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1. Introduction

O vo i  che s ie te  i n  p ic c io le t ta  barca, 
d es id e ro s i  d ’ascol tar,  s egu i t i  

die tro  al m i o  legno che c a n ta n d o  varca,  
to r n a te  a r i v e d e r  li v o s t r i  liti: 

n o n  v i m e t t e t e  i n  pe lago,  che,  fo r se ,  
p erd e n d o  m e ,  r im a r r e s t e  s m a r r i t i .

(D a n te ,  Div .  C o m m . )

String Theory has enjoyed a growing in terest and has a ttrac ted  the a tten tion  of 

scientists over the  last tw enty years because it is a leading candidate for deriving all 

the  four interactions from a single framework.

The S tandard  M odel, bu ilt in the seventies as a theory  of point-like particles, is the 

best working model th a t we have a t our disposal a t the  m om ent for electro-m agnetic, 

strong and weak in teractions, b u t it is not com pletely satisfactory. F irs t, because 

gravity  is left out: in fact, there is a huge incom patibility  between quan tum  mechanics 

and general relativity, due to  the fact th a t their union results in a non-renorm alizable 

theory, and th is makes the  inclusion of gravity  impossible. Secondly, the S tandard  

Model has too m any free param eters th a t have to  be determ ined em pirically and 

no-one knows why, for example, the gauge group is w hat it is.

S tring Theory addresses b o th  these problems. F irst of all, it includes quantum  

gravity in a consistent way, where General R elativity  is re-obtained as a low-energy 

approxim ation. Secondly, it does not have any free dimensionless param eter (there is 

only one dimensionful param eter, the tension of the  string  or equivalently the  string 

constant a ',  which sets the  scale for the  theory). The S tandard  Model param eters 

are still not determ ined, bu t re in terpreted  as vacuum  expectation values (v.e.v.'s) 

of several “m oduli” fields. These fields specify couplings and background and are 

not fixed by the theory, since by definition they  have a flat poten tia l (assuming 

Supersym m etry, see below). One of them  is the dilaton field whose expectation value 

determ ines the string  coupling constan t gs , which enters the calculations of loop
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1. In troduction

corrections as Feynman-like diagram s. Moreover, also the S tandard  Model gauge 

group, as it appears a t low energies, is not fixed by the  full theory.

However, the theory  has a very serious problem , nam ely the presence of ex tra  

dimensions. This implies the  existence of o ther dimensions besides the four th a t 

we observe in our spacetim e. W ith in  S tring Theory, spacetim e is predicted to  be ten 

dimensional. So, where are the ex tra  dimensions and why do we not experience them ? 

The reason is th a t they  are probably curled up in some com pact manifold of the size 

of the  Planck length and hence too  small to  be detected, a t least a t the present.

S tring T heory’s m ain constituents are not point particles bu t one-dimensional 

extended objects called strings. A ctually th is is not quite correct, because the theory  

is much richer: besides strings, it includes also any sort of p-branes, i.e. p-dim ensional 

spatial m em branes, which have their own dynamics.

A nother striking feature is th a t there exist several equivalent ways of describing the 

same theory, each representation  having its own nam e (see figure1 1.1). T hey describe 

different “co rn ers  of our world” and are related  by an in tricate  web of dualities. Just

Type 11B 

Type I  ____ V Type IIA

lleterotic-0 J  | Heterotic-E 

11-D Supergravity

Figure 1.1.: M-Theory moduli space.

to  give some examples, Type I I A  and Type I I B  theories are T -d u a l  of each other, 

m eaning th a t Type I I A  theory  on a circle of radius R  is equivalent to  Type I I B  

theory  on a circle of radius a '/R .  Analogously, E 8 x E 8 H eterotic theory  is S -d u a l  

to  SO (32) H eterotic theory, in the sense th a t E 8 x E 8 H eterotic theory  a t coupling

1 Figure taken from the website http : //wordassociationl.net/symmetry.ht'ml.
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gs is equivalent to  SO(32) H eterotic theory  a t coupling 1 /gs ; similarly, Type I I B  is 

self-dual under S-duality.

An im portan t feature of S tring Theory is Supersym m etry. Among other things, 

Supersym m etry implies the  existence of additional m atter: to  each already-existing 

particle Supersym m etry associates a supersym m etric partner, whose spin differs by 

one half from the spin of th a t particle. Hence, each bosonic (fermionic) particle has a 

fermionic (bosonic) superpartner. Supersym m etry is im portan t in String Theory for 

several reasons. F irst of all, dark  m atter. D ark m a tte r seems to  exist in the  universe 

and appears to  require weakly in teracting  massive particles. Supersym m etric partners 

provide us w ith suitable dark  m atte r candidates. Secondly, the  hierarchy problem. 

In a quantum  field theory, the  Higgs mass diverges quadratically, m aking it hard  

to  explain why it is actually  so small. Supersym m etry instead allows us to  cancel 

quadratic  divergences in the calculation of loop corrections for the Higgs mass. These 

quadratic  divergences originate from loop diagram s where fermions run  in the  loop. 

W ith  Supersym m etry ex tra  diagram s need to  be considered, where also the  bosonic 

partners of the  fermions run  in the loop, thus contributing  w ith a m inus sign to  the 

to ta l am plitude. The final divergence is only logarithm ic and can be easily dealt 

w ith renorm alization. Thirdly, coupling unification. In supersym m etric extensions 

of the S tandard  Model, the  superpartners contribute also to  the  be ta  function of 

the  electrom agnetic, strong and weak coupling constants, modifying their runnings 

such th a t a t very high energy (of order 1016 GeV) they  have the same value and 

hence are unified. Even if it does not have to  be this way, th is is often considered 

an extrem ely a ttrac tive  feature of Supersym m etry. Finally, non-physical tachyons. 

The construction of string  spectra  often produces tachyons. Supersym m etry helps in 

projecting out tachyons from the  particle spectrum . Nevertheless, there are examples 

(e.g. the  O(16) x O(16) heterotic string [1, 2]) w ith no Supersym m etry and also w ith 

no tachyons. Despite all these nice features of Supersym m etry, our world, in the  way 

we experience it, is not supersym m etric and hence Supersym m etry m ust be broken.

The applications of String Theory extend in m any directions. There are 

phenomenological directions, such as the  construction of a supersym m etric S tandard

3



Model, w ith the inclusion of gravity  and supersym m etry  breaking a t the  TeV scale; 

there are highly theoretical directions related  to  the  possible form ulation of the theory; 

there are connections w ith gauge theories and the A d S /C F T  correspondence; there 

are interesting applications to  black holes, which represent a theoretical labora to ry  to  

test any quantum  theory  of gravity, w ith the inclusion of bo th  quantum  mechanics and 

general relativity, reproducing the  original setup of the  early universe, when gravity  

was as strong as the  o ther forces.

In th is thesis our m ain focus will be on m athem atical aspects, in particu lar 

Conformal Field Theories (C F T ’s), and on the phenom enology of S tring Theory. 

These two topics are indeed closely connected. W hen we ta lk  about phenomenology 

we are asking the question w hether and how a ten-dim ensional theory  can reproduce 

a four-dimensional model a t low energies w ith the right properties. I t is by now clear 

to  m ost people in the field th a t there does not exist a unique answer to  th is question: 

very m any models can be constructed  which possess the  correct num ber of families 

and the correct gauge group, at least in the  vicinity of the  S tandard  Model.

The idea th a t only one way existed to  ob tain  the  S tandard  Model has been already 

given up long tim e ago. The reason for th a t is the  huge am ount of possibilities th a t 

are available in building four-dimensional string theories. This is w hat is known as 

the landscape. It seems unreasonable th a t only one out of m aybe-infinitely m any 

constructions would do the job. It is instead more reasonable to  expect th a t there are 

m any four dim ensional models w ith Standard-M odel-like features in the landscape. 

Then the correct question to  ask in this case would not be which particu lar model is 

the real model, bu t ra ther how rare and how frequent certain  properties (e.g. family 

num ber, gauge group, etc.) are. I t would definitely be disappointing if it tu rns out 

th a t we live in the least probable universe!

The first problem  one has to  deal w ith is getting  rid  of the six ex tra  dimensions. 

The standard  geometric approach is to  consider com pactifications on “sm all” six

dim ensional manifolds which preserve some supersym m etry. These manifolds are 

not com pletely arbitrary , bu t constrained by supersym m etry  to  be of a special type, 

the  so-called Calabi-Yau manifolds [3]. By changing the  com pactification, the  four

1. In troduction
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1.1. T h is thesis

dim ensional physics changes as well. However, in th is approach, the family num ber is 

related  to  topological properties of the Calabi-Yau (in particular, its Euler num ber), 

which is norm ally much larger th an  three. Also, the typical gauge groups are too  big 

and contain the standard  model gauge group as a subgroup. Moreover, in term s of 

generating four-dimensional spectra, the geometric approach does not go very far.

