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A Fast and Verified Algorithm for Proving
Store-and-Forward Networks Deadlock-Free

Abstract—Deadlocks are an important issue in the design
of interconnection networks. A successful approach is to
restrict the routing function such that it satisfies a necessary
and sufficient condition for deadlock-free routing. Typically,
such a condition states that some (extended) dependency
graph must be acyclic. Defining and proving such a con-
dition is complex. Proving that a routing function satisfies
a condition can be complex as well. In this paper we
present the first algorithm that automatically proves routing
functions deadlock-free for store-and-forward networks. The
time complexity of our algorithm is linear in the size of the
resource dependency graph. The algorithm checks a variation
of Duato’s condition for adaptive routing. The condition and
the algorithm have been formalized in the logic of the ACL2
interactive theorem prover. The correctness of our algorithm
w.r.t. the condition is formally checked using ACL2.

I. Introduction

Deadlocks occur in interconnection networks when
packets wait for channels or buffers that will never be
available. This is an important aspect in the design of
protocols and architectures, in particular in the definition
of the routing function. The study of necessary and
sufficient conditions for deadlock-free routing has been
a very active and successful research area [1], [2], [3],
[4], [5]. The resource (channel or buffer) dependency graph
captures the dependencies introduced by the routing
function. In the case of deterministic functions, an acyclic
dependency graph is necessary and sufficient to pre-
vent the creation of deadlocks. In the case of adaptive
functions, Duato [6], [3] showed that routing functions
with cyclic dependencies can still be deadlock-free. His
condition states that the existence of a routing subfunc-
tion with an acyclic extended dependency graph is both
necessary and sufficient.

Until recently there was no algorithm that would
automatically decide if a routing function satisfies a
necessary and sufficient condition. Systematic methods
were proposed (e.g. [6]) but they are based on a manual
process and are therefore error-prone. In the case of
complex routing functions, discharging the condition is
a difficult process as well.

To the best of our knowledge, Taktak et al. [7], [8]
have been the first to propose a practical algorithm
to prove networks deadlock-free. Their work applies
to wormhole networks. The authors define their own
necessary and sufficient condition and provide an al-
gorithm to automatically check this condition. Let N be
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the number of processing nodes of a network. In the
worst case, there may be dependencies between any pair
of nodes. The size of the resource dependency graph
is therefore in O(|N|2). The time complexity of Taktak’s
algorithm is O(|N|4), i.e., quadratic in the size of the
dependency graph. The algorithm is proven correct w.r.t.
the condition by a pencil and paper proof.

Necessary and sufficient conditions for deadlock-free
routing are complex and often counterintuitive. Taktak’s
condition and algorithm are no exceptions. A complex
mathematical proof is required to justify a condition or
an algorithm. This pencil and paper proof is a manual
process and therefore error-prone. In [9] we show
that Taktak’s condition is only sufficient and that their
algorithm is subject to false negatives, i.e., identification
of unreachable deadlock situations.

Since the mid 70’s, interactive theorem provers have
been designed to mechanically check formal and detailed
proofs. Their development and application in various
domains are active research fields. These proof assistants
are used in projects about formalizing mathematics (e.g.
the FlySpeck project [10]) or in the verification of hard-
ware and software designs (e.g. microprocessors [11],
[12], [13], floating point units [14], [15], [16], [17], on-chip
networks [18], operating systems [19], entire computing
systems [20]). The most popular tools are ACL2 [21], Isa-
belle [22], PVS [23], Coq [24], HOL [25], HOL-Light [26].

Our utmost objective is to implement an efficient
algorithm that would be formally proven to check a
formally verified necessary and sufficient condition for
deadlock-free routing. The use of a mechanical proof
assistant increases the confidence in a condition and the
correctness of its associated algorithm. To reach this goal
one has to (1) formally define a deadlock configuration
for a class of networks, a condition for deadlock-free
routing, and prove that the condition is necessary and
sufficient to build a deadlock configuration; (2) formally
define an algorithm and prove that this algorithm iden-
tifies a deadlock if and only if the condition holds.

In the context of store-and-forward networks, we re-
cently used the ACL2 theorem prover to define and
formally check a necessary and sufficient condition for
adaptive [27] routing functions. The contribution of this
new paper is a novel algorithm checking the latter
condition with a time complexity that is linear in the
size of the resource dependency graph. The correctness
of the algorithm w.r.t. to our formally verified condition
has been formally verified using ACL2.

