A.3)

A
(2)
i =

1

2
Ci

[(

67

18
− ζ(2)

)

CA − 5

9
nl

]

,

A
(3)
i =

1

4
Ci

[

C2
A

(

245

24
− 67

9
ζ(2) +

11

6
ζ(3) +

11

5
ζ(2)2

)

+ CFnl

(

−55

24
+ 2ζ(3)

)

+CAnl

(

−209

108
+

10

9
ζ(2)− 7

3
ζ(3)

)

− n2
l

27

]

,

and [42,61,62]

D
(2)
i = Ci

[

CA

(

−101

27
+

11

3
ζ(2) +

7

2
ζ(3)

)

+ nl

(

14

27
− 2

3
ζ(2)

)]

, (A.4)

with the colour factor Ci = CF for i = q, q̄ and Ci = CA for i = g. The process dependent

coefficients read [36]

D
(1)

qq̄(gg)→q̃ ¯̃q,1
= 0 , D

(1)

qq̄(gg)→q̃ ¯̃q,8(8A,8S)
= −CA , (A.5)

and [29,48]

D
(2)

qq̄(gg)→q̃ ¯̃q,1
= 0 , (A.6)

D
(2)

qq̄(gg)→q̃ ¯̃q,8(8A,8S)
= −CA

(

1

2

[(

67

18
− ζ(2)

)

CA − 5

9
nl

]

+
CA

2
(ζ(3)− 1) + 2πb0

)

.

B. Mellin transforms of the Coulomb corrections

In this appendix we present the analytical results for the Mellin transforms of the Coulomb

corrections in terms of the Euler beta function β, the digamma function Ψ and the hy-

pergeometric functions 2F1 and 3F2. For the subprocess qiq̄j → q̃ ¯̃q the expressions for the

colour-decomposed Coulomb part in N -space are given by

σ̃
Coul,(1)

qiq̄j→q̃ ¯̃q ,1
(N) = − 4α3

sπ
2

243m2
q̃

[

4

N + 1
− 4h

N + 2
2F1 (1, N + 2, N + 3, h) (B.1)

+ 4 IN (r) + 2(r2 − 1) IN+1(r)

]

,

σ̃
Coul,(1)

qiq̄j→q̃ ¯̃q ,8
(N) = − α3

sπ
2

2592m2
q̃

δij

[

8nl

N2 + 3N + 2
+

8

N + 1
+ (r2 − 1)

4

N + 2
(B.2)

+ 4 r2 IN+1(r) + (r2 − 1)2 IN+2(r)

]

− 1

64
σ̃
Coul,(1)

qiq̄j→q̃ ¯̃q ,1
(N) ,
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whereas for the subprocess gg → q̃ ¯̃q they read

σ̃
Coul,(1)

gg→q̃ ¯̃q ,1
(N) =

α3
sπ

2nl

288m2
q̃

[

2

N + 1
+

2

N + 2
+ 2 IN+1(1)− IN+2(1)

]

, (B.3)

σ̃
Coul,(1)

gg→q̃ ¯̃q ,8A
(N) = − α3

sπ
2nl

1536m2
q̃

[

2

N + 1
+

16

N + 2
+ 6 IN+1(1) + 3 IN+2(1)

]

, (B.4)

σ̃
Coul,(1)

gg→q̃ ¯̃q ,8S
(N) = − 5

16
σ̃
Coul,(1)

gg→q̃ ¯̃q ,1
(N) . (B.5)

Here r = mg̃/mq̃ and nl = 5 denotes the number of light quark flavours. The function

IN (r) is given by

IN (r) ≡ 2
√
d

N + 1
+ 2BN log

(

r2 + 1

2r

)

+BN [Ψ(N + 3/2) −Ψ(N + 1)] (B.6)

+h
N + 1

N + 3/2
BN 3F2(1, 1, N + 2, 2, N + 5/2, h)

− d

2(N + 3/2)
BN 3F2(1, 1, 3/2, 2, N + 5/2, d)

+
2 d3/2

3 (N + 1) (N + 2)
3F2(1, 3/2, 2, 5/2, N + 3, d)

− 2N+2

(N + 1)2
3F2(−N,N + 1, N + 1, N + 2, N + 2, 1/2) ,

with

h = −(r2 − 1)2

4r2
, and d =

(r2 − 1)2

(r2 + 1)2
. (B.7)

The Euler beta function β(N + 1, 1/2) is abbreviated by

BN ≡ β(N + 1, 1/2). (B.8)

C. How velocity factors can deform the phase space integration

As mentioned in section 3 the dipole function given in Ref. [54] has been modified, which

makes it unsuitable for our calculation. We will explicitly show the effect of this modifica-

tion by considering the change in the second term of Eq. (3.2), which is denoted as IcollgQ,Q

in Eq. (5.23) of Ref. [54]. In Ref. [54] finite pieces of the integrand are taken into account

as well, but since we showed in section 3 that the only contribution at threshold comes

from the singular part of the integrand, we will omit these terms.