M oduli fields are related  to  deform ations of the Calabi-Yau manifold, controlling 

its size and shape. Sometimes, for particu lar values of the param eters, which are 

v .e.v .’s of the  m oduli fields, the  geometric description has an equivalent form ulation 

in term s of Conformal Field Theory. It is already rem arkable th a t the in teracting 

C FT  a t those points can be solved exactly. In some ways the C FT  approach is more 

general th an  the  geometric one. The ex tra  spatial dimensions are related  to  the 

central charge of the  C FT  and, when trea ted  in th is perspective, they  do not need to  

adm it a geometric in terp re ta tion  a t all. The power of C FT  m anifests itself when one 

builds four-dimensional theories. Through the formalism of sim ple-current extensions, 

a huge num ber of m odular invariant partition  functions (M IP F ’s), and hence spectra, 

can be built for any given C FT. Each of these so-called “sim ple-current invariants” 

gives rise to  a spectrum  w ith a given num ber of families and gauge group, whose 

likelihood w ithin the landscape can be studied  statistically. We will see how this is 

done in detail tow ards the end.

1 .1 . T h is  th e s is

In this thesis we consider the C FT  approach to  S tring Theory. As already mentioned, 

sim ple-current invariants will be the  m ain tool. These are partition  functions th a t 

exist because the C FT  has very special fields, called simple currents, in its spectrum . 

Sometimes these simple currents adm it “fixed points” . T hen the C FT  built out of 

extensions has non-trivial m odular m atrices th a t are not known. The problem  of 

determ ining these m atrices is called the “fixed point resolution” [4]. We will define 

bo th  simple currents and fixed points in the  m ain chapters.

More precisely, we study  perm utations of identical C F T ’s and the ir orbifolds [5], 

lim iting ourselves to  the  order-two case. We address the problem  of extensions of
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these perm utations and resolve the fixed points of its simple current. This is a purely 

m athem atical problem , bu t w ith interesting physical im plications. As an application, 

we apply our results to  string model building of four-dimensional spectra.

The s tructu re  of th is thesis is as follows. We have divided it in to  four parts. P a rt I 

includes the  first three chapters, P a rt II the  following two.

•  P a rt I deals w ith two-dimensional Conformal Field Theories and in particu lar 

we define perm utation  orbifolds, sim ple-current extensions and fixed points.

•  P a rt II deals w ith applications of our results to  S tring Theory and addresses 

the problem  of constructing four-dimensional models using extensions of the 

perm utation  orbifold.

•  P a rt III sum m arizes our conclusions and contains discussions about additional 

research directions and future possible work.

•  P a rt IV  contains some technical appendices. All the  m aterial th a t would have 

spoiled the readibility  of the  work has been collected here.

In chapter 2 we introduce the subject of perm utation  orbifolds in conformal field 

theories. We establish our no tation  and define the problem. Simple currents arising 

in the orbifold have a very special structure: they  are diagonal representations of 

the  simple currents in the m other theory. In addition, they  always have fixed points 

of various kind. We study  the fixed point resolution for those currents and derive 

explicit expressions for the  “S J ” m atrices in some particu lar examples. Specifically, 

we address the problem  when the m other theory  is a current algebra of S U (2 )k and 

S O (N )1. These specific cases are interesting in their own right, since they  involve 

very non-trivial tricks th a t will eventually lead to  the final answer.

In chapter 3 we give more examples of “S J ” m atrices. In particular, we consider 

spinor currents of the  D (n )1 series, which have integer spin when n  is m ultiple of four 

and half-integer when n  is even bu t not a m ultiple of four. The m ain tool here is 

tria lity  of SO (8). A lthough half-integer spin currents cannot be used to  extend the 

chiral algebra, when combined w ith o ther half-integer spin currents (for exam ple in

1. In troduction
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a C FT  built as a tensor product of several blocks) they  can give rise to  integer-spin 

currents where the fixed point resolution becomes an issue.

In chapter 4 we find a general formula for the  resolution of fixed points in extensions 

of perm utation  orbifolds by its (half-)integer-spin simple current. This formula is 

based on an ansatz th a t we are able to  infer from the examples studied in the  two 

previous chapters. We check th a t our ansatz makes sense, nam ely th a t it gives a 

un ita ry  and m odular invariant S  m atrix . We also com pute the fusion rules for several 

conformal field theories, including cases w ith a huge num ber of p rim ary  fields, and 

find non-negative integer coefficients. We conclude th a t our ansatz provides us w ith 

a very robust formula for solving the fixed point problem  in extended orbifolds.

In chapter 5 we make a first move tow ards string theory. In the back of our minds 

we are thinking about G epner models, hence we study  here perm utations of N  =  2 

superconform al m inim al models. We combine perm utations and extensions and find 

a very interesting m athem atical s truc tu re  relating various conformal field theories. 

In particular, it tu rns out th a t the supersym m etric version of the  N  =  2 orbifold 

is obtained by extending the non-supersym m etric orbifold by a very specific simple 

current. Moreover, we will see th a t in the supersym m etric orbifold the chiral extension 

transform s some fields into simple currents. This was not expected a priori. Hence 

these new currents will be called “exceptional” . They have com pletely different origin 

from all the currents encountered so far and adm it sometimes fixed points. The 

resolution of those fixed points is still an open problem.

In chapter 6 we are finally able to  study  perm utations in heterotic G epner models. Our 

perm utations will be of order two only. The spectra  obtained w ith out C FT  approach 

fully agree w ith those th a t were previously known in the  literature . However, the 

power of simple currents in conformal field theory  m anifest itself a t this point by 

making it possible to  generate a huge num ber of four-dimensional m odular invariant 

partition  functions. Since standard  G epner models are not expected to  produce a 

significant num ber of three-fam ily models, we apply the so-called lifting procedure to  

them  in order to  make three families more and more frequent in this kind of four

dim ensional string theory  constructions.

1.1. T h is thesis
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1. In troduction

In chapter 7 we conclude w ith some rem arks and discussions about possible related 

work.

In the appendix we collect all the supporting  m aterial (e.g. tables, theorem s) th a t is 

relevant bu t would have slowed down the reading of the m anuscript.

Throughout th is thesis, we consider m ostly Z 2 perm utation  orbifolds. Hence, often 

we will refer to  it sim ply as the  perm utation  orbifold, unless clearly sta ted  otherwise.

1 .2 . N o ta t io n

In th is section we sum m arize the no tation  th a t we use th roughout th is work about 

p erm utation  orbifolds, N  =  2 m inim al models and their perm utations, Gepner 

models, simple current extensions.

•  P erm utation  orbifold

In the perm utation  orbifold (A  x A ) /Z 2 various kinds of fields arise from the 

fields in the m other theory  A. We denote them  as follows:

— diagonal: (i, 0 ), 0  =  0 , 1,

— off-diagonal: (i, j ) ,  i =  j ,

— twisted: ( i ,0 ), 0  =  0 , 1,

w ith  i, j  e  A. In particular, the so-called un -o rb i fo ld  curren t,  which is

— (0 , 1), anti-sym m etric representation of the  identity,

is im m ediately relevant, since the extension by th is field un-does the perm utation  

orbifold and gives back the tensor product CFT.

The orbifold S  m atrix  was derived by Borisov, H alpern and Schweigert [6]: we 

will often call it S BHS.

•  N  =  2 m inim al models

N  =  2 superconform al m inim al models are ra tional C F T ’s, fully specified by 

their “level” k, which fixes b o th  the central charge c =  7+  and the field content.
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Their p rim ary  fields are labelled by the m ulti-index

^l,m ,s  =  (1, s) ,

where

— l =  0 , . . . ,  k is an S U (2 )k label;

m  =  —k +  1 , . . . ,  k +  2 is a U (1)2(k+2) label;

— s =  —1 , . . . ,  2 is a U (1)4 label.

Moreover, these labels satisfy a given field identification and obey a given 

constraint:

— (l, m, s) ~  (k — l, m  +  k +  2, s +  2),

— l +  m  +  s =  0 m od 2.

Very special N  =  2 fields are:

— 0 =  (0 ,0 ,0 ), identity;

— T p  =  (0,0, 2), world-sheet supercurrent;

— Sp  =  (0 ,1 ,1 ), spectral flow operator.

•  Perm utations of N  =  2 m inim al models 

In the study  of perm utation  of N  =  2 m inim al models a few o ther fields become 

im portant:

— (Tp , 0), sym m etric representation of the  world-sheet supercurrent: the 

extension by th is current gives a non-supersym m etric CFT;

— (Tp , 1), anti-sym m etric representation of the  world-sheet supercurrent: the 

extension by th is current gives the  super-sym m etric orbifold;

— (0, Tp ), the world-sheet supercurrent: it is a fixed point of b o th  (Tp , 0 )  and 

it splits in two fields in those extensions;

— (Sp , 0), the  sym m etric representation of the  spectral-flow operator: it is used 

to  impose space-tim e supersym m etry in the perm uted G epner model.