The rest of the paper is organized as follows. In the
next section we briefly define our necessary and suffi-
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cient condition for adaptive routing functions in store-
and-forward networks. This section also formally defines
our network model, the dependency graph, and a dead-
lock configuration. Section III introduces our algorithm
in two steps. We first run the algorithm on a simple
example before giving its formal definition. We sketch
the proof of the time complexity and the correctness of
the algorithm in Section IV. In this Section, we briefly
discuss the mechanical proof in ACL2. We relate our
work to previous results in Section V. Finally, Section VI
presents our conclusions and future research directions.

II. A necessary and sufficient condition

An interconnection network consists of processing
nodes connected by channels. These nodes consist of
ports and a central switch (see Figure 1). The switch
contains the routing function and the switching method.
There is a port for each in- and outgoing channel.
Each node has a local in- and out-port, respectively for
injecting and removing messages from the network. With
each port a list - of size at least 1 - of buffers is associated.
One buffer can store one packet. Bufferless switching
can be represented by associating exactly one buffer per
port. Furthermore, we assume that all destination ports

Switch

Channels Channels

out

Local

in

In-ports Out-ports

Figure 1. Processing node, where each port has two buffers.

(i.e., local output ports) are terminal, i.e., they are not
connected to other ports. A destination port is therefore
never blocked.

A. Formal model

1) Interconnection network: An interconnection net-
work is a directed graph, I = (P,E). The vertices P of the
graph represents the set of ports. The arcs E represent
the topological connections between the ports. Each port
p has a certain buffer capacity to store messages.

2) Routing and dependency graph: An adaptive routing
function R : P × P 7→ P(P) takes as parameters the port
a message currently occupies and the destination of the
message. It returns a set of ports the message can use to
get from the current port to its destination, i.e. the next
hops. A destination d is reachable from port s, notation
s � d, if and only if the routing function can supply a
path from s to d for messages destined for d.

The port dependency graph depicts the dependencies
between the ports of the interconnection network. It is a

graph dep = (P,Edep). The vertices are the set of ports P.
The arcs Edep are the pairs of ports (p0, p1) connected by
the routing function.

Given function Edep, we define the overloaded function
Edep : P × P 7→ P(P) as follows:

Edep(p, d)
def
= {n ∈ Edep(p) | n ∈ R(p, d)} (1)

When given extra parameter d, overloaded function Edep
returns a subset of the set of neighbors. Edep(p, d) returns
the set of dependency neighbors created by destination
d, i.e., the set of next hops for a message located in p
and destined for d.

3) Switching method: We have formalized store-and-
forward Packet Switching. A packet contains data and a
header. The header stores information on the destination
of the packet. We denote the destination of packet m with
dest(m). At each port the packet is stored, analyzed, and
if possible forwarded to other ports, i.e. the next hops.
Packets are the atomic objects transferred between any
two ports. We assume that the number of packets a port
can hold is arbitrary but fixed. Function cap : P 7→ N+
returns the number of packets a port can store. A packet
is blocked if and only if all its next hops are unavailable. A
port p is unavailable if and only if it stores cap(p) packets.
If multiple next hops are available, one of them is
chosen arbitrarily. For an in-depth discussion on packet
switching we refer to a survey by Ni and McKinley [28].

4) Deadlock: A legal configuration σ is an assignment of
packets to ports, where the capacity of each port is not
exceeded. Given a port p, σ(p) returns the set of packets
stored in p and |σ(p)| denotes the number of packets
stored in p. Formally, σ is a deadlock configuration if
and only if it is a non-empty configuration such that:

∀p ∈ P·

{

|σ(p)| ≤ cap(p)
∀m ∈ σ(p)∀n ∈ R(p,dest(m)) · |σ(n)| = cap(n)

(2)

A deadlock configuration is a legal configuration where
all packets are blocked, i.e., where for all packets all next
hops are unavailable.

5) Assumptions: Our condition is developed under the
following assumptions:

1) Messages are destined for reachable destinations
only.

2) Destinations are sinks, i.e., they do not store mes-
sages that need to be forwarded to other ports.

3) Packets that have arrived at their destination will
eventually be consumed.

