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1. Introduction

The complete automation of the 1-loop calculations is nowadays a feasible task [1]. The

advent of the OPP reduction method [2], together with the concept of multiple cuts [3],

allowed to revitalize Unitarity [4] based Techniques, such as Generalized Unitarity (GU) [5],

by reducing the computation of 1-loop amplitudes to a problem with the same conceptual

complexity of a tree level calculation, resulting in achievements that were inconceivable

only a few years ago [6]. As a matter of principle, any program capable of producing

tree level results can be transformed nowadays into a NLO calculator by either cutting the

1-loop diagrams, in the OPP method, or by gluing tree level structures in the GU approach.

Both OPP and GU, when applied in 4 dimensions, allow the extraction of the Cut

Constructible (CC) part of the amplitude, while a left over piece, the rational part R,

needs to be derived separately. In the Generalized Unitarity approaches, this is achieved

by computing the amplitude in different numbers of space-time dimensions, or via boot-

strapping techniques [7], while, in the OPP approach, R is split in 2 pieces R = R1 +R2.

The first piece, R1, is derivable in the same framework used to reconstruct the CC part

of the amplitude, while R2 is computable through a special set of Feynman rules for the

theory at hand [8], to be used in a tree level-like computation.
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The OPP treatment of R in its present formulation has one advantage and one draw-

back. The advantage is that no calculation in dimensions other than four is needed, avoiding

the use of 6 and 8 dimensional explicit representations of the external particle wave func-

tions. The drawback is that, for each theory that needs to be studied, a different special

set of Feynman Rules has to be explicitly computed once for all. On the other hand, in

the OPP framework, the speed for computing the Rational part is very high, so that we

prefer it.

The full set of R2 Feynman rules has been already derived for QED in [8], for QCD

in [9], and, for the Standard Model (SM) of the Electroweak (EW) interactions in the ’t

Hooft-Feynman gauge in [10]. It is the main aim of the present paper to present the R2

Feynman rules for the Electroweak Standard Model in a general renormalizable Rξ gauge

and in the Unitary gauge. On the one hand, this completes the theoretical picture on R2

and, on the other hand, it allows tree level packages based on gauges other that the ’t Hooft-

Feynman one to be transformed into 1-loop calculators with the help of the mentioned OPP

or GU techniques. In addition, the use of a general renormalizable Rξ gauge, can be used

to verify the correctness and the numerical stability of the 1-loop predictions by studying

the invariance of the results under a change in the numerical value of ξ.

The outline of the paper is as follows. In section 2 we recall the origin of R2. In

section 3 we fix our notation and our calculational framework. Section 4 contains the

complete list of all possible special R2 EW SM vertices in the Rξ gauge and in the Unitary

gauge. Finally, section 5 describes the tests we performed on our formulae.

2. Theory of R2

The presence of a rational part R in a generic 1-loop amplitude is due to the regularization

procedure needed before carrying out the calculation. In dimensional regularization, one

computes the 1-loop integrals in n = 4+ ǫ dimensions, so that a generic m-point one-loop

(sub-) amplitude reads

A =
1

(2π)4

∫

dnq̄
N̄(q̄)

D̄0D̄1 · · · D̄m−1

, D̄i = (q̄ + pi)
2
−m2

i , q̄ = q + q̃ , (2.1)

where q̄ is the integration momentum, a bar denotes objects living in n dimensions and a

tilde represents ǫ-dimensional quantities. Notice that the external momenta pi are always

kept in 4 dimensions.

