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Phasons and broken symmetries in ferroelectric liquid crystals

I. Musevic, B. Zeks, and R. Blinc 
J. Stefan Institute, Jamova 39, 61000 Ljubljana, Slovenia

Th. Rasing
Research Institute for Materials and High Field Magnet Laboratory, University of Nijmegen, 
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(Received 1 December 1993)

The phason dispersion and the linear electro-optic response in the ferroelectric Sm C* liquid- 
crystalline phase have been measured in an external magnetic field up to 14 T. In the presence of an 
external field the originally continuous phason spectrum splits into an opticlike and an acousticlike 
phason branch, separated by a field-dependent gap. The band structure of the phason spectrum in the 
presence of the field is a consequence of the broken helical symmetry of the Sm C* phase and is analo
gous to the energy spectrum of an electron in a crystal lattice. The observed magnetic-field dependence 
of the phason spectrum is in good agreement with theory.

I. INTRODUCTION

Some time ago Blinc and Zeks1 showed, that in the 
long-wavelength and low-frequency limit, the spectrum of 
collective excitations of the Sm C* phase of a ferroelec
tric liquid crystal consists of the amplitudon and the 
phason dispersion branches, which merge into a doubly 
degenerate soft-mode branch at the Sm 4̂—̂ Sm C* 
phase-transition point. The amplitudon branch 
represents collective, plane-wave fluctuations of the mag
nitude of the tilt angle in the Sm C* phase. It exhibits 
finite relaxation rates at all wave vectors and tempera
tures, except at the transition point Tc. The so-called 
phason branch of excitations represents the fluctuations 
of the phase of the tilt angle. In view of the continuous 
D œ symmetry of the Sm A phase, which is broken at the 
Sm A —>Sm C* transition point, the phason branch is ex
pected to be gapless and should thus contain a zero fre
quency symmetry-restoring Goldstone mode3 3 The nature 
of collective excitations in ferroelectric liquid crystals has 
been extensively studied by quasielastic light scattering4,5 
and dielectric spectroscopy6 and is fairly well understood. 
For example, it has been shown that in the Sm A phase 
of a ferroelectric liquid crystal the soft mode freezes-out 
into form of a space-coherent helical wave5 at Tc, 
whereas in the Sm C * phase the experiments have 
confirmed the existence of a zero-frequency Goldstone 
mode in the phason excitation spectrum.4

In a recent paper7 we have reported the magnetic-field 
dependence of the phason branch in the Sm C* phase of 
ferroelectric liquid crystal. We observed that an external 
magnetic field, applied perpendicular to the helical axis of 
the Sm C* phase, induces a splitting of the originally sin
gle phason branch into the so-called “acousticlike” and 
“opticlike” branch, respectively. These two branches are 
separated by a field-dependent gap G (H ), which is pro
portional to the square of the magnetic field.

The magnetic-field-induced splitting of the phason 
branch can be explained on the basis of pure symmetry

arguments. The unperturbed Sm C* structure is a phase 
with a continuous helicoidal symmetry, as shown by the 
object in Fig. 1(a). This means, that any translation of 
the system along the helical axis, followed by an ap
propriate rotation around the helical axis transforms the 
Sm C* phase into itself. As a result of this continuous 
helicoidal symmetry, phason excitations propagate along 
the helical axis in a form of plane waves with a gapless 
dispersion relation. This can be well understood by real
izing that a phason propagating along the helix is a 
twistlike, periodic elastic deformation of the phase 
profile. Since all the points on the helix are equivalent 
with respect to such a deformation, a phason propagating 
along the helix “sees” a uniformly twisted structure, 
which is thus equivalent to a spatially uniform structure. 
This results in a plane-wave phason propagation.

When an external magnetic field is applied perpendicu
lar to the helical axis of a ferroelectric liquid crystal, mol
ecules with positive diamagnetic anisotropy A%>0 tend 
to align into the field direction. As a result, the helical 
structure distorts in a solitonlike lattice, as shown by the 
object in Fig. 1(b). Large domains, where the molecules 
are almost completely aligned into the field direction, are 
separated by narrow 7r-domain walls, where the mole
cules twist rapidly over an angle it when going from one 
domain to the other. Here, the continuous helicoidal 
symmetry of the undisturbed Sm C* phase is broken by 
the external field and the remaining symmetry elements 
are discrete ones. The solitonlike distorted Sm C* phase 
transforms into itself by a translation along the helix by 
half a period p /2  followed by a rotation by 180° around 
the helical axis. Due to the presence of these 7r-domain 
walls, the phason excitation propagating along the helical 
axis now “feels” a periodic perturbation, which has some 
deep implications for the phason dynamics. In particu
lar, the concept of a Brillouin zone (BZ) has to be applied, 
reflecting the presence of a periodic perturbation for 
phason propagation, which results in a Bloch nature o f 
phason eigenfunctions and a band structure o f the phason 
excitation spectrum, as shown in Fig. 1(d). The crossover
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c) d)

FIG. 1. The projection £(z) of the director field on to the 
smectic layers for (a) H =  0 and (b) H ^ H C, as calculated from 
the Eqs. (1) and (3). In zero field, the unperturbed helical sur
face has a continuous helical symmetry as shown in (a). For 
H ^ O  the distorted helical surface shows a discrete translational 
symmetry as shown in (b). (c) shows the phason dispersion in 
the unperturbed Sm C* phase, whereas (d) shows schematically 
the phason dispersion in a solitonlike deformed Sm C* phase.

from the plane wave to the Bloch-like phason dynamics is 
very similar to the crossover from the plane wave dynam
ics of an electron in a constant potential to the Bloch- 
wave dynamics of an electron in a periodic crystal lattice. 
Whereas in the case of phason propagation an external 
magnetic field breaks the continuous helicoidal symmetry 
of the Sm C* phase, the presence of a periodic crystal po
tential breaks the continuous translational symmetry.

The aim of this paper is to present our experimental re
sults of the magnetic-field-induced band structure of the 
phason excitation spectrum. We present a theoretical 
description of phason dynamics in an external magnetic 
field, which is an extension of the theoretical treatments 
of Sutherland,8 Fan, Kramer, and Stephen,9 Parsons and 
Hayes,10 and Yamashita, Kimura, and Nakano.11 We 
discuss the observability of the phason spectrum with 
quasielastic light-scattering spectroscopy and dielectric 
response measurements. The experimental part gives a 
detailed description of the high-magnetic-field experi
ments in the Sm C* phase of a mixture of 35% of chiral 
and 65% of racemic liquid crystal 4-(2'-methylbutyl)-

phenyl 4'-rc-octylbiphenyl-4-carboxylate (CE-8 or 8SI) 
and presents the results of measurements that have been 
performed up to the highest accessible field of 14 T in the 
present setup.

