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Abstract

MLF is a type system extending ML with first-class polymorphism as in sys-
tem F. The main goal of the present paper is to show that MLF enjoys strong
normalization, i.e., it has no infinite reduction paths. The proof of this result is
achieved in several steps. We first focus on xMLF, the Church-style version of
MLF, and show that it can be translated into a calculus of coercions: terms are
mapped into terms and instantiations into coercions. This coercion calculus can
be seen as a decorated version of system F, so that the simulation result entails
strong normalization of xMLF through the same property of system F. We then
transfer the result to all other versions of MLF using the fact that they can be
compiled into xMLF and showing there is a bisimulation between the two. We
conclude by discussing what results and issues are encountered when using the
candidates of reducibility approach to the same problem.

Keywords: MLF, xMLF, calculus of coercions, strong normalization, coercions,
polymorphic types.

1. Introduction

One of the most efficient techniques for assuring that a program “behaves
well” is static type-checking : types are assigned to every subexpression of a
program, so that consistency of such an assignment (checked at compile time)
implies the program will be well-behaved at runtime. Such assignment may be
explicit, i.e. requiring the programmer to annotate the types at key points in the
program (e.g. variables), as in C or Java. Otherwise we can free the programmer
of the hassle and leave the boring task of scattering the code with types to an
automatic type reconstructor, part of the compiler. One of the most prominent
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examples of this approach is the functional programming language ML [1, 2, 3]
and its dialects.

Polymorphism. In this context type polymorphism allows greater flexibility, as
it makes possible to reuse code that works with elements of different types. For
example an identity function will have type α→ α for any α, so one can give it
the type ∀α.α → α. However full polymorphism (like in system F [4]) leads to
undecidable type systems: no automatic reconstructor would be available [5].
For this reason ML employs the so called second-class polymorphism (i.e. avail-
able only for named variables), more restricted but allowing a type inference
procedure. Unfortunately, the programmer is also forced to use only such re-
stricted polymorphism, even when a fully-polymorphic typing is known and
could be provided by hand. One could wish for a more flexible approach, where
one would write just enough type annotations to let the compiler’s type recon-
structor do the job, while still being able to employ first-class polymorphism if
desired.

Extending ML with full polymorphism. MLF [6, 7] answers this call by providing
a partial type annotation mechanism with an automatic type reconstructor.
This extension allows to write system F programs, which is not possible in
general in ML. Moreover it is a conservative extension: ML programs still type-
check without needing any annotation. An important feature are principal type
schemata, lacking in system F, which are obtained by employing a downward
bounded quantification ∀(α ≥ σ)τ , called a flexible quantifier. Such a type
intuitively denotes that τ may be instantiated to any τ [σ′/α], provided that
σ′ is an instantiation of σ. Usual quantification is recovered by allowing ⊥ as
bound, where ⊥ is morally equivalent to the usual ∀α.α. MLF also uses a rigid
quantifier ∀(α = σ)τ , fundamental for type inference but not for the semantics.
Indeed ∀(α = σ)τ can be regarded as being τ [σ/α].

MLF and strong normalization. One of the well-behaving properties that a type
system can assure is strong normalization (SN), that is the termination of all
typable programs whatever execution strategy is used. For example system F is
strongly normalizing [4]. As already pointed out, system F is contained in MLF.
However it is not yet known, but it is conjectured [6], that the inclusion is strict.
This makes the question of SN of MLF a non-trivial one, to which we answer
positively in this paper. The result is proved via a suitable simulation in system
F, with additional decorations dealing with the complex type instantiations
possible in MLF.

MLF’s variants. MLF comes in three versions with a varying degree of explicit
typing. What we briefly described above and we might refer to as the “real
deal” is in fact eMLF(following the nomenclature of [7]). In eMLF there are just
enough type annotations to allow the automatic reconstruction of the missing
ones, so that we may place it midway between the Curry and Church styles.
The former is covered by the “implicit” version iMLF, where no type annotation
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whatsoever is present. Going the Church-style way we have a completely explicit
version, xMLF, studied in [8]. In xMLF type inference and the rigid quantifier
∀(α = σ)τ are abandoned, with the aim of providing an internal language to
which a compiler might map the surface language eMLF.

With respect to MLF the xMLF system is the main object of study in this
work. Compared to Church-style system F, the type reduction →ι of xMLF is
more complex, and may a priori cause non-termination, or block the reduction
of a β-redex. The main difficulty lies in the non-trivial nature of the type
instance relation σ ≤ τ . In xMLF for the sake of complete explicitness such
relations are testified by syntactic entities called instantiations (see Figure 2).
Given an instantiation φ : σ ≤ τ taking σ to τ and a term a of type σ the new
term aφ will have the type τ . In fact φ plays the role of a type conversion, or
in other words a coercion.

The coercion calculus. These type conversions have a non-trivial type reduction
→ι, as opposed to the easy type reduction of system F. Such a reduction may
a priori introduce unexpected glitches in the system, such as introducing non-
termination even if the β-reduction of the underlying term terminates, or on
the contrary keeping a β-reduction of the underlying term from happening. To
prove that none of this happens, rather than translating directly into system
F we use an intermediate language abstracting the concept of coercion: the
coercion calculus Fc.

The delicate point in xMLF is that some of the instantiations (the “abstrac-
tions” !α) behave in fact as variables, abstracted when introducing a bounded
quantifier: in a way, ∀(α ≥ σ)τ expects a coercion from σ to α, whatever the
choice for α may be. A question naturally arising is: what does it mean to be
a coercion in this context, where such operations of coercion abstraction and
substitution are available? Our answer, which works for xMLF, is in the form of
a type system (Figure 6). In section 3 we will show the good properties enjoyed
by Fc: it is a decoration of system F, so it is SN; moreover it has a coercion
erasure which ideally recovers the actual semantics of a term, and establishes a
simulation with ordinary λ-calculus [9], where coercion reductions →c take the
role of silent actions, while β-reduction →β remains the observable one.

The generality of coercion calculus allows then to lift these results, including
strong normalization, to xMLF via a translation of the latter into the former
(section 4). Its main idea is the same as for the one shown for eMLF in [10],
where however no dynamic property was studied. We then produce a proof of SN
for all versions of MLF, exploiting the fact xMLF’s type erasure is a bisimulation.
Such a result establishes that xMLF can indeed be used as an internal language
for eMLF, as the additional structure cannot block reductions of the intended
program.

Candidates of reducibility. Before entering the details of the work, one may
wonder whether the candidates of reducibility deliver the same result — indeed
it was the first approach we tried. The näıve interpretation where type instan-
tiation is mapped to inclusion of saturated sets (much like what has been done
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The Big Picture

xMLF Fc F

eMLF

iMLF Λ

d . e
( . )∗

d . e

( . )∗

( . )◦ | . |

b . c= =

6==

( . )∗ = compiling ( . )◦ = translation
d . e = type erasure b . c = coercion erasure
| . | = decoration erasure

Figure 1: Pre-existing relationships among the systems (solid arrows), plus
our contribution (dashed arrows).

for F<: [11]) works for the β-reduction of xMLF, leaving outside the ι type reduc-
tion. As already explained, contrary to system F the latter is non-trivial, so its
presence is another reason for embracing the system F translation approach. We
will however give a presentation of the results using candidates of reducibility
(or more precisely saturated sets) in section 6, and what glitches one encounters
when dealing with the same approach with eMLF and iMLF.

Contributions. The main results of the present paper are the proof of strong
normalization for xMLF and its variants eMLF and iMLF. Other contributions are
the introduction of the coercion calculus Fc, which is useful to better understand
the coercion mechanism in the context of programming languages with first
class polymorphism. We prove that Fc enjoys good properties like weakening,
substitution, subject reduction and confluence. We show that Fc can be seen as
a decoration of system F and that Fc reductions are translated into reductions
in system F (simulation), therefore Fc enjoys the strong normalization property.
From this result we then derive the strong normalization of xMLF. The strong
normalization of eMLF and iMLF is inferred from a (weak) bisimulation result
which is enjoyed by xMLF. Finally, we discuss how the strong normalization
for xMLF can be also proved using the more standard technique of reducibility
candidates (and why this approach is problematic for eMLF and iMLF).

Outline. In Figure 1 we give a schematic representation of the interrelations
among the various type systems that will be studied in the present paper. It
is well known that the type erasure of eMLF terms gives iMLF terms [7] and
that the two systems can be compiled into xMLF [8]. Obviously, we have that
iMLF and system F are embeddable into the untyped λ-calculus, and the type
erasure of xMLF terms gives ordinary λ-terms. This part of the picture was
well-established in the literature.

We present xMLF in section 2 and the coercion calculus Fc in section 3. Fc is
strongly normalizing as it can be seen as a decorated version of system F, where
we denote by | . | the decoration erasure (Definition 12). Moreover Fc enjoys the
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usual properties one expects of a type system, namely subject reduction. As
coercions denote type conversions which morally have no operational meaning,
a coercion erasure b . c is given (Definition 18) extracting the actual semantics
of a term. As shown in the diagram in Figure 1 the two mappings | . | and b . c
to Λ are clearly different.

We then move to one of the main contributions of the paper by defining in
section 4 a translation ( . )◦ from xMLF to Fc (Figure 9). In this way we prove
that xMLF is strongly normalizing: suppose indeed that there is an infinite
reduction chain in xMLF, then it is simulated via the translation ( . )◦ in Fc,
which is impossible. However Fc does not enjoy bisimulation.

To entail the same result for eMLF and iMLF we need to be sure that any
infinite reduction in one of the two systems can be lifted to an infinite one
in xMLF. This is achieved in section 5 by proving that the type erasure d . e
from xMLF to the λ-calculus Λ (Definition 3) is in fact a (weak) bisimulation
(Theorem 33).

Finally in section 6 we define a candidates of reducibility interpretation for
xMLF types, implying SN of dae for xMLF terms a, but failing to directly provide
the full result.

Notations and basic definitions. Given reductions→1 and→2, we write→1→2

(resp.→12) for their concatenation (resp. their union). Moreover←,
+→,

=→ and
∗→ denote the transpose, the transitive, the reflexive and the transitive-reflexive

closures of → respectively. A reduction → is strongly normalizing if there is no
infinite chain ai → ai+1; it is confluent if

∗← ∗→ ⊆ ∗→ ∗←. In confluence diagrams,
solid arrows denote reductions one starts with, while dashed arrows are the
entailed ones.

2. A Short Presentation of xMLF

Currently, MLF comes in a Curry-style version iMLF, where no annotation
is provided, and a type-inference version eMLF requiring partial annotations,
though a large amount of type information is automatically inferred. A truly
Church-style version of MLF, called xMLF, has been recently introduced in [8]
and will be our main object of study in this paper. However, in section 5, we
will draw conclusions for iMLF and eMLF too.