The numerator function N̄(q̄) can be split into a 4-dimensional plus an ǫ-dimensional

part

N̄(q̄) = N(q) + Ñ(q̃2, q, ǫ) . (2.2)

N(q) brings information on the CC part of the amplitude (and within the OPP framework

can also be used to compute a part of the rational piece called R1), while Ñ(q̃2, q, ǫ) gives

rise to a second piece of the rational part called R2, defined as

R2 ≡
1

(2π)4

∫

dn q̄
Ñ(q̃2, q, ǫ)

D̄0D̄1 · · · D̄m−1

. (2.3)
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Due to possible ambiguities when passing from N(q) to N̄(q̄), the actual form of Ñ(q̃2, q, ǫ)

can only be read, to the best of our knowledge, starting from the original theory in n

dimensions. In the OPP framework, that is achieved by computing analytically tree-level

like Feynman rules, by splitting the Feynman diagrams according to the following three

rules

q̄µ̄ = qµ + q̃µ̃ ,

γ̄µ̄ = γµ + γ̃µ̃ ,

ḡµ̄ν̄ = gµν + g̃µ̃ν̃ . (2.4)

Effective vertices are then generated by calculating the R2 parts coming from all possible

one-particle irreducible Green functions of the theory at hand, up to four external legs. The

fact that four external legs are enough to account for R2 is guaranteed by the ultraviolet

nature of the rational terms, proved in [11] 1. Some freedom is however left in the choice of

the regularization procedure, so that, instead of Eq. 2.3, one could also use the definition

R2

∣

∣

∣

FDH
=

1

(2π)4

∫

dn q̄
Ñ(q̃2, q, ǫ = 0)

D̄0D̄1 · · · D̄m−1

, (2.5)

provided the same prescription is used in all parts of the calculation. The choice in Eq. 2.5

corresponds to the so called Four Dimensional Helicity scheme [12] (FDH). In such a scheme,

when using dimensional regularization, the only object to be continued in n dimensions is

q2 → q2 + q̃2 , (2.6)

and it would be nice if one could be able to use this information to have access to R2

starting uniquely from the theory in 4 dimensions. Unfortunately, the replacement in

Eq. 2.6 is still too ambiguous, in the sense that different ways of writing N(q) may lead to

different n-dimensional continuations, as already observed in [10], so that no better solution

can be found, at present, than relying on the original n-dimensional theory. It is worth

mentioning that only the combination R = R1 +R2 is gauge invariant, not, in general, R1

or R2 separately. In this respect, the right analytical continuation from N(q) to N̄(q̄) by

means of Eq. 2.6, is that one that preserves all the Ward Identities of the theory.

In the following sections, we present the result of the explicit calculation we performed

of all possible 2, 3 and 4-point effective vertices in the Electroweak Standard Model in a

general Rξ gauge and in the Unitary gauge.

3. Notations and Feynman rules

The vector boson fields (generically symbolized by V ) are denoted by A, Z, W±. The

physical scalar Higgs field is written as H while χ and φ± denote the neutral and the

charged scalar goldstone bosons, respectively. All scalar fields are generically symbolized

1In GU approaches, the entire calculation is instead performed in n dimensions, at the price of intro-

ducing, as already mentioned in the Introduction, explicit 6 and 8-dimensional polarization vectors for the

particles glued together to form the loop amplitude.

– 3 –



by S. We work in the 1-fermion-family approximation, with lepton and quark doublets

given by
(

νl

l

)

and

(

u

d

)

. (3.1)

Fermions are generically symbolized by f , and the charge, the third isospin component and

the mass of a fermion by Qf , I3f and mf , respectively.

The sine and cosine of the Weinberg angle, the W and the Z mass are denoted by cw,

sw, MW and MZ , respectively. Following reference [13], we introduce the two quantities

Vud and V
†
du in the coupling of the W boson with the quark doublet of Eq. 3.1. This allows

one to keep track of the CKM matrix and to easily generalize the results to the 3-families

case. Finally, we use projector operators denoted by Ω± = 1±γ5
2

.

The set of Feynman rules we use for our calculation is that one given in [13], with

some modifications due to the fact that the expressions in that paper refer to the ’t Hooft-

Feynman gauge, while we want to work in the Rξ gauge. In the computation of R2, the

ghost fields never enter, so that, in order to pass from the the ’t Hooft-Feynman gauge to

the Rξ one, we just need to modify the propagators of the scalar goldstone bosons and of

the vector bosons as follows

p

SS =
i

p2 − ξM2
S

p

VβVα =
−i

p2 −M2
V

(

gαβ − (1− ξ)
pαpβ

p2 − ξM2
V

)

.

