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Abstract

Using the quasiparticle self-consistent GW (QSGW ) and local-density (LD) approximations, we calcu-

late the q-dependent static dielectric function, and derive an effective 2D dielectric function corresponding

to screening of point charges. In the q→0 limit, the 2D function is found to scale approximately as the

square root of the macroscopic dielectric function. Its value is ≃4, a factor approximately 1.5 larger than

predictions of Dirac model. Both kinds of dielectric functions depend strongly on q, in contrast with the

Dirac model. The QSGW approximation is shown to describe QP levels very well, with small systematic

errors analogous to bulk sp semiconductors. Local-field effects are rather more important in graphene

than in bulk semiconductors.

PACS numbers: 73.22.Pr, 71.27.+a, 73.22.-f
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Graphene is a first truly two-dimensional (2D) crystal, with unique electronic and structural

properties (for review, see Refs. 1–5). Screening of electron-electron and electron-impurity interac-

tions in graphene is an important theoretical issue crucial for both many-body effects in electronic

structure6 and for transport properties, especially, for electron scattering by charge impurities5,7.

There are numerous works7–15 treating this issue within the two-band Dirac model. But the Dirac

model does not take into account the many other bands involved, which can include van Hove

singularities in electron density of states3 that may possibly be very essential, specifically for

screening16,17. Here we develop a definition for an effective 2D dielectric function in an ab initio

context, and calculate it within the Quasiparticle self-consistent GW (QSGW ) and local-density

(LD) approximations. The former takes into account many-body effects beyond the density func-

tional GGA or LDA schemes essential for correct description of excited states and thus screening

effects18,19.

There are several GW calculations for graphene20–22, where G and the screened Coulomb in-

teraction W are computed from the LDA. They all predict a notable (20-40%) increase of the

Fermi velocity vF at the Dirac point K relative to the LDA(GGA) value, with vF between 1.1

and 1.2·106 m/s, in very good agreement with experiment1–4. The dielectric function and optical

conductivity as a function of frequency ω for zero wave vector q=0 was also calculated in Refs.

20,21. Here we focus on the static dielectric function (ω=0) as a function of q. This quantity

is relevant for calculations of resistivity via charge impurities5,7, as well as for the problem of

supercritical Coulomb centers10,23,24 and possible exciton instabilities25.

The inverse dielectric function ǫ−1(r, r′, ω) relates the change in total potential δV to an external

perturbing potential δV ext as18,19

δV (r, ω) =

∫

dr′ǫ−1(r, r′, ω)δV ext(r′, ω). (1)

ǫ−1 is obtained from a convolution of the polarization operator Π and the bare Coulomb interaction

v as

ǫ−1 = (1− vΠ)−1 .

In a system with translation symmetry, ǫ−1, Π, and v can be expanded in Bloch functions

{Bq
I (r)}, e.g.

ǫ−1(r, r′, ω) =
∑

qIJ
Bq

I (r)ǫ
−1
IJ (q, ω)B

q
J

∗
(r′) (2)
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The most common choice of {Bq
I (r)} are plane waves,

Bq
I (r) → Bq

G(r) = exp(i(q+G) · r), (3)

G being reciprocal lattice vectors.

Quantities of interest are coarse-grained averages of ǫ−1
GG′(q, ω). The “macroscopic” response

to a plane wave perturbation is19

ǫM (q, ω) =
[

ǫ−1
G=0,G′=0(q, ω)

]−1
(4)

The matrix structure of ǫ−1 with G 6= G′ reflects local field effects in terms of classical electro-

dynamics. The quantity ǫM (q) is commonly approximated by just ǫ(q); that is, the Umklapp

processes, or local field effects are neglected. This is not such a bad approximation in sp semicon-

ductors but as we show here, it is a rather poor approximation in graphene. ǫM(q) corresponds to

screening potential δV ext with a single Fourier component q. Selecting G=G′=0 averages ǫ−1 over

the unit cell, restricting the spatial variation to the envelope exp(iq · r). While ǫM is a quantity

of relevance to some experiments, perhaps the most relevant is screening of a point charge in the

graphene sheet, which governs e.g., scattering from impurities.