We warn the reader that we will only present the definitions we need, while
we refer to [8] for an in-depth discussion on xMLF. Concerning the presentation
of iMLF and eMLF we refer to [12, 13].

2.1. Syntax

All the syntactic definitions of xMLF can be found in Figure 2. To be consis-
tent with the existing literature we use the same notations of [8], but we warn
the reader that the instantiations &,` and !α have no connection whatsoever
with the “par”, “with” and “promotion” connectives of linear logic.

We assume fixed a countable set of type variables denoted by α, β, . . .
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α, β, . . . (type variables)
σ, τ ::= α | σ → τ | ⊥ | ∀(α ≥ σ)τ (types)
φ, ψ ::= τ | φ;ψ | 1 | & | ` | !α | ∀(≥ φ) | ∀(α ≥)φ (instantiations)
x, y, z, . . . (variables)
a, b, c ::= x | λ(x : τ)a | ab | Λ(α ≥ τ)a | aφ | let x= a in b (terms)
A,B ::= a | φ (expressions)
Γ ::= ∅ | Γ, α ≥ τ | Γ, x : τ (environments)

Figure 2: Syntactic definitions of xMLF.

Types include type variables and arrow types, as usual. Here types also
contain a bottom type ⊥ corresponding to system F’s type ∀α.α and the flexible
quantification ∀(α ≥ σ)τ generalizing ∀α.τ of system F. Intuitively, ∀(α ≥ σ)τ
restricts the variable α to range just over instances of σ. The variable α is bound
in τ but not in σ. We write ftv(τ) for the set of type variables appearing free
in a type τ .

An instantiation φ maps a type σ to a type τ which is an instance of σ.
Thus φ can be seen as a ‘witness’ of the instance relation holding between σ
and τ . In ∀(α ≥)φ, α is bounded in φ. We write ftv(φ) for the set of free type
variables of φ.

Terms of xMLF extend the ordinary λ-terms with a constructor let, type
instantiation and type application. Type instantiation aφ generalizes system F
type application. Type abstractions are extended with an instance bound τ ,
written Λ(α ≥ τ)a. The type variable α is bounded in a, but free in τ . We
write fv(a) (resp. ftv(a)) for the set of free term (resp. type) variables of a.

Expressions can be either terms or instantiations. They are not essential
for the calculus, but will be used to state results holding for both syntactic
categories in a more elegant and compact way.

Environments Γ are finite maps assigning types to term variables and
bounds to type variables. We write: dom(Γ) for the set of all term and type
variables that are bound by Γ; ftv(Γ) for the set of type variables appearing
free in Γ. Environments Γ are well-formed if for every α ∈ dom(Γ) (resp.
x ∈ dom(Γ)) so that we may write Γ = Γ′, α ≥ τ,Γ′′ (resp. Γ′, x : τ,Γ′′) we
have ftv(τ) ⊆ dom(Γ′). All environments in this paper are supposed to be
well-formed.

2.2. Type System

Typing rules of xMLF are provided in Figure 3. Typing judgments are of
the form Γ ` a : τ , where a is an xMLF term, Γ a (well-formed) environment
and τ a type. Especially focus on type abstraction and type instantiation that
are the biggest novelties with respect to system F. Type abstraction Λ(α ≥ τ)a
extends the environment Γ with the type variable α bounded by τ . Notice that
the typing of a type instantiation aφ is similar to the typing of a coercion, as it
just requires the instantiation φ to transform the type of a to the type of the
result. This analogy will be formally developed in section 4. The let-binding
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Instantiation rules

IBot
Γ ` τ : ⊥ ≤ τ

Γ, α ≥ τ ` φ : τ1 ≤ τ2
IUnder

Γ ` ∀(α ≥)φ : ∀(α ≥ τ)τ1 ≤ ∀(α ≥ τ)τ2

α ≥ τ ∈ Γ
IAbs

Γ ` !α : τ ≤ α
Γ ` φ : τ1 ≤ τ2

IInside
Γ ` ∀(≥ φ) : ∀(α ≥ τ1)τ ≤ ∀(α ≥ τ2)τ

α /∈ ftv(τ)
IIntro

Γ ` ` : τ ≤ ∀(α ≥ ⊥)τ
IElim

Γ ` & : ∀(α ≥ τ)σ ≤ σ [τ/α]

Γ ` φ : τ1 ≤ τ2 Γ ` ψ : τ2 ≤ τ3
IComp

Γ ` φ;ψ : τ1 ≤ τ3
IId

Γ ` 1 : τ ≤ τ

Typing rules

Γ(x) = τ
Var

Γ ` x : τ

Γ ` a : τ Γ, x : τ ` b : σ
Let

Γ ` let x= a in b : σ

Γ, x : τ ` a : σ
Abs

Γ ` λ(x : τ)a : τ → σ

Γ ` a : σ → τ Γ ` b : σ
App

Γ ` ab : τ

Γ, α ≥ σ ` a : τ α /∈ ftv(Γ)
TAbs

Γ ` Λ(α ≥ σ)a : ∀(α ≥ σ)τ

Γ ` a : τ Γ ` φ : τ ≤ σ
TApp

Γ ` aφ : σ

Type instantiation

τ(!α) := α, ⊥τ := τ, τ1 := τ, τ(φ;ψ) := (τφ)ψ,
τ` := ∀(α ≥ ⊥)τ, α /∈ ftv(τ), (∀(α ≥ σ)τ)(∀(≥ φ)) := ∀(α ≥ σφ)τ,
(∀(α ≥ σ)τ)& := τ [σ/α] , (∀(α ≥ σ)τ)(∀(α ≥)φ) := ∀(α ≥ σ)(τφ).

Figure 3: The typing rules of xMLF.

let x= a in b is morally equivalent to the immediate application (λ(x : τ)b)a
except that in the let the variable x does not require type annotation. We will
soon forget about the let (see Convention 2, below) as it is unnecessary for our
study.

Type instance judgments have the shape Γ ` φ : σ ≤ τ stating that in
the environment Γ the instantiation φ maps the type σ into the type τ .

The bottom instantiation states that every type τ is an instance of ⊥, in-
dependently of the environment. The abstract instantiation !α is applicable in
an environment containing α ≥ τ and abstracts the bound τ of α as the type
variable α. The inside instantiation ∀(≥ φ) applies φ to the bound σ of a flexible
quantification ∀(β ≥ σ)τ . Conversely, the under instantiation ∀(α ≥)φ applies φ
to the type τ under the quantification. The quantifier introduction ` introduces
a fresh trivial quantification ∀(α ≥ ⊥). Vice versa, the quantifier elimination &
eliminates the bound of a type of the form ∀(α ≥ τ)σ by substituting τ for α in
σ. The composition φ;ψ provides a witness of the transitivity of type instance,
while the identity instantiation 1 of reflexivity.

Instantiations give a computational account of the instance relation hold-
ing between types and can be better understood looking at their dynamical
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(λ(x : τ)a)b→β a [b/x]
let x= b in a→β a [b/x]

a1→ι a
a(φ;ψ)→ι (aφ)ψ

a`→ι Λ(α ≥ ⊥)a, α /∈ ftv(a)
(Λ(α ≥ τ)a)&→ι a [1/!α] [τ/α]

(Λ(α ≥ τ)a)(∀(α ≥)φ)→ι Λ(α ≥ τ)(aφ)
(Λ(α ≥ τ)a)(∀(≥ φ))→ι Λ(α ≥ τφ)a [φ; !α/!α]

Figure 4: Reduction rules of xMLF.

semantics presented in the next subsection.
In iMLF flexible quantification allows us to recover the property of principal

types that was lost in system F. This phenomenon can be observed also in xMLF,
e.g. in the following paradigmatic example. Let choice be a system F program
of type ∀α.α→ α→ α, e.g. λx.λy.x and id be the identity program λx.x of type
∀α.α→ α. The application of choice to id has several types in system F that are
incompatible: for instance it can be typed both with (∀β.β → β)→ (∀β.β → β)
and with ∀γ.(γ → γ)→ (γ → γ).

In xMLF we write the polymorphic identity id = Λ(α ≥ ⊥)λ(x : α)x of type
τid = ∀(α ≥ ⊥)(α → α). A possible implementation of the aforementioned
function choice is Λ(β ≥ ⊥)λ(x : β)λ(y : β)x of type ∀(β ≥ ⊥)β → β → β.
The application of choice to id can be defined as the program

choice id = Λ(β ≥ τid)choice〈β〉(id(!β)), where 〈β〉 = ∀(≥ β); &.

We can give weaker types to choice id by type instantiation; for instance
we can recover the two system F types mentioned above. Indeed the term
choice id& has type (∀(β ≥ ⊥)β → β) → (∀(β ≥ ⊥)β → β), while the term
choice id(`;∀(γ ≥)(∀(≥ 〈γ〉); &)) has type ∀(γ ≥ ⊥)(γ → γ)→ (γ → γ).

2.3. Operational Semantics

One of the main technical aspects of xMLF is presenting how type instanti-
ations evolve during reduction. xMLF’s reduction rules are presented in Fig-
ure 4. They are divided into →β (regular β-reductions) and →ι, reducing
instantiations. We allow reductions to occur in any context, including under
λ-abstractions. Note that the last of the ι-steps uses the definition of type in-
stantiation τφ, giving the unique type such that Γ ` φ : τ ≤ τφ, if φ type-checks.

We recall, from [8, Sec. 2.1], that both →β and →ι enjoy subject reduction.

Lemma 1 (Subject reduction). Let a be an xMLF term.

(i) Γ ` a : σ and a→β b entail Γ ` b : σ,

(ii) Γ ` a : σ and a→ι b entail Γ ` b : σ.

Hereafter, we will adopt the following convention.

8



Convention 2. Here we presented the original syntax of xMLF which also con-
tains the let construct. However this instruction has been added mainly to
accommodate eMLF’s type reconstructor. Hence in the whole paper we can
suppose that in all xMLF terms every let x= a in b has been replaced by
(λ(x : σ)b)a, with σ the correct type of a.

We end the section by defining the type erasure of an xMLF term, which
erases all type and instantiation annotations, mapping a to an ordinary λ-term.

Definition 3. The type erasure dae of an xMLF term a is defined by:

dxe := x, dλ(x : τ)ae := λx.dae, dabe := daedbe,
dΛ(α ≥ σ)ae := dae, daφe := dae.

3. The Coercion Calculus Fc

In this section we will introduce the coercion calculus Fc, which is (as shown
in subsection 3.5) a decoration of system F accompanied by a type system.
Before introducing the details, we point out that the version of Fc presented
here is tailored down to suit xMLF. As such, there are natural choices that have
been intentionally left out or restrained. If Fc is to serve as a good meta-theory
of coercions, more liberal choices and constructs are needed, as discussed at
page 29. The system Fc is a general language for coercions, as for example
the one presented in [14] or more recently in [15]. Calculi for coercions have
two main points of interest. On the one side they provide a meta-theory for
calculi where type conversions are left implicit, allowing for an easier reasoning
on them. On the other side, they could be useful as intermediate languages,
allowing the compilation or execution of languages with type conversions to
retain some form of type information.