To compute our results in the Unitary gauge, we simply take the limit ξ → ∞ in the above

propagators before integrating over the loop momentum 2. Then the unphysical scalar

particles decouple and the massive gauge boson propagators become

−i

p2 −M2
V

(

gαβ −
pαpβ

M2
V

)

, (3.2)

while for the photon we use

−i

p2
gαβ. (3.3)

Notice that the choice in Eq. 3.2 is mandatory in the framework of the OPP method.

In fact, taking the limit ξ → ∞ after integration over the loop momentum would imply

a nonviable numerical cancellation between R1 and R2, since the two parts are treated

separately.

A last comment is in order with respect to our treatment of γ5 in vertices contain-

ing fermionic lines. When computing all contributing Feynman diagrams, we pick up a

2See section 5 for more discussions on this issue.
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p1

S2S1 = Vert(S1, S2)(a)

p1

Vα S = Vert(V, S)(b)

p1

V1α V2β = Vert(V1, V2)(c)

p1

f1 f̄2 = Vert(f1, f2)(d)

Figure 1: All possible 2-point vertices.

“special” vertex in the loop and anticommute all γ5’s to reach it before performing the

n-dimensional algebra, and, when a trace is present, we start reading it from this vertex.

This treatment produces, in general, a term proportional to the totally antisymmetric ǫ

tensor, whose coefficient may be different depending on the choice of the “special” vertex.

However, when summing over all quantum numbers of each fermionic family, we checked

that all contributions proportional to ǫ cancel.

4. Results

In this section, we present our results. We omit, in this paper, the gauge invariant con-

tributions coming from fermion loops, because they can be recovered with the help of the

formulae we already worked out in the case of the ’t Hooft-Feynman gauge in [10]. In

fact, the fermion loop part can be easily separated from the rest since it always involves a

sum
∑

i over fermions or fermion families. A parameter λHV is introduced in our formulae

such that λHV = 1 corresponds to the ’t Hooft-Veltman scheme and λHV = 0 to the FDH

scheme of eq. 2.5.

We explicitly write down, in this publication, all the formulae in the 2-point case,

while, for the 3 the and 4-point vertices, we just classify the non vanishing ones. In fact

the expression we obtained are rather lengthy, and there is no point in writing them down

on paper. We rather provide the full set of results as FORM [14] files [15]. The notation

used in those files closely follows that one introduced in the previous section. In Fig. 1-3

we present the generic non vanishing 2-point, 3-point and 4-point vertices that appear in

our calculation, that also serve to further fix our notations.
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p1
p2

p3

S1

S2

S3

= Vert(S1, S2, S3)

p1

p2

p3

Vα

S1

S2

= Vert(V, S1, S2)

p1
p2

p3

S

V1β

V2γ

= Vert(S, V1, V2)

p1
p2

p3

V1α

V2β

V3γ

= Vert(V1, V2, V3)

p1

p2

p3

S

f̄1

f2

= Vert(S, f1, f2)

p1
p2

p3

Vα

f̄1

f2

= Vert(V, f1, f2)

Figure 2: All possible non vanishing 3-point vertices.

4.1 The Rξ gauge

4.1.1 Bosonic contribution to the vertices with 2 legs

Scalar-Scalar effective vertices

The generic effective vertex is

Vert(S1, S2) =
ie2

16π2s2w
C (4.1)
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p1

p2

p3

p4S1

S2 S3

S4

= Vert(S1, S2, S3, S4)

p1

p2

p3

p4S1

S2
V1γ

V2δ

= Vert(S1, S2, V1, V2)

p1

p2

p3

p4V1α

V2β V3γ

V4δ

= Vert(V1, V2, V3, V4)

Figure 3: All possible non vanishing 4-point vertices.

with Vert(S1, S2) given in fig. 1 (a) and with the actual values of S1, S2 and C

HH : C =
m2

W

4

(

1 + 2ξ − ξ2 − 12λHV

)

(

1 +
1

2c4w

)

+ p21
9− 11ξ

24

(

1 +
1

2c2w

)

χχ : C =
m2

W

24c4w

(

1 + 2ξ2 − 12λHV

)

