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Abstract. The COSTA system infers resource consumption bounds
from Java bytecode using an internal recurrence solver PUBS. This pa-
per suggests an improvement of the COSTA system, such that it can
solve a larger number of recurrences. The idea is to replace one of its
static analyses, the ranking function analysis, by another kind of analy-
sis, height analysis, in such a way that polynomial bounds of any degree
may be inferred instead of just linear expressions. The work can be seen
as an application of some polynomial interpolation techniques used by
some of the authors in prior analyses. Finding a way to choose proper
test nodes is the key to the solution presented in this paper.

1 Introduction

The application of resource analysis techniques to actual programs frequently
leads to the generation of cost recurrence equations which must be solved, i.e.
expressed in a closed form in order to be useful. There have been many attempts
to solve this kind of equations in an automatic way. Most of the tools doing this
are restricted to specific recurrence families, frequently on only one variable.

A system proved successful in generating and solving multivariate recurrence
equations is COSTA [1], together with its associated recurrence solving sub-
system PUBS [2]. COSTA is given a program text written in Java bytecode, and
the kind of resource to be analysed (number of instructions executed, memory
consumption, among others), and in many cases it is able to obtain symbolic
upper bounds for these runtime figures. The bounds are expressed as multivariate
functions on the sizes of the input arguments of the method being analysed.

Internally, the system contains many different static analyses which we briefly
summarise in Sec. 2. In this paper, we focus on one of them: the ranking function
synthesis done in one of the steps. Its aim is to obtain an upper bound on the
number of unfoldings the recurrence equations must undergo to reach a base
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case, i.e. to reach a case with does not admit more unfoldings. This number
corresponds with the maximum height of the so-called evaluation trees. As we
will see, this ranking function is crucial in the computation of the resource upper
bound. The limitation of this step is that the ranking function must be a linear
expression on the argument sizes. The method of Podelski and Rybalchenko
[20], which is known to be complete for linear ranking functions, is used for this
purpose.

In the past, we have used polynomial interpolation techniques in different
types of size analysis [21], and also in synthesising polynomial ranking functions
for Java loops [24]. The main idea there was to synthesise polynomials by evalu-
ating program fragments, or particular term rewriting systems, in some specific
test points arranged in a so-called NCA configuration (Node Configuration A,
[8]). By adopting this configuration the number of test points needed is a precise
function of the polynomial degree and the number of variables.

We apply the same idea here by evaluating recurrence equations at well-
chosen points and then interpolating a multivariate polynomial of known degree
passing through those points. As we are only interested in the maximum height
of the recurrence evaluation trees (the rest of the recurrence solving process is
already done by PUBS), we first write a derived recurrence defining this height.
The polynomial obtained would be then an upper bound of the height of any
evaluation tree. The degree must be guessed, as happens in other techniques
inferring arbitrary polynomials [18, 14], and additionally the interpolated poly-
nomial must be proved correct w.r.t. the given recurrence equations. We will
show that the process can be performed fully algorithmically by using appro-
priate tools. In the end we have extended the power of COSTA by allowing the
solution of more general recurrences, specifically those admitting a polynomial
upper bound on the height of the evaluation trees.

The plan of the paper is as follows: after this introduction, in Sec. 2 we sum-
marise the main components of the COSTA-PUBS system and the process it
follows for recurrence solving; in Sec. 3 we explain the main steps of our infer-
ence process by using a small running example; sections 4, 5, and 6 contain the
technical details of respectively what we mean by evaluating a non-deterministic
recurrence, how to choose appropriate test points, and how to prove the ob-
tained polynomial correct; finally, Sec. 7 surveys the related work and draws
some conclusions.

2 A Broad Overview of COSTA and PUBS

The COSTA System is based on the classical approach to resource analysis, due
to Wegbreit [27]. Given a Java bytecode program and a cost model, COSTA
generates, in a first phase, a set of equations specifying the cost of the program
as a function on the size of its input. The meaning of the size of the input depends
on the type of the latter: the size of an integer is its value, whereas the size of
an array is its number of elements. Finally, the size of an arbitrary object is the
longest reachable pointer path that stems from that object. As an example, we



show below a code fragment with a recurrence relation specifying its memory
consumption 1:

while (n > 0) {

int[] arr = new int[n];

n--;

}

T (n) = 0 {n ≤ 0}
T (n) = 4n+ T (n− 1) {n > 0} (1)

Although a recurrence relation captures precisely the cost of a program,
an equivalent expression without recursion (closed form) gives a more intuitive
idea about these costs from the programmer’s point-of-view. For instance, the
recurrence shown above admits the following closed-form: T (n) = 2n2 + 2n. So,
the second phase of COSTA consists of the computation of a closed form for
the previously generated set of equations. In contrast to already existing tools
for solving recurrence relations [5], COSTA provides its own recurrence solver,
PUBS [2]. The main reason is that, in practice, the set of equations capturing
the cost of a program are not recurrence relations, but belong to the broader
class of Cost Relation Systems (CRS), which are defined as follows:

Definition 1 (Adapted from [2]). A cost relation system is a finite set of
equations of the form:

T (x̄) = exp +

l∑
j=1

T (ȳj) ψ

where l ≥ 0, exp is a basic cost expression (i.e. does not refer to other cost
functions such as T ) and ψ is a set of linear relations on x̄∪{ȳj}j=1..l∪vars(exp)
specifying the conditions under which the equation can be applied.