As graphene is a 2D system, we need to consider how the impurity potential v(q) = 4π/q2 is

screened in the sheet. The (statically) screened potential from a point charge at the origin may

be written in cylindrical coordinates r=(ρ, z, θ) and q=(q̄, qz, θq) as

W (ρ, z) =
1

2π

∫ ∞

0

dq̄ q̄J0(q̄ρ)W
2D(q̄, z) (5)

W 2D(q̄, z) = 4

∫ ∞

0

dqze
iqzz

ǫ−1(q̄, qz)

q2z + q̄2
(6)

Thanks to graphene’s hexagonal symmetry, ǫ−1 does not depend on θq for small q̄. W 2D(q̄, z) is

the 2D (Hankel) transform of W (r), the analog of the 3D transform W (q)=ǫ−1(q)v(q). In the

absence of screening ǫ−1 = 1 and W 2D(q̄, z) reduces to the bare coulomb interaction v2D(q̄, z):

v2D(q̄, z) = 4

∫ ∞

0

dqze
iqzz

1

q2z + q̄2
=

2π

q̄
e−q̄z (7)

An appropriate definition of an effective 2D dielectric function is then

ǫ2D(q̄, z) = v2D(q̄, z)/W 2D(q̄, z) (8)

Graphene wave functions have some extent in z which must be integrated over to obtain a scatter-

ing matrix element. But the largest contribution originates from z=0, so W 2D(q̄, 0) is a reasonable

estimate for the scattering potential. This is particularly so for small q̄ of primary interest here.
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In practice we carry calculations in a periodic array of graphene sheets in the xy plane, spaced

by a distance large enough that the sheets interact negligibly. To calculate ǫ−1
G=G′=0(q, ω) we

adopt the all-electron, augmented wave implementation that was developed for the quasiparticle

self-consistent GW (QSGW ) approximation, described in Ref.26. It makes no pseudo- or shape-

approximation to the potential, and does not use PWs (Eq. 3) for the product basis {B}, but

a mixed basis consisting of products of augmented functions in augmentation spheres, and plane

waves in the interstitial region. The all-electron implementation enables us to properly treat

core states. We calculate ǫ−1(q, ω) in the random phase approximation, using Bloch functions

for eigenstates18. These are obtained from single-particle eigenfunctions Ψkn and eigenvalues ǫkn

in both the LDA and QSGW approximations. In both cases the generalized LMTO method is

used27,28.

QSGW has been shown to be an excellent predictor of materials properties for many classes

of compounds composed of elements throughout the Periodic Table, with unprecedented ability

to consistently and reliably predict materials properties over a wide range of materials26,29–32.

Nevertheless there are small, systematic errors: in particular bandgaps in insulators such as GaAs,

SrTiO3 and NiO, are systematically overestimated. Its origin can be traced to a large extent to the

RPA approximation to the polarizability, ΠRPA=iGG. The RPA bubble diagrams omit electron-

hole interactions in their intermediate states. Short-range attractive (electron-hole) interactions

induce redshifts in Im ǫ(q, ω) at energies well above the fundamental bandgap; see e.g. Fig. 6

in Ref.26. That ladder diagrams are sufficient to remedy most of the important errors in ΠRPA

was demonstrated rather convincingly in Cu2O, by Bruneval et al.33. Moreover Shishkin et al34

incorporated these ladder diagrams in an approximate way for several sp semiconductors, and

established that they do in fact largely ameliorate the gap errors. Yang et al. investigated the

effect of ladder diagrams in graphene and graphite, and showed that in a manner very analogous

to ordinary semiconductors, these diagrams induce a redshift in the peak of Im ǫRPA(q, ω) near

5 eV,21 of ∼0.6 eV. They found a strong similarity with conventional semiconductors, namely that

the redshift from ladder diagrams approximately cancels the error in the LDA joint density of

states.