+
m2

W

12

(

1− 2ξ + 7ξ2 − 12λHV

)

−
m2

H

12c2w

(

1−
5

2
ξ

)

+ p21
9− 11ξ

24

(

1 +
1

2c2w

)

φ−φ+ : C =
m2

W

24c4w

(

1 + 2ξ2 − 12λHV

)

+
m2

W

2c2w

(

ξ −
3

2
ξ2
)

+
m2

W

12

(

1− 8ξ + 16ξ2 − 12λHV

)

−
m2

H

12

(

1−
5

2
ξ

)

+ p21
9− 11ξ

24

(

1 +
1

2c2w

)

(4.2)

Vector-Scalar effective vertices

The generic effective vertex is
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Vert(V, S) =
ie2

π2
C p1α (4.3)

with Vert(V, S) given in fig. 1 (b) and with the actual values of V , S and C

W−φ+ : C = −(1− ξ)
MW

192c2ws
2
w

W+φ− : C = (1− ξ)
MW

c2ws
2
w

Zχ : C = (1− ξ)
iMZ

192c2ws
2
w

(

1 + 2c2ws
2
w

)

Aχ : C = (1− ξ)
iMZ

96

cw

sw
(4.4)

Notice that all these vertices vanish in the ’t Hooft-Feynman gauge (ξ = 1).

Vector-Vector effective vertices

The generic effective vertex is

Vert(V1, V2) =
ie2

8π2
(C1 p1αp1β + C2 gαβ) (4.5)

with Vert(V1, V2) given in fig. 1 (c) and with the actual values of V1, V2, C1 and C2

AA : C1 = K1

C2 = K2

AZ : C1 = −
cw

sw
K1

C2 = −
cw

sw
K2

ZZ : C1 =
c2w
s2w

K1

C2 =
c2w
s2w

K2

W−W+ : C1 =
1

s2w
K1

C2 =
1

s2w
K2 (4.6)

where

K1 = −
1

3
λHV +

3

4
(1− ξ)

K2 = p2
(

21ξ − 17

24
+

λHV

3

)

− ξ
ξ + 3

4
m2

W (4.7)
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Fermion-Fermion effective vertices

The generic effective vertex is

Vert(f1, f2) =
ie2

π2

[(

C−Ω
− + C+Ω

+
)

/p1 + C0

]

(4.8)

with Vert(f1, f2) given in fig. 1 (d) and with the actual values of f1, f2, C−, C+ and C0

uu : C− =
Q2

u

c2w

(

λHV

16
−

1− ξ

24

)

C+ =

(

I23u
s2wc

2
w

−
2QuI3u

c2w
+

Q2
u

c2w
+

1

2s2w

(

VudV
†
du

)

)(

λHV

16
−

1− ξ

24

)

C0 =
muQu

8c2w
(Qu − I3u)

(

λHV −
1− ξ

4

)

dd : C− =
Q2

d

c2w

(

λHV

16
−

1− ξ

24

)

C+ =

(

I2
3d

s2wc
2
w

−
2QdI3d

c2w
+

Q2
d

c2w
+

1

2s2w

(

VudV
†
du

)

)(

λHV

16
−

1− ξ

24

)

C0 =
mdQd

8c2w
(Qd − I3d)

(

λHV −
1− ξ

4

)

ll : C− =
Q2

l

c2w

(

λHV

16
−

1− ξ

24

)

C+ =

(

I2
3l

s2wc
2
w

−
2QlI3l

c2w
+

Q2
l

c2w
+

1

2s2w

)(

λHV

16
−

1− ξ

24

)

C0 =
mlQl

8c2w
(Ql − I3l)

(

λHV −
1− ξ

4

)

νlνl : C− = 0

C+ =
1

s2w

(

I23νl
c2w

+
1

2

)

(

λHV

16
−

1− ξ

24

)

C0 = 0 (4.9)

4.1.2 Bosonic contribution to the vertices with 3 legs

The generic 3-point vertices appearing in our calculation are drawn in Fig. 2. As already

pointed out, we limit ourselves to list the non vanishing cases, while the full set of results

is available in [15]. We found 43 non zero R2 vertices in the Rξ gauge, classified in Table 1.