The formal definition of basic cost expressions is not relevant to this paper,
and it shall be omitted here (see [2] for details). Our definition of CRS differs
slightly from that of [2] in the sense that, in the latter, there could be occurrences
of cost symbols different from T in the right-hand side of the equations. However,
as pointed out in that paper, it is possible to unfold the definitions of these
symbols in order to obtain equations as in the definition above, so we assume
that this transformation has already been done. The main difference between
CRS and regular recurrence relations is non-determinism: when evaluating T (v̄)
for some concrete values, we might be able to apply more than one equation.
Moreover, the arguments T (ȳj) occurring in the recursive calls of an equation
may not be uniquely determined by the guards, as in, for example, T (x) =
1 + T (x′) {0 ≤ x′ < x}. Thus the evaluation of T (v̄) may give rise to different
results and hence a CRS defines a relation instead of a function.

The PUBS approach for computing a closed form upper-bound is based on
the notion of an evaluation tree (ET), which is the structure describing the

1 Here we follow the simplified model of COSTA, where it is assumed that e.g. an inte-
ger array of length n allocates 4n bytes. In practice allocation of arrays is compiler-
dependent and typically assumes packing and optimisations.



evaluation of T (v̄) for some values v̄. Each node in the ET contains the cost
of its basic cost expression exp applied to the v̄, and its children correspond to
the recursive calls T (v̄j), where j ∈ {1..m}. Notice that the evaluation of T (v̄)
may be described by several different ETs, because of non-determinism. The
computation of an upper bound to T (x̄) amounts to finding upper-bounds to:

– The number of base and recursive nodes of every possible ET, respectively
denoted by nb(x̄) and nr(x̄).

– The value of the basic cost expressions occurring in the base and recursive
nodes of every possible ET, respectively denoted by cb(x̄) and cr(x̄).

Given these, an upper bound T+(x̄) is computed as follows:

T+(x̄) = nb(x̄) ∗ cb(x̄) + nr(x̄) ∗ cr(x̄) (2)

The computation of cb(x̄) and cr(x̄) is beyond the scope of this paper. With
regard to the number of nodes in the ET (nb and nr), these functions are ap-
proximated (see [2]) from the ET’s branching factor b and maximal height h(x̄)
as follows:

nb(x̄) = bh(x̄) nr(x̄) =

{
h(x̄) if b = 1
bh(x̄)−1

b−1 if b > 1

The h function stands for the length of the maximal call chain (without
including the base case) that stems from the root of the ET. For example, with
the CRSs shown in (1) the only (and hence the longest) chain reachable from
T (n) is the following:

T (n)→ T (n− 1)→ T (n− 2)→ . . .→ T (1)︸ ︷︷ ︸
h(n)=n

→ T (0)

In order to compute h(x̄), PUBS derives a ranking function for T by applying
the method of Podelski and Rybalchenko [20]. This method is targeted towards
the termination of loops whose conditions and update statements are given by
linear expressions, and it is able to synthesize linear ranking functions by con-
structing a system of linear inequalities over rationals. This system characterizes
the existence of such ranking functions: the system is solvable if and only if there
exists a linear ranking function for the given loop. Thus this method is complete
for linear ranking functions. Unfortunately, it fails when the ranking function
does not depend linearly on the arguments x̄, as the following example shows:

Example 1. Let us assume the following loop:

while(x > 0 || y > 0) {

byte[] b = new byte[x];

if (y == 0) { x--; y=x; } else { y--; }

}



If we consider memory consumption, COSTA would obtain the following CRS:

T (x, y) = nat(x) {x = 0, y = 0}
T (x, y) = nat(x) + T (x− 1, x− 1) {x > 0, y = 0}
T (x, y) = nat(x) + T (x, y − 1) {x ≥ 0, y > 0}

where nat(x) abbreviates max{0, x}. This CRS cannot be solved by PUBS, since
the length of the longest call chain depends on (x, y) in a non-linear way.

T (x, y)→ T (x, y − 1)→ . . .→ T (x, 0)→ T (x− 1, x− 1)→ . . .→ T (0, 0)︸ ︷︷ ︸
h(x,y)= 1

2x
2+ 1

2x+y

→ T (0)

3 Interpolation-based call chain height analysis

COSTA derives cost recurrence equations from Java bytecode. From these CRSs
COSTA derives ranking functions. Ranking functions are used to bound the
height of the evaluation trees. In COSTA such ranking functions are limited to
linear expressions. It is our goal to improve the approximation of the height of the
evaluation trees by considering general polynomial expressions. Using polynomial
interpolation we aim to derive those polynomial expressions by analysing the call
chain directly. To this purpose we first derive equations for the height of the call
chain from the COSTA cost relation equations. Then, we derive upper bounds
by polynomial interpolation.