A note on Fc and DILL. The type system we will present can be said to be a sub-
system of lambda calculus typed with dual intuitionistic linear logic derivations
(DILL, [16]). Such a system, built on top of linear logic [17], is characterized by
having judgments of the form Γ;L ` A, where the context is split in a linear
part L whose assumptions may be used just once and a regular, non-linear part
Γ. Here the linear context and the linear arrow ( will capture the linearity
aspect of coercions: they neither erase nor duplicate their arguments.

The language presented in [16] is the term calculus of the logical system, and
as such has a constructor for every logical rule. Notably, that work provides
no intuitionistic arrow, as the translation A → B ∼= !A ( B is preferred.
So technically speaking employing DILL as a type system for ordinary λ-terms
leads to another system (which we might call F`) using types rather than terms
to strictly differentiate between linear and regular constructs. This system is
known in folklore3 but, as far as we know, it has never been thoroughly presented

3As an example we might cite [18], where a fragment of F` is used to characterize poly-time
functions.
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α, β, . . . (type variables)
σ, τ ::= α | σ → τ | κ→ τ | ∀α.τ (types)
κ ::= σ( τ (coercion types)
ζ ::= τ | κ (type expressions)
x, y, z, . . . (variables)
a, b ::= x | λx.a | λx.a | λx.a | ab | a . b | a / b (terms)
u, v ::= λx.a | λx.u | x . u (c-values)
Γ ::= ∅ | x : τ,Γ | x : σ( α,Γ (regular environments)
L ::= ∅ | z : τ (linear environments)
Γ;L (environments)
Γ;`t a : σ (term judgements)
Γ;`c a : κ (coercion judgements)
Γ; z : τ `` a : σ (linear judgements)
`xy, x, y ∈ { t, c, ` } stands for `x or `y.

Figure 5: Syntactic definitions of coercion calculus.

in the literature.

3.1. Syntax

The syntactic categories of (Curry-style) coercion calculus are presented in
Figure 5.

In types the difference from usual system F types lies in the presence of a
new arrow for coercions, denoted by the lollipop(. As already explained above,
contrary to xMLF’s notation here the use of the linear logic symbol is pertinent.
These coercion types σ( τ will type conversions from the type σ to the type
τ and are allowed to appear in regular types only on the left of an arrow. These
in fact leads to three distinguishable arrow types: regular with regular type on
the left, regular with coercion type on the left and finally the coercion arrow.
For type polymorphism ∀α.τ we employ a different typesetting convention with
respect to xMLF’s types for the sake of clarity. Type expressions denote both
sorts of types.

We reflect the three different kinds of arrow types in terms with three differ-
ent abstraction/application pairs. These are to be intended as mere decorations
of the usual pair, used both to distinguish regular reduction from coercion one
(subsection 3.3) and to define coercion erasure (subsection 3.6) directly on terms
without regarding their type derivation. The three different pairs of abstrac-
tion/application are

• the regular one with λx.a and ab, where no coercion is involved;

• the linear abstraction and application λx.a and a.b: the former builds
a coercion and the latter applies the coercion a to the term b;

• the coercion abstraction and application λx.a and a / b: the former
expects a coercion to be passed to it, which is achieved by the latter where
the coercion b is passed to a.
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Γ(y) = ζ
Ax

Γ;`tc y : ζ

Γ, x : τ ;`t a : σ
Abs

Γ;`t λx.a : τ → σ

Γ;`t a : σ → τ Γ;`t b : σ
App

Γ;`t ab : τ

LAx
Γ; z : τ `` z : τ

Γ; z : τ `` a : σ
LAbs

Γ;`c λz.a : τ ( σ

Γ, x : κ;L `t` a : σ
CAbs

Γ;L `t` λx.a : κ→ σ

Γ;`c a : σ1 ( σ2 Γ;L `t` b : σ1
LApp

Γ;L `t` a . b : σ2

Γ;L `t` a : κ→ σ Γ `c b : κ
CApp

Γ;L `t` a / b : σ

Γ;L `t` a : σ α /∈ ftv(Γ;L)
Gen

Γ;L `t` a : ∀α.σ
Γ;L `t` a : ∀α.σ

Inst
Γ;L `t` a : σ [τ/α]

Figure 6: Typing rules of coercion calculus.

Notice that in applications the side of the triangle indicates where the coercion
is.

Here we moreover introduce a special subclass of terms which we call c-
values. Essentially they are regular abstractions wrapped in the “blocking”
coercion operations: coercion abstraction and linear application with a variable
in coercion position. Its role will be made more clear when we will discuss Fc’s
reductions.

Environments are of shape Γ;L, where Γ is a map from term variables to
type expressions (a regular environment), and L is the linear environment,
containing (contrary to DILL) at most one assignment.

3.2. Typing Rules

In Fc typing judgments are of the general form Γ;L ` M : ζ. However
the shape of the environment L (which can be either empty or containing one
assignment) and of the type ζ (which can be regular or a coercion one) gives
four different general combinations. Of these only three will be allowed by the
rules:

• no linear assignment and a regular type gives rise to a term judgment,
i.e. the typing of a regular term, marked by `t;

• no linear assignment and a coercion type is a coercion judgment, which
is marked by `c;

• a linear assignment and a regular type is a linear judgment, and denotes
in fact the building in progress of a coercion, marked by ``.

So in fact the subscripts of ` are there just as an aid to readability, as they can
be completely recovered from the shape of the judgment.

The typing rules making up Fc are presented in Figure 6. With the rules at
hand we can finally specify what exactly a coercion is in our framework.

Definition 4 (Coercion and regular terms). An Fc term a is:

• a coercion if Γ;`c a : σ( τ ,

11



(λx.a)b→β a [b/x] , ( λx.a) / b→c a [b/x] , (λx.a) . b→c a [b/x] .

Figure 7: Reduction rules of coercion calculus.

• regular if Γ;`t a : σ.

There are three main ideas behind the design of Fc’s typing rules.

• Regular operations (i.e. not marked as coercion or linear ones) are allowed
only while building a regular term and not in coercions, so Abs and App
are only on `t judgments.

• For the context L to be linear means that in the rules with two premises
(namely LApp and CApp), it will be just on one side. As the linear
variable stands for the term to be coerced, it will not be on the side of the
coercion in the two aforementioned rules.

• The system is tailored for the needs of xMLF, so some restrictions have
been made: for example coercions cannot be themselves coerced and are
not polymorphic.

Discussing the rules some more in detail, we see that Ax is the usual axiom
which can also introduce coercion variables, while Lax is its linear version used
to start building a coercion. LAbs is the only other rule (with Ax) introducing
coercions, and together with LApp they type the linear abstraction-application
pair, available both for terms and for coercions under construction. The third
abstraction-application pair is left to the CAbs and CApp rules.

3.3. Operational Semantics

Regarding reduction rules there is in fact not much to say as the different
kinds of abstraction/application pairs are decorations of the usual one and as
such share its reduction rules. This is shown in Figure 7, and as usual the rules
are to be intended closed by context. The only detail to observe is that we dis-
tinguish regular β-reductions (denoted by →β) from the coercion reductions
(denoted by →c) which as the name suggests concern the coercion part of the
terms.

3.4. Some Basic Properties of Fc

We start presenting some basic properties of the coercion calculus. The first
statements restrain the shape and the behaviour of coercions.

Remark 5. A coercion a is necessarily either a variable or a coercion ab-
straction, as Ax and LAbs are the only rules having a coercion type in the
conclusion.

Lemma 6. If Γ;L `c` a : ζ then no subterm of a is of the form λx.b or bc. In
particular a is β-normal.

12



Proof. Let us here call strictly regular the terms of form λx.b or bc. We proceed
by induction on the derivation of a. If Γ;`c a : σ ( τ then the last rule is
either Ax (in which case a is a variable and the result follows) or LAbs from
Γ; z : σ `` a′ : τ with a = λz.a′. Inductive hypothesis yields that no proper
subterm of a (i.e. no subterm of a′) is strictly regular.

If Γ; z : σ `` a : τ then we reason by cases on the last rule. If it is LAx then
a = z and we are done; in all other cases it is sufficient to note that:

• a is not strictly regular, and

• the premise or both the premises of the rule are of one of the two forms,
so inductive hypothesis applies to every immediate subterm(s).

Following are basic properties of type systems. Note that though there are
two substitution results (points (i), (ii) of Lemma 8 below) to accommodate the
two types of environment, no weakening property is available to add the linear
assignment.

Lemma 7 (Weakening). We have that Γ;L `tc` a : ζ and x /∈ dom(Γ;L) entail
Γ, x : ζ ′;L `tc` a : ζ;

Proof. Trivial induction on the size of the derivation. As usual, one may have
to change the bound variable in the Gen rule.

Lemma 8 (Substitution). We have the following:

(i) Γ;`tc a : ζ ′ and Γ, x : ζ ′;L `tc` b : ζ entail Γ;L `tc` b [a/x] : ζ;

(ii) Γ;L `t` a : σ and Γ;x : σ `` b : ζ entail Γ;L `t` b [a/x] : ζ.

Proof. Both substitution results are obtained by induction on the derivation for
b, by cases on its last rule.

• Ax: for (i), if b = x then the derivation of a is what looked for, as ζ ′ = ζ
and b [a/x] = a; otherwise b [a/x] = b and we are done; (ii) does not
happen.

• LAx: for (i) L = z : σ and b = z 6= x, so Γ; z : σ `` z = z [a/x] : σ and
we are done; for (ii) necessarily b = x, ζ = σ and b [a/x] = a and we are
done.

• Abs, App and LAbs: trivial application of inductive hypothesis for (i),
while it does not apply for (ii) as the judgment for b cannot be a linear
one.

• CAbs, Gen and Inst: for these unary rules both (i) and (ii) are trivial.

• CApp and LApp: for (i) the substitution distributes as usual; for (ii) it
must be noted that x does not appear free in one of the two subterms (as
it does not appear in the assignment). Indeed we will have (b1/b2) [a/x] =
(b1 [a/x])/b2 (resp. (b1.b2) [a/x] = b1.(b2 [a/x])) and inductive hypothesis
is needed for just one of the two branches.

13



The next standard lemma is used in some of the following results.

Lemma 9. If Γ;L `tc` a : ζ, then there is a derivation of the same judgment
where no Inst rule follows immediately a Gen one.

Proof. One uses the following remark: if we have a derivation π of Γ;L `tc` a : ζ
then for any τ there is a derivation of the same size, which we will denote
by π [τ/α], giving Γ [τ/α] ;L [τ/α] `tc` a : ζ [τ/α]. To show it, it suffices to
substitute τ for all α’s, possibly renaming bound variables along the process.