4.1.3 Bosonic contribution to the vertices with 4 legs

All non vanishing generic 4-point vertices that appear in our calculation are drawn in Fig. 3.

The full set of results can be found in [15]. The 35 non zero R2 vertices in the Rξ gauge

are classified in Table 2.
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Scalar-Scalar-Scalar vertices:

Vert(H,H,H), Vert(H,χ, χ), Vert(H,φ+, φ−).

Vector-Scalar-Scalar vertices:

Vert(A,H,χ), Vert(A,φ+, φ−), Vert(Z,H,χ), Vert(Z, φ+, φ−),

Vert(W−,H, φ+), Vert(W−, χ, φ+), Vert(W+,H, φ−), Vert(W+, χ, φ−).

Scalar-Vector-Vector vertices:

Vert(H,A,A), Vert(H,A,Z), Vert(H,Z,Z), Vert(H,W+,W−),

Vert(φ−, A,W+), Vert(φ+, A,W−) Vert(φ−, Z,W+), Vert(φ+, Z,W−).

Vector-Vector-Vector vertices:

Vert(A,W+,W−), Vert(Z,W+,W−).

Scalar-Fermion-Fermion vertices:

Vert(H,u, u), Vert(H, d, d), Vert(H, l, l),

Vert(χ, u, u), Vert(χ, d, d), Vert(χ, l, l),

Vert(φ−, d, u), Vert(φ−, l, νl), Vert(φ+, u, d), Vert(φ+, νl, l).

Vector-Fermion-Fermion vertices:

Vert(A, u, u), Vert(A, d, d), Vert(A, νl, νl), Vert(A, l, l),

Vert(Z, u, u), Vert(Z, d, d), Vert(Z, νl, νl), Vert(Z, l, l),

Vert(W−, d, u), Vert(W−, l, νl), Vert(W+, u, d), Vert(W+, νl, l).

Table 1: The 43 non zero 3-point effective vertices in the Rξ gauge. In the Unitary gauge there

are 23 non vanishing vertices, namely the 22 listed here that do not contain χ or φ± fields plus

Vert(H, νl, νl).

4.2 The Unitary gauge

We follow again the notations of Fig. 1.

4.2.1 Bosonic contribution to the vertices with 2 legs

Scalar-Scalar effective vertices

The generic effective vertex is

Vert(S1, S2) =
ie2

16π2s2w
C (4.10)
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Scalar-Scalar-Scalar-Scalar vertices:

Vert(H,H,H,H), Vert(H,H,χ, χ), Vert(H,H, φ−, φ+),

Vert(χ, χ, χ, χ), Vert(χ, χ, φ−, φ+), Vert(φ−, φ+, φ−, φ+).

Scalar-Scalar-Vector-Vector effective vertices:

Vert(H,H,A,A), Vert(H,H,A,Z), Vert(H,H,Z,Z), Vert(H,H,W−,W+),

Vert(H,φ+,W−, A), Vert(H,φ+,W−, Z), Vert(χ, χ,A,A), Vert(χ, χ,A,Z),

Vert(χ, χ,Z,Z), Vert(χ, χ,W−,W+), Vert(χ, φ+,W−, A), Vert(χ, φ+,W−, Z),

Vert(φ−,H,A,W+), Vert(φ−,H,Z,W+), Vert(φ−, χ,A,W+), Vert(φ−, χ, Z,W+),

Vert(φ−, φ+, A,A), Vert(φ−, φ+, A, Z), Vert(φ−, φ+, Z, Z), Vert(φ−, φ+,W−,W+).

Vector-Vector-Vector-Vector effective vertices:

Vert(A,A,A,A), Vert(A,A,A,Z), Vert(A,A,Z,Z),

Vert(A,Z,Z,Z), Vert(Z,Z,Z,Z), Vert(A,A,W−,W+),

Vert(A,Z,W−,W+), Vert(Z,Z,W−,W+), Vert(W−,W+,W−,W+).