II. THEORY

The dynamics of the Sm C* phase of ferroelectric 
liquid crystals in external fields is conveniently described 
within the Landau thermodynamic potential,12 where the 
nonequilibrium order parameter £(r,i) is the projection 
of the long molecular axis onto the smectic planes

Çl(z,t) = d cos<t>(z,t) , • (1)

We neglect the electric polarization terms and assume 
that the Sm C* phase is homogeneous in the plane. 
In the constant amplitude approximation the phase 
dependent part of the nonequilibrium free energy density 
g(z, t )  of the Sm C* phase in an external transverse mag
netic field H =  (0 ,i/,0 ) is expressed as

g(z , t )=-
Ò Z

a ou ,«
dz

j A x f f  0 sin<P(z, t ) . (2)

In the above expression, A is the coefficient of the 
Lifshitz term, K 3 is the torsional elastic constant, and A x  
is the diamagnetic anisotropy, which is assumed to be 
positive. The minimization of g(z, t)  with respect to 
<I>(z,i) leads to the well-known static solution <ï>o(z ) of the 
sine-Gordon equation12 in the form of a 7r-soliton lattice:

sin<£>0(z) = sn(u,k) (3)

Here sniu,k)  is the Jacobian sine amplitude of the argu
ment u =z / (Çk) ,  ^ ^ / k ^ / í Ax H 2) is the magnetic 
coherence length, and k is the modulus of Jacobian ellip
tic functions. It is determined by the magnitude of the 
external field and satisfies the equation

Hk = ~ - E ( k ) ,  H c = —  V % /A *  . 
t l c P 0

(4)

Here, H c is the critical magnetic field for the unwinding 
of the helix, E(k )  is the complete elliptic integral of the 
second kind and p 0 is the period of the helix in the unper
turbed Sm C * phase.

The nonequilibrium phase of the order parameter is 
written as

<E>(z,i) =  O0(z) +  ô<ï>(z,i) , (5)

where 04>(z,i) is a small fluctuating part of the phase of 
the order parameter. After applying the Landau- 
Khalatnikov equations of motion to the nonequilibrium 
g(zyt ), the fluctuating part of the phase of the order pa
rameter is expressed as

8<I>(z,i) =  'P(z)e - t / r i H ) (6)

This is an overdamped phase excitation with the relaxa
tion time r ( H ), propagating along the z direction. By
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linearizing the Landau-Khalatnikov equations in 'P(z), 
one obtains Lamé’s equation of order one for the eigen
vectors of the phase fluctuations amplitude u ):

d 2V 
d u2

4- [h — 2/c2sn2(w,/c)]4/= 0  . (7)

Here h = k 2{^2y / [ t(H)K3] + 1} is the eigenvalue, which 
determines the relaxation time r(H) of the excitation and 
y  is the rotational viscosity of the Sm C* phase. It is in
teresting to note that this equation can be found in the 
description of the dynamics of very different physical sys
tems, such as superconductors,13 light propagation in 
periodic dielectric structures,14 quantum theory of the 
band structure of solids,8 incommensurate crystals,15-19 
and fluctuations of the order parameter in chiral nemat
ics.9-11

The general solution of Lamé’s equation of order one, 
which is in a natural way represented by a form of Bloch 
wave, was reported by Hermite20 in 1872. Later on, a 
clear physical interpretation of the eigensolutions and ei
genvalues was given by Sutherland8 and Yamashita, 
Kimura, and Nakano11 for different physical systems. 
The general solution 'P(m) of Lamé’s equation of order 
one is

|T „  . H ( U - U 0 )  — u Z ( U q )ty(u)cc----e 0
0 (t<)

(8)

where H ( u ) y 0(w), and Z( u )  denote Jacobi’s eta, theta, 
and zeta functions. The relaxation rate r ~ l(H) of the 
corresponding overdamped excitation is determined by 
the eigenvalue h of Lame’s equation and is given by

r- H H , u 0) = ̂ L ^ - d n 2(u0) , 
y k

(9)

where d n ( u ) is the Jacobi’s Ô amplitude. From Eqs. (8) 
and (9) one immediately observes the role of the parame
ter u0. It determines the wave vector q=(0,0,ç) of the 
excitation through the value of Z ( u 0) in Eq. (8) and the 
value of the relaxation rate through Eq. (9). It thus deter
mines the dispersion relation for phason excitations and 
ascribes the wave vector q to the eigenfunction q(u ).

Because of the translational symmetry of Lamé’s equa
tion, the eigenvalues ^ q(u) must have the form of a 
Bloch wave W q(t)  = vqe iqT, which transforms as

'P?(r+R) = %(r)ei<lR (10)

when the system is translated over a lattice vector R. 
The above condition restricts the choice to pure imagi
nary values of Z(m0), or, what is the same:21 
Re(u0) = n * K (k), n GZ. Here K( k )  is the complete el
liptic integral of the first kind, which is the quarter 
period of the Jacobian elliptic functions. It is connected 
to the magnetic-field-dependent period p(H)  of the heli
cal structure

p ( H ) = p 0 K(k ) E(k ) (11)

The explicit connection between u0 and the wave vector q 
can be obtained after considering the transformation

properties of the eigensolution ^(w). The magnitude of 
the lattice vector |R| is equal to 2K,  which is the period 
of the potential term sn2(w) in the Lamé’s equation, so 
that translational properties of the eigensolution with a 
wave vector q are

± i i r — 2 K Z ( u n )V q( u +2 K)  = V g(u)e ( 12)

Remembering that the translation over I K  in the reduced 
coordinate u also represents the translation in the z direc
tion over p ( H ) / 2, one obtains from the Eq. (12) the ex
pression for the wave vector of the eigensolution

. . . 2 K ( k ) - (1 ± i -------- Z ( u 0)
I T

(13)

Here we have introduced the wave vector of the Sm C* 
phase, qc=2ir/p.  Because of the periodic properties of 
the Jacobi’s Ç function Z (u + 2 K) =Z ( u ) ,  relevant values 
of u0 are Re(w0)= 0  and Re(u0)=K.  It can also be 
shown that these two intervals of the parameter u 0 corre
spond to two distinct branches of the phason excitation 
spectrum

Re(w0)= 0  • • • the opticlike branch , (14a)

Re(w0)= ^  * * * the acousticlike branch . (14b)

Because of the quasiperiodic properties of Z(u) ,  the 
analysis can be further limited to the interval: 
Im(w0)£ (  — K' ,K' ) ,  where K ’(k) is the associated com
plete elliptic integral of the first kind. It can be shown, 
that this interval corresponds to the phason dispersion in 
the first Brillouin zone (BZ) and the periodic properties of 
Jacobi’s f  function reflect the periodic properties of the 
phason dispersion relation in the reciprocal space. Here 
the first Brillouin zone is introduced as the interval 
( — qc>qc ) iR the reciprocal space. The introduction of the 
Brillouin-zone concept for director field excitations thus 
reflects the appearance of the periodic potential term 
sn2( u ) in the Lamé’s equation, which breaks the continu
ous helicoidal symmetry of the undistorted Sm C* phase.

