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ABSTRACT 

Motivation: The intensification of DNA sequencing will increasingly 

unveil uncharacterized species with potential alternative genetic 

codes. A total of 0.65% of the DNA sequences currently in Genbank 

encode their proteins with a variant genetic code, and these excep-

tions occur in many unrelated taxa. Results: We introduce FACIL, a 

fast and reliable tool to evaluate nucleic acid sequences for their 

genetic code that detects alternative codes even in species distantly 

related to known organisms. To illustrate this, we apply FACIL to a 

set of mitochondrial genomic contigs of Globobulimina pseudospi-

nescens. This foraminifer does not have any sequenced close rela-

tive in the databases, yet we infer its alternative genetic code with 

high confidence values. Results are intuitively visualized in a Genet-

ic Code Logo. Availability and Implementation: FACIL is available 

as a web-based service at http://www.cmbi.ru.nl/FACIL/ and as a 

stand-alone program. Contact: dutilh@cmbi.ru.nl. 

1 INTRODUCTION  

The recent increases in read lengths have established next-

generation DNA sequencing as a mature technique, with the first 

machines capable of single molecule sequencing currently being 

shipped to researchers. In most studies, the researchers' interests lie 

beyond translation: the focus is on proteins that are encoded in the 

DNA, and their function. Most analyses consider the translation 

between DNA and protein a trivial exercise. After all the genetic 

code or codon table, i.e. the "dictionary" that translates codons 

(nucleic acid triplets) into amino acids (AAs), is largely universal 

and unambiguous (Koonin and Novozhilov, 2009). However, 

exceptions in the code of bacteria (Bove, 1993), eukaryotic nuclei 

(Helftenbein, 1985; Meyer, et al., 1991), organelles (Barrell, et al., 
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1979) and their associated viruses (Shackelton and Holmes, 2008) 

have been reported and, given the increasing phylogenetic breadth 

of sequenced taxa (Wu, et al., 2009), many more such findings 

may be anticipated. A quick survey of the DNA sequences current-

ly in Genbank shows that a total of 0.65% are annotated as being 

alternatively translated. If a novel sequence uses a non-canonical 

code, open reading frames may be different than anticipated due to 

the reassignment of stop codons and alternative translations of 

coding codons. This affects both protein sequence and function 

prediction, so these considerations demand an easy way to assess 

the genetic code used on a sequenced fragment or assembled con-

tig. 

Non-canonical codes are generally identified by inspecting an 

alignment of the codons on the DNA against homologous protein 

sequences identified by e.g. BlastX. The program Gendecoder 

(Abascal, et al., 2006) automates this process, but it focuses on 

metazoan mitochondria and requires an annotated Genbank file as 

input. DNA sequencing increasingly yields fragments and assem-

bled contigs that contain sufficient information for reliable genetic 

code prediction, but performing BlastX searches before knowing 

the correct translation table is untenable with the rate of DNA 

sequencing accelerating faster than CPU power. Moreover, the 

alignment may introduce errors that need to be addressed, prefera-

bly by an automated and validated approach. 

2 METHODS 

2.1 Training data 

We used 5,866 annotated DNA sequences to construct the training data set: 

3,269 bacterial, 176 archaeal and 2,421 organellar genomes (Supplemen-

tary Table 3), representing all such genomes available on July 13th 2010 in 

the Entrez genome database. From these genomes, we composed a training 
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set by randomly selecting 1,000 regions each of length 100, 200, 300, ..., 

1,000, 2,000, 3,000, ..., 10,000, 20,000, 30,000, ..., 100,000, 200,000, 

300,000, ..., and 1,000,000 nt, i.e. a total of 37,000 fragments. We made 

sure these genomic regions did not overlap to avoid redundant training 

data. The complete set of training data is available from the FACIL web-

site: http://www.cmbi.ru.nl/FACIL/input/complete_training_table.txt.gz. 

