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No way out? -  Analysing policy options to alleviate or derail 
Success-to-the-Successful in the energy system

A . T . C . J. D a n g e rm a n * ^  &  A . G ro B le r^

Abstract

The purpose of this paper is to briefly discuss the presence of the archetype “Success-to-the- 
Successful” in the energy system and to analyse policy options in the presence of this 
archetype in the energy system. More precisely, the paper aims at finding conditions under 
which the path dependent allocation of investments directed to the conventional energy- 
technology sector can be alleviated, in order to encourage investments in alternative energies 
and technologies. The discussion draws on a stylized and highly aggregated model of the 
energy system, which is based on system dynamics. Sensitivity analyses are used as the major 
diagnostic tool to identify options to break away from the current dominant path of energy 
production and use, and the investments made in it. The value of this paper lies in the clear 
articulation of a complex and fuzzy topic, with the help of modelling and simulation. 
Implications for research comprise a further elaboration of the simulation studies within the 
energy field.

Keywords: energy, policy making, investments, path dependence,“Success-to-the-Succesful”, 
lock-in.

1. A systemic perspective on the energy system

If one considers the widely accepted economic free market theory and the fact that it is widely 

assumed to solve the problems of the energy system (excessive CO2 production, air, water and 

land pollution, geo-political stress, rising food prices—induced by biomass production), one 

wonders if and when these problems will indeed decrease in their size and impact. In the light 

of this question, an exploratory study of the energy system with a particular interest for the 

presence of path dependence and lock-in traits has been conducted (Dangerman, 2011). The 

main finding is that the energy system exhibits behavioural structures similar to the system
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dynamics archetype “Success-to-the-Successful”. The study shows the prevalence of sources 

and characteristics of path dependent behaviour throughout the energy system that lead to— 

despite public and political claims of a free flow of capital—a perseverance of historic 

“successes” of certain energy sources and associated technologies to the possible detriment of 

chances of competing alternatives. In that study, literature research, data collection, interviews 

and dialogues with energy experts, and participative (qualitative) modelling were used as 

methods for gaining insights. In this paper, first attempts are presented in quantifying parts of 

the energy system by modelling and simulating this issue with system dynamics.

In this paper, the term „energy system’ is used in a broad sense and includes the following 

forms of energy sources: oil, coal, natural gas, nuclear and biomass, solar, wind, geothermal 

and hydro energy. The technologies that are involved in the generation and use of these forms 

of energy are taken into account. The various forms of energy and their accompanying 

technologies are classified in two groups: a conventional energy-technology subsystem 

(which includes oil, coal, natural gas, nuclear and biomass, and the accompanying 

technologies) and an alternative energy-technology subsystem (which includes solar, wind, 

geothermal, hydro energy and accompanying technologies). In addition to conventional and 

alternative energy-technology, the energy system that we look at in this paper contains a 

financial subsystem that generates the monetary resources necessary to build-up and to 

maintain energy production and distribution facilities. Obviously, this definition of the energy 

system is non-exhaustive (for instance, we do not extensively consider an environmental 

subsystem or a political subsystem in this paper) since we limit our endeavours to testing 

policy options for breaking away from a path dependent situation, in which most investments 

in new energy-technology go to the conventional energy-technology subsystem. Thus, the 

purpose of this study is to analyse which policies can be helpful in breaking away from the 

current path of investments in highly profitable conventional energy and associated 

technologies toward going into an alleged non-beneficial area.

In section 2 we provide a brief description of the three individual subsystems of the energy 

system we mentioned earlier—i.e. the conventional energy-technology subsystem, the 

alternative energy-technology subsystem and the financial subsystem—and discuss path 

dependent behavioural structures of the energy system that create rigidity and lock-in. The 

third section presents a system dynamics model for policy analyses regarding the “solving” of 

this situation. In the section after that, sensitivity tests are presented that we use to derive
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policy options. We conclude the paper with a discussion of outcomes, limitations and further 

research in section 5.

2. Path dependence and lock-in in the energy system

Mechanisms similar to the archetype Success-to-the-Successful appear to be operating 

between the two energy-technology subsystems with investment capital (from the financial 

subsystem and the conventional energy-technology subsystem) as the resources for which the 

two energy subsystems compete. One can observe the similarities between the basic structures 

of the energy subsystems and the financial subsystem as represented in the archetype Success- 

to-the-Successful (Senge, 1990; see Figure 1).