1.2. N ota tion
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•  G epner models

G epner models are tensor products of the space-tim e S 0 (1 0 ) factor tim es r  

in ternal N  =  2 m inim al models, plus extensions by the subgroup generated by 

the space-tim e supercurrent and the world-sheet supercurrents

-  SBt <8> (S p )r ,

-  Vst <8> (0 ® ® Tp,i  ® ® 0), i =  1 , . . .  r.

Sst and Vst are the spinor and vector representations of S 0 (1 0 ), Tp i  is the world- 

sheet supercurrent of the  ith in ternal N  =  2 factor.

G epner models are conveniently labelled by their levels; a h a t on one of the  k ’s 

denotes a lift on th a t factor:

-  ( k i , . . . , k i , . . . , k r ),

-  (ki, . . . , k i , . . . ,  k r ).

Perm uted G epner models are denoted by brackets (a h a t for the  lifts):

(k 1, . . . , (ki ,k i ) , . . . ,k r ),

-  (ki, .. ., (ki, k i ) , . . . ,  kj , .. ., k r).

•  Simple current extensions

Simple currents will be generically denoted by J , unless we are talking about 

specific currents, in which case they  will be denoted by their own names. 

Similarly, fixed points are generically denoted by f .

Q uantities in theories A  extended by simple currents are norm ally called by the 

same nam e they  have in the  original theory  A, bu t in addition they  carry  a tilde. 

For example, if S  is the S m atrix  of some C FT, then  S  is the S m atrix  of the 

extended CFT.

1. In troduction
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CONFORMAL FIELD THEORY

Part I.
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About Part I

I  m a y  c l imb  p e rh a p s  to  no  great h e ig h t s , 
but  I  w i l l  c l imb  alone .

(E . R o s t a n d , C yr a n o  de B erg era c )

P art I deals w ith two-dimensional Conformal Field Theories [7]. C FT  is in principle 

an independent subject in its own right, which shares m any applications in other 

areas of Physics, from Condensed M atter to  Q uantum  Inform ation. Two-dimensional 

conformal system s are very special, because only in two dimensions the conformal 

group adm its an infinite-dim ensional algebra whose generators are the  Virasoro 

operators. Supersym m etric C FT  extensions contain the Virasoro algebra as a sub

algebra and can be trea ted  sim ilarly to  non-supersym m etric C F T ’s. The existence of 

th is well-defined m athem atical struc tu re  allows us to  split the  theory  in two (almost 

independent) sectors, one holom orphic (right-movers) and one anti-holom orphic (left- 

movers). M odular invariance of the partition  function p u ts additional constrain ts on 

which left-moving representations can couple to  which right-m oving ones.

M odular invariance m eans th a t the one-loop partition  function is invariant under 

reparam eterizations of the  torus. Topologically different tori are characterized by 

inequivalent values of the m odulus t , where inequivalent m eans th a t two values t1 

and t2 are not related  by an S L (2 ,R ) transform ation, t ^  aT+d (®d — bc =  1). 

Geometrically, the  m odular generators interchange the two fundam ental cycles (S  

transform ation: t ^  — l ) or act as Dehn tw ists (T  transform ation: t  ^  t  +  1) of the 

torus. Algebraically, the  generators act on the characters of the  theory. A character 

is defined as a trace over the full H ilbert space generated by the  conformal algebra, 

which in the  sim plest case contains only the  Virasoro operators:

X i ( t ) =  T r « e 2niT(Lo-24) . (1.1)

The characters sum m arize all the  inform ation about the full representation, i.e. not
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ju s t single prim ary fields b u t also their descendants, and suitable com binations of 

characters define a partition  function. The generators S  and T  of the  m odular group 

act as a m atrix  representation on the characters:

Xi( — -t) =  E  Si jX j ( t ) ,  Xi(T +  1) =  E  T i j X j ( t )  (1.2)
j  j 

where Tij  =  e2ni(hi- 24 )^ij- is a diagonal m atrix  of phases depending on the  weights h i 

of the  representations of the  C FT  and S  is a sym m etric and un ita ry  m atrix  satisfying 

the constrain ts (S T )3 =  S 2.

The S  m atrix  is a fundam ental object in a C FT, because it determ ines the fusion 

rules of two representations

(i) • ( j)  =  E N i j k ( k ) , (1.3)
k

w ith positive-integer coefficients N ij k, via the Verlinde formula [8]. Some fields 

have simple fusion w ith any other field in the theory  and they  are called “simple 

currents” [4]. The word current is used to  characterize these special fields, because 

they  can be regarded as additional generators, which in tu rn  can be used to  enlarge the 

conformal algebra and define a new extended conformal field theory. Simple currents 

are probably the m ost powerful tool available in a C FT. The reason is th a t to  each 

simple current one can associate a m odular invariant partition  function. In practical 

models the num ber of these currents can be huge and as a consequence the num ber 

of spectra  th a t can be constructed  is huge too. In a C FT  integer-spin simple currents 

are m ostly relevant, since fractional-spin simple currents act as autom orphism  of the 

chiral algebra, perm uting the  characters while preserving the fusion rules, so we will 

not consider them  in th is work.

Sometimes a simple current leaves a representation  fixed. W hen th is happens, 

the fixed representation is called a “fixed poin t” of the current. From the M IPF 

corresponding to  a given current, one can organize characters into orbits of th a t 

current and define an “extended C F T ” , where the extension is provided by the simple 

current. G enerically some fields will be projected  out in the extension, bu t others
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m ay appear corresponding to  resolved fixed points.

It is not always easy to  infer the m odular m atrices of the new extended theory  in 

term s of those of the  original theory. In particular, if the  current has got fixed points, 

then  one has to  go through a non-trivial formalism to  be able to  w rite down the S  

m atrix  (on the contrary, the T  m atrix  is always trivially  determ ined). The reason 

is th a t the  fixed points get “split” in the  extensions, in the  sense th a t each of them  

generates m any fields w ith identical characters on which the action of the S  m atrix  

is ambiguous. This formalism involves a set of “S J ” m atrices which can be used to  

param eterize the full S  m atrix . These m atrices are model dependent and need to  be 

determ ined case by case. They are already known for W ess-Zum ino-W itten (W ZW ) 

models, for coset theories and the ir extensions. The next case to  consider is the 

perm utation  orbifold and it is addressed here.

Consider a generic C FT  and take the tensor p roduct w ith itself. The tensor product 

theory  has got a m anifest Z 2 sym m etry which interchanges the two factors. We call 

the theory  where th is sym m etry has been m odded out from the  tensor product the 

“perm utation  orbifold” . In th is thesis we only consider Z 2 perm utation  orbifolds. 

B oth  the spectrum  and the m odular m atrices have been known for quite some time, 

b u t the formalism of sim ple-current extensions was missing until a couple of years 

ago. In fact, the  reason is th a t the perm utation  orbifolds adm its simple currents 

in its spectrum  and those simple currents have fixed points. Hence, the  set of S J 

m atrices was needed in order to  com pute the full S  m atrix . This was a highly non

trivial task, bu t finally we are now able to  present the  answer, in the form of an 

ansatz, for the  S J m atrices of the  perm utation  orbifold for all its simple currents.

The formula appearing a t the end of P a rt I is very powerful and it works perfectly 

(in the  sense of satisfying some very stringent constrain ts and giving positive-integer 

fusion coefficients), even for very non-trivial rational C F T ’s w ith a huge num ber of 

prim ary fields.
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2. The Permutation Orbifold

Does  th is  A l e p h  ex i s t  i n  the  h e a r t  o f  a s to n e ?
D id  I  see  i t  there  i n  the  cel lar  w h e n  I  sa w  all th in g s , 

a n d  have  I  n o w  fo r g o t t e n  i t ?
O u r  m i n d s  are porous  an d  fo r g e t fu ln e s s  seeps  in;

I  m y s e l f  a m  d i s to r t in g  an d  los ing ,  
u n d e r  the  w e a r in g  a w a y  o f  the  years ,  the  face  o f  B ea tr iz .

(J.  L. B orges ,  E l  A l e p h )

2 .1 . In tro d u c tio n

In th is chapter we study  the  fixed point resolution in sim ple-current extensions of 

two-dimensional conformal field theories (C F T ’s) [7]. C F T ’s are very well established 

tools not only w ithin String Theory, b u t also in o ther system s such as Condensed 

M atter and Q uantum  Inform ation, hence representing an independent field of study  

in the ir own right.

Sym m etries play a crucial role. A C FT  is by definition built on conformal 

sym m etries, which in two dimensions are generated by an infinite-dim ensional algebra, 

which in the sim plest case is ju s t the V irasoro algebra, bu t it becomes larger when 

additional generators are included, as in the case of N  =  1 or N  =  2 super-V irasoro 

algebra.

In th is work we will consider additional sym m etries. The first one is the  perm utation  

sym m etry. Such a sym m etry is present when a C FT  is m ade out of tensor products 

of sm aller C F T ’s and when there are a t least two identical factors in the product th a t 

can be perm uted. The theory  th a t rem ains after th a t the  perm utation  sym m etry  has 

been m odded out is called the “perm utation  orbifold” .