One then shows the result by structural induction on the size of the deriva-
tion π of Γ;L `tc` a : ζ. Suppose in fact that there is an Inst rule immediately
after a Gen one. Then there is a subderivation π′ of the following shape:

π′′...
Γ′;L′ `t` b : σ α /∈ ftv(Γ′;L′)

Gen
Γ′;L′ `t` b : ∀α.σ

Inst
Γ′;L′ `t` b : σ [τ/α]

By applying the above remark it suffices to substitute π′ in π with π′′ [τ/α], as
Γ′ [τ/α] ;L′ [τ/α] = Γ′;L′. The derivation thus obtained is smaller by two rules,
so inductive hypothesis applies and we are done.

We now show that the coercion calculus satisfies both subject reduction and
confluence.

Proposition 10 (Subject reduction). If Γ;L `t`c a : ζ and a →βc b then
Γ;L `t`c b : ζ.

Proof. By Lemma 9 we can suppose that in the derivation of a : ζ there is no
Inst rule immediately following a Gen. One then reasons by induction on the
size of the derivation to settle the context closure, stripping the cases down to
when the last rule of the derivation is one of the application rules App, CApp
or LApp which introduces the redex (λx.c)d, ( λx.c) / d or (λx.c) . d. Moreover
we can see that no Gen or Inst rule is present between the abstraction rule
and the application one: if there were any, then as no Inst follows Gen we
would have a sequence of Inst rules followed by Gen ones. However the former
cannot follow an abstraction, while the latter cannot precede an application on
the function side.

• (λx.c)d →β c [d/x]: then Γ, x : σ;`t c : τ , Γ;`t d : σ and Lemma 8(i)
settles the case;

• ( λx.c) / d →c c [d/x]: the rule introducing λx.c must be CAbs, with
Γ, x : κ;L `t` c : σ and Γ;`c d : κ, and again Lemma 8(i) entails the
result;

• (λx.c) . d→c c [d/x]: here λx.c is introduced by LAbs, so Γ;x : τ `` c : σ
and Γ;L `t` d : τ , and it is Lemma 8(ii) that applies.
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Syntactic categories

α, β, . . . (type variables)
σ, τ ::= α | σ → τ | ∀α.τ (types)
x, y, z, . . . (variables)
a, b ::= x | λx.a | ab | (terms)
Γ ::= ∅ | Γ, x : τ (environments)

Typing rules

Γ(y) = τ
Ax

Γ `F y : τ

Γ, x : τ `F a : σ
Abs

Γ;`F λx.a : τ → σ

Γ;`F a : σ → τ Γ;`F b : σ
App

Γ;`F ab : τ

Γ `F a : σ α /∈ ftv(Γ)
Gen

Γ `F a : ∀α.σ
Γ `F a : ∀α.σ

Inst
Γ `F a : σ [τ/α]

Figure 8: Syntax and typing rules of Curry-style system F.

Proposition 11 (Confluence). All of →β, →c and →βc are confluent.

Proof. The proof by Tait-Martin Löf’s technique of parallel reductions does not
pose particular issues.

3.5. Coercion Calculus as a Decoration of System F

The following definition presents the coercion calculus as a simple decoration
of usual Curry-style system F [4], which for the sake of completeness is briefly
recalled in Figure 8.

System F can be recovered by collapsing the extraneous constructs (, λ,
λ, / and . to their regular counterpart. Notably this will lead to a strong

normalization result.

Definition 12. The decoration erasure of Fc types and terms is defined by:

|α| := α, |ζ → τ | := |ζ| → |τ |, |σ( τ | := |σ| → |τ |,
|x| := x, |λx.a| = |λx.a| = | λx.a| := λx.|a|, |a / b| = |a . b| = |ab| := |a||b|,

|Γ|(y) := |Γ(y)| for y ∈ dom(Γ), |Γ; z : τ | := |Γ|, z : |τ |.

Lemma 14 ensures that the decoration erasure is sound with respect to ty-
pability. We just need the standard weakening lemma for system F, which we
state for completeness.

Lemma 13. If Γ `F a : σ and x /∈ dom(Γ) then Γ, x : τ `F a : σ.

Lemma 14. Let a be an Fc term. If Γ;L `tc` a : ζ then |Γ;L| `F |a| : |ζ|.

Proof. It suffices to see that through | . | all the new rules collapse to their regular
counterpart: LAx becomes Ax, CAbs, LAbs become Abs, and CApp, LApp
become App. In the latter cases Lemma 13 will have to be applied to add the
z : |τ | coming from the linear environment which will be missing in one of the
two branches.
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It is now immediate to see how decoration erasure agrees with substitution
and thus reduction.

Lemma 15. Given an Fc term a we have |a [b/x] | = |a| [|b|/x].

Proof. Trivial by induction on the term.

Lemma 16. Let a be typable in Fc. If a →βc b then |a| → |b|. Vice versa
|a| → c implies c = |b| with a→βc b.

Proof. The first claim is immediate from Lemma 15. The converse needs typa-
bility of a: take |a| = (λx.b′1)b′2, then there are bi with |bi| = b′i and a is one
of nine combinations ((λx.b1)b2, (λx.b1)b2, (λx.b1) / b2, etc.). However as a is
typable only the three matching combinations are possible, giving rise to the
three possible redexes in the coercion calculus.

As an easy consequence we get that Fc is strongly normalizing.

Corollary 17 (Termination). The coercion calculus is strongly normalizing.

Proof. Immediate by Lemmas 14 and 16, using the strong normalization prop-
erty of system F [4, Sec. 14.3].

3.6. Preservation of the Semantics

We will now turn to establishing why coercions a : τ ( σ can be truly called
such. First, we need a way to extract the semantics of a term, i.e., a way to
strip it of the structure one may have added to it in order to manage coercions.
We will then establish how reductions in coercion calculus can be stripped of
the coercion reductions to recover actual β-reductions in the semantics.

Definition 18. The coercion erasure is a map from Fc terms to regular
λ-calculus defined by:

bxc := x, bλx.ac := λx.bac, babc := bacbbc,
b λx.ac := bac, ba / bc := bac, ba . bc := bbc.

Notice that it is undefined on λx.a terms, as we will not apply it to coercions.

Lemma 19.

(i) If Γ, x : κ;L `t` a : σ (i.e. x is a coercion variable) then x /∈ fv(bac);

(ii) if Γ; z : τ `` a : σ then bac = z.

Proof. Both are proved by induction on the derivation, by cases on the last rule.

(i) As the judgment is not a coercion one, Ax cannot yield a = x, nor can
LAx. Inductive hypothesis applies seamlessly for rules Abs, App, CAbs,
Gen and Inst. The LAbs rule cannot be the last one of the derivation.
Finally, rule CApp (resp. LApp) gives bac = bb / cc = bbc (resp. bac =
bb . cc = bcc), and inductive hypothesis applied to the left (resp. right)
branch gives the result.
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(ii) The judgment is required to be a linear one: Ax, Abs, App and LAbs
do not apply. For LAx we have a = z and we are done. For all the other
rules the result follows by inductive hypothesis, possibly chasing the Γ; z : τ
environment left or right in the CApp and LApp rules respectively.

Notice that property (i) above entails that b . c is well-defined with respect to
α-equivalence on regular, typed terms: given a term λx.a issued from a coercion
abstraction, b λx.ac = bac is independent from x.

As for property (ii), it greatly restricts the form of a coercion: if a : σ ( τ
then it is either a variable or an abstraction λx.a′ (as already written in Re-
mark 5), with ba′c = x. Apart when they are variables, coercions are essentially
identities.

We turn back to study the properties of the coercion erasure, firstly by
stating a fundamental and easy result on its interaction with substitution.

Lemma 20. For Fc terms a and b we have that ba [b/x]c = bac [bbc/x], when
both sides are defined4.

Proof. Immediate induction.

The following result employs the linearity constraint in a crucial way: re-
ductions in linear position can be neither erased nor duplicated.

Lemma 21. If Γ;x : τ `` a : σ and b→β c, then a [b/x]→β a [c/x].

Proof. The proof is an easy induction on the derivation.
We proceed by cases on the last rule used: Ax, Abs, App and LAbs do not

apply; LAx is trivial (as a = x); in CAbs, Gen and Inst the inductive hypoth-
esis easily yields the inductive step; finally in CApp and LApp the inductive
hypothesis is applied only to the left and right premises respectively, giving the
needed one step by context closure.

The following will state some basic dynamic properties of coercion reduc-
tions. Intuitively we will prove that β-steps are actual steps of the semantics
(point (ii)) and that c-steps preserves it in a strong sense: they are collapsed to
the equality (point (iii)) and they preserve β-steps (point (i)).

Proposition 22. Suppose that a is an Fc term. Then:

(i) if b1 ←c a→β b2 then there is c with b1 →β c
∗←c b2;

(ii) if a→β b then bac → bbc;

(iii) if a→c b then bac = bbc.

a b2

b1 c

β

c c∗
β

4We regard the right-hand side to be defined even if bbc is not defined but x /∈ fv(bac), in
which case we simply take bac.

17



Proof. (i) We consider the case where the two redexes are not orthogonal: by
non-overlapping one contains the other, and we can suppose that a is the
biggest of the two, closing the diagram by context in the other cases.

If a = (λx.d)e, then the diagram is closed straightforwardly, whether the
c-redex is in d or in e (in which case many or no steps may be needed to
close the diagram).

When firing a = (λx.d) . e then by typing λx.d is a coercion, so we have a
derivation ending in Γ;x : σ `` d : τ , with Γ;`t e : σ. As d cannot contain
any β-redex, the other redex fired in the diagram is in e, so e→β e

′. Thus
b1 = d [e/x] and b2 = (λx.d) . e′ →c d [e′/x]. By Lemma 21 we have that
b1 →β d [e′/x] and we are done.

If firing a = ( λx.d) / e we have that e is a coercion, which cannot contain
any β-redex, so we have d →β d′ and b2 = ( λx.d′) / e. We easily get
b2 →c d

′ [e/x]←β d [e/x] = b1.

(ii) By induction and β-normality of coercions we can reduce to the case where
a = (λx.c)d. By Lemma 20, as b(λx.c)dc = (λx.bcc)bdc → bcc [bdc/x] =
bc [d/x]c.

(iii) Proceeding by context closure, suppose a = ( λx.c)/d (resp. a = (λx.c).d),
so b = c [d/x]. In the first case we will have bac = bcc and Γ, x : κ;L `t`
c : σ for some typing derivation. Then by Lemmas 19(i) and 20 we have
that x /∈ fv(bcc) and bbc = bcc [bdc/x] = bcc = bac and we are done.

In the latter case we have bac = bdc, and Γ;x : τ `` c : σ. Lemmas 19(ii)
and 20 entail bbc = bcc [bdc/x] = x [bdc/x] = bdc = bac and we are again
done.