+

success of A resources to A

success of B resources to B

+

Figure 1. The archetype Success-to-the-Successful (after: Braun, 2002)

The mechanism underlying the archetype Success-to-the-Successful determines the allocation 

of resources to a party in reward of success to create even more success. At the same time, 

these (finite) resources are consequently not appropriated to another competing party, and 

such competitor is thus limited in its chances of success. This mechanism with initially 

multiple equilibria (in the beginning any of the competing parties can get the resources 

allocated to them), path dependence (success propagates success and failure propagates 

failure), and lock-in (once a more or less consistent allocation to either A or B has occurred 

long enough, changing allocation to the other party in this structure is virtually impossible) 

can also be characterised by a linear and non-linear Polya process (cf. Arthur, 1994). Success-
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to-the-Successful may function as a powerful barrier to change. To cite Braun (2002, p. 12): 

“finding itself bogged down to this archetype can also lead to the erosion of innovation and 

change.”

When the archetype commences to operate, the allocation of resources to a subsystem A 

instead of allocation to another subsystem B, rather than the other way around, is still a feeble 

equilibrium and can—with small changes, such as an invention or new regulation—relatively 

easily be disturbed so that the allocation switches to B instead of A. However, the longer this 

mechanism is operating with A being successful and able to tap the resources competed for, 

the more difficult it will be not only for B to be successful but for any new market entrant 

with an interest for the same resources—reasons are high up-front costs, network effects, 

learning effects and self-reinforcing expectations are involved (cf. Arthur, 1988). Whether a 

new entrant, for example a new technology, may be technologically or economically superior 

to the dominant technology may not play a role in this division of market shares; historical 

choices and structures may cause the market to prefer other reasons than such superiority to 

invest in certain technologies. Nevertheless, the lock-in to a certain division of market shares 

and its possibly damaging characteristics, however persistent, are not permanent. Somewhere 

in the whole system, or in the variables present in the Success-to-the-Successful mechanism 

itself, eventually changes will occur (such as stocks being depleted or new technological 

competitors entering the system that do not need to compete for the same resources) that 

finally break down the existing lock-in structure. Given the progress of the problems of the 

energy system, the question is when such change is to occur and whether we have the time to 

wait for such a change to occur, without actively intervening. After all, to phrase Keynes 

(1923): “in the end we are all dead”. And he continues: “economists set themselves too easy, 

too useless a task if in tempestuous seasons they only tell us that when the storm is long past 

the ocean is flat again”.

In addition to the competition for financial capital from the financial subsystem and for 

subsidies and loans from government, the conventional and the alternative energy-technology 

subsystems are, whilst operating under increasing returns, also competing for the use and 

adoption of their respective forms of energy and accompanying technologies by customers 

(Dangerman, 2011). If a customer has bought and received the technology and pertaining 

energy he needed for a particular purpose such as fuel for a car or the heating system for the 

house and natural gas, he does not require alternative technology with accompanying energy 

for that same need, which has been satisfied. If a certain energy-technology combination has
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been chosen by a group of users other competing energy-technology combinations are 

thereby—for some time (as we assume the demand for energy-technology is at least for a 

certain period of time finite)—excluded from adoption by this group of users, since these 

users’ demand have been fulfilled. In the event conventional energy-technology is adopted by 

consumers, the flow of money, pertaining profits and learning loops of both consumers and 

producers of energy-technologies increase, thereby diminishing the chances for the alternative 

energy-technologies of success. If one examines Figure 2 in this context it can be seen that 

from the point of view of the energy system and the Success-to-the-Successful archetype, out 

of these two competing energy-technology subsystems the conventional energy-technology 

subsystem is currently by far the most successful in having its energy consumed and 

pertaining technology adopted (and the shares between the energy technologies have not 

substantially changed throughout the period examined).