Fig. 1.  Outline of the FACIL algorithm, see text for details. The Genetic 

Code Logo visualizes the results, including the reliability of alternative 

genetic code predictions. The example shows the predicted code for Glo-

bobulimina pseudospinescens mitochondrial fragments, generated by 

entering the "example" input data on the FACIL webserver. The logo 

shows the 64 codons from left to right (predicted alternatives in red), each 

with a stack of AAs. The stack height indicates the percentage of RF3 trees 

supporting the predicted translation, the letter sizes indicate the scaled AA 

alignment scores and the red line is the percentage of RF1/RF2 trees that 

predict a stop codon. 

2.2 Random Forest analysis 

RF is a non-parametric classification algorithm that uses many classifica-

tion trees in parallel (Breiman, 2001). It uses a random subset of the cases 

in the training data set and the remainder of the cases for testing and calcu-

lating the accuracy scores. The randomForest R package version 2.11.0 was 

used with 100 trees (using 1,000 trees gave almost the same results, see tab 

in Supplementary Table 1) and default parameters (63% of codons used for 

training, 37% for testing, square root of the number of variables to train 

individual trees). In FACIL, the RFs assess the correctness of the homolo-

gy-based predictions: the response variables of RF1 and RF2 were "stop 

codon" or "coding codon", the response of RF3 was either "correct AA 

translation" or "incorrect AA translation". 

2.3 Globobulimina pseudospinescens sequencing and 

assembly 

Approximately 10,000 single-cell Globobulimina pseudospinescens organ-

isms were isolated by hand from Gullmar Fjord sediment (Risgaard-

Petersen, et al., 2006). After washing, total DNA was extracted using the 

QIAamp DNA Micro Kit and sequenced by Illumina Genome Analyser II. 

9,950,730 32 nt reads were assembled using Edena (Hernandez, et al., 

2008) with parameters m=16 and M=16, which yielded the highest N50 

value (N50=170). The raw data and assembly are available from the Gene 

Expression Omnibus (GEO) under accession number GSE26664. The total 

DNA of a eukaryote may contain up to three different translation codes (De 

Grey, 2005): nuclear, mitochondrial, and plastid (if the organism is photo-

synthetic, but this is not the case for G. pseudospinescens). To avoid mix-

ing these signals, the user can choose to feed individual contigs to FACIL, 

but this might lead to a bad genetic code prediction due to shortage of data. 

Thus, we selected those contigs that were likely derived from the G. pseu-

dospinescens mitochondrial genome as follows. The 8,456 assembled 

contigs were queried by BlastX version 2.2.22+ (Camacho, et al., 2009) 

against all proteins encoded by completely sequenced mitochondria, down-

loaded from NCBI organelle genome resources 

(http://www.ncbi.nlm.nih.gov/genomes/GenomesHome.cgi?taxid=2759) on 

July 28th, 2010. Importantly, we used the standard genetic code for this 

BlastX search in order not to impose a bias in the genetic code on the 

contigs and our results. The 150 contigs with a high-scoring BlastX hit (E-

value ≤0.01) were considered to be of mitochondrial origin (average length 

223 nt, median length 191 nt). These sequences are available as "example" 

input data on the FACIL webserver. They contain fragments of mitochon-

drial genes like cytochrome B and several ATP synthase, cytochrome-c 

oxidase and NADH dehydrogenase subunits. We found no evidence for 

multiple copies (e.g. a nuclear and a mitochondrially encoded copy) of the 

encoded genes after a BlastN search (E-value ≤0.01) of the contigs against 

themselves. 