B. A necessary and sufficient condition

The condition used in this paper is based on the notion
of escapes. Given a set of ports P′ a port e ∈ P′ is an
escape for P′ if and only if for all possible destinations
there exists a dependency neighbor that is not contained
in P′:

esc(e,P′)
def
=∀d · Edep(e, d) * P′
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Figure 2. Example dependency graphs. An edge labeled with d means
that messages destined for d route to that neighbor.

In other words, an escape for a subgraph is a port
in which any message can be routed outside of the
subgraph regardless of the destination.

Consider the set of black ports in Figure 2(a). This
subgraph has no escape: port A has no d1-edge outside of
the subgraph and likewise for port C and destination d0.
Indeed, if (a) ports A, B, C are full, (b) all messages in A
are destined for d1, and (c) all messages in C are destined
for d0, then the result is a deadlock-configuration. If
we add d0 to edge (C,D) such as in Figure 2(b) port C
becomes an escape. For both destinations d0 and d1 there
exists a neighbor (namely D) outside the subgraph. There
is no deadlock-configuration possible in this network.

Let P be some set of ports in deadlock. Subgraph P
cannot contain an escape port, since otherwise at least
one packet in this escape port could move to a port not
in P. The condition used in this paper formulates this
contrapositively:

Theorem 1: An interconnection network is deadlock-
free if and only if all subgraphs of the port dependency
graph have an escape.
Theorem 1 has been formally proven correct [27]. In the
next section we define an algorithm checking Theorem
1 in linear time.

III. A linear algorithm

A. The algorithm by example

The basic objective of the algorithm is to mark each
port as deadlock-immune or deadlock-sensitive. After ter-
mination of the algorithm, it is possible to create a
deadlock by filling all deadlock-sensitive ports. In this
case the algorithm outputs the exact reason for the
deadlock. If all ports are marked as deadlock-immune,
the network is deadlock-free.

We first demonstrate by example the notions
of deadlock-immunity and -sensitivity. Secondly we
provide an example trace of the algorithm, showing how
it detects a deadlock. Lastly, we provide an example trace
that reveals the necessity of a post-processing step.

1) Deadlock-immunity and -sensitivity: Consider the in-
terconnection network in Figure 3(a). Nodes d0 and d1 are
the only possible destinations. An edge (p0, p1) is labeled
d if destination d leads from p0 to p1. An unlabeled
edge means that any destination leads from p0 to p1.
Figure 3(b) shows the result of our algorithm. A mark-
ing x | y stands respectively for the deadlock-sensitive
and the deadlock-immune destinations of that port. The

d1

d1

d1

d0

d0 d0
d0A

B

C

D

d1

(a) Network with deadlock

d1 | d0

d0d1 |
A

B

C D

d0d1 | d0d1d0 | d1

(b) Result of the algorithm

Figure 3. A network and the result of our algorithm.

white (black) ports are deadlock-immune (sensitive). The
definitions of deadlock-immunity and -sensitivity are
cyclic. Therefore they are not formally defined, They are
only used for a better understanding of the algorithm.

Nodes d0 and d1 are sinks and by definition deadlock-
immune, i.e., they can never be used to form a deadlock.
At port D messages can either reach sinks or be routed to
port A. The former provides for all possible destinations
escapes to a potential deadlock. Our algorithm therefore
marks port D as deadlock-immune. Ports A, B and C
are marked as deadlock-sensitive as a deadlock can be
constructed by filling these ports with packets. Port B is
filled with messages destined for d1, port C is filled with
messages destined for d0, and port A is filled with any
message.

We now detail how this result is produced by our
algorithm.

A

(a) Step 1

A

B

(b) Step 2

A

B

C

d0 | d1

(c) Step 3

d1 |

A

B

C

d0 | d1

(d) Step 4

d1 |

A

B

C D

d0d1 | d0d1d0 | d1

(e) Step 5

d1 | d0

A

B

C D

d0d1 | d0d1d0 | d1

(f) Step 6

d1 | d0

d0d1 |
A

B

C D

d0d1 | d0d1d0 | d1

(g) Step 7

Figure 4. Example trace

2) Example trace: The algorithm consists of two steps.
The first step expands a spanning tree. After expanding
the tree forwards, information is propagated backwards.
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The second step performs some post-processing.
Consider the network in Figure 3(a). Let the algorithm

start in port A. The different steps of the run of the
algorithm are shown in Figure 4. The algorithm expands
a tree spanning over the reach of A. It starts by marking
port A as visited (Step 1). All destinations lead to B.
Thus, the next step is to expand B, i.e. mark it as visited
(Step 2). To determine deadlock-immunity of port B, both
ports C and D must be considered.