The other sym m etry  th a t we will consider is more subtle [9, 10]. I t exists when the 

C FT  adm its simple currents, nam ely fields w ith simple fusion rules:

( J )  • (i) =  ( J i ) . (2.1)
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The word “simple” refers to  the  fact th a t the fusion of the  current J  w ith any other 

field ^ i =  i contains only one term  J i  on the r.h.s. The word “curren t” refers to  

the  role of this field as a sym m etry generator. Simple currents form a cyclic Abelian 

group under fusion m ultiplication, sometimes called the  center of the C FT . We will 

norm ally consider ra t io n a l  C F T ’s, which by definition have a finite num ber of fields. 

Acting by powers of J  allows us to  organize fields into orbits (i, J i ,  J 2i , . . . ,  J N -1 i), 

where N  is the order of the  current, i.e. J N =  0 (we denote the iden tity  field by 0). 

One can also define a charge associated to  the current J : it is the  m onodrom y charge 

Q J (i) th a t a field i carries. By definition:

Q j (i) =  h j  +  hi — h j i  m od Z , (2.2)

h i being the weight of the  prim ary  field i. The quan tity  e2niQj(i) can be regarded 

as a sym m etry  generator. In order to  m od out th is sym m etry from the theory, one 

has to  keep only sta tes which are invariant under th is generator, nam ely sta tes w ith 

integer m onodrom y charge, project out everything else and finally add the tw isted 

sector. The m odded-out theory  contains the  integer-m onodrom y orbits as prim ary 

fields and is often referred to  as the  “extended” conformal field theory, because the 

algebra has been enlarged by the inclusion of the  current generator.

In th is chapter we are going to  combine bo th  the simple current and the perm utation  

sym m etries in order to  study  extensions of the  perm utation  orbifold. The generic set 

up is as follows. We s ta r t w ith a given C FT, take the tensor product of A copies 

of it and m od out by the  cyclic sym m etry  Z^, which generates the  full perm utation  

group S^. The field content of such cyclic orbifold theories was worked out already 

long ago by K lem m  and Schm idt [5] who were able to  read off the tw isted fields using 

m odular invariance. Later, Borisov, H alpen and Schweigert [6] introduced an orbifold 

induction procedure, providing a system atic construction of cyclic orbifolds, including 

their tw isted sector, and determ ining orbifold characters and, in the  A =  2 case, their 

m odular transform ation properties. G eneralizations to  a rb itra ry  perm utation  groups 

were done by B antay [11, 12].

Extensions w ith integer spin simple currents [9, 10] are essential tools in conformal

2. T he  P erm uta tion  Orbifold
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2.1. In troduction

field theories (see [4] for a review). In string  theory, they  appear when it is needed to  

make projections (e.g. GSO projection) or im plem ent constrain ts (such as world-sheet 

supersym m etry  constraints, or the  so-called ^-constrain ts in G epner models [13, 14], 

which impose world-sheet and space-tim e supersym m etry). Simple current extensions 

are also used to  im plem ent field identification in coset models [15, 16].

The m odular S  and T  m atrices of the  extended theory  can be easily derived from 

those of the  original theory  if all the  orbits generated by the current J  have length 

s tric tly  larger th an  one. Length-one orbits, denoted by f , are fixed points of J , nam ely 

J  • f  =  f . F ixed points exist only for currents w ith integer or half-integer spin. For 

integer-spin currents, fixed points are kept in the  extension. In the m odular invariant 

p artition  function (M IPF), the  fixed point contribution  always comes w ith an overall 

m ultiplicative factor, typically as

N f  E  Xf ( f ) x / ( t  ) . (2.3)
f

The factor N f is in terpreted  as the  num ber of fields f a =  (f , a ) , w ith  a  =  1 , . . . ,  N f , 

all having identical characters, in which f  is resolved. This m eans th a t in the  extended 

theory  the single field f  splits up into N f fields f a . The resolved fields f a contribute 

to  the partition  function as

E X f , “ ( f ) X f,a(T) , X f,a(T ) =  m aX f (t ) , E (m “ )2 =  N f . (2.4)
a a

However, since there is a priori no inform ation on how the m odular m atrix  S  acts on 

the label a , it will be generically undeterm ined. In literature , th is problem  is known 

as the fixed point resolution. W hen th is is the case, the knowledge of the  full S  m atrix  

is param etrized by a set of “S J ” m atrices [17], one for each simple current J : knowing 

all the S J m atrices am ounts to  knowing the S  m atrix  of the extended theory. Fixed 

points can also appear for half-integer spin currents, and the corresponding m atrices 

S J are im portan t when these currents are combined to  form integer spin currents. 

Furtherm ore, simple current fixed points and their resolution m atrices are essential 

ingredients for determ ining the boundary  coefficients in a large class of rational C F T ’s
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[18, 19].

The determ ination  of fixed point m atrices S J was first considered in [16]. There 

an empirical approach was used, based on the inform ation th a t these m atrices m ust 

satisfy m odular group properties. Hence an a n s a t z  could be guessed in some simple 

cases from the  known fixed point spectrum . These a n sa tze  were proved and extended 

in [20]. S tarting  from these results, the  S J m atrices are now known in m any cases, 

such as for W ZW  models [4, 21] and coset models [16].

Here we would like to  determ ine the set of S J m atrices for cyclic perm utation  

orbifolds. In th is work we will restrict ourselves to  Z 2 perm utation  orbifolds of an 

original C FT  and to  order-two simple currents. We will m anage to  determ ine the S J 

m atrices in a few, bu t interesting, cases, nam ely for the integer-spin currents of the 

S U (2)2 W ZW  model and for the B (n )1 and D (n )1 series. The m ethod we use is based 

on the fact th a t the  extensions corresponding to  these cases are C F T ’s whose S  m atrix  

can also be obtained by o ther m eans and hence it is already known. However, even 

though stric tly  speaking the S J m atrices are not needed to  construct the  S  m atrix  

of these extension, the result still provides im portan t new inform ation. In particular, 

we expect th a t the solutions we present here for an infinite series of special examples 

will give insights into the  general case, and, as we will see in chapter 4, will lead to  a 

universal a n s a t z  th a t can be checked explicitly.

This chapter is organized as follows.

In section 2.2 we define the problem  th a t we would like to  address, nam ely the 

resolution of the fixed points in extensions of perm utation  orbifolds.

Before going into the details of the  problem, in section 2.3 we study  a b it more 

system atically  the  s tructu re  of simple currents and corresponding fixed points in 

orbifold C F T ’s. In particular, we will see which simple currents and fixed points 

can arise in the orbifold theory  and how they  are related  to  the  simple currents and 

fixed points of the  m other theory. This is an application of [6].

Section 2.4 provides an example where the m other theory  is S U (2 )k.

Next we move to  the m ain problem, i.e. the  fixed point resolution in extensions of 

p erm utation  orbifolds. We present the  results in section 2.4.4 and section 2.5 for

2. T he  P erm uta tion  Orbifold
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2.2. T h e  problem

S U (2)i and S O (N )1. We say som ething about a rb itra ry  level k as well.

O ur analysis of these special cases give crucial h in ts to  determ ine the general formula, 

valid for any C FT. The solution to  the general problem  will be given in chapter 4 . 

Finally, we would like to  rem ark again th a t in th is work we will m ostly be concerned 

w ith Z 2 perm utations (A =  2) and order-two currents ( J 2 =  0).

The content of th is chapter is based on [23].

2 .2 . T h e  p ro b lem

Given a certain  C FT  A, we would like to  look at the  orbifold theory  w ith A =  2:

A perm =  (A  x A )/ Z 2 . (2.5)

M odding out by Z 2 m eans th a t the spectrum  m ust contain fields th a t are sym m etric 

under the interchange of the two factors. This theory  adm its an untw isted and a 

tw isted sector. The untw isted fields are those com binations of the original tensor 

product fields th a t are invariant under this flipping sym m etry. Their weights are 

sim ply given by the  sum  of the  two weights of each single factor. Tw isted fields are 

required by m odular invariance. In general, for any field in the original C FT  A, 

there are exactly A tw isted fields in the  orbifold theory, labelled by 0  =  0 ,1 , . . . ,  A — 1.

If there is any integer or half-integer spin simple current in A, it gives rise to  an 

integer spin simple current in the  orbifold C FT, which can be used to  extend A perm. In 

the extension, some fields are projected  out while the  rem aining organize themselves 

into orbits of the current. Typically untw isted and tw isted fields do not mix among 

themselves. As far as the  new spectrum  is concerned, these orbits become the new 

fields of the  extended orbifold C FT, bu t we do not norm ally know the new S  m atrix. 

From  now on we will w rite S  w ith a tilde to  denote the S  m atrix  of the extended 

theory.

If there are no fixed points, i.e. orbits of length one, the  S  m atrix  of the extended 

theory, S, is sim ply given by the S  m atrix  of the  unextended theory  (in case of 

perm utation  orbifolds it is the  BHS S  m atrix  given in [6]) m ultiplied by the order 

of the extending simple current. U nfortunately, often th is is not the  case: norm ally
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there will be fixed points and the extended S  m atrix  cannot be easily determ ined. 