Firstly, we must determine the function to be interpolated. We transform a
given original CRS in order to obtain a recursive definition modeling the height
Th(x̄) of the evaluation tree:

– for non-recursive equations of the form:

T (x̄) = exp ψ we get: Th(x̄) = 0 ψ

– for recursive equations of the form:

T (x̄) = exp +

m∑
i=1

T (yi) ψ we get: Th(x̄) = 1 + max
i=1...m

{Th(yi)} ψ

The function Th is multivalued: Th(x̄) is the collection of the lengths of all the
call chains rooting in x̄. Recall, that the function h(x̄) is the maximum length
of all possible call chains from x̄, therefore h(x̄) is the strict upper bound for
Th(x̄).

Next, after we have the recurrence relations for Th(x̄), our aim is to find a
polynomial T+

h (x̄) such that T+
h (x̄) ≥ h(x̄). If h(x̄) is a polynomial, then T+

h (x̄)
may be found by the standard interpolation. For instance, this is the case for
the Example 1. We will consider it in more detail later in this section. If h(x̄)
is not a polynomial then the standard interpolation must be adjusted. In both



cases the idea is to generate a candidate for T+
h (x̄) based on its values in some

finite collection of nodes. Then the candidate is checked. Roughly, checking is
done by substituting it into the recurrence relation for Th(x̄).

In this paper we consider in more detail the issues related to the generation
of a candidate for an upper bound. The most important issue here is to find a
collection of test nodes such that the corresponding interpolation problem has a
solution (and it must be unique). There are many ways to obtain test nodes. In
our work we use the gradient-based approach, which is described in Sec. 5.

Now we briefly recapitulate prerequisites from the classical interpolation the-
ory that are necessary to understand the major challenge: finding test nodes. A
detailed survey of multivariate interpolation can be found e.g. in paper [23].

One-variable interpolation problem is well-known. For instance, to define a
line p (i.e. a linear function) one needs to know two points on the plane: some(
x1, p(x1)

)
and

(
x2, p(x2)

)
. In general, to define a polynomial of degree d of

one variable one needs to know its value in d + 1 different points. This is due
to the fact that this polynomial has d + 1 coefficients, which solves the linear
system generated by conditions a1 + a2 zi + . . . + ad+1 z

d
i = p(zi), where

1 ≤ i ≤ d + 1. If all the points zi are different, then the determinant of the
matrix of this system is non-zero Vandermonde determinant. This provides the
existence and uniqueness of the solutions a1, . . . , ad+1.

There exists a similar condition that assures non-singularity of multivariate
Vandermonde matrix, and therefore existence and uniqueness of the solution of
the underlying interpolation problem. Recall that a polynomial of degree d and
dimension s (the number of variables) has Ns

d =
(
d+s
s

)
coefficients. Let a set

of values fi of a real function f be given. A set W = {w̄i : i = 1, . . . , Ns
d}

of points in a real s-dimensional space forms the set of interpolation nodes if
there is a unique polynomial p(z̄) = Σ0≤|j|≤daj z̄

j with the total degree d with
the property p(w̄i) = fi, where 1 ≤ i ≤ Ns

d . In this case one says that the
polynomial p interpolates the function f at the nodes w̄i.

The condition under which there exists a unique polynomial that interpolates
multivariate data is not trivial. This condition on W is geometrical: it describes
a configuration, called Node Configuration A (NCA) [8], in which the points
from W should be placed in Rs. The multivariate Vandermonde determinant
computed from such points is non-zero. Thus, the corresponding system of linear
equations w.r.t. the polynomial’s coefficients has a unique solution. For a two-
dimensional polynomial of degree d, the condition on the nodes that guarantees
a unique polynomial interpolation is as follows:

N2
d nodes forming a set W ⊂ R2 lie in a 2-dimensional NCA if there exist

lines γ1, . . . , γd+1 in the space R2, such that d+ 1 nodes of W lie on γd+1 and d
nodes of W lie on γd\γd+1, ..., and finally 1 node of W lies on γ1\(γ2∪. . .∪γd+1).

A simple example of NCA is given by a rectangular grid: there are d+ 1 parallel
lines, such that some d + 1 points lie on one line, d points lie on another one,
d− 1 points belong on some third line, etc.



The NCA configuration for s variables (s-dimensional space) is defined in-
ductively on s [8]. Let {z̄1, . . . , z̄Ns

d
} be a set of distinct points in Rs such that

there exist d+ 1 hyperplanes Ks
j , 0 ≤ j ≤ d with

z̄Ns
d−1+1, . . . , z̄Ns

d
∈ Kd

s

z̄Ns
j−1+1, . . . , z̄Ns

j
∈ Ks

j \ {Ks
j+1 ∪ . . . ∪Ks

d}, for 0 ≤ j ≤ d− 1

and each of set of points z̄Ns
j−1+1, . . . , z̄Ns

j
, 0 ≤ j ≤ s, considered as points in

Rs−1 satisfies NCA in Rs−1.