A. The opticlike branch of the phason excitation spectrum

Let us first consider the phason-dispersion relation in 
the case when Re(w0)= 0  and Im(w0)= <y0E( — K \ K ' ) .  
The wave vector for this branch of excitations is deduced 
from the Eq. (13) as

q = ±qc 1± 2K( k )
7 7

Z ( y 0, k ’)-
sn(y0, k ’)dn(y0,k' )

cn{y0,k' )

+ yoTT
2 K(k)K' l k )

(15)

whereas the corresponding relaxation rate is

t +HH)
_  Ay H 2 dn2(j>0,fe')

r  k 2 cn20>o,A:') ’

Here, k'  is the complementary modulus, k'  = V \ —k 2.

(16)
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In the limit of small yo~>0 that corresponds to the 
edge of the BZ [ q - + q c, see Eq. (15)], the dispersion rela
tion is

>qc : T + H H , q )  =  - ^ - ^ H 2 +
Y  k

K  3 k 2K 2 
r  (E - K ) 2

(q ± q c)2 ,

(17)

whereas the corresponding eigenfunction is in the 
form of an elliptic standing wave

Vq^q ^ S n i U y k )  , (18)

which is characteristic for the eigensolutions at the edge 
of the BZ. In the vicinity of the edge of the BZ, the 
dispersion relation for the opticlike branch is thus para
bolic and has a minimum at q c :

= q c : T + H H , q c ) =  ̂ - j ¿ H 2
y k

(19)

csi
U J )

z [ p ( H ) l

FIG. 2. The effect of the phason excitations on the order pa
rameter as calculated near H c from the Eqs. (3), (5), (18), (24), 
and (27). The solid lines correspond to the equilibrium phase 
profile <£0(z) whereas the effects of the phase excitations are 
shown by the dashed lines, (a) shows the opticlike mode at the 
edge of the BZ, superposed to the solitonlike deformed Sm C *  

phase. This mode represents the fluctuations of the shape of v- 
domain walls. It is a standing, solitonlike wave with the nodes 
at the centers of the domains, (b) The Goldstone excitation in a 
solitonlike deformed Sm C *  phase. This mode represents pure 
translation (or the sliding) of the solitonlike lattice as a whole, 
(c) The acousticlike mode at the edge of the BZ, superposed to 
the solitonlike deformed Sm C* phase. This mode represents 
coherent movement of the neighboring ir-domain walls, without 
the change of the shape of the domain walls. It is a standing, 
solitonlike wave with the nodes in between the two neighboring 
domain walls.

The effect of such an excitation on the projection £2 °f 
the helical structure is shown in Fig. 2(a). Here, the op
ticlike phase excitation of the form *Vq oc sn(w,/c) has been 
superposed to the helical structure which is deformed in 
a solitonlike manner. One can clearly see, that such an 
excitation represents the deformation of the shape of the 
TT-domain walls, whereas the position of domain walls 
remains unchanged.

The limit Re(u0)= 0  and \ m ( u 0) = y 0- + K '  corre
sponds to the limit of large wave vectors, as can be seen 
from the Eqs. (15) and (16). Here, the phason dynamics is 
unaffected by the external field:

q   ̂oo : r + ( H , q ) - q2 , (20)

whereas the corresponding eigenfunctions ^ q are plane 
waves.

B. The acousticlike branch of the phason excitation spectrum 
and the Goidstone mode

The acousticlike branch of the excitation spectrum is 
obtained in the case R t ( u 0) =K  and Im(w0)= ^ 0 
E ( — K' ,K' ) .  The wave vector is deduced from the Eq.
(13)

q  =  ± q c \ \ ±
2K(k) Z ( y 0,k' )  — k

(2 snO>0,/c')cn(.j>0,fc')
dnO>0,fc')

+ - I T

;yo2K(k)K' (k)  

whereas the corresponding relaxation rate is

■k2~Z--£1
dn2(j>0,fc')

(21)

(22)

In the limit y 0—*K', which corresponds to the center of 
the BZ (<7—►()), the dispersion relation can be written 
from Eqs. (21) and (22)

K 3
q - * 0 : T Z \ H , q )  =  — ( l - k 2) ^ - r q 2 ,

K 2
y  E 2 '

(23)

whereas the corresponding limiting eigenfunction is in a 
form of a standing wave

o^dn(Uyk) and r _ l( H ,0 )= 0  . (24)

Thus, for q  = 0  we get a zero-frequency (Goldstone) 
mode. The Goldstone excitation of the order parameter 
£(zyt) as calculated near the critical field is shown in Fig. 
2(b). It is interesting to note that it represents an excita
tion of the phase profile, which is equivalent to the 
translation or the sliding of the helix as a whole. Since 
translation costs zero energy, such an excitation has zero 
relaxation rate.

The parabolic phason-dispersion relation r Z l( H , q )  

near the center of the BZ is strongly influenced by the 
external magnetic field. In particular, the corresponding 
restoring elastic constant K 3 is renormalized by the mag
netic field
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K 3= K 3( l - k 2) ^ r  (25)3 3 E 2

and tends to zero near H c. This means, that the disper
sion of the acoustic branch becomes flat at the critical 
field H c.

The vicinity of the edge of the BZ (q—>qc ) is obtained 
in the limit The dispersion relation is then

q ^ q c: r Z \ H , q )  =
Y k L

*3 (1 - k 2)k2K 2(k) 2
r  [E - ( \ - k 2)K{k)}2 q ~ q°

(26)

and the eigensolution is again in the form of an elliptic 
standing wave

^ ^ c n l t t , ^ )  . (27)

At the edge of the BZ, the relaxation rate of the acoustic 
mode is thus

q = q c : rZHH,qc) = ^ ^ j ^ H 2 . (28)
7 k L

Figure 2(c) shows the acousticlike mode at the edge of the 
BZ, superposed to the static field-induced soliton lattice 
near the critical field. As one can see, this mode 
represents the coherent out-of-phase motion of the neigh
boring domain walls, whereas the shape of the domain 
walls remains unchanged.

C. The gap

From the Eqs. (19) and (28) we see that there are two 
distinct eigenvalues of the Lamé’s equation of order one 
at the edge of the BZ. This indicates that there is a 
magnetic-field-induced gap

G(H,qt )=T+l( H tqc ) - r Z l(Htqe) = ^ L H i , (29)
7

which separates the high-frequency, opticlike excitation 
branch from the low-frequency, acousticlike phason 
branch. Magnetic-field dependencies of the relaxation 
rates of the opticlike and the acousticlike modes at the 
edge of the BZ are shown in Fig. 3, as calculated from the 
Eqs. (4), (19), and (28).

The spectrum of the phason excitations in a solitonlike 
distorted Sm C* phase shows only one forbidden frequen
cy gap. The existence of a single forbidden frequency gap 
is here related to the particular form of the potential in 
the Lamé’s equation, F a sn2(u,k)  and is in sharp con
trast to the band structure of three-dimensional (3D) 
solids, where usually a large number of gaps exist.