3 RESULTS 

3.1 Homology-based prediction 

We present FACIL (Fast and Accurate genetic Code Inference and 

Logo), a method to predict and evaluate the coding of every codon 

for any nucleic acid sequence, without requiring a priori annotation 

of proteins. First, FACIL queries all Pfam-fs protein domain 

HMMs (local alignment models (Finn, et al., 2010)) against a 

provisional six-frame translation of the DNA. All known variant 

codes differ by at most a few codons, so a provisional translation 

can help to align the AAs in the protein domains to the codons in 

the DNA. By default, our provisional translation uses the standard 

code, but by iterating FACIL, using the newly identified codes as 

input, it is in principle possible to find more distant codes. Stop 
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codons are translated as X to enable the initial alignment of all 

sites by hmmsearch (HMMER 3.0, http://hmmer.org; default pa-

rameters and Pfam trusted score cutoff; Figure 1a). This sensitive 

profile-based homology search algorithm allows FACIL to identify 

homologous regions even if codons are consistently mis-translated. 

Thus, potentially unique codes can be identified even for organ-

isms that are taxonomically divergent from known species, provid-

ed that homologous domains are found. For each codon, FACIL 

examines which AAs are most frequently associated to it among 

the aligned protein domains, taking into account the frequency 

distribution of AAs per position as defined by the domain HMMs. 

Because we use protein domains as the search unit and the speed of 

the HMMER 3.0 hmmsearch algorithm, FACIL is extremely fast 

and insensitive to fragmented DNA, frameshifts due to e.g. se-

quencing or assembly errors, introns and split gene sequences, and 

does not require gene annotation. 

Fig. 2.  F1-score for predicting coding (AA) and stop codons by homology 

alone and after RF filtering. Values are based on the predictions for all 

codons from bacterial, archaeal and organellar genomes (see Supplemen-

tary Table 2). 

3.2 Random forest-based evaluation of homology-

based prediction 

The homology-based prediction creates a matrix of 64 codons by 

20 AAs for each DNA molecule (Figure 1b), where we consider 

the AA that most frequently aligns to a codon within the protein 

domains as its most likely translation. 83.3% of the AAs thus 

predicted are correct (Figure 2), but stop codons (that do not align 

to the protein domains) may be over-predicted for short sequences 

with strong codon bias, causing a low precision of 24.0% for stop 

codons. Also, AAs with similar properties may align to a codon 

with almost equal frequencies, due to neutral evolution at the 

protein level (see ATA in Figure 1d). All in all, this leads to rela-

tively low precision and sensitivity scores (see Supplementary 

Table 2: precision: 83.3% and 24.0%, sensitivity: 83.3% and 

89.6%, for AAs and stop codons, respectively). We expected that 

these errors can be identified by inspecting the variables relating to 

the homology-based prediction (Table 1). To quantify the reliabil-

ity of the predictions and assess which parameters are important to 

achieve a reliable prediction, we implemented a Random Forest 

approach (RF; Figure 1c). RF is a non-parametric classification 

algorithm capable of integrating many variables, yet difficult to 

overtrain due to the use of many classification trees in parallel that 

each are trained with a subset of the training data (Breiman, 2001). 

RFs can even capture sub-classes in the training data: clusters of 

instances with a specific variable importance. 

For every DNA sequence, we evaluate a range of variables for 

each of the 64 codons to estimate the confidence of the homology-

based prediction (Table 1). Firstly, we include general variables of 

the DNA fragment including sequence length and the total occur-

rence of the codon in the sequence. Secondly, we include variables 

of the identified protein domains like the average hmmsearch hit 

score. Thirdly, we include variables relating to the predicted genet-

ic code (e.g. the number of AAs missing from the predicted genetic 

code, the number of codons never aligned to protein domains), 

variables that represent the confidence of the homology-based 

prediction (e.g. the similarity between the two top-scoring AAs as 

defined by their BLOSUM62 substitution score (Henikoff and 

Henikoff, 1992)) and variables that relate to the robustness of the 

predicted genetic code (number of single mutation codons translat-

ed to the same AA). Finally, we include several combined parame-

ters, including the fraction of codons occurring in frame within the 

protein domains over their occurrence in the entire DNA sequence. 