3.1 Application of the approach to an example

Recall the recurrence relation in the Example 1. We have to find an interpolating
polynomial of degree 2 for the corresponding call-tree-height function:

Th(x, y) = 0 {x = 0, y = 0}
Th(x, y) = 1 + Th(x− 1, x− 1) {x ≥ 1, y = 0}
Th(x, y) = 1 + Th(x, y − 1) {x ≥ 0, y ≥ 1}

Evaluating Th in 7 points forming an NCA yields the following table:

x y Th(x, y)
0 0 Th(0, 0) = 0
1 0 Th(1, 0) = 1 + Th(0, 0) = 1
1 1 Th(1, 1) = 1 + Th(1, 0) = 1 + 1 = 2
1 2 Th(1, 2) = 1 + Th(1, 1) = 3
0 1 Th(0, 1) = 1 + Th(0, 0) = 1
0 2 Th(0, 2) = 1 + Th(0, 1) = 1 + 1 = 2
2 0 Th(2, 0) = 1 + Th(1, 1) = 1 + 2 = 3

By solving the resulting system we get the polynomial T+
h (x, y) =

1

2
x2 +

1

2
x+ y. It is a routine to check that it fits the recurrence relations. We compute

the following closed form expression for T+ by using (2):

T+(x, y) = nat(
1

2
x2 +

1

2
x+ y) ∗ nat(x) + nat(x)

and taking into account that the branching factor in this case is b = 1. ut

3.2 When standard interpolation needs adjustment

When h(x̄) is not a polynomial, but still, bounded by some polynomial, the
standard interpolation must be adjusted. This is a topic of the ongoing research.

We illustrate the problem with a small example. Let us need to find a linear
bound p(x) ≥ f(x) for a function f(x) knowing that f(0) = 1 and f(1) = 3. If
we assume that p(x) = ax + b = f(x), we obtain from the interpolation data
that a ·0+b = 1 and a ·1+b = 3. From this follows that b = 1 and a = 3−b = 2,



and therefore p(x) = 2x + 1. But it can be that f(x) = 6 for all x ≥ 2. The
obtained polynomial is not an upper bound on f , since f(2) > p(2), therefore
checking fails. With the classical interpolation-based approach one picks up the
third point, say, x = 2 and finds a quadratic bound, which in our case means a
significant overestimation! However, instead of solving the interpolation problem,
one can solve an optimisation problem. One takes more nodes and solve linear
inequations p(x̄i) ≥ fi, e.g. trying to minimise the leading coefficients of p. In the
example we solve b ≥ 1, a+ b ≥ 3, 2a+ b ≥ 6 and a ≥ 0 with g(b, a) = a→ min.
Using linear optimisation we obtain the minimum for g(b, a) = a in (6, 0). From
this it follows that p(x) = b = 6, which is the correct bound.

The question whether replacing interpolation problem with optimisation prob-
lem works well for more complex (multivariate) cases is open. In particular, one
needs to find out with how many additional points, which objective functions,
which additional inequations will provide the best results.

3.3 Towards non-deterministic cost relation systems

When the CRS defining Th is deterministic (as in our previous examples) it
defines a single-valued function whose evaluation can be done in the usual way,
e.g. by unfolding. If we want to compute a upper-bound to h(x̄) we just choose
a set of points in the domain of Th lying in a NCA configuration, and evaluate
Th in these points, as shown in the example above.

However, the computation of an upper-bound in non-deterministic CRSs is
far more involved. The main reason is that we cannot just choose a point x̄ and
obtain all the possible results of the evaluation of Th(x̄), since there could be
infinitely many ETs resulting from it. In the next two sections we explain how
to obtain test nodes in which the value of Th is known, and how to perform a
search on those nodes in which interpolation is more likely to result in a correct
upper-bound (gradient-based approach).

4 Evaluation of Cost Relation Systems

Before dealing with the evaluation of a CRS we have to define its semantics. For
the sake of simplicity, we consider only CRSs with a single recursive call (the
extension to CRSs with several calls is straightforward):

Th(x̄) = 0 ψb(x̄)
Th(x̄) = 1 + Th(x̄′) ψr(x̄, x̄′)

(3)

Because of the above mentioned non-determinism, these equations denote
a relation Th ⊆ Ns × N∞, (where N∞ = N ∪ {+∞}) rather than a function.
The pair (x̄, n) belongs to Th iff n is a result of the evaluation of Th(x̄). The
intuitive meaning of (x̄,+∞) being in Th is that the evaluation of Th(x̄) does
not terminate (i.e. may lead to an infinite call chain). The ordering ≤ on natural
numbers and the + operator is extended to N∞ as usual. Given these conventions,
the following definition specifies the semantics of the set of equations in (3).