The dispersion relation for the phase excitations, prop
agating along the helical axis of the Sm C* phase, distort
ed by a transversal magnetic field, is shown in Fig. 4. 
The dispersion was calculated for different field strengths 
from the Eqs. (4), (11), (15), (16), (21), and (22). Figure 5 
shows a 3D view of the phason dispersion surface 
r ~ l(Hiq)  in the region 0 < q < 2 q c and 0 < H < H C. One

2 -
x+1 (q=qc(H)

FIG. 3. The splitting of the phason mode at the edge of the 
Brillouin zone, calculated according to the Eqs. (4), (19), and 
(29).

can observe the evolution of a band gap G (if  ) at the edge 
of the zone, together with a shrinking of the size of the 
BZ, which is a result of the magnetic-field dependence of 
the period of the helical structure [Eq. (11)]. At the criti
cal magnetic field, the Brillouin zone shrinks to a single 
Goldstone mode at q = 0 , which disappears at Hc. Above 
the critical field, only one parabolic dispersion branch 
evolves from the opticlike phason branch

H > H C : r~HH,q)  = — q 2+ ^ - H 2 , (30)r r
which has a finite gap ( Ax / y  )H 2.

D. The role of a small transverse component 
of the wave vector

Due to the experimental restrictions in a light- 
scattering experiment, one usually observes phase excita
tions with a wave vector <l= (qx ,0fqz ), propagating at a 
small angle with respect to the helix. The phason disper-

q/qc(H=0)

FIG. 4. Phason dispersion, as calculated from the Eqs. (4), 
(11), (15), (16), (21), and (22) at different magnetic fields.
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FIG. 5. 3D view of a calculated phason dispersion 
as a function of an external field. Note the appearance of a gap 
near qc already at very small fields. Because of the numerical 
discreteness in H , the shrinking of the BZ near Hc is not com
plete.

sion for oblique propagation was considered recently5 
and it was found that the transverse component of the 
wave vector induces a splitting of the phason branch even 
in the absence of external fields. In order to elucidate the 
influence of the external magnetic field on the band gap 
in this situation, one obtains after an analysis similar to 
Ref. 5 an equation, describing the dynamics of phase ex
citations, propagating at a small angle with respect to the 
helix

- .-y  +  [ h — 2 k 2sn2(uyk ) ] ^
du

k 2
----- ^ [ K isn2( u , k ) + K 2cn2( u , k ) ] q ^ = Q  . (31)

A x H

Here K x and K 2 are splay and bend elastic constants for 
the 2D nematic field, respectively. In the limit of small 
qx , one obtains a first-order correction to the dispersion 
relation for phasons, propagating at small angles to the 
helical axis

T - l(q , H)  = T ~ l(qz, H)

1 ( 'Hg\Klsn2(u,k)  + K 2cn2( u , k ) \ y ij ) 2+7 <%T%> q*
= T - l{qz, H ) + - y q ï  . (32)

Here | ̂ q ) denotes the eigensolution of the unperturbed 
Lamé equation with the wave vector q = (0 ,0 ,#z), 
r ~ l(qz,H) is the corresponding relaxation rate, whereas

< v |/ |v )  = ƒ r i2 ) /(z W z W z .

From the above expression one can see that the correc
tion to the eigenvalue is always positive and removes the 
degeneracy of the eigensolutions even in zero field. The 
magnitude of the correction term depends on the normal

ized, space-averaged value of the combination of splay 
and bend elastic constants and can be easily evaluated at 
the edge and in the center of the BZ, where the eigen
functions obtain simple form sn(w,/c), cn(u,k),  and 
dn(u,k),  respectively. By taking K x/ K 2~ 4,22 one ob
tains at zero magnetic field a splitting of the order of 
A(qx ) ~ 0 A K {q 2 at the edge of the BZ. The influence of 
external magnetic field on the correction term is small. It 
can be shown that at the edge of the BZ and near H c, the 
relaxation rates of both modes increase slightly 
( —O.QIKt f2 increase up to the critical field), whereas 
near the center of the BZ a decrease of similar order is 
expected. As a consequence, the magnetic-field depen
dence of the magnitude of the band gap is only slightly 
perturbed by the presence of the qx component. In the 
experiment, this perturbation is less than 100 Hz in com
parison to the phason relaxation rates of « 1 .5  kHz.

III. OBSERVABILITY OF PHASON DYNAMICS

A. The wave vector of the phason excitation

In an experiment, such as quasielastic light scattering 
or dielectric response, one observes the excitations of the 
order parameter, and not directly the excitations of the 
phase of the order parameter. This has the consequence, 
that the wave vector, ascribed to a particular eigensolu
tion of the equation for the amplitude of the phase of the 
order parameter [Eq. (7)], is different from the wave vec
tor, ascribed to the excitation of the order parameter £. 
This can be easily seen from the ^  component of the or
der parameter, which is in the limit of small phase excita
tions

^  = cn( u , k ) - ' Vq(u, k) sn(u,k)e- ,MIi’,i) . (33)

Here ^ (i/j/c) is the eigensolution in a form of a Bloch 
wave y q=pqe iqz. After expanding sn(u,k)  in plane 
waves, one obtains

|,= c n  (u,k) + (wq+^ e ,i9+<ic>Z

+ vq- q e i{q~qc)z)e~,/T , (34)

where wq+q and vq- q are functions with a period
2K(k).  From the Eq. (34) we see, that the excitation of 
the phase of the order parameter with the wave vector q 
and relaxation rate r ~ l(Hyq) is observable as an excita
tion of the order parameter with the wave vector 
Q =  q±qc where qc =  (0,0,qc ). This means, that the Bril
louin zone of the observable is shifted by ±qc in the re
ciprocal space. This has the consequence, that, for exam
ple, in a light-scattering experiment, the Goldstone mode 
is observable near the critical wave vector qc, i.e., near 
the Bragg diffraction peak. Consequently, the band gap 
should be observable at zero scattering wave vector

q*=0 . .It should be stressed, that in the literature one en
counters very often rather loose use of the expression 
“the Goldstone mode.” This is in particular true for 
many dielectric measurements, reporting the observation
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of the Goldstone mode contribution to the dielectric 
response. In a dielectric experiment, the response of the 
system to the homogeneous (Q = 0 ) external field is mea
sured. As it can be seen from Eq. (34), the probing field 
with Q = q + q c= 0  couples to the phason mode with 
q = ± q c, thus measuring the response of the modes at the 
edge of the BZ, i.e., the acoustic or the opticlike mode. 
The true Goldstone mode, which is a zero-frequency, 
symmetry-restoring mode, is of course not observable in a 
dielectric experiment in a helicoidal structure. It is acces
sible only in a light-scattering experiment, where the 
wave vector of the excitation under observation is select
ed with the proper choice of the scattering wave vector.

B. Quasielastic light scattering on the phase fluctuations

Light scattering in spatially modulated, birefringent 
Sm C* is treated in the Born approximation and the Sm 
C* phase is considered as an optically uniaxial crystal. 
The eigenwaves of light propagation are thus linearly po
larized ordinary |k,cr) and extraordinary |k',7r) waves 
with the wave vectors k and k' and polarizations cr and 
7r, respectively. This approximation is valid at small 
values of the tilt angle 0 when the inhomogeneous part of 
the dielectric tensor is a small perturbation. It breaks 
down in the case of the degeneration of the eigenwaves,23 
which includes the light propagation along the helical 
axis and the propagation at a Bragg angle.