Consider the expansion of C (Step 3). Destination d1

is deadlock-immune for port C as it leads to a sink.
Destination d0 leads back to a visited port. In this case
it is considered deadlock-sensitive for port C. A port is
only deadlock-immune if for all deadlock-sensitive des-
tinations there exists an escape, i.e., a deadlock-immune
counterpart. Port C is a bottom leaf of the spanning
tree, since all neighbors are either sinks or visited. Since
we have arrived at a leaf, information is propagated
backwards to port B: all destinations leading to C are
deadlock-sensitive for port B (Step 4).

Consider the expansion of D (Step 5). Both destina-
tions are deadlock-sensitive for port D, since both destin-
ations lead back to a visited port. However, both destina-
tions are deadlock-immune for port D as well, since both
lead to a sink. Since each deadlock-sensitive destination
has an escape, i.e., a deadlock-immune counterpart, port
D is deadlock-immune. Since port D is a bottom leaf,
information is again propagated backwards to port B:
all destinations leading to D are deadlock-immune for
port B (Step 6).

At this point all neighbors of port B have been ex-
panded. All information on them has been propagated
backwards: destination d1 is deadlock-sensitive and des-
tination d0 is deadlock-immune. There is a deadlock-
sensitive destination d1 for port B that is not deadlock-
immune, thus port B is deadlock-sensitive. Again in-
formation is propagated backwards to port A: all destina-
tions leading to B are deadlock-sensitive for port A (Step
7). For port A all destinations are deadlock-sensitive and
they have no deadlock-immune counterpart. It is marked
as deadlock-sensitive.

The algorithm terminates and there are ports marked
as deadlock-sensitive. A deadlock can be created
by filling all deadlock-sensitive ports with messages
destined for destinations that are deadlock-sensitive and
do not have a deadlock-immune counterpart.

3) Post-processing: Consider the network in Fig-
ure 5(a). Note that this network is deadlock-free. It has
only one cycle and this cycle has an escape, namely port
A. For all reachable destinations, a message in port A
can escape the cycle.

Assume the first step of the algorithm starts in port
A and marks it as visited. In this specific trace, the first
neighbor of A that is expanded is port B. Destination
d1 is deadlock-immune for port B as it leads to a sink.
Destination d0 is deadlock-sensitive for port B as it leads
back to visited port A. Port B gets marked as deadlock-
sensitive, since there is a deadlock-sensitive destination

A Bd0
d0

d1

d0

d1

d1

(a) Deadlock-free network

d0 | d1

d1 | d0d1
A

B

(b) Expanded tree
before PP

d0 | d1d0

d1 | d0d1
A

B

(c) Expanded tree
after PP

Figure 5. An edge (p0, p1) is labeled d if destination d leads from p0

to p1. In Figures 5(b) and 5(c), a marking x | y stands respectively for
the deadlock-sensitive and the deadlock-immune destinations of that
port. The white (black) ports are deadlock-immune (sensitive).

that is not deadlock-immune. As a result, destination d1

is deadlock-sensitive for port A. The algorithm continues
with the expansion of the other neighbors of A. Since
both destinations d0 and d1 lead to a sink, they are
marked as deadlock-immune for port A. The deadlock-
sensitive destination d1 is included in the set of deadlock-
immune destinations {d0, d1}. Thus port A is marked
deadlock-immune. Port B however, is still marked as
deadlock-sensitive.

If the algorithm would stop here, it would conclude
that this network is not deadlock-free as not all ports
have been marked as deadlock-immune. The problem
is that in this specific trace at the time d0 was marked
deadlock-sensitive for port B, port A had not been ex-
panded completely. In other words, it was not known at
the time that port A is deadlock-immune. To overcome
this, we add a post-processing step to the algorithm.
This step adds for all deadlock-sensitive ports all destin-
ations leading to deadlock-immune ports. In this step, a
deadlock-sensitive port can become deadlock-immune,
see Figure 5(c).

