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Deadlock detection is a challenging issue in the analysis and design of on-chip networks. We have
designed an algorithm to detect deadlocks automatically inon-chip networks with wormhole switch-
ing. The algorithm has been specified and proven correct in ACL2. To enable a top-down proof
methodology, some parts of the algorithm have been left unimplemented. For these parts, the ACL2
specification contains constrained functions introduced with defun-sk. We used single-threaded ob-
jects to represent the data structures used by the algorithm. In this paper, we present details on the
proof of correctness of the algorithm. The process of formalverification was crucial to get the algo-
rithm flawless. Our ultimate objective is to have an efficientexecutable, and formally proven correct
implementation of the algorithm running in ACL2.

1 Introduction

Deadlock verification in wormhole networks has been an intricate research area for many years. In 1995,
Duato proposed a necessary and sufficient condition for deadlock freedom of wormhole networks [2].
His condition was difficult to understand for many of his peers and required a complex mathematical
proof. In 2010, Taktak et al. were the first to define a polynomial algorithm which can detect deadlocks
in wormhole networks automatically [4]. In the same year, weformally proved a necessary and suffi-
cient condition of our own [7]. The process of formally proving correctness of this condition helped us
recognize a subtle discrepancy in Duato’s theorem [6]. Indeed, due to this discrepancy we could prove
that deciding deadlock-freedom in wormhole networks is co-NP-complete, thereby showing Taktak’s
algorithm had flaws as well.

We have also created an algorithm of our own. The algorithm has been implemented in C and has
achieved good experimental results [5]. Due to the intricacies of deadlock-related theorems in wormhole
networks, we wanted a formal proof of correctness to increase our confidence. To this end, we formalized
the algorithm in ACL21.

Our ultimate objective is to have a formally proven correct and executable algorithm in ACL2. We
want to be able to run this algorithm efficiently on large networks. To achieve this, we use single-thread
objects (stobjs) [1]. For now, we have proven correct aspecificationof the algorithm. This means that
some details have been left unimplemented. The ACL2 versionis not yet executable. These parts have
been replaced byconstrained functionswhose specification is introduced with adefun-sk event [3].
This enables a top-down proving approach.

In this paper we provide some details on the formalization ofthe algorithm in the ACL2 logic and
the proof of correctness. Due to space limitation, we will not provide much information on the algorithm

1Proof scripts can be found at
http://www.cs.ru.nl/∼freekver/dlic.html

http://dx.doi.org/10.4204/EPTCS.70.8


104 Formal verification of a deadlock detection algorithm

itself, but focus on the formalized proof of correctness. For more information, we refer to [5]. Formaliz-
ing the algorithm in ACL2 has been of great benefit to us. The version of the algorithm with which we
started had flaws in it, which were detected during the process of theorem proving.

In Section 2 we shortly introduce wormhole networks and deadlocks. We explain the basic idea of
our algorithm in Section 3. Section 4 contains details on formalizing the algorithm in ACL2. In Section 5
we provide details on the proof of correctness. We conclude in Section 6.

2 Wormhole networks

In wormhole networks, messages are decomposed into data units calledflits. A flit constitutes the atomic
object that is transferred between any two channels. Typically, there is a header flit followed by a sequel
of data flits. The end of a packet is marked by a tail flit. For simplicity, we do not distinguish between
data flits and the tail flit. We refer to all of them as the tail. Only the header flit contains information on
the destination of the message. The header flit advances along the specified route, while the tail follows
in a pipe-line fashion. When the header flit is blocked, all flits of the message are blocked. A channel
can only store flits belonging to at most one message. Therefore, tail flits block header flits of other
messages.

In [7] we have proven a necessary and sufficient condition fordeadlock-free routing in wormhole
networks. This proof has been formalized in ACL2. We shortlyaddress this condition. In wormhole
networks, messages occupy paths of channels in the network.A path that can be occupied by a message
destined ford will be called ad-path. As flits in the tail follow the header flit, blockage of a message
depends solely on the header flit. The central idea of the condition is that a header flit must always have
anescape. An escape is a next hop supplied by the routing function for the destination of the message.
The escape must be available, i.e., not occupied by other worms.