In a ferroelectric smectic liquid crystal, the excitations 
of the order parameter 8§(r,i) are strongly coupled to 
the excitations of the dielectric tensor ôe(r,i). As a re
sult, light is scattered by thermally excited order
parameter fluctuations and this scattering can be easily 
observed and analyzed with the quasielastic light- 
scattering technique. For example, an excitation of the 
order parameter ô£(z,i) results in fluctuations of the 
dielectric tensor components5

§ ^ ( 2,0  « ^ ( 2,0  , 0€yz(z,t)ccÇ2(z,t) (35)

and leads to a strong, depolarized scattering between the 
|k,cr) and |k,7r) waves. In the Born approximation the 
corresponding autocorrelation function of the scattered 
light intensity is proportional to the autocorrelation func
tion of the phase excitation The geometrical 
scattering cross sections for the optic and the acoustic 
modes are comparable in magnitude and do not depend 
strongly on the magnitude of the field except very near 
Hc. The difference in the magnitude of the scattering 
cross sections is introduced only through the mean 
square of the thermal amplitudes of both modes, which is 
in favor of the lower-frequency acoustic modes.

C. Linear electro-optic response

Whereas the quasielastic light-scattering spectroscopy 
allows for the determination of the dispersion relation for 
the order-parameter excitations, dielectric spectroscopy 
is a very useful probe for determining the susceptibilities 
of the soft, amplitude, and phase modes at Q = 0. In con
trast to the optical spectroscopy, dielectric spectroscopy 
suffers an inherent deficiency of probing rather thin,

bookshelf-aligned samples with a large surface area. 
Such a restricted planar geometry can, in principle, lead 
to the surface-induced band structure of phason excita
tions via the surface-induced deformation of the helical 
structure. In order to minimize the surface effects, it is 
appropriate to use the homeotropic geometry of the sam
ple, where the classical dielectric detection technique 
cannot be applied. This problem can be circumvented by 
an optical detection technique24 of the linear response of 
the Sm C* phase to a small external electric field. A 
small in-plane external electric field E0e lú)t is applied to 
the undistorted Sm C* phase in a homeotropic geometry. 
It couples linearly to the spontaneous polarization P and 
induces a small phase distortion b</)(z,t) with the ampli
tude6

00o(z)< 1
\ + i ( ( o y / K zq])

sin(qcz)  . (36)

The electric field thus couples to the phason mode with 
the wave vector qc at the edge of the Brillouin zone. This 
phase distortion results in the distortion of the dielectric 
tensor at optical frequencies, which corresponds to a 
small tilting of the optical axis of the Sm C* phase in a 
plane, perpendicular to the direction of the applied field. 
Electric-field-induced tilt of the Sm C* optical axis can 
be easily detected with optical conoscopy. From the fre
quency dependence of this linear electro-optic response 
one can determine the relaxation rate (K^/y)q^  of the 
phason mode at the edge of the BZ.

The situation is somewhat different in a distorted hel
icoidal structure. First, the single mode at the edge of 
the BZ splits into an acoustic and opticlike mode, and 
second, in view of the periodicity of the phason- 
dispersion relation, an infinite number of higher- 
frequency opticlike modes should appear at the edge of 
the BZ. Nevertheless, the relaxation frequency of the op
ticlike mode, originating from the second BZ is typically 
an order of magnitude higher than the relaxation fre
quency of the two lowest modes and can be neglected.

The contributions of the acoustic and lowest lying op
ticlike mode to the electro-optic response of a distorted 
helicoidal structure can be calculated from the free- 
energy density, which includes the electric polarization 
terms.6 This analysis can be simplified by considering the 
electric polarization properties of the phason excitations 
at the edge of the BZ. By remembering that any excita
tion of the director field ô£(z,i) is also an excitation of 
the polarization field 6P(z,i), the relation between the 
fluctuations of the polarization field and the director field 
can be obtained from the free-energy expansion6 as

bpx = € ^ - ^ - e C H y ,

bPy = e t i - ¿ - + e C H x •

(37a)

(37b)

Here fi and C are the flexo- and piezoelastic coefficients 
and e is the high-frequency dielectric constant of the Sm 
A phase. In the limit of small fields, the response of the 
Sm C* structure to the spatially homogeneous external
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electric field is determined by the coupling of the field to 
the phason excitations, which represent space homogene
ous fluctuations (Q = 0 ) of the electric polarization field. 
For the two modes at the edge of the BZ we obtain the 
space-averaged polarization ( P ) (or the space- 
homogeneous polarization):

The acousticlike mode: (&PX ) eC ( c n 2(u9k))¥=Q ,

(38a)

( 0Py ) = 0  , (38b)

The opticlike mode: ( bPx ) =  0 , (39a)

{ bPy ) <zeC( sn2(u,k)  )¥=0 .

(39b)

For the magnetic field applied in the y  direction, the 
acoustic mode represents a collective excitation with a 
space homogeneous polarization (P ) lH , whereas for the 
optic mode the polarization is (P )||H . The above rela
tions thus enable selective probing of the optic or the 
acousticlike mode via the polarization-selection rules .

IV. EXPERIMENT

The quasielastic light scattering and electro-optic 
response of the Sm C* phase in a transverse magnetic 
field were measured in a setup, fitting into the 60-mm 
bore of a Bitter magnet. The geometry of the quasielastic 
light-scattering experiment is shown in Fig. 6. He-Ne 
laser light was expanded via L x and L 2 to a 6-mm-diam 
beam and then slightly focused to «  100 /¿m spot in the 
liquid crystalline sample (5), placed in a thermostated 
oven (OV) in the center of a Bitter magnet (BM). A sys
tem of adjustable miniature Al mirrors AM! and AM2 
was used for fine alignment of the beam. The polariza
tion of the incoming beam was selected by the polarizer 
POL, whereas the incidence angle was defined by the ro
tation of the sample around the direction of the field.

The scattered light in the quasielastic light-scattering ex
periment or the transmitted light in the electro-optic 
measurements were collected with an optical system 
formed by an adjustable mirror AM3, pinhole (PINI), 
lens (L3), analyzer (AN), tilted mirror with a pinhole 
(M4), and an eyepiece (EY). The collecting optics was 
mounted on a rotatable arm and was fine aligned to the il
luminated spot with the mirror AM3. The scattering 
plane of the experiment was thus perpendicular to the 
direction of the magnetic field.

The illuminated spot was observed with the lens L 3 
and the eyepiece EY and was fine aligned to the «  100- 
f im pinhole in the tilted mirror by translating the lens L 3. 
After inserting the pinhole PIN 1, the scattered light from 
less then one coherence area was transmitted through the 
pinhole in the tilted mirror and captured into a mul
timode fiber (F). The collected light was led to the pho
tomultiplier (PMT), placed far away from the magnet and 
connected to the photon counting unit and the digital 
clipped autocorrelator.