Evolution from 1971 to 2008 of world total final consumption 
by fuel (Mtoe)
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Figure 2. W orld’s total final energy consumption from 1971 to 2008 (IEA, 2010)

Finally, it is worthwhile mentioning a mechanism that governs the competition of individual 

beliefs and the social paradigm that eventually follows from those beliefs. On the one hand, 

the human brain has the tendency to snap to a single reality as understanding of complex 

situations are involved (cf. Scheffer & Westley, 2007), on the other hand, that same brain 

will, according to Hebb’s law, favour the line of thought or belief that has been ‘executed’ 

before over a new not-yet-executed line of thought or belief (Hebb, 2002). In other words: on 

an individual neuropsychological level of belief Success-to-the-Successful appears to be 

operative as well. The more we have gotten convinced of a certain belief and the more the
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relevant parts of our brain have fired together, the more we appear to be convinced of such 

belief to the exclusion of possible other beliefs and the more these parts of our brain have 

gotten wired (and connected) together, as parallel competing beliefs are not necessarily what 

brains are designed for (cf. Hebb, 2002; Scheffer & Westley, 2007). If the individual beliefs 

scale up to a level of a paradigm through social interaction and through individually and 

collectively passing the loop of conviction, action and confirmation, to form—to put it in 

Capra’s words (Capra, 1997, p. ó)—“the basis of the way the community organises itself’, the 

Success-to-the-Successful structure establishes itself on a societal level as well. Thus, in the 

energy system, managers, investors, politicians and consumers have long experienced positive 

outcomes in the form of profits, economic growth and product reliability from their 

conservative investment decisions. These outcomes were strengthening their beliefs and 

confirming the appropriateness of their individual and group decisions. Accordingly, the 

behavioural structures of Success-to-the-Successful appear to be not only present in the 

financial investment structures but also in the social fabric, i.e. on the level of the individual, 

the group and society, of the energy system as well (Dangerman, 2011). It seems undeniable 

that both Success-to-the-Successful mechanisms—that of individual or group conviction and 

consequential decisions and actions on the one hand, and that of financial investments and 

consequential returned profits on the other hand—are tightly connected and reinforce each 

other.

3. A system dynamics model of investments in the energy system

Despite a long tradition of related work in system dynamics (Sterman, 2000, ch. 10, and the 

work cited therein), modelling and simulation have recently been identified as promising new 

methodologies for research in the area of path dependency (Vergne and Durand, 2010). Since 

the archetype Success-to-the-Successful is a specific form of path dependent processes, a 

deterministic simulation method appears appropriate to investigate the issue of Success-to- 

the-Successful further. The simulation model we use for further analyses focuses on the 

competition for (financial) capital from the financial subsystem by the two energy-technology 

subsystems, and leaves out the other potential fields in which Success-to-the-Successful was 

identified(see section 2).

Figure 3 shows a stock & flow diagram (Forrester, 1961; Lane, 2000) based on the conceptual 

understanding of the issues discussed in the first half of this article. The central chain 

(indicated by double arrows) represents the flow of capital from freely available (financial)
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capital into bound capital (e.g., in the form of energy production facilities) in the two 

subsystems, conventional and alternative energy-technology. Between these stocks (indicated 

by rectangles in the diagram), flow variables are located (indicated by a valve symbol) that 

govern how capital flows from one stock to the other. These flows are controlled by 

information feedback loops that symbolize the decision-making process in allocating the 

(financial) capital. The flows determine what amount of capital flows either way and how 

long, on average, capital remains productive. Their value is dependent on a discrepancy 

between desired and actual capital for energy production and on an inclination to invest in one 

of the two energy-technology subsystems, conventional or alternative energy-technology. 

Together with the depreciation of capital, those two mechanisms form feedback loops 

(indicated by a circular arrow symbol).

Figure 3. Stock & flow diagram of simulation model

The next step in modelling is the formulation of quantitative relationships between the model 

variables, in the form of equations and parameters. In the model it is assumed that the 

allocation towards one of the energy-technology subsystems depends on an inclination to or a 

preference for a particular subsystem, which is in turn based on investments already made and 

the sunk costs related to that. In other words, more capital is invested where much capital has
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been invested in the past. This effect is controlled by a table function (T inclination 

conventional), that can be adjusted to represent different degrees of favouring the 

conventional energy sector over the alternative energy sector. An additional assumption in the 

model is that demand for energy is an exogenous parameter, i.e. its value is not influenced by 

model behaviour. All other values of variables are endogenously generated by the dynamics 

of the model. A model listing of the total model can be found in the appendix.