Figure 1: Wormhole configurations

Consider the first configuration in Figure 1. Three messages occupy three paths of channels. For
each path, the head of the path cannot escape as the routing function does not supply next hops that are
not included in the set of paths. There exists a set of paths without an escape, which corresponds to the
existence of a deadlock. In the second configuration, the header flit of messageA is supplied two possible
next hops for its destination. As one of them is not included in the set of paths, the header flit can move
towards this escape and resolve the deadlock. The set of nexthops has an escape and is therefore not a
deadlock. Our condition states that:

A wormhole network is deadlock-free if and only if for any pairwise disjoint set ofd-paths there exists
an escape.

Checking this condition is co-NP-complete [7]. Our algorithm is polynomial, but may return a false
deadlock. It returns a set of paths without an escape if thereexists such a set or returnst if there exists
no such set. The set of paths is however not necessarily pairwise disjoint.
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3 Algorithm

The basic objective of our algorithm is to mark each channel.After termination of the algorithm, either
all channels are marked to be immune for deadlock, or a deadlock can be constructed from those channels
that have not been marked immune for deadlock. We use the following markings:

0 The channel is unmarked.

1 The channel has been visited, but a definite mark has not yet been determined.

2 The channel is immune for deadlock, i.e., no flit in the channel can be permanently blocked.

3 There exists a destinationd such that a header flit destined ford can be permanently blocked.

4 No header flit can be permanently blocked, but for some destination d a tail flit can be permanently
blocked.

After termination, all channels are marked either2, 3, or4. If all channels are marked2, then the network
is deadlock-free. A2-marked channel is always immune for deadlock. If channels have been marked
either3 or 4, a deadlock can be constructed. A3-marked channelc can be filled with a header flit destined
for d. A 4-marked channelc can be filled with tail flits.

The algorithm obtains these markings by checking for each channelc and for each destinationd
the possible next hops. If for some destinationd there is no next hop marked2, then a header flit with
destinationd can be permanently blocked, as all next hops can be permanently blocked. The channel is
marked3. If for channelc for all destinations there exists a2-marked neighbor, then channelc cannot
be marked3. If in this case there exists ad-path leading to3-marked channelh, this path can be filled
with tail flits. As in channelh a header flit can be permanently blocked, the tail flits in channel c can be
permanently blocked. Channelc is marked4. Otherwise the channel is marked2, as it is immune for
deadlock.

Consider the network in Figure 2. In the network, messages generated in the processing nodesn0

to n2 move from channel to channel. Nodesd0 andd1 are the only possible destinations. Figure 2 also
shows the routing function. The graph representation of thenetwork is the input of the algorithm. An
edge(c0,c1) is labelledd if a message in channelc0 destined ford is routed towardsc1.

d0 d1

n1 n0

n2

c2

c0

c1

s0s1s2

n d R(n,d)

n0 d0 c0

n0 d1 s0,c0

n1 d0 s2
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n2 d0 c2

n2 d1 c2

s2

s0

c0 c1 c2
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s1

d1 d1

d0

d1 d1

Figure 2: Example network, routing and graph

Destinationsd0 andd1 are sinks. They can never be blocked. Channelss0, s1, ands2 are marked with
2 as they are immune for deadlock. Channelc2 is marked3, as for destinationd0 all neighbors are not
marked2. Similarly, channelc1 is marked3. Lastly, channelc0 is marked4. For all destinations, there
is 2-marked neighbor, but there exists a path leading toc1 which is marked3.

There exists exactly one possible deadlock-configuration:channelsc0 andc1 are filled with a worm
with destinationd1 and channelc2 is filled with a header flit destined ford0. The deadlock can be
obtained by filling3-marked channels with header flits and4-marked channels with tail flits.
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4 Formalization in ACL2

First, we define the data structure in which the graph is stored. The graph consists of vertices 0,1, . . . ,C−

1, with C the number of channels in the network. With each channelc a list of neighbors is associated,
representing the possible next hops a message in channelc can take. The labels on the edges represent
the destinations which cause a message to be routed towards the neighbors. For example, the graph
in Figure 3 represents a network where a message in channela can be routed towards channelb for
destinationd0 and to channelc for destinationsd0 andd1.