We trained three RFs of 100 trees, each specialized to answer a 

specific question. RF1 (91.03% accuracy) and RF2 (99.95% accu-

racy) were designed to discern stops from coding codons among 

those codons that do not and do align to protein domains, respec-

tively. RF3 (95.08% accuracy) predicts whether the AA that most 

frequently aligns to a codon is indeed its correct translation. The 

assessment of the homology-based predictions by these RFs in-

creased the precision and sensitivity scores (see Supplementary 

Table 2: precision: 97.1% and 99.3%, sensitivity: 88.1% and 

75.8%, for AAs and stop codons, respectively). The decrease in 

sensitivity for stop codons is mainly due to the many training cases 

where not all codons are present in the protein domain alignments, 

e.g. for short input sequences. Thus, RF1 is strict in accepting them 

as true stop codons. We recommend to be critical of potentially 

novel alternative "rare coding codons", especially when analyzing 

short input sequences. Note that these are cases where FACIL will 

not predict an AA translation, as the codon is not aligned to any 

protein domain. 

We found different variables to be important to each of these ques-

tions. For codons that are never aligned to protein domains, the 

most important variable to distinguish true stop codons from rare 

coding codons (RF1) is how many of the 64 possible codons did 

not align to any protein domain. If the sequence contains many 

codons that never align to a protein domain, this is likely a result of 

a combination of the low number of identified protein domains, the 

short length or the low complexity of the query sequence, although 

individually, those parameters were less important to RF1. Among 

codons that do align to protein domains, coding codons can be 

distinguished from spuriously aligned stop codons (RF2) by their 

occurrence ratio in-frame within protein domains and in the entire 

sequence. This includes off-frame occurrence in the coding region, 

where it has been hypothesized that stop codons are abundant to 

terminate frame-shifted translation (Seligmann and Pollock, 2004). 

To determine if the AA with the highest alignment score is indeed 

the correct coding translation for a codon (RF3), the difference 

between the first and second best alignment score is an important 

variable. Interestingly, however, the most important variable in 

RF3 turns out to be a basic characteristic of the genetic code, i.e. 

the translation redundancy at the third nucleotide of the codon. The 

genetic code is characterized by a low impact of wobble base-

pairing of tRNAs at the third nucleotide and apparently, spuriously 

high scoring AAs can be recognized as being in violation with this 
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rule. Note that, e.g., the amount of protein-coding sequence falling 

into Pfam-domains is not an important distinguishing variable in 

any of the RFs. Its major contribution is in RF1, which is in ac-

cordance with the most important RF1 variable, i.e. the number of 

codons that did not align to any protein domain. 

To assess potentially conflicting variable importance between 

standard and alternative codons, we did an additional experiment 

where we trained the RFs for each of these groups separately (see 

tabs in Supplementary Table 1). While the variable importances for 

the RFs trained with only standard codons were very comparable 

to the complete set, the RFs trained with alternatively encoded 

codons gave a different picture. For alternative codons that are 

never aligned to protein domains, the most important variable to 

distinguish true stop codons from rare coding codons (RF1) is the 

percentage of strongly paired nucleic acids (GC content). This 

reflects the difficulty in predicting alternative genetic codes for 

genomes with a high GC-skew. For alternative codons that do 

align to protein domains, RF2 assigns the highest importance to the 

difference in alignment score between the first and second most 

frequently aligned amino acid. To determine if the AA assigned by 

homology is indeed the correct coding translation (RF3), the trans-

lation redundancy at the first nucleotide of the codon is the most 

important distinguishing variable. This analysis pinpoints some of 

the specific variables that are important for the prediction of alter-

native codons.  

Table 1.  Variables used in each RF and their normalized importance 

(calculated as MeanDecreaseGini / max MeanDecreaseGini; see Supple-

mentary Table 1). 