Using the  formalism developed in [17], we can trade  our ignorance about S  w ith a

2. T he  P erm uta tion  O rbifold

These S jb’s are non-zero only if bo th  a and b are fixed points. This equation can be

is a group theoretical factor acting as a norm alization and the ^ ¿ ( J ) ’s are the  group 

characters acting as phases. In our calculations, where all the simple currents have 

order two, the norm alization prefactor is 1/2 and the group characters are ju s t signs. 

As conjectured in [17] and proved in [24], the S J m atrices describe the  m odular 

transform ation properties of the  one-point function on the to rus w ith the insertion of 

the  simple current J (z ) . U nitarity  and m odular invariance of S  implies un ita rity  and 

m odular invariance of the  S J ’s [17]:

In th is way, the problem  of finding S  is equivalent to  the  problem  of finding the set

The m atrices S J are restricted  not only by m odular invariance and unitarity , bu t 

also by the condition th a t the  full m atrix  S(a,i)(&,j) acts on a set of characters w ith 

positive integer coefficients, th a t the  Verlinde formula [8] yields non-negative integer 

coefficients and th a t there is a corresponding set of fusing and braiding m atrices th a t 

satisfy all hexagon and pentagon identities. In o ther words, all the  usual conditions 

of rational conformal field theory  should be satisfied. However, all these additional 

constrain ts are very hard  to  check, and m odular invariance and un ita rity  are very 

restrictive already. Experience so far suggests th a t for generic formulas (i .e .  formulas 

valid for an entire class, as opposed to  special solutions valid only for a single R CFT) 

th is is sufficient. We do not know any general results concerning the uniqueness of the

set of m atrices S J , one for every simple current J , according to  the formula

(2.6)

viewed as a Fourier transform  and the S J ’s as Fourier coefficients of S'. The prefactor

S J • (S J )t =  1 (S J • T J )3 =  (S J )2 . (2.7)

Here T J denotes the T  m atrix  of the  unextended theory  restricted  to  the fixed points

of J .

of m atrices S J .
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solutions to  (2.7), bu t there is at least one obvious, and irrelevant ambiguity. If S J 

satisfies (2.7), clearly U ^SJ U satisfies it for any un itary  m atrix  U th a t com m utes w ith 

T . Since we are aiming for a generic solution, we m ay assume th a t T  is non-degenerate; 

accidental degeneracies in specific cases cannot affect a generic formula. This reduces 

U to  a diagonal m atrix  of phases. The m atrix  S(a,i)(&,j) m ust be sym m etric, and 

th is has im plications for the  sym m etry of the m atrix  S J . In particular, if J  is of 

order 2 (the case considered here), the  m atrix  S J m ust be sym m etric itself [17]. This 

requirem ent reduces U to  a diagonal m atrix  of signs. These signs are irrelevant: they  

sim ply correspond to  a relabeling of the two com ponents of each resolved fixed point 

field. Note th a t the m atrix  S  itself also satisfies (2.7), bu t here there is no such 

ambiguity: S  acts on positive characters, and any non-trivial sign choice would affect 

the positivity  of So*. However, S J acts on d if ferences  of characters, and hence satisfies 

no such restrictions.

In th is chapter we w ant to  address exactly this problem , bu t in the case of 

perm utation  orbifolds. Suppose we know (and we do!) the  S  m atrix  of the  orbifold 

theory, then  extend it by any of its simple currents; w hat is the  m atrix  S  of the new 

extended theory? Equivalently, given the fact th a t there will be fixed points in the 

extension, w hat are the m atrices S J for all the  integer spin simple currents J ? Hence, 

we are dealing w ith the fixed point resolution in extensions of perm utation  orbifolds.

2 .3 . C u r re n ts  o f  A perm

Consider a C FT  A  which adm its a set of integer-spin simple currents J .  This means 

th a t the  S  m atrix  satisfies the  sufficient and necessary condition [25] S J0 =  S00, where

0 denotes the iden tity  field of A. Every C FT  has a t least one simple current, nam ely 

the identity. Here we would like to  determ ine the simple currents of the orbifold 

theory  A perm. The only th ing we need is the  orbifold S  m atrix  given by BHS [6]. 

Recall th a t A perm has different kinds of fields: untw isted (which are of diagonal or 

off-diagonal type) and tw isted and th a t the identity  field of the  orbifold theory  is the 

sym m etric representation of the iden tity  “0” of the  original C FT, here denoted by 

(0,0).

2.3. C urrents o f  Aperm
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It is probably useful to  recall the BHS S  m atrix . The convention for the  orbifold 

fields is as follows. Orbifold tw isted fields carry  a hat: (¿ ,0 ); off-diagonal fields are 

denoted by ( i , j ) ,  w ith  i =  j ;  diagonal fields by (¿ ,0 ). Here i , j  are fields of the 

m other theory  and 0  =  0 , . . . ,  A — 1. The untw isted fields are those com binations 

of the  original tensor product fields th a t are invariant under this flipping symmetry. 

Their weights are sim ply given by the sum  of the two weights of each single factor. 

There are two kinds of untw isted fields:

•  diagonal,  (i, x ), w ith x  =  0, 1, corresponding to  the  com bination ^  ® #  +  

( — 1)X̂ j <8> ̂ ¿, where denotes the  first non-vanishing descendant of the A —field 

^ i, (x  =  0 for the sym m etric and x  =  1 for the  anti-sym m etric representations);

•  o ff-d iagonal,  (m, n), w ith m  <  n, corresponding to  the com bination <g> +

Tw isted fields are required by m odular invariance [5]. In general, for any field ^ i in 

A, there are two tw isted fields in the orbifold theory, labelled by x  =  0 ,1 . We denote 

tw isted fields by ( i ,x ) . The typical weights of the fields are:

•  h (i,x) 2hi

•  h {i,j) hi +

•  4 . 0  =  h  +  +  X

for diagonal, off-diagonal and tw isted representations. Here, hi =  , c is the central 

charge of A  and A =  2. Sometimes it can happen  th a t the  naive ground s ta te  has 

dimension zero: then  one m ust go to  its first non-vanishing descendant whose weight 

is increm ented by integers.

There are two possible reasons why a “naive” ground sta te  dimension m ight vanish, 

so th a t the actual ground s ta te  weight is larger by some integer value. If a ground 

s ta te  i has dimension one, the naive dimension of (i, 1) vanishes. The one has to  go 

to  the  first non-vanishing excited sta te  of i. Similarly, the conformal weight of an 

excited tw ist field (x  =  1) is larger th an  th a t of the unexcited one (x  =  0) by half

2. T he  P erm uta tion  Orbifold
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an integer, unless some odd excitations of the ground s ta te  vanish. In C FT, every 

s ta te  |^ i ), except the vacuum, always has an excited s ta te  L _ i |^ i ). Furtherm ore, 

in N  =  2 C F T ’s even the vacuum  has an excited sta te  J _ i |0 ) . Therefore, in N  =  2 

perm utation  orbifolds, the conformal weights of all ground sta tes is equal to  the typical 

values given above, except when a sta te  | i) has ground s ta te  dimension 1. Then the 

conformal weight is larger by one unit.

The orbifold S  m atrix  for A =  2 was derived by Borisov, H alpern and Schweigert 

[6] and reads:

2.3. C urrents o f  Aperm

S <i,j)<P,9)

S

S

=  Sip Sjq +  Sjq S.

<i,j)(P,̂ )

<i,j)(P,̂ )

Sip Sjp

(2.8)

S (i>)(j,x)

S (i,^ )(P,X)

2 Sij Sij

1  e2ni^/2 S
2 e Sip (2.9)

(2.10)

where the P  m atrix  is defined by P  =  %/TST2S%/T, as first in troduced in [26]. 

Sometimes we will w rite S BHS to  refer to  the  orbifold S  m atrix.

0

2.3 .1 . Sim ple cu rren ts

Let us s ta r t w ith the off-diagonal fields of the orbifold and ask if any of them  can be a 

simple current. If i and j  are two a rb itra ry  fields of the original C FT  A  and (i, j )  the 

corresponding off-diagonal field in the orbifold, in order for the la tte r to  be a simple 

current we have to  dem and th a t its S BHS m atrix  satisfies

S {i,j) (0,0) =  S (0,0)(0,0) (2.T1)
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which, upon using BHS formula, am ounts to  satisfying the constraint

Sj0Sj0 =  -  S00S 00 (2.12)

for the S  m atrix  of the original C FT  A. This relation is never satisfied because of 

the constrain t S i0 >  S00, which holds for un ita ry  C F T ’s. Consequently there are no 

simple currents coming from off-diagonal fields.