In the measurements of the electro-optic response, the 
light intensity, transmitted through the sample placed be
tween crossed polarizers was detected. The polarization 
of the light was set at 45° to the scattering plane, whereas 
the angle between the sample normal and the light direc
tion was set to the half-intensity point of the conoscopic 
figure. The probing electric field was applied in the direc
tion of the magnetic field, and the magnitude and the 
phase of the transmitted light intensity was detected with 
a lock-in amplifier.

Besides the light-scattering and linear electro-optic 
response measurements, the magnetic-field dependence of 
the period of the helix was determined from the Bragg 
diffracted peaks. As shown by Garoff, Meyer, and 
Barakat,25 the Bragg diffraction peak can be observed as 
strong static depolarized scattering in the forward direc
tion in a homeotropic sample with sufficiently long period 
of the helix. This depolarized, forward scattered peak 
was indeed observed by recording the angular depen-

RP POL M L2 AMj i -  PMT
.........................  C p* I M4 EY 1

i PIN-2 I /  /

- v - i
l /  PIN-1

»I
CORRELAI

I(T )

FIG. 6. The setup. 
Definitions: L, laser; RP, polar
ization rotator; Pol, polarizer; 
Lj, L 2, L 3, lenses; AMl5 AM2, 
AM3, adjustable mirrors; OV, 
oven; 5, sample; PIN-1, PIN-2, 
pinholes; AN, analyzer; M A mir
ror; EY, eyepiece, F, fiber; PMT, 
photomultiplier; BM Bitter mag
net.
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dence of the transmitted light with ordinary incident and 
extraordinary outgoing polarizations or vice versa.

A mixture, consisting of 35% of pure chiral liquid 
crystal 4-(2'-methylbutyl)phenyl 4'-n-octylbiphenyl-4- 
carboxylate (CE-8 or 8SI) and 65% of racemic liquid 
crystal CE-8R was studied in the experiment. In view of 
the rather large period of the helix in this mixture, the 
critical field for helix unwinding was well below the 
highest accessible value of 14 T. Homeotropic aligned 
samples of 120 fim  thickness were prepared between two 
clean glass plates, treated with dimethyloctadecyl-3- 
(trimethoxysilyl)propylammonium chloride. In some 
samples, two copper wires were added for the electroop
tic response measurements. The quality of the alignment 
was carefully checked and only defect-free samples were 
used in the experiment.

Because of rather poor temperature stability ( ±0.1 K) 
of the setup, the experiment was performed 3 K below 
the Sm »Sm C* transition point. The measurements 
were performed by slowly increasing the magnetic field in 
steps of 0.1-0.2 T, followed by 5-10 min intervals to 
reach the new equilibrium state. The evolution towards 
the new equilibrium was clearly observable from the time 
evolution of the values of the measured phason relaxation 
times and the scattered light intensity. The response of 
the sample was qualitatively different in the vicinity of 
the critical field for the helix unwinding. Here, the sys
tem response to a 0.1-T step did not settle down even 
after 10 min, indicating a very slow unwinding process of 
the Sm C* phase. In some samples, a very peculiar 
behavior of the sample was observed near H c. When ob
serving the illuminated spot through the eyepiece, a small 
increase of the field was accompanied by periodic changes 
of the intensity of the illuminated spot that persisted for 
minutes. The period of this “strobing” was of the order 
of a second. Beyond the critical field, the equilibrium 
was relatively quickly achieved. These observations lead 
to the conclusion, that measurements of the dynamics of 
the helicoidal phases in external fields should be per
formed very carefully and slowly, thus assuring that the 
system settles in the equilibrium state.

Quasielastic light-scattering measurements were per
formed with the incoming ordinary and the scattered ex
traordinary polarizations. The small angle ( «  1 deg) of 
the collecting optics with respect to the transmitted beam 
assured that the quasielastic light-scattering experiment 
was always in the heterodyne regime due to the parasitic 
elastic scattering from the imperfections in the sample. 
The scattering wave vector q5 was calculated from the 
optically uniaxial model of the Sm C* phase and has in 
this geometry a small transverse component. This as
sures that the very vicinity of the Bragg peak is avoided 
and introduces a small correction to the phason relaxa
tion rates. All the data on the phason dispersions were 
correspondingly corrected with respect to this small 
transverse component. Below the critical magnetic field, 
the signal-to-noise ratio of the measured autocorrelation 
function of the scattered light intensity in the Sm C* 
phase was always better than 102:1, which allowed for the 
detailed analysis of the observed signal. In contrast to 
our previous measurements of the phason dispersion in

helicoidal phases,4,5 which were performed in the vicinity 
of the Sm A —>Sm C* transition, the observed autocorre
lation function could clearly not be fitted to a single ex
ponential decay function. A very good fit was obtained 
with a two exponential decay function, where the intensi
ty of the low relaxation rate signal was several times 
larger than the magnitude of the high relaxation rate sig
nal. Measurements of the dispersion relations for both 
relaxation rates revealed the origin of the spurious high- 
frequency signal. Whereas the dispersion minimum for 
the low relaxation rate signal coincided with the position 
of the first Bragg peak (qs= qc), the minimum of the 
dispersion of the high-frequency signal was at the posi
tion of the second Bragg peak (qs =2qc ), which is observ
able at these temperatures. The reason for this peculiar 
behavior is in the very specific form of the dielectric ten
sor f(r) of the Sm C* phase which has two Fourier com
ponents e{qc ) and e(2qc).25 Very near Tc, where the tilt 
angle is small, the e(qc) component is dominant, because 
it is proportional to the tilt angle, whereas the e(2qc ) 
component is negligible, since it is proportional to the 
square of the tilt angle.25 By lowering the temperature, 
the tilt angle increases and the component e(2qc) be
comes more important and contributes to the scattering 
cross section, which explains the observed two- 
exponential decay. The presumption that the origin of 
the two-exponential decay is in the peculiar form of the 
dielectric tensor of the helicoidal structure is further sup
ported by the one-exponential decay function obtained 
beyond the critical field, where the phase is spatially 
homogeneous. On the basis of the observed dispersion re
lations, we concluded that the low relaxation rate signal 
can be attributed to the acousticlike phason modes. The 
contribution of the opticlike phason modes, which is ex
pected to be small because of their high relaxation rate, is 
covered by the above mentioned spurious signal and can
not be resolved. It is only observed as a small signal 
above the critical field, where the low-frequency signal 
from the acousticlike modes disappears.