3.3 Genetic Code Logo and web server 

The output of FACIL, i.e. a predicted translation for each codon 

along with confidence values based on the supporting fraction of 

decision trees in the RFs, is visualized in a Genetic Code Logo 

(Figure 1d). We implemented FACIL into a web server 

(www.cmbi.ru.nl/FACIL/) that enables the user to easily obtain a 

code prediction with details and a Genetic Code Logo for any 

sequenced genome or set of contigs. This site also contains a 

downloadable stand-alone version of the software. Both the web 

server and the stand-alone version of FACIL take FASTA for-

matted DNA sequences as input and allow the user to specify the 

genetic code used for the provisional translation. Mitochondrial 

genetic code of Globobulimina pseudospinescens 

Alternative genetic codes are perhaps most abundant in mitochon-

drial genomes. To illustrate the use of our method, we set out to 

General variables of the DNA fragment RF1 RF2 RF3 
 

n.a. = not applicable 

Length of the DNA sequence (excluding ambiguous nucleotides) 0.153 0.032 0.048 
 

0.000 

Entropy of A, C, G and T frequency distribution 0.215 0.030 0.069 
 

0.100 

Entropy of codon frequency distribution 0.204 0.034 0.067 
 

0.200 

Percentage strongly paired nucleic acids in sequence (C or G) 0.355 0.041 0.075 
 

0.300 

Total occurrence of the codon on the DNA fragment (any frame) 0.416 0.131 0.080 
 

0.400 

General variables of the identified protein domains RF1 RF2 RF3 
 

0.500 

Total length of the identified protein domains 0.551 0.103 0.108 
 

0.600 

Number of different protein domains found in the DNA sequence 0.224 0.045 0.054 
 

0.700 

Average hmmsearch hit score for this codon n.a. 0.140 0.119 
 

0.800 

Codon occurrence in frame in the identified protein domains (coding) n.a. 0.107 0.354 
 

0.900 

Number of different protein domains that contain this codon in frame n.a. 0.098 0.170 
 

1.000 

Entropy of codon frequency distribution aligned to protein domains 0.281 0.064 0.073 
  Variables relating to the predicted genetic code RF1 RF2 RF3 

  Number of predicted alternative codon translations 0.546 0.051 0.175 
  Number of AAs missing from the predicted code 0.160 0.006 0.097 
  Number of codons never aligned to protein domains (possible stops) 1.000 0.238 0.057 
  Alignment score of the most frequently aligned AA n.a. 0.018 0.302 
  Difference in alignment score between the 1st and 2nd AA n.a. 0.017 0.548 
  Entropy of alignment scores of all AAs for this codon n.a. 0.025 0.154 
  BLOSUM62 substitution score between first and second most aligned AA n.a. n.a. 0.063 
  Number of identical translations if 1st nucleotide is mutated 0.595 0.004 0.237 
  Number of identical translations if 2nd nucleotide is mutated 0.171 0.009 0.111 
  Number of identical translations if 3rd nucleotide (wobble) is mutated 0.370 0.051 1.000 
  Number of identical translations if any nucleotide is mutated 0.275 0.016 0.256 
  Fraction of RF2 decision trees that classify this codon as "coding" n.a. n.a. 0.026 
  Combined variables RF1 RF2 RF3 

  (Total codon occurrence on DNA) / (Length of DNA sequence) 0.665 0.062 0.095 
  (Total length of protein domains) / (Length of DNA sequence) 0.185 0.018 0.063 
  (Total codon occurrence on DNA) / (Total length of protein domains) 0.278 0.032 0.074 
  (Coding codon occurrence) / (Total length of protein domains) n.a. 0.628 0.192 
  (Coding codon occurrence) / (Total codon occurrence on DNA) n.a. 1.000 0.106 
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decipher the genetic code of the mitochondrial genome of the 