Let us do the same analysis for tw isted fields. Tw isted fields are denoted by (k, 0 ), 

where k is a field in A  and 0  =  0, 1. Now the  constraint

S (k>)(0,0) =  S(0,0)(0,0) (2.-3)

translates into

2 Sk0 =  2 S 00S 00 . (2.14)

This is also never satisfied, because of the same un ita rity  constrain ts as before. Once 

again there are no simple currents coming from tw isted fields.

F inally  let us study  the more interesting situation  of diagonal fields as simple 

currents. A diagonal field is denoted by ( i ,0 ) ,  where i is a field in A  and 0  =  0, 1 

corresponding respectively to  sym m etric and anti-sym m etric representation. Here the 

constraint

S (i>)(0,0) =  S (0,0)(0,0) (2.-5)

gives

2 Sj0Sj0 =  2 S 00S00 , (2.16)

which is satisfied if and only if i is a simple current.

Hence we conclude th a t, despite the  fact th a t the existence of simple currents in the 

orbifold theory  is in general related to  the  S  m atrix  of the original C FT , there always 

exist definite simple currents in the orbifold theory: they  are the sym m etric and 

anti-sym m etric representations of those diagonal fields corresponding to  the simple 

currents of the original theory. In particular, since in A  there is a t least one simple 

current, nam ely the identity, in A perm there will be a t least two, nam ely (0,0) (trivial, 

because it plays the role of the identity) and (0, 1). The la tter, known as the un-

2. T he  P erm uta tion  Orbifold
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orbifold current for reasons th a t will become clear la ter on, will tu rn  out to  play a 

crucial role.

We will soon see th a t th is p a tte rn  is respected for S U (2 )k W ZW  models. They 

adm it one integer-spin simple current (the identity) for k odd and two (one of which 

is again the identity) integer-spin simple currents for k even. Consequently, we will 

always find (0, 0) and (0,1) as orbifold simple currents when k is odd; when k is even, 

there will be two additional ones denoted by (k ,0) and (k, 1).

2 .3 .2 . Fixed poin ts

Given our simple currents of the A perm theory, hereafter denoted by ( J, 0 ) w ith J  a 

simple current of A  and 0  =  0 ,1 , we now move on to  study  the  s tructu re  of their fixed 

points. For th is purpose, the correct s tra tegy  is to  com pute the  fusion coefficients.

Twisted sector

Let us s ta rt from the tw isted sector. For tw isted fixed points we have to  dem and th a t

N  ____(f,^ ) =  1. (2.17)
(J,0)(f,^)
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On the o ther hand, if N  is an a rb itra ry  field of the  orbifold theory, in term s of the  S  

and P  m atrix  of the  original theory  we have

_ Q Q___ C*t
S(J>0)NS( ( ) N S N

N
N (ƒ>)

(J,0)(f,VO (0,0)N

=  E
<p,q>

+  E
(j,x )

+  E
(p,x )

=  (B H S  ) =

(J,0)<P,9>Sf ) ( :p,q>S (p,q>S t (f,V0

S (
+

(0,0){p,q>

t (f,V0
S(J,0)(j,X)S (f )(j,x )S  (j,X) '

S (
+

(0,0)(j,X)

S S S t (f,vo
(J,0)(P,X) (f,^ )(P,X) (p,x)

S (0,0)(p,x)

(S jj  )
(S0j )

J  P f j P t f

S0j

More in general one has

N
(J,0)(f,VO

(Tv^7 ) = 1  e (S jj)2  s  s t f ' I -* -------[2 S f j S j +  e(S0j )2 S 0j

(2.18)

(2.19)

It is im portan t to  rem em ber th a t here we want (ƒ, 0 ) to  be a fixed point of (J, ^),

N
(J,0)(f,VO

(ƒ '> 0  =  j f  ' jV' (2.20)

By itself, ƒ does not have to  be a fixed point of J  in the original theory. For an 

a rb itra ry  field *, the  following is true  [10, 27]:

S j j  
s

e2ni(hj + h i - h j . i )
0i

(2.21)

In the exponent, we recognize the m onodrom y charge Q J (*) of * w ith respect to  J :

Q j  (i) =  h j  +  hj -  h j.j m od Z . (2.22)

Now use formula (2.21) in the first sum. In the following, we will restric t ourselves
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to  order-2 simple currents. Because of the  square and the fact th a t the  m onodrom y 

charge of j  is either integer of half-integer 1, the exponent cancels out. Then we are 

left w ith S  tim es S t , which gives j /  .

We need to  be more careful w ith the second piece, which involves the  integer-valued 

[28, 29] Y j/  /  -tensor. O ur constrain t reads then

/ =  2 /  +  ein(0+^ - ^ ') 2 YJ ƒ f  , (2.23)

which reduces either to

ein0YJ /  f  =  ƒ  (0  =  0 ') ,  (2.24)

when 0  =  0 ', or to

ein(0+ ^ - ^ ')Yj  f f ' =  -  ƒ '  (0  =  0 ' ) ,  (2 .25)

when 0  =  0 '.  Since we are considering currents w ith order 2, we can simplify the 

m inus sign on the r.h.s. w ith ein(^ - ^ ) on the l.h.s., thus re-obtaining the same 

expression of the  case 0  =  0 ' for our constraint, which explicitly reads:

S p  p t /
ein0 y  S j j j P  j  =  J f  . (2.26)

T  S °j f

In order to  solve it, let us study  for the  m om ent the equation:

y  X P / j P ' =  J / ' , (2.27)
T

for some xT-. Define a vector v / w ith com ponents

(v/  T  :=  P/T . (2.28)

Then we have

y ( v / ) j P tj / ' =  J f ' . (2.29)
j

The vector v / is then  orthogonal to  all the  columns of the  m atrix  P , except for the

■'"For order-2 simple currents.

2.3. C urrents o f  Aperm

29



column ƒ w ith which it has un it scalar product. Since P  is unitary, th is implies th a t

(v f)j =  P f j  , (2.30)

which by definition yields2

xT =  1 V j . (2.31)

Going back to  our situation  where xT- =  ein0S Jj  /S ° j , we arrive a t the final form of 

our constraint:

e ^ S j j  =  S°j . (2.32)

Let us first notice th a t when J  is the  identity, there is no news, since th is constraint 

is either trivially  satisfied (for 0  =  0 all the tw isted fields are fixed points of the 

identity) or impossible (for 0  =  1 there are no fixed points coming from the tw isted 

sector). W hen instead J  is not the identity, we find th a t ƒ , x) is a fixed point of 

(J, 0 )  in the following cases (according to  (2.21)):

•  if 0  =  0, when p  has integer m onodrom y charge w ith respect to  J , i.e. Q J (p) =  0;

2. T he  P erm uta tion  Orbifold

•  if 0  =  1, when p  has half-integer m onodrom y charge w ith respect to  J , i.e.

Q J (P ) =  1 .

These conditions hold for integer-spin currents. Generalized expressions will be 

needed for currents w ith half-integer spin. We will give them  later.

2 A shorter derivation is the following. Consider a diagonal matrix X whose diagonal entries are x j . Then the 
constraint in matrix form is: P X P t = 1. Recalling that PPt = 1 by unitarity, one can write P(X — 1)Pt = 0, 
which gives the solution X  = 1.
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Off-diagonal fields

Similar argum ents apply for the  untw isted sector. S tarting  w ith off-diagonal fixed 

points one has

Q Q QtS (J ,-A) N S / p n\ N SN (p,q) =  S(J>0)N S<p>q)NS n
N (J,0)<p,q) =  2 ^  S(5(°,°)N

C O C't (piq)

E S(J,0)<i ,j) S <P,9)<i ,j)S  <i,j) .

<i>j) (°,°)<i ,j)

t <p,q)

(*,V0 (°,°)(i,vo

. y S ___S ,___ _ St (p,q)
(J,0)(i,^ ) {p,q)(i,^ ) (i^)

(i,V0 (°,°)(i,V0
S

=  (B H S ) =

=  N jp pN jq q +  N jp qN jq p . (2.33)

This m ust be equal to  1. Moreover N T  are positive integers. Hence we have two 

possibilities:

either

N Jpp =  N Jqq =  1 ^  p  & q are fixed points of J  
Jpq Jqp (2.34)

N jp q =  N jq p =  0 ( )

or

N jp p =  N jq q = 0
N Jp q =  N Jqp =  1 ^  p  & q are in the same J —orbit, i.e. p  =  Jq

(2 .3 5 )
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Diagonal fields

For diagonal fixed points one has

(i,^) _ S (J,0)NS (i>)N S  Nt (i,V0

N S (0,0)N
Q Q C't (i,^ )S( 1^)1  p.q\ S(i.^Wp.q\ S— ^ (J,^)\p .q^(i,^)\p,q ^  (p,q> +

<p,?> S(0,0)<p,?>
e  e  c<t (i,^ )

. S(J,0)(j,X)S(i> )(j,X)S (j,x) .

(j,X) (0,0)(j,X)

+  E

s  s  s t (i,V0
S (J,0)(j,x)S (i,^)(j,x)S (jX)

s .