3.7. The absence of bisimulation

As shown above, Fc enjoys good properties, and has a straightforward in-
terpretation of what coercions are. However adding the ability to abstract over
coercions (and thus having coercion variables) brings in a problem: coercion
variables can block regular β-reduction. In other words, while coercion erasure
grants simulation, it is not a bisimulation, i.e. there can be reductions in the
coercion erasure that do not lift to reductions in Fc.

Fact 23. There is a normal Fc term whose coercion erasure is not normal: take
for example λx.(x . I)I, with I = λz.z, whose coercion erasure is II.

Indeed, the situation is even worse.

Fact 24. The coercion erasure on Fc is surjective on the whole untyped λ-
calculus.

Proof. Take two coercion variables u : (α → α) ( α and v : α ( α → α
to model the recursive equality o ∼= o → o of untyped λ-calculus. It is then
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straightforward to produce an Fc term a∗ typable with α and such that |a∗| = a
for any untyped λ-term a:

x∗ := x, (ab)∗ := (v . a∗)b∗, (λx.a)∗ = u . (λx.a∗). �

It turns out that the solution we proposed in [19] was faulty. We tried there
to ensure bisimulation by requiring coercion variables to have the restricted type
τ ( α. As it turns out, this breaks subject reduction, as shown below with a
counterexample due to Julien Cretin.

Consider the system Fc with the restriction that all coercion variables in
the regular contexts have types of the form τ ( α. Let us define the context
Γ = {x : ∀α.α→ α→ α, f : β → β} and the Fc term a = ( λc1. λc2.x(c1 . f)(c2 .

f)) / (λz.z). It is possible to prove that Γ ` a : id`idβ
→ idβ , where idβ = β → β

and id`γ = γ ( γ, as follows (setting Γ′ = Γ, c1 : id`γ , c2 : id`γ):

π1...
Γ′;` x(c1 . f) : γ → γ

π2...
Γ′;` c2 . f : γ

App
Γ′ : id`γ ;` x(c1 . f)(c2 . f) : γ

CAbs2
Γ;` λc1. λc2.x(c1 . f)(c2 . f) : id`γ → id`γ → γ

Gen
Γ;` λc1. λc2.x(c1 . f)(c2 . f) : ∀γ.id`γ → id`γ → γ

Inst
Γ;` λc1. λc2.x(c1 . f)(c2 . f) : id`idβ

→ id`idβ
→ idβ

LAx
Γ; z : idβ ` z : idβ

LAbs
Γ;` λz.z : id`idβ

CApp
Γ;` a : id`idβ

→ idβ

In the proof above π1 and π2 are easy to obtain. If the subject reduction
would hold, we would get also Γ ` λc2.xf(c2 . f). However this judgment is not
derivable because, to be able to abstract over c2, its return type of should be
both β → β and a type variable, which is impossible.

Indeed the reason why subject reduction does not hold is due to the failure of
Lemma 9, which in turn is due to failure of the standard type subsitution prop-
erty. In short, the condition on the context is not stable by type substitution,
as the variable in the domain may be substituted by a full type.

In [15] a solution is given to this problem, by requiring that coercion vari-
ables are typed with variable codomain (or domain) and that those same type
variables must be generalized right after the coercion variable gets abstracted.
In this way one recovers the usual properties, including subject reduction, and
bisimulation. We refer to that work for the details, while we will carry on the
proof of strong normalization of all versions of MLF by proving bisimulation
directly for xMLF.

4. Strong Normalization of xMLF via Translation

A translation from xMLF terms and instantiations into the coercion calculus
is given in Figure 9. The idea is that instantiations can be seen as coercions;
thus a term starting with a type abstraction Λ(α ≥ τ) becomes a term waiting
for a coercion of type τ• ( α, and a term aφ becomes a◦ coerced by φ◦. One
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Types and contexts

α• := α, (σ → τ)• := σ• → τ•, (x : τ)• := x : τ•,

⊥• := ∀α.α, (∀(α ≥ σ)τ)• := ∀α.(σ•( α)→ τ•, (α ≥ τ)• := iα : τ•( α.

Instantiations

τ◦ := λx.x, (`)◦ := λx. λiα.x, (φ;ψ)◦ := λz.ψ◦ . (φ◦ . z),
(!α)◦ := iα, (&)◦ := λx.x / λz.z, (1)◦ := λz.z,

(∀(≥ φ))◦ := λx. λiα.x / (λz.iα . (φ◦ . z)),
(∀(α ≥)φ)◦ := λx. λiα.φ

◦ . (x / iα).

Terms

x◦ := x, (λ(x : τ)a)◦ := λx.a◦, (ab)◦ := a◦b◦,

(Λ(α ≥ τ)a)◦ := λiα.a
◦, (aφ)◦ := φ◦ . a◦.

Figure 9: Translation of types, instantiations and terms into the coercion
calculus. For every type variable α we suppose fixed a fresh term variable iα.

can see how this translation shares the same base idea as the one given for
iMLF/eMLF in [10].

We can already state how the translation “preserves semantics”. As this
concept is represented by type erasure in xMLF and coercion erasure in Fc, it is
achieved by the following easy result.

Lemma 25. The type erasure of an xMLF term a coincides with the coercion
erasure of its translation, i.e. dae = ba◦c.

Proof. Immediate induction.

The rest of this section leads to the first main result of this work, namely
SN of xMLF. The same result for eMLF and iMLF will be established in the next
section. We first need to show that the translation is sound from the point of
view of typing. We will thus show that it maps typed terms to typed terms and
typed instantiations to typed coercions.

Lemma 26. If Γ ` φ : σ ≤ τ then Γ•;`c φ◦ : σ•( τ•.

Lemma 27. If a is an xMLF term with Γ ` a : σ then Γ•;`t a◦ : σ•.

Lemma 28. Let A be an xMLF term or an instantiation. Then we have:

(i) (A [b/x])◦ = A◦ [b◦/x],

(ii) (A [1/!α] [τ/α])◦ = A◦ [λz.z/iα],

(iii) (A [φ; !α/!α])◦ = A◦ [(λz.iα . (φ◦ . z))/iα].

The above lemmas are proved by a standard induction. The interested reader
can find their proofs in Appendix A.
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Theorem 29 (Coercion calculus simulates xMLF). If a→β b (resp. a→ι b) in

xMLF, then a◦ →β b
◦ (resp. a◦

+→c b
◦) in Fc.

Proof. As the translation is contextual, it is sufficient to analyze each case of
the reduction rules.

• (λ(x : τ)a)b→β a [b/x]. We have ((λ(x : τ)a)b)◦ = (λx.a◦)b◦, β-reducing
to a◦ [b◦/x], which is (a [b/x])◦ by Lemma 28(i).

• a1→ι a. We have (a1)◦ = λz.z . a◦ →c z [a◦/z] = a◦.

• a(φ;ψ) →ι aφψ. We have (a(φ;ψ))◦ = (λz.ψ◦ . (φ◦ . z)) . a◦ →c ψ
◦ .

(φ◦ . a◦) which is equal to (aφψ)◦.

• a` →ι Λ(α ≥ ⊥)a. Here we have (a`)◦ = (λx.λiα.x) . a◦ →c λiα.a =
(Λ(α ≥ ⊥)a)◦.

• (Λ(α ≥ τ)a)&→ι a [1/!α] [τ/α]. Here, we have:

((Λ(α ≥ τ)a)&)◦ = (λx.x / λz.z) . λiα.a
◦

→c ( λiα.a
◦) / λz.z

→c a
◦ [λz.z/iα] = (a [1/!α] [τ/α])◦, by Lemma 28(ii).

• (Λ(α ≥ τ)a)(∀(α ≥)φ)→ι Λ(α ≥ τ)aφ. We have:(
(Λ(α ≥ τ)a)(∀(α ≥)φ)

)◦
= (λx. λiα.φ

◦ . (x / iα)) . ( λiα.a
◦)

→c λiα.φ
◦ . (( λiα.a

◦) / iα))

→c λiα.φ
◦ . a◦ = (Λ(α ≥ τ)aφ)◦.

• (Λ(α ≥ τ)a)(∀(≥ φ))→ι Λ(α ≥ τφ)a [φ; !α/!α]. We have:(
(Λ(α ≥ τ)a)(∀(≥ φ))

)◦
=
(
λx. λiα.x / (λz.iα . (φ◦ . z))

)
. ( λiα.a

◦)

→c λiα.( λiα.a
◦) / (λz.iα . (φ◦ . z))

→c λiα.a
◦ [(λz.iα . (φ◦ . z))/iα]

= λiα.(a [φ; !α/!α])◦ = (Λ(α ≥ τφ)a [φ; !α/!α])◦,

by Lemma 28(iii).

Corollary 30 (Termination). xMLF is strongly normalizing.

5. Transferring Strong Normalization from xMLF to MLF

In the previous section we have already shown SN of xMLF. However in
order to prove that eMLF and iMLF are normalizing too we need to make sure
that ι-redexes cannot block β ones: in other words, a bisimulation result that
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we will achieve exploiting Theorem 31 below. Note that the type erasure of an
eMLF term a can be defined analogously to the one for xMLF terms provided
in Definition 3. Given an eMLF term a we still denoted by dae its type erasure
(no confusion arises, since the context will disambiguate). From [8, Lemma 7,
Theorem 6 and §4.2] we know the following5.

Theorem 31. For every iMLF (resp. eMLF) term a, there is an xMLF term a∗

such that da∗e = a (resp. da∗e = dae).

In this section we provide a proof of Theorem 33, completely carried out
within the xMLF system (given the SN result for xMLF). We first need this
intermediate lemma.

Lemma 32. If a is typable and ι-normal and dae = λx.b, then it is of one of
the following forms, with c ι-normal:

• a = λ(x : τ)c with dce = b;

• a = Λ(α ≥ τ)c;

• a = c!α.

In particular if a is typed with some arrow type τ → σ, then a = λ(x : τ)c.

Proof. By induction on a. As dae = λx.b then a is neither an application nor a
variable. Let us suppose that a is not of one of the above listed forms. The only
remaining case is a = a′φ with a′ ι-normal and φ 6= !α. By inductive hypothesis
(as da′e = dae = λx.b) we have that a′ is one among λ(x : τ)c′, Λ(α ≥ τ)c′ and
c′!α, with c′ ι-normal.

Now let us rule out all the cases for φ.

• φ = σ: impossible as none of the three alternatives for a′ is typable by ⊥;

• φ = 1, ψ1;ψ2 or `: impossible as a′φ would not be ι-normal;

• φ = ∀(α ≥)ψ, ∀(≥ ψ) or &: by typing a′ must be Λ(α ≥ τ)c′, as the other
two alternatives would give an arrow and a variable type respectively,
which is not compatible with these instantiations; however this is not
possible as a′φ would form a ι-redex.

This concludes the proof. In case a has an arrow type τ → σ, the only compat-
ible form is a = λ(x : τ)c.

With the results above at hand we are ready to obtain the following weak
bisimulation result.