Definition 2. The relation Th defined by the CRS in (3) is the greatest fixed
point of the function F : P(Ns × N∞)→ P(Ns × N∞), defined as follows:

F (X) = {(x̄, 0) | ψb(x̄)} ∪ {(x̄, n+ 1) | ψr(x̄, x̄′) ∧ (x̄′, n) ∈ X for some x̄′ ∈ Ns, n ∈ N∞}

We write Th = gfp F .

As a notational convention, we consider relations Th ⊆ Ns × N∞ to be mul-
tivalued functions Th : Ns → P(N∞). Their domain, denoted by dom Th, is the
set of x̄ ∈ Ns such that Th(x̄) 6= ∅.

Example 2. The following CRS

Th(x) = 0 {x = 0}
Th(x) = 1 + Th(x′) {x > 0 ∧ x′ < x}

defines the relation Th = [0 7→ {0}, 1 7→ {1}, 2 7→ {1, 2}, . . . , i 7→ {1..i}, . . .].

The choice of the greatest fixed point in Definition 2 is motivated by the need
of capturing non-terminating call chains, as shown in the following example.

Example 3. Consider the following CRS:

Th(x) = 0 {x = 0}
Th(x) = 1 + Th(x′) {x′ > x}

Let us prove that it defines the following relation:

Th = {(0, 0), (0,+∞), (1,+∞), (2,+∞), . . .}

The operator F , applied to this particular case, is defined as follows:

F (X) = {(0, 0)} ∪ {(x, n+ 1) | x < x′ ∧ (x′, n) ∈ X for some x′ ∈ N, n ∈ N∞}

It is easy to see that F (Th) = Th. Hence Th is a fixed point. Now we prove
that is the greatest one by contradiction: assume that there exists a T ′h ⊃ Th
such that T ′h = F (T ′h). Since T ′h strictly extends Th, we have two possibilities:

– (x, 0) ∈ T ′h for some x 6= 0. This cannot happen, since T ′h = F (T ′h) and the
only tuple that F can return with a 0 in its right-hand side is (0, 0).

– (x, n) ∈ T ′h for some x ≥ 0 and some n different from 0 and +∞. Then,
there must exist some x1 > x such that (x1, n − 1) ∈ T ′h, which leads to a
contradiction if n = 1, as we have seen in the previous point. If n > 1, and
since (x1, n−1) ∈ T ′h, there exists another x2 > x1 such that (x2, n−2) ∈ T ′h
and we apply the same reasoning as before. Eventually we will reach a tuple
(xn, 0) ∈ T ′h for some xn > 0, leading to a contradiction.

Therefore, the set Th shown above is the relation defined by this CRS. Notice
that the least fixed point of the F operator (which is {(0, 0)}) does not account
for the sets of input values of Th that lead to a non-terminating evaluation.



In order to apply the techniques explained in Sec. 3, it is necessary to choose
a set of points and determine the maximum value returned by Th when ap-
plied to each of these points. However, in general, it may be difficult to compute
max Th(x̄) for an arbitrary x̄, mainly due to non-determinism of CRSs. There
may be a possibly infinite amount of vectors x̄′ ∈ Ns satisfying the recursive
guard ψr(x̄, x̄′), and hence being eligible to be passed as argument to the recur-
sive call to Th.

Example 4. Assume the following CRS:

Th(x) = 0 {x ≥ 100}
Th(x) = 1 + T (x′) {0 ≤ x < 100, x < x′}

We get Th(0) = {1..100}, but there are infinitely many ways of deriving (0, 1) ∈
Th. In general, for any x′ ≥ 100 we obtain (x′, 0) ∈ Th and hence (0, 1) ∈ Th.

Given these difficulties, we will consider the evaluation of Th in a bottom-up
fashion: we start from the set of points A0 such that the evaluation of Th returns
{0}. These points are known because they satisfy the base guard, but not the
recursive one. In the next step, we consider the set of points that satisfy the
recursive guard but, in the latter case, the corresponding recursive call falls into
a base case. We denote by A1 the set of these points together with those of A0. In
general, our aim is to find a hierarchy of sets A0 ⊆ A1 ⊆ . . . ⊆ Ai, where each Ai

contains the values of x such that the evaluation of Th(x) does not require more
than i unfoldings. Recall that Th can be viewed as an evaluation step counter
for the original recurrence defining T .

Definition 3. Given a relation Th : Ns → P(N) and i ∈ N, we define the set
Ai as follows:

Ai = {x̄ ∈ dom Th | max Th(x̄) ≤ i}

Example 5. Back to our Example 2, we obtain Ai = {0..i} for each i ∈ N,
whereas in Example 3 we get Ai = {0} for each i ∈ N.