After the post-processing step, a deadlock can be
formed of all ports that are still deadlock-sensitive. A
network is deadlock-free if and only if after termination
of the two steps of the algorithm all ports are marked
deadlock-immune.

B. Formal description

We assume a dependency graph with each edge (p0, p1)
labeled with the destinations that lead from p0 to p1. Let
function ∆(p0, p1) return the labels of edge (p0, p1).

Let us consider step 1 (Algorithm 1), named
CreateTree. Let PI be a set of unmarked ports. The
algorithm keeps expanding new neighbors until no un-
marked neighbors exist. The current port under investig-
ation is p0. The algorithm keeps track of the parent of p0

in parameter f . This enables the backwards propagation.
For each port, the algorithm stores the deadlock-immune
destinations in array imm and the deadlock-sensitive
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destinations in array sens. A port can get four possible
markings:

0 A port is unmarked;
1 A port is under investigation, i.e, not all neigh-

bors have been marked;
2 All neighbors have been marked, the port is

deadlock-immune;
3 All neighbors have been marked, the port is

deadlock-sensitive.

If p0 is either a sink or deadlock-immune (line 6),
then all destinations ∆( f , p0) are deadlock-immune for
f . Thus these destinations are added to imm( f ). If p0

is marked otherwise (line 3) two cases arise: either p0

has already been shown to be deadlock-sensitive or it is
unknown at this point whether p0 is deadlock-sensitive
or immune. In both cases, all destinations ∆( f , p0) are
considered deadlock-sensitive for port f and these are
added to sens( f ).

If p0 is neither a sink or marked, the algorithm contin-
ues its forwards expansion by expanding the neighbors
of p0 (line 12). When this terminates, the gathered in-
formation is propagated backwards through the graph as
follows: if there exists a destination in sens(p0) that is not
in imm(p0), port p0 is deadlock-sensitive. Thus ∆( f , p0) is
added to sens( f ) and p0 is marked with 3 (lines 17-18). If
all destinations in sens(p0) are included in imm(p0), port
p0 is deadlock-immune and ∆( f , p0) is added to imm( f ).
Port p0 is marked with 2 (lines 14-15).

As for the post-processing step (Algorithm 2), this
step initially considers all 3-marked ports with 2-marked
neighbors. For all these ports it adds the destinations
leading to 2-marked neighbors, which have not been
added already (line 4). If, as a result of this, a port p gets
marked 2 (lines 5-6), then all parents of p have a new 2-
marked neighbor. Thus, all parents must be reconsidered
(line 7).

Main wraps up the two steps. It executes CreateTree
for all unmarked ports p, with PI = {Edep(p)} and f = p.
After this, it executes Post-Processing.

IV. Analysis

A. Running time

CreateTree visits each unmarked port exactly once,
since after visitation a port becomes permanently
marked. The total running time of all calls of this step is
therefore O(|P|). It is basically a depth-first search, with
backwards propagation.

The running time of the post-processing step is O(|E|)
with |E| the number of edges in the dependency graph.
Let the algorithm start with 32-edges only, i.e., all edges
starting in a 3-marked port s and ending in a 2-marked
port d. For all 32-edges, the algorithm adds the labels
to the imm-array of the source s (line 4). The edges
considered in line 4 are considered once: they could be
permanently removed from the data-structure storing
the graph. Line 7 adds new parents to PI, thereby
adding new edges that are to be taken into consideration.

Algorithm 1 CreateTree(PI, f )

Require: PI = {p0, p1 . . . pk}, with k ≥ 0 AND PI ⊆ Edep( f )
1: if PI = ∅ then
2: return
3: else if marks(p0) ∈ {1, 3} then
4: sens( f ) ≔ sens( f ) ∪ ∆( f , p0)
5: CreateTree(PI − p0, f )
6: else if marks(p0) = 2 ∨ Edep(p0) = ∅ then
7: marks(p0) = 2
8: imm( f ) ≔ imm( f ) ∪ ∆( f , p0)
9: CreateTree(PI − p0, f )

10: else
11: marks(p0) = 1
12: CreateTree(Edep(p0), p0)
13: if sens(p0) ⊆ imm(p0) then
14: imm( f ) ≔ imm( f ) ∪ ∆( f , p0)
15: marks(p0) = 2
16: else
17: sens( f ) ≔ sens( f ) ∪ ∆( f , p0)
18: marks(p0) = 3
19: end if
20: CreateTree(PI − p0, f )
21: end if