foraminifer Globobulimina pseudospinescens. Foraminifera be-

long to the Rhizaria, a kingdom with only very few protein se-

quences in the databases, none of which are derived from a mito-

chondrial genome. This means that no close relatives of this spe-

cies are represented in the Pfam-fs protein domains used in 

FACIL. Moreover, the data are particularly challenging, as the 

genome sequence is highly fragmented and incomplete (150 con-

tigs with an average length of 223nt). Nevertheless, we obtain 

strong support that the G. pseudospinescens mitochondrial genome 

uses the "Protozoan Mitochondrial Code" (NCBI translation table 

4, see Figure 1d and Supplementary Figure 1), with all 62 high-

confidence AA translations correctly classified by RF3, including 

the alternative translation of TGA into tryptophan (W). Both stop 

codons (TAA and TAG) were identified by RF1 (red line). BlastX 

searches and manual curation are consistent with these results 

(Supplementary Dataset 1 and Supplementary Table 4). Running 

the 8,306 remaining contigs (average length 168 nt) through 

FACIL predicted the "Standard Code" (NCBI translation table 1) 

as the most similar code, with 63 of the 64 codons predicted cor-

rectly. In the homology step, ATG was more often aligned to 

leucine (L) than to methionine (M; see Supplementary Figure 2), 

but that translation was considered unreliable by RF3 and filtered 

out. TGA was identified as a stop codon. This analysis exemplifies 

the value of our method for the reliable discovery of code variants, 

even in fragmented DNA from taxonomically divergent organisms. 

3.4 Performance 

As explained above, a FACIL query consists of two main steps. 

The first is a homology search where the six-frame translation of 

the input sequences are queried for known protein domains by 

hmmsearch (Figure 1a), the second is an evaluation of the align-

ment-based predictions by three specialized RFs (Figure 1c). For 

the 150 G. pseudospinescens sequences (length ~223nt) presented 

as an example, these steps take approximately four and one 

minutes, respectively, on our current web server (3GHz, 32Gb 

memory). This brings the total run time for prediction of the genet-

ic code to five minutes, only a fraction of the 50 minutes required 

for a BlastX search against the proteins in the NCBI Refseq protein 

database on the same machine (E-value ≤0.01; Supplementary 

Dataset 1). Indeed, the main performance gain of FACIL comes 

from the difference in database size that it queries. FACIL only 

needs to go through 9,318 Pfam-fs profiles, whereas the BlastX-

based analysis queries at least the Refseq database (9,004,816 

proteins in the December 2010 version we used) and preferably 

even NR, especially for less well-characterized organisms. Moreo-

ver, the BlastX results need to be parsed by a custom script and 

simply selecting the most often aligned AA for each codon may 

lead to errors, e.g. the two stop codons are occasionally aligned in 

BlastX hits (see Supplementary Table 4). The RFs in FACIL filter 

out these cases. For large-scale data sets, great improvement may 

be expected by running hmmsearch in parallel on a high-speed 

hardware accelerator. 

4 DISCUSSION 

Currently, there is no standard available for inference of the genet-

ic code of an unannotated DNA sequence, and a range of ad hoc 

methods that lack quality control and reported reliability scores 

obscure this research area (the notable exception being Gendecoder 

(Abascal, et al., 2006)). With FACIL, we present an easy, fast and 

reliable tool to predict the genetic code for nucleic acid sequences 

that does not depend on any a priori gene annotation. FACIL de-

tects alternative genetic codes even in species distantly related to 

known organisms. 

Previously, genetic code prediction has explicitly (Gendecoder 

(Abascal, et al., 2006)) or implicitly (BlastX searches) benefited 

from phylogenetic relatedness for reliable predictions. With 

FACIL, we chose to rely on general protein domains for two rea-

sons. Firstly, this eliminates the requirement to know the taxonom-

ic placement of the organism from which the DNA was derived, 

which may in particular be difficult for early-branching organisms. 

Secondly, this greatly improves its speed (see Section 3.5). Never-

theless, genetic code prediction may benefit from a more phyloge-

netically balanced selection of reference sequences, a proper model 

of evolution and a probabilistic phylogenetic method that considers 

the amino acids at neighboring nodes of the tree and uses branch 

lengths to calculate the probability of amino acids at an unknown 

state node. 
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