V. RESULTS AND DISCUSSION

Dispersion relations for the acousticlike phason branch 
as obtained at different field strengths are shown in Figs. 
7(a)-7(d), respectively. Below the critical field H c [Figs. 
7(a)-7(c)], one can clearly see that the center of the 
dispersion relation shifts to smaller wave vectors upon in
creasing magnetic field. This is consistent with the ex
pected increase of the helical pitch and consequent de
crease of the width of the BZ. At the critical magnetic 
field, the signal from the acousticlike phason modes 
disappears and a sudden abrupt change from 
r _1(Q = 0)«800  Hz to r _1(Q = 0)«3000  Hz is observed 
[Fig. 7(d)]. The dispersion becomes centered at Qz = 0, 
which indicates that the signal originates from the optic
like phase fluctuations in the unwound, spatially homo
geneous Sm C phase. This is furthermore confirmed by 
the gradual increase of the phason relaxation rates upon 
increasing magnetic field, which is in agreement with 
theoretical predictions.
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The observed dispersions were fitted to a simple para
bolic dependence r ~ l=z[K3(H) / y][Qz — qc(H)]2, where 
K 3{ H ) = K 3{ l —k 2)(K2/ E 2) is the magnetic field renor
malized torsional elastic constant. This approximation is 
valid only near the bottom of the acousticlike phason 
branch and breaks down near the edges of the BZ. The 
results of the fitting procedure with K 3{H) and qc(H) as 
the fitting parameters, are listed in Table I, together with 
theoretical estimates for H c — 8 T. Here we obtain zero- 
field value K 3/ y  — \. 13X103 jum2s ~ 1, which is compara
ble to the values, obtained in pure CE-8.5

FIG. 7. Dispersion of the acousticlike phason branch at 
different magnetic fields. Solid lines represent the best parabolic 
fit r - l = (K3/r)[Qz - q c(H)]2 with (a) K 3/ y  = 1.1X103 / /m V 1 
and p0 =  5.7 ¿im at H — 0, (b) K 3/ y  = 0.91X 103 /¿m2s-1 and 
p =6.0 fim at H = 6.05 T, (c) K 3/y=z0.16X 103 /xms-1 and 
p =  6.2 /¿m at H  =6.65 T and (d) K 3/ y = 0 . 6 X  103 /xm2s_1 and 
qc=0  at H  — %. 1 T. The inset to (d) shows the phason disper
sion at 11.2 T.

TABLE I. Results of the fitting procedure with K 3{H) and 
qc{H) as the fitting parameters together with theoretical esti
mates for Hc =  8 T._____________________________________

H / H c
K 3(H=£0)/K3(H=0)  

Theory Exp.
p(H=£0)/p(H=0)  

Theory Exp.

0 1 1 1 1
0.75 0.75 0.85±0.09 1.07 1.05 ±0.07
0.83 0.61 0.67+0.07 1.13 1.08±0.07

As one can see from Table I, the agreement with the 
theoretically predicted values is good within the experi
mental accuracy and clearly shows the “flattening” of the 
acousticlike phason branch upon increasing magnetic 
field. Beyond the critical magnetic field the phason 
dispersion could not be determined very accurately be
cause of the decreased s / n  ratio of the signal of the 
phason branch and the increase of the relaxation rates 
with increasing magnetic field. This results in a rather 
large absolute error (« 1  kHz at 14 T) of the relaxation 
rates, which is comparable with the overall magnitude of 
the phason dispersion in the angle of accessible wave vec
tors. Whereas the above results confirm the theoretically 
predicted flattening of the acousticlike phason branch, 
the behavior of the opticlike phason mode at Qz — 0 was 
probed by the frequency dependence of the linear 
electro-optic response in the geometry E||Hlqc. The ob
served frequency dependence of the response in the range 
100 Hz to 100 kHz was fitted to Eq. (36) with the relaxa
tion rate r ~ l(Q=0)  = (K3/ y ) q c as a fitting parameter. 
In contrast to the observed decrease of the relaxation 
rates of the acousticlike phason modes, an increase of the 
relaxation rates upon increasing magnetic field was ob
served for the opticlike modes in the linear-response mea
surements.

Normalized relaxation rates of both acoustic- and op
ticlike phason modes at Q = 0 , as determined from the 
quasielastic light-scattering and linear-response measure
ments are shown in Fig. 8(a) together with the period of 
the helix in Fig. 8(b). One can clearly see the band gap 
G(H)  emerging in between the optic- and acousticlike 
phason branches. By comparing the magnetic-field 
dependence of both relaxation rates with the magnetic- 
field dependence of the period of the helix, one observes a 
striking difference. Whereas the period of the helix is al
most not influenced up to 6 T, both relaxation rates 
change considerably already at very small fields. Both 
magnetic-field dependencies were fitted to the Eqs. (19) 
and (28), shown as a solid line in Fig. 8(a). The fit yields 
A x / y —^2 T”2s_1 and Hc—9.1 T for the acousticlike 
branch in comparison to Â f/7  =  48 T -2 s~ 1 and Hc =  8.1 
T for the opticlike branch. Whereas the Ax / y  values are 
very close, the discrepancy in the critical fields is attribut
ed to the fact that the measurements were done in 
different samples with slightly different periods p Q of the 
helix. Since zero-field phason relaxation rates at Q = 0  
are proportional to p¿T2» this also explains a small 
difference in the zero-field relaxation rates of the acous
ticlike mode (1.6±0.2 kHz) and the opticlike mode



49 PHASONS AND BROKEN SYMMETRIES IN FERROELECTRIC . 9309

FIG. 8. Magnetic-field dependence of the (a) normalized re
laxation rates of the optic and acoustic phason mode at Q = 0  
and (b) period of the helix. Solid lines in (a) represent the best 
fits by Eqs. (19) and (29) with A ^ /y =48 T“ 2s_1 and Hc= 8.1 T 
for the optic phason mode r+^O) and A ^/y  =  42 T~2s_1 and 
Hc=9.1 T for the acoustic phason mode rl^O ). The solid line 
in (b) represents the constant amplitude approximation fit by 
Eq. (11) with/>0 = 6.2¡im and Hc= 8.6 T.

( 1.4±0.2 kHz).
The magnetic-field dependence of the band gap, 

separating the acousticlike and the opticlike phason 
branch at Q = 0  is shown in Fig. 9 up to the highest ac
cessible field of 14 T. Here, for the last two points at 11.2 
and 14 T, an average value of the phason relaxation rates

H2[T2]
FIG. 9. Magnetic-field dependence of the gap G( H), separat

ing the optic and acoustic phason modes at Q =0, Tc — T = 3 K 
as determined up to 14 T. The difference between the normal
ized optic and acoustic phason relaxation rates was multiplied 
by the mean value of 1.5 kHz for both relaxation rates at zero 
field to obtain G(H).

in the measuring range 0.1 f i m~ l <QZ<1.2 ¿on-1 was 
taken. The solid line in Fig. 9 represents the best fit of 
measured G(H)  to Eq. (30) and yields A ^/y =  50 
T_ 2s_1, which is in very good agreement with the Ax / y  
values, as obtained from the data in Fig. 8. From the 
measured values of K 3 / y  =  1.1X IO3 fim 2 s ~1 and 
A x / y  — 50 T ~ 2 s ' 1 we obtain K 3/ L x ~ 2 2 T 2 fim 2. This 
is in very good agreement with the value K 3/ & x ~ 2 1 T 2 
/¿m2, as obtained from the expression for the critical mag
netic field [Eq. (4)], where / i c« 8 T and p0 =  5.7 /im. We 
may thus conclude that the consistency of the experimen
tal data is very good.