Our next step is to find a characterization of these Ai sets in terms of the
guards occurring in the CRS. This characterization is given as a set of predicates
ϕi, defined as follows:

Definition 4. Given the CRS in (3) and for each i ∈ N, we define the predicate
ϕi as follows:

ϕ0(x̄)
def
= ψb(x̄) ∧ ∀x̄′.¬ψr(x̄, x̄′)

ϕi(x̄)
def
= ϕ0(x̄) ∨ [(∃x̄′.ψr(x̄, x̄′)) ∧ ∀x̄′.(ψr(x̄, x̄′)⇒ ϕi−1(x̄′))] where i > 0

If the constraints occurring in the guards of the CRS are linear, there exist
efficient methods [10, 28] for removing the inner quantifiers of the ϕi predicates.
In [19] a survey of these techniques can be found. The guards currently gener-
ated by COSTA are linear. Our implementation relies on linear programming
applied to finite unions of polyhedra, which are handled by the Parma Polyhedra



Library (PPL) [6]. This technique is targeted towards real numbers (whereas our
predicates are constrains on natural numbers), but it can be applied in our ap-
proach if our search of test nodes is restricted to points with natural coordinates.
As an alternative, we can use a computer algebra system and its extension to a
computer logic system [13, 11], which would also work in the case in which the
guards are defined by nonlinear constraints.

Example 6. We get the following predicates from the CRS given in Example 2:

ϕ0(x) ≡ x = 0 ∧ ¬∃x′.(x > 0 ∧ x′ < x)
≡ x = 0 ∧ ¬(x > 0) {quantifier elimination}
≡ x = 0

ϕ1(x) ≡ x = 0 ∨ (x > 0 ∧ ∀x′.[x > 0 ∧ x′ < x⇒ x′ = 0])
≡ x = 0 ∨ (x > 0 ∧ ¬[x > 0 ∧ 1 < x ∧ 1 6= 0]) {quantifier elimination}
≡ x = 0 ∨ x = 1

ϕ2(x) ≡ . . .
≡ x ≥ 0 ∧ x ≤ 2

Now we prove that these predicates characterize the Ai sets. Without im-
posing special conditions on the CRSs, we can only prove that the ϕi pred-
icates offer sufficient conditions for belonging to the Ai sets. More formally,
{x̄ ∈ Ns | ϕi(x̄)} ⊆ Ai for each i ∈ N. Strict inclusion may hold, in particular,
when there are elements in the domain such that the evaluation of Th gets stuck,
as the following example shows.

Example 7. Given the following CRS:

Th(x) = 0 {x = 0}
Th(x) = 1 + Th(x′) {x ≥ 2 ∧ (x′ = 0 ∨ x′ = 1)}

We get Th = [0 7→ {0}, 1 7→ ∅]∪ [i 7→ {1} | i ≥ 2] and hence A0 = {0} and Ai =
{0, 2, 3, 4, . . .} for each i ≥ 1. However, by applying the corresponding definition,
we obtain ϕi ≡ x = 0 for each i ∈ N, since the implication ψr(x, x′)⇒ ϕi−1(x′)
does not hold when x′ = 1. Our ϕi exactly approximates Ai only when i = 0.

We can ensure that the ϕ predicates actually characterise the Ai by imposing
some mild conditions on our CRSs, namely, that every vector x̄ satisfies at least
one of the guards in the CRS.

Theorem 1. Given the CRS in (3), assume that ψb(x̄)∨∃x̄′.ψr(x̄, x̄′) holds for
every x̄ ∈ Ns. If Th : Ns → P(N∞) is the relation defined by this CRS, the
following holds for each i ∈ N:

Ai = {x̄ ∈ Ns | ϕi(x̄)}

Proof. By induction on i. The condition ψb(x̄)∨ ∃x̄′.ψr(x̄, x̄′) is only needed for
proving the ⊆ inclusion. The ⊇ inclusion holds without special provisions. ut



5 Searching for Test Nodes: Gradient-based Method

Recall that h(x) = maxTh(x̄) by the definition, and s is the dimension of the
vector x̄ = (x1, . . . xs). In this section we show how to construct a polynomial
function T+

h (x̄) ≥ h(x̄).
The graph of h(x̄) in s+ 1-dimensional space is presented via the collection

of sets A′i := (Ai, i) = {(x̄, i) | x̄ ∈ Ai}, which, informally speaking, form upside-
down terraces. This form is explained by the fact that Ai ⊆ Ai+1. An upper
bound T+

h (x̄) “covers” the graph of h. Intuitively, the monotonicity behavior of
a good upper bound and the monotonicity behavior of h coincide, in the sense
that the gradient of the bound at a point on the edge Ai is the almost the same
as the “gradient”of h at this point. The gradient of a smooth scalar function f(x̄)
at a point x̄ shows the direction of the greatest rate of increase of the function. It

is defined as the vector of the derivatives: ∇(f) :=

(
∂f

∂x1
, . . . ,

∂f

∂xs

)
. The graph

of h is not smooth, therefore here the notion of the gradient at the point x̄ ∈ Ai

is intuitive and taken as direction to the closest point on the next-level terrace.
This closest point belongs to Bi+1 := Ai+1 \ Ai. The gradient-based method
of finding test nodes mimics climbing up from Bi to Bi+1: from a point x̄i on
Bi to x̄i+1 which is the closest to x̄i point on Bi+1. Based on this intuition,
we developed the procedure of finding test nodes. We have implemented it in
Prolog, in order to incorporate it later into the COSTA implementation.