4. Results of simulation runs

The simulation model has been used to produce a variety of sensitivity runs to identify 

effective policy options, about which we report here. In all of the following simulation runs, 

illustrative numerical values have been used that do not necessarily represent realistic 

numbers from the energy system. For all simulation runs we depict the development of capital 

(i.e. facilities to produce and distribute energy) in the conventional and the alternative energy- 

technology subsystems.

The base run of our model is depicted in Figure 4 and mimics the classical “Success-to-the- 

Successful” archetype as discussed above. In this simulation, financial resources are infinite1 

and at the beginning there is a lack of currently available capacity compared to the demand 

for energy-technology (20% capacity is missing); the conventional energy-technology 

subsystem has an initial advantage over the alternative energy-technology subsystem (the 

relation between the two capital stocks is 5:3). The necessary investments in new production 

capital are characterised by “increasing returns” : the investment policy implemented here 

allocates over-proportional additional investments in that sector that has an advantage already 

(i.e. the conventionalenergy-technology subsystem due to the initialization of stocks). As one 

can see, now the conventional energy-technology subsystem dominates more and more, while 

the sustainable energy sector becomes increasingly irrelevant: the typical Success-to-the- 

Successful behaviour pattern.

1 Technically, in these simulations capital inflow exceeds the necessary investments by far.
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Time (Y ear)
"Capital Conventional Energy-Technology” : Success-to-the-Successful 
"Capital Alternative Energy-Technology" : Success-to-the-Successful

Figure 4. Base run: infinite resources, demand exceeds capacity BUT over-proportional reward to already
invested capital

Figure 5 shows the shape of the lookup function that we use to determine inclination to invest 

in conventional. Various reasons can be considered to generate an over-proportional reward 

for existing capital. On the psychological level, investors might fall into a sunk cost fallacy 

or are deciding based on availability bias. In terms of personality traits, risk averseness might 

lead to investing where capital is seemingly safer to invest. Economically, investments in 

sectors where fast returns can be expected seem beneficial. Moxnes (1992) argued that 

investments in conventional energy technologies may be caused by low cost and prices which 

are in turn created by learning curve effects. We want to emphasis here that we are not trying 

to explain why over-proportional rewards exist (for instance based on the phenomena just 

described); rather we assume them as given. Our aim with the simulations is to explore 

potential policies under this assumption.

2 In an economic understanding of sunk costs, they should not be considered for decisions since they have 
already been written off. However, if we apply a behavioural understanding of the sunk costs bias, this bias 
makes decision-makers invest more when they already have substantially invested in a certain technology. 
Compare also “escalation of commitment”, Staw (1981).
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inclination to 
invest conventional

0
0 1 

conventional/alternative

Figure 5. Shape of table function that determines inclination to invest conventional

The simulation results shown in Figure 6 depict the outcomes for a variation of the demand 

for new energy-technology (with the general settings as in Figure 4: initial advantage for the 

conventional energy-technology subsystem, over-proportional reward to already invested 

capital). The graph is a result of a sensitivity analysis that alters Demand between 500 and 

1500, i.e. leading to situations of substantial over- or under-capacity with many intermediate 

scenarios. For basically all outcomes the base run behaviour from Figure 4 is more or less 

replicated (which is depicted by the red lines in Figure 6). Increasing demand does (naturally) 

not change the distribution of investments between the two sectors; in the case of heavy 

under-capacity, the alternative sector starts to increase as well but then the positive feedback 

loop with the over-proportional reward of the conventional sector kicks in leading to an 

ultimate success of the conventional sector.

Base ruri
50% 75% |  95% 1 0 0 % of  all simulation runs 

Capital Conventional Energy-Technology Capital Alternative Energy-Technology

Time (Year) Time (Year)

Figure 6. Sensitivity analysis Demand [500; 1500], base case value 1000
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Figure 7 shows a sensitivity analysis, when capital is scarce and not virtually infinite as in the 

base run. Again, we have to realise that for most runs, the base scenario behaviour is 

replicated (showing a success of the conventional energy-technology sector). For some 

extreme cases, the alternative energy technology subsystems grows and catches up with its 

conventional counterpart despite its initial disadvantage and the over-proportional distribution 

of investments. The growth of the alternative energy technology subsystem can occur if (i) 

available financial resources are limited so that investments cannot fully account for 

exceeding demand but there is still some money available to invest (so, inflow capital is not 

zero) and (ii) due to the initial advantage of the conventional subsystem depreciations over

compensate additional investments in this subsystem, slowly shifting the advantage to the 

alternative energy technology subsystem. However, note that even in case of depreciations 

being larger than investments in the conventional energy technology subsystem, no complete 

transition to the alternative subsystem takes place; all that can be achieved in this model is 

that the subsystems become equal in size.