Again we m ust dem and

(j,x) (0,0)(j,x)
(B H S ) —

1 N J i i (N J i i +  ein0) . (2.36)

N ( j ,0 ) ( ^ ) (i>) — ! ;  (2 .37)

then  the only solution is when3 Njj® =  1, i.e. i is a fixed point of J ,  and ^  =  0, 

i.e. these fixed points appear only for the sym m etric diagonal representation of the 

simple current.

2 .4 . E x am p le : S U (2 )k

Here we consider some examples of the previous general theory. We take our C FT  to 

be an S U (2 )k W ZW  model and work out spectrum  and fusion rules of the  orbifold 

theory.

Let us recall a few facts about affine Lie algebras [30, 31]. In an affine Lie algebra 

w ith group G, the  weights of the  highest weight representations A are given by

h(A) =  , (2.38)
k +  g

We can exclude the other possibility <£ =1 and Nj = 2, because J is a simple current
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where C(A) denotes the  quadratic  Casim ir eigenvalue, g is the dual Coxeter num ber 

(equal to  half the Casim ir of the  adjoint representation) and k is the  level. The central 

charge is
, . k dim  G

c(G ,k) =  — —  (2.39)
k +  g

and the m atrix  elem ent is

S(A, ^) =  const • e(w )exp ( -------- — (w(A +  £ ) ,^  +  £ ))  . (2.40)
^  V k +  g /W V 7

Here the sum  is over all the elem ents of the Weyl group and e is the  determ inant of 

w. The norm alization constan t is fixed by u n ita rity  and the requirem ent S 00 >  0.

Now we can apply these general pieces of inform ation to  our S U (2)k models (and 

la ter to  B (n )i and D (n )i series).

2 .4 .1 . G eneralities a b o u t S U (2)k W ZW  m odel

2.4. E xam ple: S U (2)k

In the S U (2 )k theory, the level k specifies b o th  the  central charge

3k
k +  2

and the spectrum  of the prim ary  fields through their weights

(2.41)

=  j + T , 2j = 0 ,1 ,  . . . k .  (2.42)

Moreover, the field corresponding to  the  last value 2 j =  k is a simple current 4 of order 

two, the  fusion being:

(k) x (2j) =  (k -  2 j ). (2.43)

Its weight is h2j=k =  - | . This is integer or half-integer if k is even. Furtherm ore, in 

the la tte r  case, there is also a fixed point, given by the m edian value 2 j =  2:

k k
(k) x (2 ) =  (2 ). (2.44)

There are no fixed points for odd k.

We can label these k +  1 fields using their value of j .  I t will be convenient to  call

Note that j is either integer or half-integer. An equivalent notation is to set l = 2j, with l = 0 , . . . ,  k, and hence 
h = ¡(¡ + 2)

1 = 4(fc + 2) .
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them

{02j} =  {^0 , ^1 , . . .  , }. (2.45)

The S  m atrix  is given by [32]

(2.46)

2 .4 .2 . S U (2)k <g) S U (2)k/ Z 2 Orbifold: field sp ec tru m

Now let us consider the  orbifold theory  a t some particu lar level k. The no tation  we 

will be using is as follows. F irst of all we need to  distinguish the three types of fields 

in the  orbifold theory: diagonal, off-diagonal and tw isted fields.

Diagonal fields are generated by taking the  sym m etric tensor product of each field 

in the  original theory  w ith itself or the antisym m etric tensor product w ith the same 

field w ith its first non-vanishing descendant. Hence there are 2(k +  1) diagonal fields, 

th a t will be denoted as:

w ith 2 j =  0 ,1 , . . . k .  Here 0  =  0 (0  =  1) labels the  sym m etric (anti-sym m etric) 

representation. These fields have weights

The factor 2 in front comes from the sum  of weights of the fields appearing in the 

tensor product. In the  anti-sym m etric representation (0  =  1) of the identity  (2j =  0), 

one has to  include the contribution  to  the  weight coming from the  Virasoro operators 

L _ 1. The ground sta te  is degenerate w ith dim ension three due to  the  three S U (2) 

generators.

Off-diagonal fields are obtained by taking the sym m etric tensor product of each 

field in the  original theory  w ith a different field. Hence there are fc(fc2+1) off-diagonal 

fields, th a t will be denoted as:

(2j, 0 ) 0  = 0 ,  1 (2.47)

(2.48)

( ^ 2 i , ^ 2 j } 2 i  <  2 j . (2 .4 9 )
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These fields have weights

h i(i +  1) , j ( j  + 1) (2 50) 
^(02 ,̂ +  - y + t  , (2.50)

which is sim ply the  sum  of the weights of the  fields in the  tensor product.

Tw isted fields of any perm utation  orbifold theory  were described in [5]. After 

adapting their result to  our Z 2 orbifold, we find th a t there are two tw isted fields 

associated to  each prim ary  of the original theory. Hence there are 2( k , 1) tw isted 

fields, th a t will be denoted as:

( 2 j 0 )  0  =  0, 1, (2.51)

w ith 2j =  0 ,1 , . . .  k as usual. Their weights are given by:

2.4. E xam ple: S U (2)k

h ̂  = 1  h (2j\V0 2
j ( j  +  1 ) +  0'

3k
+  16(k +  2). ( .5 )k , 2

The next step  is to  com pute the S  m atrix  for th is orbifold theory  using the BHS 

formulas (2.8, 2.9, 2.10). Using the Verlinde formula [8] we will then  be able to  

com pute the fusion rules, which will allow us to  look for simple currents in the orbifold 

theory.

2 .4 .3 . S U (2 )k <g> S U (2 )k/ Z 2 Orbifold: cu rren ts  and  fixed poin ts

From  the results corresponding to  a few values of k, we can determ ine im portan t 

generalizations for a rb itra ry  k.

F irst of all, for all k there is a t least one non-trivial integer spin simple current, nam ely

(0,1) w ith h = 1 ,  whose fixed points are all the  off-diagonal fields. Their num ber is
/fc+i\ =  fc(fc+i) 
v 2 / 2 •
In addition, if k is even, there are o ther two integer spin simple cu rren ts5. They 

are the  sym m etric and anti-sym m etric diagonal fields corresponding to  the  last value 

2 j =  k: (k, 0) and (k, 1), bo th  w ith h =  - | . This reflects the general s truc tu re  of 

the S U (2 )k simple currents. Their fixed points are also easily determ ined. For the 

current (k, 0) they  come from diagonal, off-diagonal and tw isted fields according to

These are actually the only ones with integer spin.
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some rules which are given below, while those of (k, 1) come only from off-diagonal 

and tw isted fields.

Summarizing:

Simple current Fixed point

2. T he  P erm uta tion  Orbifold

(0, 1), h =  1 
(k, 0), h =  f  
(k, 1), h =  f

a ll th e fc(fc+i) o ff -d ia go na l  f ie lds
2 diag. +  f  off-diag. +  (k +  2) tw is ted  fie lds  
f  off-diag. +  k tw is ted  f ie lds

The rule to  construct the fixed points of the additional simple currents when k is 

even is as follows.

The diagonal fields appearing as fixed points of (k, 0) are always the two fields in 

the middle: (f , 0) and ( f , 1). These are f  and have weights

(2.53)

The off-diagonal fields appearing as fixed points are the  same for bo th  the two 

additional currents and are given by the fields (^2i, ^fc_2j}, i.e. the  fields 2* and k — 2* 

belong to  the same orbit under J  =  . The weights of these off-diagonal fixed points

h
1

(02i,0k-2i> k + 2
2 k 

*2 + 1  2 — *
k 

+  2
(2.54)

w ith 2* =  0 , 1 , . . . ,  k.

The fixed points coming from the tw isted sector are “com plem entary” for the 

two additional simple currents, in the  sense th a t (k, 0) has (4j, 0 ) , 0  =  0, 1 

and 2 j =  0 ,1 , . . . , k ,  as fixed poin ts6, while (k, 1) has (4j +  1 ,0 ) , 0  =  0, 1 and 

2 j =  0 ,1 , . . . ,  k — 1, as fixed poin ts7. Their weights are:

and

h (4j+1,V0

(4j,V0

k + 2

2j (2j +  1) 
k +  2

+ 0 +
3

16(k +  2)

2j  + 2 2j  +  2 +  1
+ 0 + 16(k +  2)

(2.55)

(2.56)

Explicitly, these fixed points are (0,^), (2,^), (4,^), .. . ,  (k,^), ^ = 0, 1, with the first argument even. In 
total, there are k + 2 of them.

7 Explicitly, these fixed points are (1, ( ,  (3,^), (5 ,■$),... , (k — 1, ^), ^  = 0, 1, with the first argument odd. In 
total, there are k of them.

2

1 1 3
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for (4j, 0 )  and (4j +  1, 0 ) respectively.

2 .4 .4 . Fixed po in t resolution  in S U (2 )f orbifolds

We would like to  determ ine the S J m atrices corresponding to  the  simple currents 

given above using formula (2.6) which relates them  to  the  S  m atrix  of the  extended 

theory  via the  group characters ^ ¿ ( J ). As we will now explain, we know w hat the 

S J m atrix  is in the case J  =  (0 ,1). I t is given by an expression analogous to  the 

off-diagonal/off-diagonal BHS S  m atrix , bu t w ith a minus (instead of the  plus) sign. 