A redshift in the peak of Imǫ(ω) increases the static dielectric constant ǫ∞, as can be readily

seen through the Kramers-Kronig relations. Remarkably, ǫ∞ as calculated by the RPA in QSGW,

is underestimated by a nearly universal factor of 0.8, for many kinds of insulators and semiconduc-

tors30, including transition metal oxides such as NiO26, CeO2, and sp semiconductors34. (This error
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TABLE I: Energy gap EG and valence bandwidth Γ1v in diamond (eV); Fermi velocities vF in graphite

and graphene (106m/sec). There is a significant renormalization of the bandgap from the electron-phonon

interaction in diamond, estimated to be 370 meV35. Thus QSGW overestimates EG by a slightly smaller

amount than in other semiconductors, and the scaling of Σ as described in the text results in a slightly

underestimated gap. The electron-phonon interaction also reduces the Fermi velocity in graphene, esti-

mated to be 4 to 8% in an LDA-linear response calculation36. The calculated Fermi velocities should be

reduced by this much when comparing to experiment. vF calculated by QSGW is slightly overestimated,

for much the same reason semiconductor gaps are overestimated. vF calculated from the scaled-Σ po-

tential, is slightly larger than vF calculated LDA-based GW , i.e. GLDAWLDA37, just as semiconductor

bandgaps are slightly larger. When renormalized by the electron-phonon interaction, vF agrees very well

with the measured value38.

LDA QSGW scaled Σ Expt

EG, diamond 4.09 5.93 5.56 5.50

Γ1v, diamond 21.3 23.1 22.7 23.0 ± 0.2a

Γ1v, graphene 19.4 22.9 22.2

vF (H), graphite 0.77 0.99 0.94 0.91 ± 0.15

vF (K), graphene 0.82 1.29 1.20 1.1

aRef. 39

is often approximately canceled in the LDA, fortuitously. As Yang et al. noted, the cancellation

seems to apply to graphene in a manner similar to ordinary semiconductors.) Because ǫ is system-

atically underestimated, W = ǫ−1v and Σ = −iGW are systematically overestimated ; therefore

QP excitation energies are also systematically overestimated. We have found that simply scaling

by 0.8 (the nearly universal ratio ǫQSGW
∞ /ǫexpt∞ ) largely eliminates discrepancies between QSGW

and measured QP levels in a wide range of spd systems, including all zincblende semiconductors,

and many other kinds of insulators. For graphene, we find that the QSGW macroscopic (q→0)

dielectric constant was found to be 80% of the LDA one, consistent with the universal pattern

in bulk insulators noted above. The many points of consistency with 3D behavior, both in the

QSGW QP levels and the dielectric response suggest that QSGW will exhibit the same reliable

description of the 2D graphene system, with similar systematic errors. To confirm this, some band
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FIG. 1: QSGW bands of graphene (dotted red lines), compared to LDA results (dashed blue lines) and

QSGW results with Σ scaled by 0.8 (solid green lines) described in the text. The linear dispersion near

K (or H, in graphite) is significantly larger in the QSGW case. Differences are quantified in Table I. The

lowest lying unbound state can be seen as a parabolic band starting at Γ near 3.5 eV. It corresponds to

the work function. LDA and QSGW work functions are very similar, consistent with the observation

that LDA predicts work functions rather well in many systems.

parameters for three pure (undoped) carbon compounds calculated by QSGW and QSGW with

Σ scaled by 0.8 are shown in Table I. Scaling QSGW has a minor effect on the quasiparticle levels:

e.g. it reduces vF by 7%. As Table I shows, vF falls in very close agreement with experiment when

Σ is scaled and the electron-phonon interaction is taken into account, consistent with agreement in

gaps in the bulk insulators. Even though the QSGW and LDA work functions are similar (Fig. 1),

the valence band is significantly widened relative to LDA,39 more so in graphene than in diamond.

Careful checks for convergence were made in various parameters. To check supercell artifacts,

a “small” 3D unit cell with the graphene planes repeated at a spacing equivalent to 4 atomic

layers of graphite (25 a.u.) was compared against a “large” cell, with graphene planes spaced at

8 layers. The bands from −∞ to EF+5 eV were found to be a very similar, with a slight increase

in vF (1.23→1.29 ·106 m/s). k convergence in the construction of Σ was monitored by comparing

QP levels generated on a 6×6×2 k mesh to a 9×9×2 mesh. QP levels were nearly identical: vF

differed by <1% in the both the small and large 3D cells.