Theorem 33 (Bisimulation of d . e). Given a typed xMLF term

a, we have that dae →β b iff a
∗→ι→β c with dce = b.

a c

dae b

ι∗ β

m
β

5Notice that [8] uses the notation [[ . ]] for what we refer to with ( . )∗.
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Proof. The if part is immediate by verifying that a →∗ι a′ implies dae = da′e,
and a′ →β c implies da′e →β dce.

For the only if part, let a0 be the ι-normal form of a (which exists as →ι is
SN by Theorem 29). We have that da0e = dae →β b: if we prove that a0 →β c
with dce = b we are done. Let us reason by induction on a0.

• a0 = x: impossible, as da0e = x is not reducible.

• a0 = λ(x : τ)a1, Λ(α ≥ τ)a1 or a1φ: the reduction takes place in da1e
and inductive hypothesis applies smoothly giving a β-reduction in a1, and
thus in a0.

• a0 = a1a2: if the reduction takes place in da1e or da2e then the inductive
hypothesis applies as above. Suppose then that da1eda2e is itself the redex
being fired, i.e. da1e = λx.d and b = d [da2e/x]. As a1 is typed with some
σ → τ (in order to form the application) and da1e = λx.d, by Lemma 32
we have that a1 = λ(x : σ)a3 with da3e = d, so a0 = (λ(x : σ)a3)a2 →β

a3 [a2/x] and da3 [a2/x]e = d [da2e/x] = b.

We are now ready to complete the main result of the paper for the other
versions of MLF.

Corollary 34. Terms typed in iMLF and eMLF are strongly normalizing.

Proof. Suppose an iMLF term a has an infinite reduction. By Theorem 31 we
have an xMLF term a∗ such that da∗e = a. Then by the bisimulation result
above each step from a can iteratively be lifted to at least a step from a∗, giving
rise to an infinite chain in xMLF which is impossible by Corollary 17.

For eMLF the reasoning is identical, there is only a further type erasure from
eMLF to iMLF.

6. A Short Trip through Candidates of Reducibility

In this section we will show what results and difficulties one encounters if
trying to adapt the proof by Girard and Tait’s method of candidates of re-
ducibility [4, 20] (or more precisely here saturated sets) to MLF. The base idea
is analogous to what done for F<: in [11]: in a nutshell, interpret the instance
bound by a subset of candidates. However, one stumbles into a difficulty and
an unexpected glitch which are worth mentioning.

• The method shows the strong normalization of dae for every xMLF term
a, but cannot say anything about the non-trivial type reduction →ι. A
separate proof of SN of→ι is needed, which together with the bisimulation
result of Theorem 33 gives then SN for the whole of→βι. Probably a direct
proof of SN of →ι is not overtly hard, but the simulation to system F via
Fc wraps SN of the whole of →βι together.
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• As one proves SN of dae for xMLF terms a, the result applies to eMLF

or iMLF via compilation. However using the same interpretation directly
on terms in eMLF/iMLF and their types does not work in general. The
apparent mismatch is due to the fact that the compilation a∗ to xMLF

described in [8] actually changes the type derivation of a before starting
to build the xMLF term. So in fact there are some iMLF typings that do
not survive the compilation process and which seem to pose serious issues
to the candidates of reducibility argument. While we must admit it is
quite confusing, we think this glitch may show some insight in eMLF and
iMLF’s type systems.

6.1. A Quick Recapitulation of Saturated Sets

We here briefly sketch the definitions and properties of saturated sets of
ordinary λ-terms (whose set we denote by Λ). More details can be found in

[21, 22]. We denote a sequence of terms P1 · · ·Pk by ~P and consequently the

iterated application MP1 · · ·Pk by M ~P .

Definition 35.

• Let SN := {M ∈ Λ |M is strongly normalizable }.

• For A,B ⊆ Λ let A → B := {M ∈ Λ | (∀N ∈ A) MN ∈ B}.

• A set A ⊆ SN is said to be saturated if

S1) for all ~P ∈ SN and any variable x we have x~P ∈ A;

S2) for all ~P ,Q ∈ SN, if M [Q/x] ~P ∈ A then (λx.M)Q~P ∈ A.

The set of saturated sets is denoted by SAT.

The following results are standard.

Lemma 36.

(i) SN is saturated,

(ii) A,B ∈ SAT implies A→ B ∈ SAT,

(iii) Given a family {Ai}i∈I such that Ai ∈ SAT we have
⋂
i∈I Ai ∈ SAT.

6.2. Saturated Interpretation for xMLF

In the following we will consider how to interpret types as saturated sets.
As already hinted, the type instance relation ≤ will be modeled by set inclusion
⊆ in SAT.
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Definition 37. An interpretation Σ is a function from type variables to
saturated sets. Let Σ[α 7→ A] be defined as Σ on β 6= α and as A on α. We
extend an interpretation Σ to all xMLF types by the following recursion:

Σ(σ → τ) := Σ(σ)→ Σ(τ),

Σ(∀(α ≥ σ)τ) :=
⋂
A∈SAT
A⊇Σ(σ)

Σ[α 7→ A](τ), Σ(⊥) :=
⋂
A∈SAT

A.

Lemma 36 shows that indeed the above definition maps types to SAT.
The following lemma is also quite standard and shown by a trivial induction.

Lemma 38.

(i) If α /∈ ftv(σ) then Σ[α 7→ A](σ) = Σ(σ);

(ii) Σ(σ [τ/α]) = Σ[α 7→ Σ(τ)](σ).

Definition 39. A substitution S is a function from term variables to ordinary
λ-terms, which is then extended to all λ-terms by setting

S(M) = M [S(x1)/x1] · · · [S(xn)/xn] where {x1, . . . , xn} = fv(M).

Given a subsitution S and an evaluation Σ, we write

• Σ, S �M : σ for an xMLF term M if S(dMe) ∈ Σ(σ);

• Σ, S � Γ for an xMLF context if

– for all x : σ ∈ Γ we have Σ, S � x : σ, i.e. S(x) ∈ Σ(σ);

– for all α ≥ σ ∈ Γ we have Σ(α) ⊇ Σ(σ).

We divide the adequacy of the interpretation with respect to the typing rules
in two results: in one we settle instantiations, while the other is for terms.

Lemma 40. If Γ ` φ : σ ≤ τ and Σ, S � Γ then Σ(σ) ⊆ Σ(τ).

Proof. By induction on the derivation, splitting by cases on the last rule.

• IComp and IRef are trivial.

• IBot, Γ ` τ : ⊥ ≤ τ . By definition Σ(⊥) is the bottom element of the
meet-semilattice SAT.

• IAbstr, Γ ` !α : τ ≤ α where α ≥ τ ∈ Γ. By definition of Σ, S � Γ, we
have Σ(τ) ⊆ Σ(α).

• IUnder, Γ ` ∀(α ≥)φ : ∀(α ≥ σ)τ1 ≤ ∀(α ≥ σ)τ2. By well-formedness
of the context in Γ, α ≥ σ ` φ : τ1 ≤ τ2 we have α /∈ ftv(Γ). Hence from
Σ, S � Γ and for any A ⊇ Σ(σ) we can deduce Σ[α → A], S � Γ, α ≥ σ
by Lemma 38(i). By inductive hypothesis we then have Σ[α → A](τ1) ⊆
Σ[α→ A](τ2) for all A ⊇ Σ(σ), so that

Σ(∀(α ≥ σ)τ1) =
⋂

A⊇Σ(σ)

Σ[α 7→ A](τ1) ⊆
⋂

A⊇Σ(σ)

Σ[α 7→ A](τ2) = Σ(∀(α ≥ σ)τ2).
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• IInside, Γ ` ∀(≥ φ) : ∀(α ≥ τ1)σ ≤ ∀(α ≥ τ2)σ. By inductive hypothesis
Σ(τ1) ⊆ Σ(τ2), so that

{A ∈ SAT | A ⊇ Σ(τ1) } ⊇ {A ∈ SAT | A ⊇ Σ(τ2) }

which entails

Σ(∀(α ≥ τ1)σ) =
⋂

A⊇Σ(σ)

Σ[α 7→ A](τ1) ⊆
⋂

A⊇Σ(σ)

Σ[α 7→ A](τ2) = Σ(∀(α ≥ τ2)σ).

• IIntro, Γ ` ` : τ ≤ ∀(α ≥ ⊥)τ where α /∈ ftv(τ). Lemma 38(i) entails

Σ(∀(α ≥ ⊥)τ) =
⋂
A∈SAT

Σ[α 7→ A](τ) =
⋂

A⊇Σ(σ)

Σ(τ) = Σ(τ).

• IElim, Γ ` & : ∀(α ≥ σ)τ ≤ τ [σ/α]. We have

Σ(∀(α ≥ σ)τ) =
⋂

A⊇Σ(σ)

Σ[α 7→ A](τ1) ⊆ Σ[α 7→ Σ(σ)](τ2) = Σ(∀(α ≥ σ)τ2).

where the last equality comes from Lemma 38(ii).

Lemma 41. If Γ ` a : σ and Σ, S � Γ then Σ, S �M : σ.

Proof. Again an induction on the derivation of Γ ` a : σ settles the case. Var,
Abs and App are as usual, but we include the cases for completeness.

• Var, Γ ` x : τ , where Γ(x) = τ . Directly from the definition Σ, S � Γ.

• Abs, Γ ` λ(x : τ)a : τ → σ. In order to show that S(dλ(x : τ)ae) ∈
Σ(τ → σ) = Σ(τ)→ Σ(σ) we take any b ∈ Σ(τ). Without loss of general-
ity we can set S(x) = x and x /∈ fv(b). Then clearly Σ, S[x 7→ b] � Γ, x : τ ,
so that inductive hypothesis S(dae) [b/x] = S[x 7→ b](dMe) ∈ Σ(σ). By
definition of saturated set we obtain S(dλ(x : τ)ae)b = λx.S(dae))b ∈ Σ(σ)
which concludes the case.

• App, Γ ` ab : τ with Γ ` a : σ → τ . By induction hypothesis we
have dae ∈ Σ(σ) → Σ(τ) and dbe ∈ Σ(σ), which by definition entails
dabe = daedbe ∈ Σ(τ).

• TApp, Γ ` aφ : σ with Γ ` φ : τ ≤ σ. By Lemma 40 Σ(τ) ⊆ Σ(σ), and
by inductive hypothesis we can obtain

S(daφe) = S(dae) ∈ Σ(τ) ⊆ Σ(σ).

which concludes the proof.

Corollary 42. If Γ ` a : σ then dae ∈ SN.
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Proof. It suffices to take Σ(α) = SN for all α (which is correct by Lemma 36)
and S(x) = x for all x. Then necessarily Σ, S � Γ (as x ∈ SN and SN ⊇ Σ(τ)),
so that by the above lemma we get dae = S(dae) ∈ Σ(σ) ⊆ SN.