The singular term of the integrand yields a 1/ǫ-pole and a finite piece. The pole cancels

the pole of the first term of the dipole function (3.2), while the finite piece contributes to
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the hard matching coefficient. In its unmodified form, the finite piece is given by

Icoll,unchangedgQ,Q

∣

∣

∣

fin
= 2

∫ y+

0
dy

[

1

y
− µ2

√

[2µ2 + (1− 2µ2)(1 − y)]2 − 4µ2

y(µ2 + y(1− 2µ2))
√

1− 4µ2

]

≈ 2

∫ 2(1−2µ)

0
dy

√

1− 4µ2 −
√

(1− y/2)2 − 4µ2

y
√

1− 4µ2
(C.1)

with

y =
pg · pj

pg · pj + pg · pl + pj · pl
, y+ =

1− 2µ

1− 2µ2
and µ = m/

√
s .

The approximation in the second line of Eq. (C.1) is suitable near threshold, where µ ≈ 1/2.

Exactly at threshold the finite part equals 4−4 log(2) and exactly cancels the contribution

from the first term of Eq. (3.2).

In Ref. [54], the integrand in IcollgQ,Q has been multiplied by velocity factors in order to

simplify the integration:

ṽgQ,Q

vgQ,Q
=

(1− y)
√

1− 4µ2

√

[2µ2 + (1− 2µ2)(1 − y)]2 − 4µ2
≈

√

1− 4µ2

√

(1− y/2)2 − 4µ2
,

where the approximation in the second step holds near threshold. The velocity factor

effectively replaces
√

1− 4µ2 in the denominator of Eq. (C.1) by
√

(1− y/2)2 − 4µ2, which

amounts to a shift comparable in size to the value of the numerator. In the strict soft limit

y vanishes and the velocity factors have no effect. However, we are integrating over gluons

that are not soft compared to the energy above threshold
√
s − 2m, so we also need the

correct behaviour away from the strict soft limit. In fact, if the velocity factors are included

the integral IcollgQ,Q vanishes at threshold, so it does no longer cancel the contribution from

the first term of Eq. (3.2).

Usually the velocity factors do not pose a problem in calculations using dipole sub-

traction, since the terms are subtracted from the real part and added to the virtual part.

Therefore it does not matter if a dipole function is deformed, as long as the pole is re-

produced. Finite contributions can always be moved between σ{2} and σ{3}. However,

we argued that σ{3} vanishes at threshold due to phase-space suppression, which is not

true if the phase space integration is deformed by velocity factors. Therefore we need the

unchanged dipole function for this particular calculation.

D. The hard matching coefficients for squark-antisquark production

Here we present the exact expressions for the hard matching coefficients C(1) for the squark-

antisquark production processes as defined in Eq. (2.6). We sum over squarks with both

chiralities (q̃L and q̃R). No top-squark final states are considered and all squarks are

considered to be mass-degenerate with mass mq̃. Top squarks are taken into account in the

loops, where they are taken to be mass-degenerate with the other squarks. The calculation

is outlined in section 3 and was done with FORM [58]. We first define:

β12(q
2) =

√

1− 4m1m2

q2 − (m1 −m2)2
, x12(q

2) =
β12(q

2)− 1

β12(q2) + 1
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and

m2
− = m2

g̃ −m2
q̃ , m2

+ = m2
g̃ +m2

q̃,

where mg̃ is the gluino mass. Denoting the number of light flavours by nl = 5, the total

number of flavours by nf = 6 and the number of colours by Nc = 3, we also define:

γq =
3

2
CF CF =

N2
c − 1

2Nc

γg =
11

6
CA − 1

3
nl CA = Nc .