Figure 3: Routing represented in a graph

In ACL2, we store this data structure in a stobjgraph. Function(neighbors c d graph) takes
as parameters a channelc, a destinationd, and the stobjgraph and returns a list of neighbors. For sake
of clarity, we will not mention this stobj any further.

The algorithms needs to store markings. These are stored in astobjmarks. For each channelc, we
store a marking between 0 and 4, a list escs(c) of destinations on edges leading to2-marked neighbors
(escapes) and a list deps(c) of destinations on edges not leading to2-marked neighbors. All channels are
initially unmarked.

(defstobj marks

(marks :type (array (integer 0 4) (C))

:initially 0)

(escs :type (array list (C)) :initially nil)

(deps :type (array list (C)) :initially nil)

ACL2 introduces functions to access this stobj. For example, to obtain the marking of channelc, we can
use:

(marksi c marks)

Formalizing the algorithm in ACL2 was a straightforward exercise in LISP. For now, we have left
some parts of the algorithm unimplemented. Because of this,we were able to prove correctness of
the algorithm, regardless of how these parts are implemented. Also, this approach enabled a top-down
proving approach, as we could first prove correctness of the algorithm as a whole without getting stranded
in the details. An example is that at some point the algorithmmarks a channelc with 4 if there exists
a path that satisfies some properties. The path must be traversable by a message destined for some
destinationd (i.e., it must be ad-path), start inc, end in a channelce that is not marked2, and destination
d must have been added by the algorithm to deps(ce) but not to escs(ce). An efficient decision procedure
for the existence of such a path is an algorithm of its own. At this point, we do not want to bother
ourselves with this, as it is only a small part of the algorithm. We therefore replace this decision procedure
with an unimplemented specification, introduced by adefun-sk construct:

(defun-sk ex-d-path-to-not2(c marks)

(exists (p d)

(let ((start (car p))

(end (car (last p))))
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(and (d-pathp p d)

(equal start c)

(not (equal (marksi end marks) 2)

(member-equal d (depi end marks))

(not (member-equal d (esci end marks)))

)))))

Functiond-pathp is a recognizer for paths that can be established by the routing function for destination
d.

The algorithm calls functionex-d-path-to-not2. At a later stage, an implementation can be made
and proven correct with respect to this specification.

5 Proving correctness

The proof of correctness consists of two parts: if the algorithm returnst there is no set of paths without
an escape and if the algorithm returnsnil there is a set of paths without an escape. In this paper, we
give details on the second part of the proof, i.e., we show that from the markings a set of paths without
an escape can be constructed.

5.1 Informal proof of correctness

Proof. If the algorithm marks a channel3 or 4, it is possible to create a set of paths without an escape.
This proof formalizes the intuition in Figure 2: a deadlock is created from all3- and4-marked channels.

1. Take the set of pathsΠ34 obtained by taking – after termination – for each3-marked channelc the
singleton path[c] and for each4-marked channel a path leading to a3-marked channel.

2. Each3-marked channelc in the set of pathsΠ34 has a destinationd that is a member of deps(c)
and not of escs(c), since channels are marked3 only if deps(c)* escs(c).

3. Since, if some destination leads to2-marked neighbors it is added to escs(c), destinationd does
not lead to neighbors marked2.

4. Since destinationd does not lead to2-marked neighbors, it leads to channels marked3 or 4 only.

5. Since the set of pathsΠ34 contains all3- and4-marked channels and since channelchas destination
d which leads to3- and4-marked channels only, channelc is not an escape for this set of paths
(i.e., all its neighbors for destinationd are included in the set of paths). Thus3-marked channels
are no escapes.

6. As for all4-marked channels there exists a path leading to a3-marked channel, these are no escape
either.

7. Since none of the channels in the set of pathsΠ34 is an escape, the set of paths has no escape.

8. The algorithm returns true if and only if after termination there exists at least one3- or 4-marked
channel. Thus it returns true if there exists a non-empty setof paths without an escape.