Base run ___
50% 75% M  95% 100% |  of all simulation runs 

Capital Conventional Energy-Technology Capital Alternative Energy-Technology

Time (Year) Time (Year)

Figure 7. Sensitivity analysis Inflow capital [0; 100], base case value 100

Figure 8 depicts a sensitivity analysis that varies the depreciation time of the conventional 

energy-technology sector. Only shortening depreciation time for conventional alone does not 

change the behaviour of the system as long as the investment decision is based on past 

investments and there are unlimited resources: necessary re-investments are still made in the 

conventional sector. When depreciation time is really small, the conventional sector needs a 

while (with some losses and a parallel gain of the alternative sector) before it gains 

momentum again and finally, because of the over-proportional reward, succeeds.
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Base run ___
50% 75% I  9 5 % ^H 1 0 0 % ^H  of all simulation runs 

Capital Conventional Energy-Technology Capital Alternative Energy-Technology

Time (Year) Time (Year)

Figure 8. Sensitivity analysis Depreciation time conventional [10; 50], base case value 30

The final sensitivity analysis shows at least a vague possibility, how the alternative sector 

could succeed, thus aleviating the rigidity in the energy system (see Figure 9). If alternative 

energy investments could be realised very fast, there is a chance to make the alternative sector 

the leading one (but only if the alternative sector is much faster than the conventional 

conventional in realising capacity) since then the alternative sector increases much faster than 

capacity is taken away by depreciation—a process that the conventional sector cannot cope 

with, despite the positive feedback loops working in its favour in the beginning.

Base run ___
50% 75% ■  9 5 % H 1 0 0 % H  of all simulation runs 

Capital Conventional Energy-Technology Capital Alternative Energy-Technology

Time (Year) Time (Year)

Figure 9. Sensitivity analysis Building time alternative [1; 10], base case value 5
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5. Conclusions

The purpose of our stylized and simplified system dynamics model was to identify policies or 

situations in which the lock-in of the energy system in conventional energy-technology can be 

alleviated. As our sensitivity analyses have shown so far, this is a rather intractable endeavour 

since for most parameter constellations the Success-to-the-Successful behaviour is retained. 

Within the range of parameters we set, only under very specific (probably quite unlikely but 

not implausible) conditions, the energy system could be changed towards favouring the 

alternative energy-technology subsystem: for instance, when the building time for alternative 

energy capacity can be lowered substantially in relation to the conventional energy capacity.

We argue that such conditions for change can only be achieved if an internal critical threshold 

is exceeded or exogeneous shocks strike a system that has become rigid as a result of its 

sustained path dependence. Joint actions were identified (cf. Moxnes, 1992) among 

consumers or government policies as measures that could reverse the Success-to-the- 

Successful pattern—however, quick changes should not be expected. In the example 

discussed in relation to figure 9, a combination of exertion of political power and an 

increasing demand of customers for renewable energy sources could reduce the building time 

for alternative energy capacity and, thus, could cause the system to break away from the path 

dependent situation. More extreme (but probably also more effective) measures could be a 

full scale prohibition of production of CO2 (or other damaging output or consequences), the 

prohibition of investments in conventional technologies, or a complete stop of subsidizing 

conventional technologies.