Table 2: The 35 non zero 4-point effective vertices in the Rξ gauge. In the Unitary gauge there

are 14 non vanishing vertices, namely all those ones that do not contain χ or φ± fields.

with Vert(S1, S2) given in fig. 1 (a) and with the actual values of S1, S2 and C

HH : C =
5

6
p21

(

1 +
1

2c2w

)

−
9

40

p41
m2

W

−m2
W

(

1 +
1

2c4w

)(

1

4
+ 3λHV

)

(4.11)

Vector-Scalar effective vertices

No contribution is found in the Unitary gauge.

Vector-Vector effective vertices

The generic effective vertex is

Vert(V1, V2) =
ie2

8π2
(C1 p1αp1β + C2 gαβ) (4.12)

with Vert(V1, V2) given in fig. 1 (c) and with the actual values of V1, V2, C1 and C2

AA : C1 = K1

C2 = K2

AZ : C1 = −
cw

sw
K1

C2 = −
cw

sw
K2
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ZZ : C1 =
c2w
s2w

K1

C2 =
c2w
s2w

K2

W−W+ : C1 =
1

s2w
K3

C2 =
1

s2w
K4 (4.13)

where

K1 = −
1

3
(λHV − 5)−

17

60

p21
m2

W

K2 =
3

4
m2

W +
1

3
p21

(

λHV −
23

4

)

+
37

120

p41
m2

W

K3 = −
1

3

(

λHV −
5

2
−

9

8
c2w

)

+
11

24
c4w −

17

120

p21
m2

W

(

1 + c4w
)

K4 =
3

8

m2
W

c2w

(

s2w + c4w + c6w
)

+ p21

[

λHV

3
−

7

8
−

7

16
c2w

(

1 +
29

21
c2w

)]

+
37

240

p41
m2

W

(

1 + c4w
)

(4.14)

Fermion-Fermion effective vertices

The generic effective vertex is

Vert(f1, f2) =
ie2

π2

[(

C−Ω
− + C+Ω

+
)

/p1 + C0

]

(4.15)

with Vert(f1, f2) given in fig. 1 (d) and with the actual values of f1, f2, C−, C+ and C0

uu : C− =
Q2

u

16c2w

[

λHV +
s2w
m2

Z

(

p21
4

−
2

3
m2

Z −
5

6
m2

u

)]

C+ =
λHV

16

[

I23u
s2wc

2
w

−
2QuI3u

c2w
+

Q2
u

c2w
+

1

2s2w

(

VudV
†
du

)

]

+
s2w

16m2
Zc

2
w

(

p21
4

−
2

3
m2

Z −
5

6
m2

u

)(

Qu −
I3u

s2w

)2

+
VudV

†
du

32m2
W s2w

(

p21
4

−
2

3
m2

W −
5

6
m2

d

)

C0 =
Qumu

8c2w

[

λHV (Qu − I3u) +
s2W
4m2

Z

(

Qu −
I3u

s2w

)(

p21
3

−m2
Z −m2

u

)]
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dd : C− =
Q2

d

16c2w

[

λHV +
s2w
m2

Z

(

p21
4

−
2

3
m2

Z −
5

6
m2

d

)]

C+ =
λHV

16

[

I2
3d

s2wc
2
w

−
2QdI3d

c2w
+

Q2
d

c2w
+

1

2s2w

(

VudV
†
du

)

]

+
s2w

16m2
Zc

2
w

(

p21
4

−
2

3
m2

Z −
5

6
m2

d

)(

Qd −
I3d

s2w

)2

+
VudV

†
du

32m2
W s2w

(

p21
4

−
2

3
m2

W −
5

6
m2

u

)

C0 =
Qdmd

8c2w

[

λHV (Qd − I3d) +
s2W
4m2

Z

(

Qd −
I3d

s2w

)(

p21
3

−m2
Z −m2

d

)]

ll : C− =
Q2

l

16c2w

[

λHV +
s2w
m2

Z

(

p21
4

−
2

3
m2

Z −
5

6
m2

l

)]