Algorithm 2 Post-Processing(PI)

Require: PI = {p0, p1 . . . pk}, with k ≥ 0
1: if P = ∅ then
2: return
3: else if marks(p0) = 3 then
4: imm(p0) ≔ imm(p0) ∪ {d ∈ ∆(p0, p1) | marks(p1) = 2}
5: if sens(p0) ⊆ imm(p0) then
6: marks(p0) = 2
7: PI ≔ PI ∪ {p ∈ parents(p0) | marks(p) = 3}
8: end if
9: Post-Processing(PI − p0)

10: else
11: Post-Processing(PI − p0)
12: end if

All these edges were initially 33-edges, but have just
become 32-edges as port p0 has just been marked 2.
As the algorithm only considers 32-edges, none of these
new edges have been dealt with before. Each edge is
considered at most once.

The running time of Main is the sum of the running
times of CreateTree and Post-Processing. Before post-
processing, Main filters all 32-edges. This can be done in
O(|E|). After post-processing it searches for a 3-marked
port in O(|P|). The total running time of the algorithm is
O(|E|).

B. Correctness

We prove that our algorithm returns true if and only
if our condition holds.

1) Proof sketch: The proof is structured in two parts:
Lemma 3 states that our algorithm is sufficient for
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Algorithm 3 Main

Require: P = {p0, p1 . . .pk}, with k > 0
1: for i = 0 to k do
2: if marks(pi) = 0 then
3: CreateTree(Edep(pi), pi)
4: end if
5: end for
6: Post-Processing({p ∈ P | marks(p) = 3∧∃p′ ∈ Edep(p) ·

marks(p′) = 2})
7: return {p ∈ P | marks(p) = 3} = ∅

deadlock-freedom and Lemma 4 states that it is neces-
sary. The proofs of these lemmas require Lemmas 1 and
2.

Lemma 3 is proven as follows. If the algorithm marks
a port 3 and this marking is preserved by the post-
processing step, it is possible to create a subgraph
without an escape. This proof completely formalizes
the intuition in Figure 3(a): a deadlock is created from
all deadlock-sensitive ports. Subgraph S3 is created by
taking all 3-marked ports. Each port p in subgraph S3

has a destination d that is deadlock-sensitive, but not
deadlock-immune. Since deadlock-sensitive (-immune)
destinations lead to 3-marked (2-marked) neighbors,
destination d only leads to 3-marked ports (Lemma 2).
Since subgraph S3 contains all 3-marked ports and since
port p has destination d which leads to 3-marked ports
only, port p is not an escape for this subgraph. Since this
holds for all ports p in subgraph S3, the subgraph has
no escape.

Lemma 4 states that any port in a deadlock cannot be
marked 2. Since all ports eventually are marked either 2
or 3 (Lemma 1), any port that can be in a deadlock gets
marked 3.

Together, Lemmas 3 and 4 state that a port gets marked
3 if and only if it is in some subgraph without an escape.
The algorithm returns true if and only if all ports get
marked 2. By Theorem 1, the algorithm returns true if
and only if the network is deadlock-free.

2) Proof: The lemmas of the proof concern 2- and 3-
marked ports. First we prove that any port eventually
gets one of these markings.

Lemma 1: After termination of CreateTree(Edep(p0), p0)
all ports in the reach of the ports in P are either marked
2 or 3.

Proof: Any unmarked port in the reach will eventu-
ally get marked 1. Any 1-marked port will eventually
become marked either 2 or 3. A port is only marked
1 on line 11. Eventually the algorithm will reach either
line 15 or line 18, where the port is marked either 2 or 3.
Once a port is marked 2 or 3, it will never become either
unmarked or marked 1.

We prove that if a port has escapes for all reachable
destinations, i.e., if all reachable destinations lead to a
deadlock-immune neighbor, the port will not be marked
3. This lemma requires the post-processing step.

Lemma 2: After termination of Post-Processing, if for
any port p all reachable destinations lead to a 2-marked
neighbor, port p is not marked 3.