ǫ−1
00 (q, ω) must be integrated with a fine k mesh. To deal with the delicate q→0 limit, we

calculated ǫ−1 integrating on a standard k mesh including Γ, and an offset mesh (Eqns. 47 and

52 in Ref. 26), and averaged them. We present data for averaged 18×18×4 meshes. Calculations
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without local fields were also performed for a pair of 24×24×4 meshes. ǫ(q||, qz=0, ω=0) calculated

by 18- and 24- (averaged) mesh integrations were essentially indistinguishable for q>0.1×2π/a,

and differed by a few percent for q>0.02×2π/a.

0 0.1 0.2 0.3 0.4 0.5 0.60

2

4

6

8

10 QSGW, No local fields
LDA, local fields
QSGW, local fields

ε00(q,qz=0,ω=0)

q 0 0.1 0.2 0.3 0.4
1

1.5
2

2.5
3

3.5 LDA
QSGW

ε2D(q,z=0)

q

FIG. 2: (Top) Static dielectric function ǫ00(q̄, qz=0) along the (100) line in graphene, with local fields

included and without. q̄ is in units of 2π/a=2.56Å−1. The q→0 limit is delicate and there is some

uncertainty in its value. Shown for comparison is the same function calculated from the LDA potential.

In the q̄→0 limit, ǫ00 calculated by QSGW is ∼0.8 smaller than the LDA result, similar to the ratio found

in bulk semiconductors. (Bottom) Effective layer dielectric function ǫ2D(q̄, z=0) as defined by Eq. (8),

with local fields, calculated within the QSGW and LD approximations. Local fields significantly reduce

ǫ00. The LDA result for ǫ00(q̄=0.086,qz=0) without local fields is ≃4, which agrees with the ω→0 limit

in Fig. 11 of Ref.40.

ǫ00(q̄, qz) was calculated on a grid of points {q̄, qz}; the qz=0 case is shown in the first panel of

Fig. 2. It was found that ǫ00 is well parametrized (max error <0.1) by

ǫ−1
00 (q̄, qz) =

a2(q̄) + q2z
ǫ00(q̄, 0) a2(q̄) + q2z

(9)

a2(q̄) =
a0a1q̄

2

a1 + q̄2
≈ a0q̄

2 (10)

where a0=1.3 and 1.2 for QSGW and LDA, respectively, and a1=1.6(2π/a)2. The approximate

form for a in Eq. 10 is sufficient for any q where ǫ00 differs significantly from unity. With Eq. (9)

W 2D can be integrated analytically. Taking the approximate expression for a2(q̄) we obtain

ǫ2D(q̄, z) =
γ(γ2 − 1)

γ(a0 − 1) + (γ2 − a0)e(1−γ)q̄z
(11)

where γ =
√

a0ǫ00(q̄, 0).

Fig. 2 shows both kinds of dielectric functions, ǫM corresponding to the macroscopic polariz-

ability, and the effective 2D static dielectric function ǫ2D(q̄, z=0) calculated from Eq. (9). Local

6



fields reduce the strength of the screening. The difference between LDA and QSGW results are

modest; and as noted earlier, the LDA results are likely to be slightly better because they benefit

from a fortuitous cancellation of errors. As q̄→0, γ is significantly larger than a0 and unity. Keep-

ing only the leading order in γ, we obtain the surprising result that ǫ2D(0,z=0)≈
√

a0ǫ00(q̄, qz=0).

ǫ2D(0,z=0) is roughly a factor 1.5 times larger than the Dirac Hamiltonian result at zero doping.

Such a model predicts ǫ(q) ≈ 2.4 independent of q, as shown by Ando7. We find ǫ2D(q̄, z=0)≈3.5

for q̄→0, but ǫ2D is a very strong function of q̄.

Although virtual transitions involving Van Hove peaks of the density of states might strongly

enhance16,17 ǫ2D were they sufficiently close to the Fermi level, apparently lie too far away in

graphene. The case of small q̄ (q̄∼kF≤10−2 Å−1) is relevant for transport properties. In this region

our first-principles calculations do not dramatically contradict predictions of the Dirac model. At

the same time, for the problem of supercritical Coulomb centers and relativistic collapse (fall on

the center)10,23,24 distances of order of several inverse lattice constants are essential (this is the

radius of screening cloud, according to renormalization group analysis10), which corresponds to

larger q. For this region our results show that the Dirac model overestimates the screening.
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