Finally, we would like to extend the discussion of 
magnetic-field-induced phason band structure to the 
influence of an external electric field on the spectrum of 
phase excitations by using simple symmetry arguments. 
Although treated previously,26 there is still a lack of a 
clear physical interpretation, which would elucidate rath
er inconsistent experimental data.27,28 It can be shown29 
that in the presence of the ferroelectric coupling term 
—P-E, the Landau-Khalatnikov equation, describing the 
propagation of phase excitations with wave vector 
q =  (0,0,#) is essentially the Lamé’s equation of order 
one. Therefore, the analysis of the eigenfunctions and ei
genvalues is similar to the magnetic-field case, with one 
fundamental difference. Whereas the period of the 
sn2(uyk) term in the Lamé’s equation is equal to p ( H) / 2  
in the case of magnetic-field coupling, it equals p(H)  in 
the case of the linear ferroelectric coupling. This has an 
important implication on the size of the BZ and on the 
location of the electric-field-induced gap. As we have 
shown, the size of the BZ in the magnetic-field case is 
—qc < q < q c and the band gap is observable at Q = 0  in 
the laboratory system, as shown in Fig. 10(a). In view of 
the twice as large periodicity of the potential term in the 
case of ferroelectric coupling, the corresponding BZ is 
qc/ 2 < q  <qc /2  and the band gap appears at Qz =qc /2  in 
the laboratory system, as shown in Fig. 10(b). The 
electric-field-induced band gap is thus observable only in 
the light-scattering experiment and cannot be observed 
with dielectric spectroscopy. Nevertheless, some specific 
changes of the phason relaxation rate should be observ
able in a dielectric experiment. A simple estimation of 
the electric-field effect on the lowest-lying phason mode 
at Q = 0  reveals that its relaxation rate is nearly field- 
independent up to the vicinity of the critical field where it 
drops for approximately 20%, as shown schematically in 
Fig. 10(d). This is in sharp contrast with the reported 
dielectric experiments, where usually a monotonous in
crease of the relaxation is observed upon increasing elec
tric field. The exception is the experiment where the op
tical detection method was used27 and a nonmonotonous 
field dependence of the relaxation rate, resembling the 
one expected, was observed near the critical electric field. 
We believe, that in these experiments, the geometry and 
the strong influence of the surface anchoring plays a ma
jor role. An experiment with the biasing electric field in a 
homeotropic geometry and using the optical detection 
techniqije would probably reveal the true phason dynam
ics, unperturbed by the surface anchoring.

We conclude the discussion of the phason dynamics
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FIG. 10. Phason excitation spectrum in the case of the (a) di
amagnetic and (b) ferroelectric couplings. The corresponding 
field dependencies of the relaxation rates at Q =  0 are shown in 
(c) and (d), respectively.

FIG. 11. The (H, T ) phase diagram of a ferroelectric liquid 
crystal in an external magnetic field. The zero-frequency, 
symmetry-restoring Goldstone mode exists only in the region 
below Tk{H) and below the critical magnetic field HC{T).

should appear in the Sm C* phase, as is indeed observed 
in the experiment. For 0, the field reduces the point 
symmetry of the Sm A phase to a discrete symmetry Z)2, 
whereas the continuous translational symmetry of the Sm 
A phase is preserved. If the Sm A phase is cooled across 
the k  line at fields, lower than the Lifshitz field, H  < H L, 
as indicated in Fig. 11, the continuous translation symme
try o f the Sm A phase is broken because of the appearance 
of 7T-soliton walls in a distorted Sm C* phase. The Gold
stone mode should thus exist, recovering the broken 
translation symmetry of the Sm A phase. On the con
trary, if we cool the Sm A phase across the À, line at 
fields, higher than the Lifshitz field, H > H L> only the 
discrete point group o f the Sm A phase is broken, D 2—+C2, 
whereas the continuous translation symmetry is 
preserved. The Goldstone mode should not exist at fields 
higher than the critical field, as is indeed observed.

and broken symmetry in a ferroelectric liquid crystal 
with a question, which is of particular interest: Is there 
some fundamental reason why the gapless, zero- 
frequency phason mode exists only below the critical field 
for helix unwinding, whereas it disappears as soon as the 
helix is unwound by the field? Since the existence of a 
gapless phason, which is here a zero-frequency, 
symmetry-restoring Goldstone mode, is related to the 
spontaneous symmetry breaking in the system, we have 
to consider the (H,T)  phase diagram of a ferroelectric 
liquid crystal in an external magnetic field, which is 
shown in Fig. 11. If we neglect the periodic smectic lay
ering, the Sm A phase has continuous translational sym
metry, as well as the continuous D ^ rotational symme
try, which can be spontaneously broken when the system 
is cooled across the second-order phase transition À, line, 
i.e., the 7 \  (H) line. For H  = 0 , the continuous transla
tional symmetry of the Sm A phase is spontaneously bro
ken by the appearance of the helical Sm C* structure. In 
addition, the continuous D ^ rotational symmetry is bro
ken to a discrete C2 symmetry. According to the Gold
stone theorem,2,3 a zero-frequency Goldstone mode

VI. CONCLUSIONS

We have shown that the observed evolution of the 
band structure of the phason excitation spectrum in the 
Sm C* phase in a transverse magnetic field can be very 
well understood on the grounds of simple symmetry argu
ments and similarities to other systems. In particular, 
these arguments show in a natural way the analogy be
tween the dynamics of a phason excitation in a distorted 
Sm C* phase and the motion of a particle in periodic 
crystal potential. The underlying mechanism, which is 
responsible for the similarity of both systems, is a break
ing of a continuous symmetry. Whereas the magnetic 
field breaks the continuous helical symmetry of a perfect, 
undistorted Sm C* structure by the creation of 7r-soliton 
walls, the periodic crystal lattice potential breaks the 
continuous translational symmetry. In contrast to the 
motion of a particle in a crystal lattice, the magnitude of 
the solitonlike deformation in a ferroelectric liquid crys
tal can be easily controlled by the magnitude of the exter
nal magnetic field at any given temperature.
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q/qc ( H )

FIG. 1. The projection £(z) of the director field on to the 
smectic layers for (a) H — 0 and (b) H ^ H C, as calculated from 
the Eqs. (1) and (3). In zero field, the unperturbed helical sur
face has a continuous helical symmetry as shown in (a). For 
H-AQ the distorted helical surface shows a discrete translational 
symmetry as shown in (b). (c) shows the phason dispersion in 
the unperturbed Sm C* phase, whereas (d) shows schematically 
the phason dispersion in a solitonlike deformed Sm C* phase.



FIG . 5. 3D view of a calculated phason dispersion r~'(q,H)  
as a function of an external field. N ote the appearance of a gap 
near qc already at very small fields. Because of the numerical 
discreteness in H,  the shrinking of the BZ near Hc is not com
plete.