Corollary 43. If a is a typed iMLF or eMLF term then a is strongly normalizing.

Proof. Even if a is in eMLF its reductions are exactly those of dae. In any case
by Theorem 31 we have dae = da∗e ∈ SN.

Notice however that a separate proof of SN of →ι is needed to obtain again
the remaining main result about SN of xMLF. This is one of the main reasons
we preferred anyway the proof via translation, the other reason being the study
of Fc which has its own interest in our view.

6.3. The Issue of the Interpretation in eMLF and iMLF.

Here we will briefly sketch the problems one encounters when applying the
interpretation depicted above directly in eMLF or iMLF. For the sake of space
we will not be able to completely present the systems. The interested reader is
referred to the literature about MLF [6, 12, 13, 7].

First, types in eMLF and iMLF are built also out of the rigid quantification
∀(α = σ)τ . The most sensible way to interpret it would be

Σ(∀(α = σ)τ) = Σ[α 7→ Σ(σ)](τ) = Σ(σ [τ/α]),

in accordance with the semantic meaning given to rigid quantification, which is
needed for type inference only.

Contrary to xMLF, the instance relation on types is tiered in three parts:
an equivalence ≡ (for relations such as commutation of quantifiers or such as
∀(α ≥ σ)α ≡ σ), an abstraction relation −@ which pertains operations concerning
the rigid quantifier (so that for example Γ ` σ −@ α if α = σ ∈ Γ) and finally the
instance relation v. One has

≡ ⊆ −@ ⊆ v, v ∩w = ≡.

With respect to xMLF there is a subtle difference between v and ≤, paramount
to type inference. In fact ≤ may be decomposed as

σ ≤ τ ⇐⇒ σ −Av−A τ

using −A, the inverse relation of −@. The part v of ≤ is completely recoverable
by the automatic type inferencer, and it is in fact the −A parts that need explicit
annotations in eMLF. Notice that −@ from the point of view of full type instance
will be contained both in ≤ and ≥, so it is in fact part of the equivalence relation
associated with the preorder ≤. Semantically −@ is thus a completely reversible
operation, while it is irreversible vis-à-vis the inferencer.

Because of the above reasons it is to be expected that the interpretation
should enjoy the following (supposing Σ, S � Γ):

• if Γ ` σ ≡ τ then Σ(σ) = Σ(τ);
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• if Γ ` σ −@ τ then Σ(σ) = Σ(τ);

• if Γ ` σ v τ then Σ(σ) ⊆ Σ(τ).

In fact the point that fails is already the first. If σ is equivalent to a monomor-
phic type (i.e. quantifier free), then we have:

α ≥ σ ∈ Γ =⇒ τ ≡ τ [σ/α]

by the Eq-Mono rule of [6] (or by the similarity relation in the graphic repre-
sentation of MLF types [13, Definition 5.3.12]). Now there is no way to pass from
Σ(α) ⊇ Σ(σ) of the hypothesis Σ, S � Γ to Σ(τ) = Σ(τ [σ/α]). In rough words,
there is no way for the interpretation as we defined to distinguish between a
truly polymorphic type and a monomorphic one.

While we did try to change the interpretation of types along several direc-
tions, we always found some of the rules failing. However presenting these trials
is well outside the scope of this paper, also due to their failure.

Conclusions

Related works

The present work solves an open problem precisely stated in [8, section 2.3].
Regarding the MLF framework, no previous work had breached this or the bisim-
ulation result, though another proof of both has appeared in the meantime in
[15].

As already explained, the base idea behind the translation to system F here
presented was already at the base of [10], namely translating bounded quantifi-
cation ∀(α ≥ σ)τ with ∀α.(σ → α)→ τ (in system F types). However this work
is the first that explores the dynamic content of such an idea, whereas [10] was
centred on static issues, possibly also because the explicit language xMLF was
not yet developed at the time.

The other central theme of this paper are coercions, which has extensively
been studied in the literature. We will cite here [23, 24, 14] and the already
mentioned [15], though this should not be taken as an exhaustive list.

Fη [23] extends system F’s typing rules by closing them under η-expansion.
This is in fact equivalent to allowing a particular type of type conversion, re-
ferred to as type containment. As such Fη can indeed be seen as a calculus with
coercions. Main differences with Fc are the lack of abstraction over coercions
and the presence of variant-contravariant arrow coercions, which we will discuss
next when considering further works. F<: [24] endows system F with subtyping
relations and allows bounded quantification, but in reverse order with respect to
MLF (i.e. ∀(α ≤ σ)τ). Again, subtyping can be modelled with explicit coercions:
F<: allows abstraction over them (by abstracting bounds just like in xMLF), has
arrow coercions, but disallow type instantiation. In [14] F<: is translated by
using type intersections with explicit coercions (with arrow ones included).

Finally [15] presents a new system Fι, subsuming the ones briefly depicted
above and ours. The main difference between our system and theirs (and a
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difference that applies to other systems cited above as well) is that in Fι coercions
are in fact syntactic entities completely separated from terms, while in Fc it is
up to the type system to distinguish them. However for the moment this is at
the expense of arrow coercions (which however xMLF lacks).

Full Fι suffers from the same drawback of Fc, that is coercion variables that
may block regular reductions thus denying bisimulation. One of the solutions
proposed in [15] can be viewed as an amended version of our previous, faulty,
proposition [19]. In addition to constraining type variables as the codomain
of coercions (though letting more generally to have coercions with parametric
domain too), the further restriction is to always generalize such a type variable
when the corresponding coercion variable is abstracted. As shown in [15], such
restriction suffices to guarantee subject reduction and termination.

Further works

We were able to prove new results for MLF (namely SN and bisimulation
of xMLF with its type erasure) by passing through a more general calculus of
coercions. It becomes natural then to ask whether its type system may be a
framework to study coercions in general. A first natural target are the coercions
arising from Leijen’s translation of MLF [10], which is more optimized than ours,
in the sense that it does not add additional and unneeded structure to system
F types. We plan then to study the coercions arising in Fη [23] or when using
subtyping [14]. As explained at the beginning of section 3, Fc was purposely
tailored down to suit xMLF, stripping it of natural features.

First, the lack of bisimulation can be amended by employing the restriction
described in [15]. In that direction a more general calculus could be the next
aim in this line of research.

A first, easy extension would consist in more liberal types and typing rules,
allowing coercion polymorphism, coercion abstraction of coercions or even co-
ercions between coercions (i.e. allowing types ∀α.κ, κ1 → κ2 and κ1 ( κ2).
To progress further however, one would need a way to build coercions of arrow
types, which are unneeded in xMLF. Namely, given coercions c1 : σ2 ( σ1 and
c2 : τ1 ( τ2, there should be a coercion c1 ⇒ c2 : (σ1 → τ1) ( (σ2 → τ2),
allowing a reduction (c1 ⇒ c2) . λx.a →c λx.c2 . a [c1 . x/x]. This could be
achieved either by introducing it as a primitive, by translation or by special
typing rules. Indeed, if some sort of η-expansion would be available while build-
ing a coercion, one could write c1 ⇒ c2 := λf.λx.(c2 . (f(c1 . x))). However
how to do this without introducing separate coercion syntactic entities is under
investigation.
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A. Technical Proofs

This technical appendix is devoted to provide the proofs of Lemmas 26, 27
and 28. These proofs are not particularly difficult, but long and require the
following preliminary lemma.

Lemma 44. Let σ, τ be xMLF types, then (σ [τ/α])• = σ• [τ•/α].

Proof. By structural induction on σ.

• σ = α: (α [τ/α])• = τ• = α• [τ•/α].

• σ = β 6= α: (β [τ/α])• = β• = β• [τ•/α].

• σ = σ1 → σ2: we have ((σ1 → σ2) [τ/α])• = (σ1 [τ/α] → σ2 [τ/α])• =
(σ1 [τ/α])• → (σ2 [τ/α])•. By the induction hypothesis, this is equal to
σ•1 [τ•/α]→ σ•2 [τ•/α] = (σ•1 → σ•2) [τ•/α].

• σ = ⊥: (⊥ [τ/α])• = ⊥• = ∀β.β = (∀β.β) [τ•/α] = ⊥• [τ•/α].

• σ = ∀(β ≥ σ1)σ2 (supposing β /∈ ftv(τ) ∪ {α}):

((∀(β ≥ σ1)σ2) [τ/α])• = (∀(β ≥ σ1 [τ/α])σ2 [τ/α])•

= ∀β.((σ1 [τ/α])•( β)→ σ•2 [τ•/α]

= ∀β.(σ•1 [τ•/α]( β)→ σ•2 [τ•/α]

= (∀β.(σ•1 ( β)→ σ•2) [τ•/α] = (∀(β ≥ σ1)σ2)• [τ•/α]

where we applied inductive hypothesis for the third equality.

Lemma 26. If Γ ` φ : σ ≤ τ then Γ•;`c φ◦ : σ•( τ•.

Proof. By induction on the derivation of Γ ` φ : σ ≤ τ .

• IBot, Γ ` τ : ⊥ ≤ τ . We have to prove that Γ•;`c λx.x : (∀α.α)( τ•.
This follows by applying LAbs, Inst and LAx.

• IAbstr, Γ ` !α : τ ≤ α where α ≥ τ ∈ Γ. We have to prove Γ•;`c iα :
τ•( α, which follows from Ax since iα : τ•( α ∈ Γ•.

• IUnder, Γ ` ∀(α ≥)φ : ∀(α ≥ σ)τ1 ≤ ∀(α ≥ σ)τ2. By induction
hypothesis we have a proof π of Γ′;`c φ◦ : τ•1 ( τ•2 where Γ′ := Γ•, iα :
σ•( α. Let L := x : ∀α.(σ•( α)→ τ•1 .

π...
Γ′;`c φ◦ : τ•1 ( τ•2

LAx
Γ′;L `` x : (∀(α ≥ σ)τ1)•

Inst
Γ′;L `` x : (σ•( α)→ τ•1

Ax
Γ′;`c iα : σ•( α

CApp......
Γ′;L `` x / iα : τ•1

LApp
Γ′;L `` φ◦ . (x / iα) : τ•2

CAbs
Γ•;L `` λiα.φ

◦ . (x / iα) : (σ•( α)→ τ•2
Gen

Γ•;L `` λiα.φ
◦ . (x / iα) : ∀α.(σ•( α)→ τ•2

LAbs
Γ•;`c λx. λiα.φ◦ . (x / iα) : (∀(α ≥ σ)τ1)•( (∀(α ≥ σ)τ2)•
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• IComp, Γ ` φ;ψ : τ1 ≤ τ3. By induction hypothesis we have a proof π1

of Γ•;`c φ◦ : τ•1 ( τ•2 , and a proof π2 of Γ•;`c ψ◦ : τ•2 ( τ•3 . Then we
can build the following proof:

π2...
Γ•;`c ψ◦ : τ•2 ( τ•3

π1...
Γ•;`c φ◦ : τ•1 ( τ•2

LAx
Γ•; z : τ•1 `` z : τ•1

LApp
Γ•; z : τ•1 `` φ◦ . z : τ•2

LApp
Γ•; z : τ•1 `` ψ◦ . (φ◦ . z) : τ•3

LAbs
Γ•;`c λz.ψ◦ . (φ◦ . z) : τ•1 ( τ•3

• IInside, Γ ` ∀(≥ φ) : ∀(α ≥ τ1)σ ≤ ∀(α ≥ τ2)σ. We can suppose
α /∈ ftv(Γ) = ftv(Γ•). We set L := x : (∀(α ≥ τ1)σ)• and Γ′ := Γ•, iα :
(τ•2 ( α). By induction hypothesis (and Lemma 7) we have a proof of
Γ′;`c φ◦ : τ•1 ( τ•2 . By mixing it with Γ′;`c iα : τ•2 ( α and going
through the same derivation as above for IComp, we get a proof π of
Γ′;`c λz.iα . (φ◦ . z) : τ•1 ( α.