Proof: The post-processing step ensures that for all
3-marked ports the imm array contains all destinations
leading to 2-marked neighbors. Since, by assumption, all
destinations reachable from p lead to a 2-marked neigh-
bor, all reachable destinations are included in imm(p).
Thus necessarily sens(p) ⊆ imm(p), which implies the
port can never become marked 3.

We now prove sufficiency: in a deadlock-free network,
any port gets marked 2. Thus, the algorithm will return
true if the condition for deadlock-freedom holds.

Lemma 3: Assume all non-empty subgraphs have an
escape. After termination of Post-Processing() any port
p is marked 2.

Proof: By Lemma 1, port p is either marked 2 or 3.
The proof is by contradiction. Assume port p is marked
3. We prove that the set of 3-marked ports does not have
an escape. Let p′ be any 3-marked port. By Lemma 2
there is at least one destination d that does not lead to
any 2-marked neighbor. By Lemma 1 destination d leads
to 3-marked ports only. Since there is a destination that
does not lead outside of the subgraph consisting of all 3-
marked ports, port p′ is not an escape for this subgraph.
This holds for all p′ in the subgraph. Thus the subgraph
does not have an escape. Furthermore this subgraph is
not empty, since otherwise there would be no 3-marked
ports and port p is marked 3. Thus the assumption
that all non-empty subgraphs have an escape has been
contradicted.

Lastly, the part of necessity is proven. If the algorithm
returns true, i.e., if all ports get marked 2, then the con-
dition for deadlock-free routing holds. In other words, if
the condition does not hold, there is some port that will
not be marked 2.

Lemma 4: If a port p is in a subgraph S that has no
escape, the port will not be marked 2.

Proof: The lemma holds initially since all ports are
unmarked. We show by induction on CreateTree that
this lemma is preserved during this step. The exact
similar argument holds for Post-Processing. Thus the
lemma is an invariant for the algorithm.

Assume that port p ∈ S and that S has no escape. The
only reason a port p gets marked 2 is when sens(p) ⊆
imm(p). We prove that this implies port p is an escape.
When port p becomes marked 2 all neighbors of port
p have been expanded. Thus all reachable destinations
are either in sens(p) or in imm(p). Since by assump-
tion sens(p) ⊆ imm(p), all reachable destinations are in
imm(p). If a destination is in imm(p) then it leads to a
2-marked neighbor. Thus for all reachable destinations,
there is a 2-marked neighbor. By the Induction Hypo-
thesis, none of the ports in subgraph S are marked 2.
Thus for all reachable destinations there is a neighbor
not in the subgraph: p is an escape for the subgraph.
This contradicts the assumption that p is in a subgraph
without an escape. Thus port p cannot have been marked
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File Lines Theorems Functions

Algorithm/Guard verification 1405 157 27
Proof of correctness 2865 233 31
Proof of condition 2540 243 47
Dependency graph 423 23 37
Generic Routing Function 202 17 3
Packet Switching 1022 107 22

Table I
Details on the verification effort

2.

These lemmas suffice to prove that the algorithm
decides the necessary and sufficient condition of Section
II-B.

Collorary 1: A network is deadlock-free if and only if
Main(P) returns true.

Proof: Theorem 1 states that an interconnection net-
work is deadlock-free if and only if all subgraphs have
an escape. Assume all subgraphs have an escape. By
Lemma 3 all ports will be marked 2 and thus Main
returns true. Assume Main returns true. Then all ports
are marked 2. By Lemma 4 there is not a port in a
subgraph without an escape. Thus all subgraphs have
an escape.

C. ACL2 formalization

ACL2 [21] stands for a ”A Computational Logic for
Applicative Common Lisp”. It denotes a logic, a pro-
gramming language, and a mechanized theorem prover.
The logic is a first order logic with induction and a
definitional principle allowing users to safely extend
the logic with new function symbols and axioms. The
programming language is a side-effect free subset of
Common Lisp. ACL2 functions are therefore executable.
The theorem prover engine is based on heuristic de-
cisions that can be influenced by users. The interaction
with the tool happens by adding lemmas to the logic.
These lemmas generate rules of particular types. These
rules are then used by the theorem prover in further
proofs. We chose ACL2 because its logic is expressive
enough for our purpose and it provides a fairly high
level of automation. In contrast, many other systems
have a more expressive logic with a lower degree of
automation.