Two extensions of this study come immediately to mind. First, a more realistic 

parameterization of the model can be employed; in particular, the initial value of the stocks of 

the two energy-technology subsystems are illustrative only (we used a 5:3 relationship in 

favour of conventional energy and assumed rather roughly that the demand for energy 

exceeds the existing capacity by 20% in the beginning of the simulation). Most probably, the 

relationship of capital bound in one of the two energy subsystems is much more biased 

towards the conventional subsystem, with the consequence that the breaking away from the 

trodden path is even harder to achieve. Second, we tested the variation of one isolated 

parameter in our sensitivity analyses. As a next step, we want to try combinations of these 

parameter variations. Furthermore, we are going to experiment with different lookup 

functions determining the inclination to invest based on past investments.
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In a more general way, the model described in this paper can be used to investigate the 

following:

• How initial advantages in a system can be maintained under various environmental 

conditions;

• How initial disadvantages in one subsystem can be turned into an advantage in the 

long run;

• What are sensitive points for overall performance of the whole system and how overall 

performance can be secured;

• What externalities come with different situations, for instance represented by the 

pollution generated; in other words, what are the effects of different set-ups of the 

financial subsystems of the energy system on other parts of that system, for instance 

the environment or society (which have not been represented in the model yet);

• Why and how a system can be in lock-in, even though it is supposed to be open;

• What are conceivable decision rules of investors based on which the model is able to 

replicate historical behavior;

• What are possible interventions of regulatory bodies (like governments) to change the 

system.

The system dynamics model allows us to approach quantitative as well as qualitative answers 

to these questions.
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Appendix: Model listing (equations in alphabetical order; illustrative parameter values)

absorption of pollution=Pollution/ABSORPTION TIME; Units: pollUnit/Year 
ABSORPTION TIME=100; Units: Year
Available Capital= INTEG (capital inflow-investing in conventional energy- 
investing in alternative energy, INI AC); Units: Euro
BUILDING TIME CONVENTIONAL=5; Units: Year
BUILDING TIME ALTERNATIVE=5; Units: Year
CAPITAL BECOMING AVAILABLE=100; Units: Euro/Year
Capital Conventional Energy-Technology= INTEG (investing in conventional 
energy-depreciation conventional, INI CCET); Units: Euro
capital inflow=CAPITAL BECOMING AVAILABLE; Units: Euro/Year
Capital Alternative Energy-Technology= INTEG (investing in alternative 
energy-depreciation alternative, INI CSET); Units: Euro
COEFFICIENT CAP-POL=1; Units: pollUnit/Year/Euro
COEFFICIENT DEM-CAP=1; Units: Euro/GWh
DEMAND=1000; Units: GWh
depreciation conventional=Capital Conventional Energy- 
Technology/DEPRECIATION TIME CONVENTIONAL; Units: Euro/Year
depreciation alternative=Capital Alternative Energy-Technology/DEPRECIATION 
TIME ALTERNATIVE; Units: Euro/Year
DEPRECIATION TIME CONVENTIONAL=3 0; Units: Year
DEPRECIATION TIME ALTERNATIVE=3 0; Units: Year
desired capital energy-technology=COEFFICIENT DEM-CAP*DEMAND; Units: Euro
effective capital conventional=Capital Conventional Energy-Technology- 
(BUILDING TIME CONVENTIONAL*depreciation conventional); Units: Euro
effective capital alternative=Capital Alternative Energy-Technology- 
(BUILDING TIME ALTERNATIVE*depreciation alternative); Units: Euro
FINAL TIME = 100; Units: Year
inclination to invest conventional=sunk cost conventional/(sunk cost 
conventional+sunk cost alternative); Units: Dmnl
INI AC=1000; Units: Euro
INI CCET=900; Units: Euro
INI CAET=100; Units: Euro
INI P=0; Units: pollUnit
INITIAL TIME = 0; Units: Year
investing in conventional energy=min(inclination to invest 
conventional*lack of actual capital energy-technology, Available 
Capital)/BUILDING TIME CONVENTIONAL; Units: Euro/Year
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investing in alternative energy=min((1-inclination to invest 
conventional)*lack of actual capital energy-technology, Available 
Capital)/BUILDING TIME ALTERNATIVE; Units: Euro/Year
lack of actual capital energy-technology=max(0, desired capital energy- 
technology- (effective capital conventional+effective capital alternative)); 
Units: Euro
Pollution= INTEG (production of pollution-absorption of pollution, INI P); 
Units: pollUnit
production of pollution=Capital Conventional Energy-Technology*COEFFICIENT 
CAP-POL; Units: pollUnit/Year
sunk cost conventional=Capital Conventional Energy-Technology; Units: Euro 
sunk cost alternative=Capital Alternative Energy-Technology; Units: Euro
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