LAx
Γ′;L `` x : (∀(α ≥ τ1)σ)•

Inst
Γ′;L `` x : (τ•1 ( α)→ σ•

π...
Γ′;`c λz.iα . (φ◦ . z) : τ•1 ( α

CApp
Γ′;L `` x / (λz.iα . (φ◦ . z)) : σ•

CAbs
Γ•;L `` λiα.x / (λz.iα . (φ◦ . z)) : (τ•2 ( α)→ σ•

Gen
Γ•;L `` λiα.x / (λz.iα . (φ◦ . z)) : (∀(α ≥ τ2)σ)•

LAbs
Γ•;`c λx. λiα.x / (λz.iα . (φ◦ . z)) : (∀(α ≥ τ1)σ)•( (∀(α ≥ τ2)σ)•

• IIntro, Γ ` ` : τ ≤ ∀(α ≥ ⊥)τ where α /∈ ftv(τ). By α-conversion we
can choose any α /∈ ftv(Γ•;x : τ•), so the Gen rule in the following proof
is applicable:

LAx
Γ•, iα : (∀β.β)( α;x : τ• `` x : τ•

CAbs
Γ•;x : τ• `` λiα.x : ((∀β.β)( α)→ τ•

Gen
Γ•;x : τ• `` λiα.x : (∀(α ≥ ⊥)τ)•

LAbs
Γ•;`c λx. λiα.x : τ•( (∀(α ≥ ⊥)τ)•

• IElim, Γ ` & : ∀(α ≥ σ)τ ≤ τ [σ/α]. Note that α can be chosen
not in ftv(σ•) and that (τ [σ/α])• = τ• [σ•/α] holds by Lemma 44. Let
L := x : ∀α.(σ•( α)→ τ•.

LAx
Γ•;L `` x : ∀α.(σ•( α)→ τ•

Inst
Γ•;L `` x : (σ•( σ•)→ τ• [σ•/α]

LAx
Γ•; z : σ• `` z : σ•

LAbs
Γ•;`c λz.z : σ•( σ•

CApp
Γ•;L `` x / λz.z : τ• [σ•/α]

LAbs
Γ•;`c λx.x / λz.z : (∀(α ≥ σ)τ)•( (τ [σ/α])•

• IId, Γ ` 1 : τ ≤ τ . We have Γ•;`c λz.z : τ• ( τ• by LAbs and
LAx.
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Lemma 27. If a is an xMLF term with Γ ` a : σ then Γ•;`t a◦ : σ•.

Proof. By induction on the derivation of Γ ` a : σ.

• Var, Γ ` x : τ , where Γ(x) = τ . We then get Γ•;`t x : τ• by Ax.

• Abs, Γ ` λ(x : τ)a : τ → σ. By induction hypothesis we have a proof of
Γ•, x : τ•;`t a : σ• which by Abs gives Γ•;`t λx.a : τ• → σ•.

• App, Γ ` ab : τ . By induction hypothesis we have proofs for Γ•;`t a :
τ• → σ• and π2 of Γ•;`t b : τ• giving Γ•;`t ab : σ• by App.

• TAbs, Γ ` Λ(α ≥ σ)a : ∀(α ≥ σ)τ where α /∈ ftv(Γ). It follows that
α /∈ ftv(Γ•), and as by induction hypothesis we have a proof π of Γ•, iα :
σ•( α;`t a◦ : τ• we have

π...
Γ•, iα : σ•( α;`t a◦ : τ•

CAbs
Γ•;`t λiα.a

◦ : (σ•( α)→ τ•
Gen

Γ•;`t λiα.a
◦ : ∀α.(σ•( α)→ τ•

• TApp, Γ ` aφ : σ. Since Γ ` φ : τ ≤ σ holds we have a proof of
Γ•;`c φ◦ : τ• ( σ• by Lemma 26. By induction hypothesis we have also
a proof of Γ•;`t a◦ : τ•. The two together combined with a LApp rule
give Γ•;`t φ◦ . a◦ : σ•.

Lemma 28. Let A be a term or an instantiation. Then we have:

(i) (A [b/x])◦ = A◦ [b◦/x],

(ii) (A [1/!α] [τ/α])◦ = A◦ [λz.z/iα],

(iii) (A [φ; !α/!α])◦ = A◦ [(λz.iα . (φ◦ . z))/iα].

Proof. All three results are carried out by structural induction on A. The
inductive steps of (i) are straightforward, taking into account that if A = φ
then φ [b/x] = φ.

For (ii), when A is a term the inductive step is immediate. Otherwise:

• A = σ: we have (σ [1/!α] [τ/α])◦ = (σ [τ/α])◦ = λx.x, which is equal to
(λx.x) [λz.z/iα] = σ◦ [λz.z/iα].

• A = !α: we have (!α [1/!α] [τ/α])◦ = (1)◦ = λz.z = iα [λz.z/iα] =
(!α)◦ [λz.z/iα] .

• A = ∀(≥ φ): we have

(∀(≥ φ) [1/!α] [τ/α])◦ = (∀(≥ φ [1/!α] [τ/α]))◦

= λx. λiβ .x / (λz.iβ . ((φ [1/!α] [τ/α])◦ . z))
(inductive hypothesis) = λx. λiβ .x / (λz.iβ . ((φ◦ [λz.z/iα]) . z))

= (λx. λiβ .x / (λz.iβ . (φ◦ . z))) [λz.z/iα]
= (∀(≥ φ))◦ [λz.z/iα] .
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• A = ∀(β ≥)φ: we have (supposing β /∈ ftv(τ) ∪ {α}):

((∀(β ≥)φ) [1/!α] [τ/α])◦ = (∀(β ≥)φ [1/!α] [τ/α])◦

= λz.iβ .(φ [1/!α] [τ/α])◦ . (x / iβ)
(inductive hypothesis) = λz.iβ .(φ

◦ [λz.z/iα]) . (x / iβ)
= (λz.iβ .φ

◦ . (x / iβ)) [λz.z/iα]
= (∀(β ≥)φ)◦ [λz.z/iα] .

• A = `: we have (` [1/!α] [τ/α])◦ = `◦ = λx. λiβ .x = `◦ [λz.z/iα] .

• A = &: we have (& [1/!α] [τ/α])◦ = &◦ = λx.x / λy.y = &◦ [λz.z/iα] .

• A = φ;ψ: we have

((φ;ψ) [1/!α] [τ/α])◦ = (φ [1/!α] [τ/α] ;ψ [1/!α] [τ/α])◦

= λx.(ψ [1/!α] [τ/α])◦ . ((φ [1/!α] [τ/α])◦ . x)
(inductive hypothesis) = λx.(ψ◦ [λz.z/iα]) . ((φ◦ [λz.z/iα]) . x)

= (λx.ψ◦ . (φ◦ . x)) [λz.z/iα]
= (φ;ψ)◦ [λz.z/iα] .

• A = 1: we have (1 [1/!α] [τ/α])◦ = 1◦ = λx.x = 1◦ [λz.z/iα].

For (iii), once again, the inductive steps where A is a term are immediate.
Otherwise:

• A = σ: we have (σ [φ; !α/!α])◦ = σ◦ = (λx.x) [(λz.iα . (φ◦ . z))/iα] =
σ◦ [(λz.iα . (φ◦ . z))/iα].

• A = !α: we have

(!α [φ; !α/!α])◦ = (φ; !α)◦

= λz.iα . (φ◦ . z)
= iα [λz.iα . (φ◦ . z)/iα]
= (!α)◦ [λz.iα . (φ◦ . z)/iα] .

• A = ∀(≥ φ): we have

(∀(≥ φ) [φ; !α/!α])◦ = (∀(≥ φ [φ; !α/!α]))◦

= λx. λiβ .x / (λz.iβ . ((φ [φ; !α/!α])◦ . z))
(ind. hyp.) = λx. λiβ .x / (λz.iβ . ((φ◦ [λz.iα . (φ◦ . z)/iα]) . z))

= (λx. λiβ .x / (λz.iβ . (φ◦ . z))) [λz.iα . (φ◦ . z)/iα]
= (∀(≥ φ))◦ [λz.iα . (φ◦ . z)/iα] .

• A = ∀(β ≥)φ: we have (with β /∈ ftv(φ) ∪ {α})

((∀(β ≥)φ) [φ; !α/!α])◦ = (∀(β ≥)φ [φ; !α/!α])◦

= λz.iβ .(φ [φ; !α/!α])◦ . (x / iβ)
(ind. hyp.) = λz.iβ .(φ

◦ [λz.iα . (φ◦ . z)/iα]) . (x / iβ)
= (λz.iβ .φ

◦ . (x / iβ)) [λz.iα . (φ◦ . z)/iα]
= (∀(β ≥)φ)◦ [λz.iα . (φ◦ . z)/iα] .
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• A = `: (` [φ; !α/!α])◦ = `◦ = λx. λiβ .x = `◦ [λz.iα . (φ◦ . z)/iα] .

• A = &: we have (& [φ; !α/!α])◦ = λx.x / λy.y = &◦ [λz.iα . (φ◦ . z)/iα] .

• A = φ;ψ: we have

((φ;ψ) [φ; !α/!α])◦

= (φ [φ; !α/!α] ;ψ [φ; !α/!α])◦

= λx.(ψ [φ; !α/!α])◦ . ((φ [φ; !α/!α])◦ . x)
(ind. hyp.) = λx.(ψ◦ [λz.iα . (φ◦ . z)/iα]) . ((φ◦ [λz.iα . (φ◦ . z)/iα]) . x)

= (λx.ψ◦ . (φ◦ . x)) [λz.iα . (φ◦ . z)/iα]
= (φ;ψ)◦ [λz.iα . (φ◦ . z)/iα] .

• A = 1: we have (1 [φ; !α/!α])◦ = 1◦ = λx.x = 1◦ [λz.iα . (φ◦ . z)/iα].
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