Table I gives details on the total effort of implementing
and proving correctness of the algorithm. The first two
lines concern the contribution of this paper. The other
lines concern preliminary work that was needed for this
proof [18], [27].

The file containing the algorithm also contains formal
verification of all guards. This includes proofs of ter-
mination of the algorithms and proofs that, if a valid
dependency graph is supplied, the algorithm will always
properly access and write to its data structures. Guard
verification is needed to make the functions executable
in Common Lisp.

The second file contains a proof of correctness, i.e. a
formal proof that the implementation of our algorithm
returns true if and only if Theorem 1 holds.

V. Related work

To the best of our knowledge, the only other polyno-
mial algorithm deciding deadlock-freedom for adaptive
routing functions is recently created by Taktak [7].

1) Taktak’s algorithm applies to wormhole net-
works whereas our algorithm applies to store-and-
forward networks. A deadlock in a wormhole net-
work is not necessarily a deadlock in a store-and-
forward network, and vice versa. These two cases
require different conditions and therefore different
algorithms. Taktak’s algorithm cannot be easily
modified to handle store-and-forward networks.
Our algorithm checks a necessary and sufficient
condition whereas Taktak’s algorithm checks a suf-
ficient condition only. Deciding a sufficient and
necessary condition for wormhole network is NP-
complete [9]. Defining an algorithm solving this
problem is still an open question.

2) Our algorithm is faster. It is linear in the size of the
dependency graph, whereas Taktak’s running time
is O(|C| ·N4) with N the number of routers (nodes)
in the network and |C| the number of strongly
connected components in the dependency graph.

3) Taktak et al. assume that a message cannot make
a loop in the network, thereby restricting the use
of their algorithm to a subset of the adaptive
routing algorithms. We do not have this assump-
tion. It is possible to create deadlock-free adaptive
networks where messages can make loops. Silla
et al. created a generic design methodology for
such networks [29]. These networks consist of a
deadlock-free part and a fully adaptive part where
messages can freely move. Once a message re-
serves a deadlock-free channel, it cannot leave the
deadlock-free part and will eventually arrive at its
destination. Such networks can be made livelock-
free by adding a counter to the header of each
packet, thereby restricting the time messages can
spent in the adaptive part of the network. Our al-
gorithm supports the verification of such networks.

4) Both our algorithm and the condition it checks
are formally verified. We could have easily made
mistakes without formal verification. For instance,
the post-processing step is only needed because it
is possible that exactly one specific trace of the first
step leads to an incorrect behavior. All other traces
mark the ports correctly. This makes testing and
debugging the algorithm hard. Formal verification
helped us to define the post-processing step cor-
rectly.

Schwiebert and Jayasimha define another approach
for deciding deadlock-freedom of adaptive routing func-
tions [30]. Their algorithm relies on the waiting graph
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which depicts the waiting relation between the channels.
Although the waiting graph is static, the dependencies
that arise between channels are not. Two edges in the
waiting graph may share a common channel, in which
case the two dependencies cannot occur simultaneously.
Thus the waiting graph has True Cycles and False
Resources Cycles. The existence of a True Cycle is a
necessary and sufficient condition for deadlock-freedom.
Schwiebert and Jayasimha define an algorithm distin-
guishing True Cycles from False Resource Cycles. This
algorithm is however exponential in the worst-case.

VI. Conclusion

The main contribution of this paper is an algorithm
that proves a routing function deadlock-free in linear
time. It checks a necessary and sufficient condition for
adaptive routing functions in store-and-forward net-
works. The algorithm and the corresponding conditions
have been formalized in the logic of the ACL2 theorem
proving system. Within this system we produced a
formal proof of the theorem stating that the algorithm
outputs ”no deadlock” if and only if the condition for
deadlock-free routing holds.

Our algorithm applies to store-and-forward networks.
With a slight modification it should apply to virtual-cut
through as well. We are currently extending the current
algorithm to check a sufficient condition for wormhole
networks in linear time.

We did not focus on efficiency but on the correctness
proof of the algorithm. The purpose of the definition of
our algorithm in ACL2 is to ensure its correctness. In
its current state it is not efficiently executable. But the
ACL2 language provides many features to support the
development of efficient implementations. Our current
work aims at using these features to obtain a formally
verified implementation that could actually be applied
to realistic examples.
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