C+ =
λHV

16

[

I2
3l

s2wc
2
w

−
2QlI3l

c2w
+

Q2
l

c2w
+

1

2s2w

]

+
s2w

16m2
Zc

2
w

(

p21
4

−
2

3
m2

Z −
5

6
m2

l

)(

Ql −
I3l

s2w

)2

+
1

32m2
W s2w

(

p21
4

−
2

3
m2

W

)

C0 =
Qlml

8c2w

[

λHV (Ql − I3l) +
s2W
4m2

Z

(

Ql −
I3l

s2w

)(

p21
3

−m2
Z −m2

l

)]

νlνl : C− = 0

C+ =
λHV

16s2w

(

1

2
+

I23νl
c2w

)

+
I23νl

16m2
Zc

2
ws

2
w

(

p21
4

−
2

3
m2

Z

)

+
1

32m2
W s2w

(

p21
4

−
2

3
m2

W −
5

6
m2

l

)

C0 = 0 (4.16)

4.2.2 Bosonic contribution to the vertices with 3 legs

The generic 3-point vertices appearing in our calculation are drawn in Fig. 2. As before

the full set of results is available in [15]. We found 23 non zero R2 vertices in the Unitary

gauge, classified in Table 1.

4.2.3 Bosonic contribution to the vertices with 4 legs

All non vanishing generic 4-point vertices that appear in our calculation are drawn in Fig. 3.

The full set of results is presented in [15]. The 14 non zero R2 vertices in the Unitary gauge

are classified in Table 2.

5. Checks

All our formulae have been obtained cross-checking two independent calculations. To
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further check our results, we used the fact that the R = R1 + R2 contribution to physical

quantities should be independent of the chosen gauge. In particular, parametrizing the

gauge boson self-energies as follows

Σµν
V (p) = gµν ΣV 0(p

2) + pµpν ΣV 1(p
2) with V = Z,W, γ , (5.1)

we verified that the R contribution to ΣW0(M
2
W ), ΣZ0(M

2
Z) and Σγ0(0) is the same in

both the Rξ and the Unitary gauge. In addition, in the case of both gauges, we checked

all of the 2-point like Ward Identities presented in [10] involving Vert(S1, S2), Vert(V, S)

and Vert(V1, V2).

To test the 3-point sector, we computed the R = R1 +R2 contribution to the process

H → γγ . Again, we found the same answer working in both gauges, obtaining an expression

for R in full agreement with that one presented in [16]. As for the 4-point sector, we checked

that, in the limit ξ → 1, we fully reproduce the effective vertices presented in [10].

Finally, in the case of the Rξ gauge, we computed R2 using both the following two

equivalent representations for the massive gauge boson propagators

−i

(

gαβ

p2 −M2
V

− (1− ξ)
pαpβ

(p2 −M2
V )(p

2 − ξM2
V )

)

and

−i

(

gαβ

p2 −M2
V

−
pαpβ

M2
V (p

2 −M2
V )

+
pαpβ

M2
V (p

2 − ξM2
V )

)

, (5.2)

always finding the same results. Since the two expressions lead to different integrals in

the intermediate stages of the calculation, this provides a strong consistency check of our

procedure.

As a last remark notice that, when working in the Unitary gauge, we take the limit

ξ → ∞ before integrating over the loop momentum. The fact that this gives the same result

for R as in a generic Rξ gauge in the above mentioned cases provided the same prescription

is used in the calculation of R1 is an explicit check of the equivalence of the limits ξ → ∞

after or before the loop momentum integration in the definition of the Unitary gauge at

1-loop.

6. Conclusions

We presented the full set of Feynman rules producing the rational terms of kind R2 needed

to perform any 1-loop calculation in the Electroweak Standard Model in the Rξ gauge

and in the Unitary gauge. In a few physical cases we also checked the independence of

the full rational piece R = R1 + R2 of the chosen gauge and, in the case of the Unitary

gauge, of the order between the limit ξ → ∞ and the integration over the loop momentum.

Our results can be used to transform tree level packages based on gauges other that the

’t Hooft-Feynman one into 1-loop calculators with the help of the OPP or Generalized

Unitarity techniques.
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