5.2 Formal proof of correctness

We provide some details on formalizing the informal proof. We will not consider all steps, but focus on
some of the interesting aspects.
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5.2.1 Step 1: constructing a witness

In this step we need to construct a witnessΠ34 of which we are going to prove that it is a set of paths
without an escape. In Step 1, it is implicitly assumed that for all 4-marked channels there actually exists
a path leading to a3-marked channel. We first express this assumption using adefun-sk construct.

(defun-sk ex-d-path-to-3(c marks)

(exists (p d)

(and (d-pathp p d)

(equal (car p) c)

(equal (marksi (car (last p)) marks) 3))))

For some destinationd there exists ad-path p starting in the given channelc and ending in a3-marked
channel.

Now we build the witness, i.e., a set of paths, using the witness introduced by thedefun-sk:

(defun witness-set-of-paths (n marks)

(declare (xargs :non-executable t))

(cond

((zp n) nil)

((equal (marksi (1- n) marks) 3)

(cons (list (1- n))

(witness-set-of-paths (1- n) marks)))

((equal (marksi (1- n) marks) 4)

(cons

(car (ex-d-path-to-3-witness (1- n) marks))

(witness-set-of-paths (1- n) marks)))

(t

(witness-set-of-paths (1- n) marks))))

For each3-marked channel a singleton path(list c) is created. For each4-marked channel, the witness
introduced by thedefun-sk construct is used. Here we run into a problem:marks is a stobj storing the
markings. However, a defun-sk cannot declare parameters tobe stobjs. If we would add the declaration

(declare (xargs :stobjs (marks)))

to functionwitness-set-of-paths, as we ordinarily would want to do, ACL2 produces an error that a
single-threaded object, namelymarks, is being used where an ordinary object is expected. Our solution
was to omit this declaration, meaning thatmarks is not considered a stobj, but can be any ordinary
object. However, this means that we cannot use the standard accessor functionmarksi to access the stobj
marks, asmarks is not declared to be the stobjmarks. If we declare the function to be non-executable,
this problem is solved. We have a function generating a witness, it is however not executable.

Now we need to prove that after termination, for each4-marked channel there exists a path leading to
a3-marked channel, i.e., we need to establish that(ex-d-path-to-3 c marks) holds for all4-marked
channelsc. This is an inductive invariant. We express the invariant:

(defun invariant-4marks (n marks)

(declare (xargs :non-executable t))

(cond

((zp n) t)

((equal (marksi (1- n) marks) 4)
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(and (ex-d-path-to-3mark (1- n) marks)

(invariant-4marks(1- n) marks)))

(t

(invariant-4marks (1- n) marks))))

We need to prove that each line of code of the algorithm preserves this invariant under some assumptions.
As an example, the following theorem expresses that markinga channel2 preserves the invariant:

(defthm mark2-preserves-invariant-4marks

(let ((marks-after (update-marksi c 2 marks))

(implies (and (invariant-4marks n marks)

(not (equal (marksi c marks) 3)))

(invariant-4marks n marks-after)))))

If a channelc is marked2 and it was not marked3, the invariant is preserved. This holds, since the
witnessπ before setting the2-mark is also a witness after setting the mark. For each line of code of the
algorithm, a theorem similar to this has been proven. We alsoneed to prove that initially the invariant
holds:

(defthm forall-unmarked-implies-invariant-4marks

(implies (forall-unmarked n marks)

(invariant-4marks n marks)))

Functionforall-clear expresses that all markings are clear, i.e., they are all setto 0. The proof of this
theorem is trivial, as there are no4-marked channels.

5.2.2 Step 2: more invariants

Step 2 is basically just an invariant.

(defun invariant-3marks (n marks)

(cond

((zp n) t)

((equal (marksi (1- n) marks) 3)

(and (not (subsetp (depi (1- n) marks)

(esci (1- n) marks)))

(invariant-3marks (1- n) marks)))

(t

(invariant-3marks (1- n) marks))))

For each3-marked channelc, there exists a destination in deps(c) that is not in escs(c). The proof
proceeds similar to the proof of the invariant used in Step 1.For each line of code of the algorithm, a
theorem is proven that the line preserves the invariant.