As a starting point we note that there is a (Prolog) procedure, that given
guards, generates sets Ai, for arbitrary i, using their definition via ϕi. Sets Ai

are given in a disjunctive normal form, that is as disjunctions of conjunctions of
(in)equations of the form F (x̄) b G(x̄), where b is one of {≥, >,=, <,≤}. In gen-
eral, we do not demand that these atomic predicates are linear, if a used tool or
library allows to deal with non-linear problems. In our current implementation,
allowed atomic predicates are linear since we apply Parma Polyhedra Library,
already used by COSTA team.

We need a set operation (−)∗ which is defined as follows. X∗ is obtained
from a disjunctive X by replacing all inequations of the form F > G (F < G)
with inequations F ≥ G+ 1 (F ≤ G− 1).

– Inputs:
• the degree d of a polynomial upper bound.
• the closed sets Ai, 0 ≤ i ≤ l for some large enough l. (If some Ai is not

closed, re-assign Ai := (Ai)
∗.)

– Output: the set of interpolation nodes.

– Procedure:
1. Construct B∗i := (Ai \ Ai−1)∗ for all i > 1, and assume B∗0 to be the

boundary of A0.
2. Choose an initial level i0, and let i be the level counter. The initial

assignment is i = i0 + 1.
3. Pick up a point on B∗i0 .



4. The next point x̄i is computed as the closest to x̄i−1 point on B∗i . For-
mally, x̄i := argminȳρ(x̄i−1, ȳ), where ȳ ∈ B∗i . In general, function ρ may
be any topological distance, like Euclidean one. In our implementation,
due to the fact that we are limited by linear PPL, ρ is a Manhattan
distance.

5. Repeat the procedure for all i = i0 + 1, . . . , l.

6. If in all the constructed paths, including the current one, there are
enough nodes satisfying s-dimensional NCA condition (e.g. on a grid),
then stop. Otherwise go to step 2 and construct yet another path.

Now, let us see how this procedure works for the recurrence for Example 1.
Recall, that here we deal with the following recursive steps:

Th(x, y) = 1 + Th(x′, y′) {x > 0 ∧ y = 0 ∧ x′ = x− 1 ∧ y′ = x− 1}
Th(x, y) = 1 + Th(x′, y′) {x ≥ 0 ∧ y > 0 ∧ x′ = x ∧ y′ = y − 1}

For the example we assume d = 2. Moreover, it is enough to let l = 3 and
consider the sets A0, . . . , A3, in their disjunctive normal form:

A0 is x = 0 ∧ y = 0
A1 is A0 ∨ x− 1 = 0 ∧ y = 0 ∨ x = 0 ∧ y − 1 = 0
A2 is A1 ∨ x− 1 = 0 ∧ y − 1 = 0 ∨ x = 0 ∧ y − 2 = 0
A3 is A2 ∨ x− 1 = 0 ∧ y − 2 = 0 ∨ x− 2 = 0 ∧ y = 0 ∨ x = 0 ∧ y − 3 = 0

The implemented procedure constructs the following four paths:

(0, 0), (1, 0), (1, 1), (1, 2) given the initial point (0, 0) on B∗0 .
(0, 1), (1, 1) given the initial point (0, 1) on B∗1 .

(0, 2), (1, 2) given the initial point (0, 2) on B∗2 .
(2, 0) given the initial point (2, 0) on B∗3 .

These nodes coincide with the nodes that we have considered in the example
in Sec. 3. They form an NCA configuration on a plane and define uniquely the

interpolation polynomial T+
h (x̄) =

x2

2
+
x

2
+ y. It passes the checking shown in

Sec. 6.

The obtained routes and the graph of T+
h (x, y) are given in Fig. 1.

The current implementation still needs to be optimised, first of all by sim-
plifying the intermediate computations for Bi = Ai \ Ai−1, e.g. by applying
set-theoretic axiomatics, such as X ∪∅ = 0 (removing inconsistent conjunctions)
or X ∪ Y = X for Y ⊆ X. This will allow to shorten intermediate disjunctive
forms. At the moment too long disjunctions cause stack overflow in the current
implementation. Second, constraints Ai can be extended “on the fly” so that
we avoid repeating points from already generated pats. Third, choice of initial
nodes on paths is still manual, and we want to have it automatic.



Fig. 1. The obtained routes and the graph of T+
h (x̄) =

x2

2
+

x

2
+ y that in this case

coincides with h(x, y).

6 Proving the Bound Correct

In this section we describe the procedure that can be followed including the proof
of the found bound is correct. First, we discuss what to do when the degree of
the interpolated polynomial is different form the initial guess. Then, we describe
methods to check whether the interpolated polynomial is indeed a correct bound.
Finally, we describe how to proceed when such a check fails.