We denote the factorization scale by µF , the renormalization scale by µR and Euler’s

constant by γE . For the qq̄ → q̃ ¯̃q process both the singlet 1 and the octet 8 representation

contribute:

C(1)

qq̄→q̃ ¯̃q,I
= Re

{

2CF

3
π2 + γg log

(

µ2
R

m2
q̃

)

− γq log

(

µ2
F

m2
q̃

)

+ F0(mq̃,mg̃,mt) +
19Nc

24

+
23

8Nc
+

1− 3N2
c

Nc
log

(

m2
+

m2
q̃

)

− 2

Nc
log (2) +

(

7Nc

6
+

2m2
g̃

m2
+

CF

)

log

(

m2
g̃

m2
q̃

)

−
m2

g̃

m2
q̃

(

m2
−

m2
q̃

log

(

m2
−

m2
g̃

)

+ 1

)

CF +
m2

g̃

2m2
−

(

m2
g̃

m2
−

log

(

m2
g̃

m2
q̃

)

− 1

)

CF

− 1

2Nc

(

m2
g̃

m2
q̃

− 3

)

F1 (mq̃,mg̃) +

(

m2
+

2m2
q̃

CF +
1

Nc

)

F2 (mq̃,mg̃)

+ 2CF

(

γ2E − 2γE log(2) + γE log

(

µ2
F

m2
q̃

))

+

[

− π2

4
+ log

(

m2
+

m2
q̃

)

− log (2)−
m2

g̃

m2
+

log

(

m2
g̃

m2
q̃

)

+ 2 + γE

− 1

4

(

m2
g̃

m2
q̃

− 3

)

(F1 (mq̃,mg̃) + F2 (mq̃,mg̃))

]

C2(I)

}

.

In this equation the last two lines are proportional to the quadratic Casimir invariant of

the representation, which is zero for the singlet and Nc for the octet representation. We
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have defined the functions:

F0(mq̃,mg̃,mt) =
m2

t

2m2
g̃

−
(

1 +
m2

q̃

2m2
g̃

)

nf +

(

m6
−

2m2
+m

4
g̃

log

(

m2
−

m2
q̃

)

+
4m2

q̃

m2
+

log (2)

)

nl

+

(

m4
t

2m2
q̃m

2
g̃

−
(m2

q̃ −m2
t )

2

4m4
g̃

+
m2

q̃ −m2
t

m2
g̃

− 1

12

)

log

(

m2
t

m2
q̃

)

−
m2

−

(

m2
g̃ − (mq̃ −mt)

2
)(

m2
g̃ −m2

q̃ +m2
t

)

2m4
g̃m

2
+

βq̃t(m
2
g̃) log

(

xq̃t(m
2
g̃)
)

+
m4

t − 2mq̃m
3
t + 4m3

q̃mt − 4m4
q̃

m2
q̃m

2
+

βq̃t(−m2
q̃) log

(

xq̃t(−m2
q̃)
)

F1(mq̃,mg̃) = Li2

(

m2
−

2m2
g̃

)

+ Li2

(

1− m2
−

2m2
q̃

)

+
π2

12
+ log

(

m2
−

2m2
g̃

)

log

(

m2
+

2m2
q̃

)

+
1

2
log2

(

m2
g̃

m2
q̃

)

F2(mq̃,mg̃) = Li2

(

m2
q̃

m2
g̃

)

− Li2

(

−
m2

q̃

m2
g̃

)

+ log

(

m2
+

m2
−

)

log

(

m2
g̃

m2
q̃

)

.

For the gg → q̃ ¯̃q process the antisymmetric octet 8A vanishes because it yields a p-wave

contribution, which vanishes at threshold. The hard matching coefficients for the singlet 1

and the symmetric octet 8S do contribute:

C(1)

gg→q̃ ¯̃q,8A

= 0

C(1)

gg→q̃ ¯̃q,I
= Re

{

π2

(

5Nc

12
− CF

4

)

+ γg log

(

µ2
R

µ2
F

)

−
m2

g̃Nc

2m2
q̃

log2
(

xg̃g̃(4m
2
q̃)
)

+CF

(

m2
+m

2
−

2m4
q̃

log

(

m2
+

m2
−

)

−
m2

g̃

m2
q̃

− 3

)

+
m2

+Nc

2m2
q̃

(

Li2

(

−
m2

q̃

m2
g̃

)

− Li2

(

m2
q̃

m2
g̃

))

+ 2CA

(

γ2E − 2γE log(2) + γE log

(

µ2
F

m2
q̃

))

+

[

π2

8
− 1

2
Li2

(

−
m2

q̃

m2
g̃

)

+
1

2
Li2

(

m2
q̃

m2
g̃

)

+
m2

g̃

4m2
q̃

log2
(

xg̃g̃(4m
2
q̃)
)

+ 2 + γE

]

C2(I)

}

where in the second equation the representation I can be the 1 or the 8S and the last line

is proportional to the quadratic Casimir invariant of the representation.
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