The same methodology applies to Steps 3 and 4 of the informal proof. This introduces more invari-
ants on each marking.

5.2.3 Step 5: correctness of witness

At this point, we have established correctness of the invariants and proven them inductive. Now we
use the invariants to prove theorems on the constructed witness. For example, we prove in step 5 that a
3-marked channel is not an escape for the set of pathsΠ34.
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(defthm r-marked-3-->no-escape-for-witness

(let ((d (find-member-not-in (depi c marks)

(esci c marks))))

(implies

(and (equal (marksi c marks) 3)

(invariant-3marks C marks)... invariants)

(subsetp

(neighbors c d)

(union-of (witness-set-of-paths C marks))))))

Functionfind-member-not-in takes two lists and returns an element from the first list thatis not in
the second. We use it to find the destinationd that is in deps(c) but not in escs(c). Assuming all the
invariants needed to prove this theorem, we prove that the set of neighbors ofc for destinationd is a
subset of the union of the set of pathsΠ34. It is therefore not an escape for this set of paths.

The proof of Step 6 is done in a similar fashion. Step 7 followsby definition.

5.2.4 Step 8: final theorem

(defthm algo-returns-nil-->deadlock

(let ((marks-after-termination (mv-nth 1 (algorithm marks)))

(p-witness (witness-set-of-paths C marks-after-termination))

(d-witness (witness-set-of-dests C marks-after-termination))

(l-witness (len p-witness))))

(implies (and (forall-clear C marks)

(equal (mv-nth 0 (algorithm marks)) nil))

(and (> l-witness 0)

(set-of-paths-witnessp l-witness p-witness d-witness))))

Figure 4: Final theorem

The final theorem that we prove in this paper states that if ouralgorithm returnsnil, there exists a
set of paths without an escape.

We first define a recognizer for such sets of paths:

(defun set-of-paths-witnessp (n paths dests)

(if (zp n)

(and (endp paths) (endp dests))

(let ((p (nth (1- n) paths))

(d (nth (1- n) dests))

(and (subsetp (neighbors (car(last p)) d)

(union-of paths))

(d-pathp p d)

(set-of-paths-witnessp (1- n) paths dests)

)))))

The function takes as input a list of paths and a list of the destinations for which these paths are estab-
lished. Also, it takes as input the number of paths. It checksif for eachd-pathp the neighbors of the last
channel (where the head of the worm is located) cannot escapethe paths.
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Figure 4 gives the final theorem. The algorithm returns a multi value with as first value a booleanb
which ist if and only if there is no deadlock. The second value is the stobj marks after termination. We
have a function generating the witness for the destinationsof the paths, similar to the function generating
the witness for the paths themselves (see Step 1). If initially all markings are clear, all inductive invariants
can be proven and theorems such as the theorem in Step 5 can be applied to prove correctness of the
witnesses. We also prove that the witness is non-empty.

6 Conclusion

We have formally proven correctness of an algorithm which detects deadlocks in wormhole networks.
The process of theorem proving has been crucial for us to get all the details right.

The entire proof consists of 7263 lines of ACL2 code. A great part of this consists of proving that
each line of the algorithm preserves each of the invariants.Proving correctness of the invariants was a
relatively easy process. The theorem to be proved is similareach time: there is an invariant which holds
initially, and it must hold – under some assumptions – after executing one line of code. The trick is to
find these assumptions, but these can be figured out from the output of ACL2.

The use ofdefun-sk allowed us to leave some parts of the algorithm unimplemented and replace
them with a specification of what the code should do. This allowed us to start with a global proof before
stranding into details. As we could proceed with the proof, we could first see whether the specification
was correct before making an implementation. If the specification was insufficient to finish the proof, we
could simply change the specification and did not have to reimplement some part of the algorithm.

The algorithm is not yet executable, as some parts have been left unimplemented. Future work
consists of implementing these parts efficiently and proving them correct with respect to the specification
that is currently used. Once the algorithm is executable, wecan compare the performance to our C
implementation. Our ultimate objective is to have a fully formally verified and efficiently executable
implementation in ACL2.
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