As it was pointed out in Sec. 1, the degree of the polynomial must be guessed
in advance. Assume that we start the node search assuming a degree d. If the
actual height of the call-tree h(x̄) is described by a polynomial expression in x̄
with that degree, then our interpolation-based approach returns exactly h(x̄),
provided the testing nodes are arranged in a NCA configuration. This is because
T+
h (x̄) is an exact bound to h(x̄) at the testing nodes, and the polynomial of

degree d that interpolates these nodes is unique. Therefore, if T+
h and h coincide

at the testing nodes, then T+
h (x̄) = h(x̄) for all x̄. If h(x̄) is not given by a

polynomial expression, there are several several possibilities:

– The previously guessed degree d may be lower than the actual degree of
h(x̄). In that case, the interpolation technique may result in a T+

h which is
not an upper bound to h.

– In those cases in which h(x̄) is not given by a polynomial expression, but it
can be bounded by a polynomial, the heuristic-based choice of points shown
in Sec. 5 increases the chances of obtaining a correct bound. This happens,
in particular, when h+(x̄) is given by a step function, as in Fig. 2.



Fig. 2. If h(x̄) is a step function, the choice of testing nodes at the left-hand side,
results in the bound shown with a dashed line at the right-hand side, which is correct.

– Finally, it could be that h+(x̄) is not bounded by any polynomial, but by an
expression of a higher complexity class (e.g. exponential). This case occurs
very rarely in practice, and it is obvious that such upper bounds cannot be
obtained by polynomial interpolation.

These scenarios above motivate the need to devise a way of checking whether
the obtained T+

h is correct, so as to discard unsound bounds. A sufficient condi-
tion under which an upper bound T+

h (x̄) obtained by interpolation is an upper
bound to the height h(x̄) of the evaluation trees is given by the conjunction of:

∀x̄ . T+
h (x̄) ≥ 0

∀x̄, x̄′ . ψr(x̄, x̄′)⇒ (T+
h (x̄) ≥ 1 + T+

h (x̄′))

Assuming that ∀x̄ . h(x̄) 6=∞ (otherwise, there would be no bound for h(x̄)),
the proof is a straightforward induction on h(x̄).

These predicates are decidable in Tarski’s theory of real closed fields [26].
There are a number of tools available implementing improved versions of Tarski’s
procedure. For instance, QEPCAD [7] is free and offers an up-to-date version of
Collins’ algorithm [9]. If the predicates hold for real numbers, they will also hold
for natural ones.

If checking fails, then one should either choose another set of test nodes, or
increase the degree of a polynomial. If the degree d is too high at the beginning,
one will need too many test points, and, therefore, the computation time will
be longer. If the inferred polynomial has the lower degree than d, then the
coefficients of higher-degree terms are equal to 0. A possible strategy is to start
with a low degree such as d = 2, and then increase d at each iteration until either
a degree succeeds or some time-out expires. In the latter case, we would report
a fail to infer the bound.



7 Conclusions and Related Work

In this paper we have applied polynomial interpolation-based techniques in order
to extend the PUBS recurrence solver, so that it can deal with a broader set of
CRSs. This made it possible to propose an extension of the COSTA system
replacing one of its static analyses, the ranking function analysis, by another
kind of analysis, height analysis, in such a way that polynomial bounds of any
degree may be inferred instead of just linear expressions.

Related Work

We have taken the work described in [2] as our point of reference. In a more
recent work [4] the authors improve the precision of PUBS by considering worst-
and best-case bounds to the cost of each loop iteration. The ideas described in
this paper are orthogonal to those in [4] and can also be applied there.

In a different direction, COSTA has improved its memory analysis in order to
take different models of garbage collection into account [3]. However, the authors
claim that this extension does not require any changes to the recurrence solver
PUBS. Thus, the techniques presented here should also fit with this extension.

In the field of functional languages, a seminal paper on static inference of
memory bounds is [16]. A special type inference algorithm generates a set of
linear constraints which, if satisfiable, they build a safe linear bound on the
heap consumption.

One of the authors extended this type system in [14] in order to infer poly-
nomial bounds. Surprisingly, the constraints resulting from the new type system
are still linear ones. Although not every polynomial can be inferred by this sys-
tem, the work was a remarkable step forward in the area. The language used is
still functional, first-order and eager, but the resource inferred is a parameter.
It could be either memory or time depending on some constants attached to the
typing rules. A limitation of this work is that the inferred polynomials, even if
they are multivariate ones, must not have multivariate terms. This limitation is
removed in a more recent work [15].

The application of polynomial interpolation techniques makes it possible to
derive polynomial complexity without any restriction in advance on the kind
of polynomials. With interpolation polynomials can be multivariate and non-
monotonic. For size analysis of functional languages several interpolation results
have been developed in the AHA Project [12]. First, a size analysis type system
is developed together with language constraints such that sized type checking
can be shown to be decidable. With polynomial interpolation type inference
is made possible [17]. The full sized type system is given in [21]. In [25] it is
shown how the basic type system, which is defined for list structures only, can
be extended to allow algebraic data types. The size analysis systems give precise
size functions. It has been shown that also general polynomial lower and upper
bounds can be derived using polynomial interpolation [22].

Polynomial interpolation has also been applied to non-functional languages.
For Java an analysis was made to derive ranking functions for loops [24].
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