This is a fortunate situation  because the current J  =  (0,1) is om nipresent, since it 

appears for all values of the  level k. The other two currents th a t appear occasionally 

are slightly more com plicated since they  involve tw isted fields.

2 .4 .5 . S J m atrices

S J matrix for J  = (0, 1)

The general procedure when we make an extension via integer spin simple currents 

is as follows: keep sta tes th a t are invariant under the  sym m etry generated by the 

current, nam ely those w ith integer m onodrom y charge w .r.t. J ,  and organize fields 

into orbits. F ixed points are particu lar orbits: orbits w ith length one.

Consider the  current J  =  (0,1) of order 2. The extension projects out the  tw isted 

fields, since they  are all non-local w .r.t. th is current. Only untw isted fields are left, 

b o th  diagonal and off-diagonal. Off-diagonal fields are fixed points of (0,1), so they  

get doubled by the extension, while diagonal fields group themselves into orbits of 

length two containing sym m etric and anti-sym m etric representation of each original 

field. I t is interesting to  see th a t the resulting theory  is equal to  the  tensor product 

S U (2)f ® S U (2 )f. W hat happens is the following. The length-tw o orbits come from 

diagonal fields and correspond to  fields ^ 2i <g> ^ 2i of the tensor product, while the 

two fields coming from the fixed points correspond to  ^ 2i <g> ^ 2j  and ^ 2j  <g> ^ 2i (with 

2* =  2 j) of the  tensor product. The weights indeed m atch exactly. So in the  end we 

have the result:

( A ® A / Z 2 ) (0,1) =  A ®  A  (2 .5 7 )
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The subscript (0,1) m eans th a t we are taking the extension by the (0,1) current. This 

result is not lim ited to  A  =  SU (2)f , b u t is tru e  for any rational C FT . The reason is 

th a t th is simple current extension is in fact the  inverse of the  perm utation  orbifold 

procedure. This justifies the nam e of u n-o rb i fo ld  current to  denote the  field (0,1). 

The argum ent follows from the fact th a t the perm utation  orbifold splits the original 

chiral algebra in a sym m etric and an anti-sym m etric p art, and the  representation 

space of the current (0, 1) is precisely the la tte r. B y extending the chiral algebra w ith 

th is current we re-constitu te the  original chiral algebra of A  ® A. This result extends 

straightforw ardly to  the o ther representations, and of course the tw isted field m ust 

be projected  out, since by construction they  are non-local w ith respect to  A  ® A.

Resolving the fixed points is equivalent to  finding a set of S J m atrices such th a t

2. T he  P erm uta tion  Orbifold

S “ ,° “ j  =  V |U . | |£ l ' |U t | | * |  S * , ( J ) S J A ( J >* • (2 .58)

where S  is the  full extended S  m atrix , a and b denote the fixed points of J , while

* and j  the fields into which the fixed points are resolved. For J  =  (0,1) we know 

th a t the extended theory  is the  tensor product theory, whose S  m atrix  is the tensor 

product of the S  m atrices of the two factors. W hen we extend w .r.t. (0, 1), only two 

term s contribute on the r.h.s., nam ely S 0 =  S BHS and S J . The indices a and b run 

over the off-diagonal fields. Hence it is n a tu ra l to  w rite down the  following ansatz for 

S J for J  =  (0,1):

<5(mn)(pq) =  — .

J  )2.

the  S  m atrix  of the  original theory8. Note th a t there is an apparen t sign ambiguity: 

the  m atrix  elem ents depend on the labelling of the  off-diagonal fields, because the 

field (p, q} m ight ju s t as well have been labelled (q, p}. According to  our previous 

discussion, th is is irrelevant, since it merely am ounts to  a basis choice among the  two 

split fields originating from (p, q}. I t is easy to  check th a t the m atrix  S  com puted

S (mn)(pq) =  SmpSnq SmqSnp . (2.59)

This is un ita ry  and satisfies the m odular constrain t (S J T J )3 =  (S J )2. Here Smp is

As an exercise, one could try to write this S matrix explicitly for k = 2. With our conventional choice for the 
labels of the fields, it turns out to be numerically equal to minus the S matrix of the original SU(2)2 theory 
isomorphic to the Ising model: S J = — Sgu(2)2 .
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w ith (2.6) is indeed the one of the tensor product, i .e . SmpSnq.

S J matrix for J  = (k, 0)

The order-2 current J  =  (k, 0) arises only when k is even, so in th is subsection we 

will restrict to  such values. The first th ing  we need to  do is to  determ ine the orbits 

of the  current, since they  become the fields of the extended theory.

E ither by looking a t explicit low values of k or by general argum ents, one can 

observe a few facts about orbits of J  =  (k, 0).

F irst, form the diagonal sector, J  couples sym m etric (anti-sym m etric) representation 

of a field ^ 2j  w ith sym m etric (anti-sym m etric) representation of its image J  • ^ 2j- =  

^fc_2j into length-2 orbits. In particular, the field (f , 0) can couple only to  itself, 

hence it m ust be a fixed point. Similarly for the  field (f , 1). So, there are exactly k 

length-2 orbits and two fixed points coming from diagonal fields.

Secondly, from the off-diagonal sector, only (^2i, ^ 2j-} w ith 2* and 2 j either b o th  even 

or b o th  odd survive the projection, because only those have a well-defined m onodrom y 

charge. Moreover, J  couples the field (^ 2i, ^ 2j } w ith its image J  • (^ 2i, ^ 2j } =  

(^fc-2*, ^fc-2j }. In particular, fields of the  form (^2j-, ^fc-2 j } m ust be fixed points. 

There are 2 ( ( f  )2 — f )  length-2 orbits and 2 fixed points coming from off-diagonal 

fields. In this formula, we divide by 2 because generically fields are coupled into 

orbits. The contribution w ithin brackets comes from the num ber of off-diagonal fields 

th a t are not projected  out minus the num ber of off-diagonal fixed points.

Finally, there are no orbits coming from the  tw isted sector, bu t only k +  2 fixed points.

P u ttin g  everything together, the theory  extended by J  =  (k, 0) has 3k +  8 fixed 

points (i.e. twice the num ber given in section 2.4.3) plus fc(fc+6) length-2 orbits.

Here an ansatz for S J is a t this stage unknown for generic values of the  level k. 

However, we have worked out the sim pler case k =  2, which is closely related  to  the 

Ising model. We will discuss it shortly.

2.4. E xam ple: S U (2)k
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S J matrix for J  = (k, 1)

Also in th is case k m ust be even in order for the current J  =  (k, 1) to  be present. The 

orbit struc tu re  here is, m u ta t i s  m u ta n d is ,  analogous to  the previous one.

From  the diagonal sector, J  couples sym m etric (anti-sym m etric) representation of a 

field ^ 2j  w ith anti-sym m etric (sym m etric) representation of its image J  • ^ 2j- =  ^fc-2 j 

into length-2 orbits. In particular, the  fields (2 , 0) and (f , 1) m ust couple to  each 

other, contributing  an additional orbit. There are exactly  k +  1 length-2 orbits and 

no fixed points coming from diagonal fields.

From  the  off-diagonal sector, one has the  same length-2 orbits as for the  previous 

case above. So there are again 1 ( ( f  )2 — 2) orbits and f  fixed points coming from 

off-diagonal fields.

As above, there are no orbits coming from the tw isted sector, bu t only k fixed points.

P u ttin g  everything together, the theory  extended by J  =  (k, 1) has 3k fixed points 

(i.e. twice the num ber as given in section 2.4.3) plus fc(fc+6) +  1 length-2 orbits.

Also here an ansatz for S J is a t th is stage unknown, except for the case k =  2, 

given below.

2 .4 .6 . S J m atrices for k =  2

The case k =  2 is particu larly  simple to  analyze, because the m atrices involved are 

relatively small, bu t it is also very interesting, because it gives us a lot of insights. 

F irs t of all, as we have already rem arked in footnote 8 ,

S J - (0,1) =  —S s u (2)2 , (2.60)

resolving the three fixed points of the current (0, 1) (see table 2.1). I t is im portan t 

to  rem ark here th a t the  form of the S J m atrix  depends very much on the choice of 

the labels for the m other CFT: once we reshuffle the  labeling of the  original S U (2 )2 

spectrum , the S J does not sim ply change by a reshuffling of its rows and columns 

since some entries can drastically  change as well.

By num erical checks of un ita rity  and m odular p roperties9, one can guess the S J

9Namely, one checks that S J satisfies SJ (SJ )t = 1 and (SJ T J )3 = (SJ )2.
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Table 2.1.: Fixed point Resolution: Matrix S J—(0,:L)

SJ=(0,1)

<00,01 >
<0O,02> 
<01,02 >

<00, 01 > <00, 02> <01,02>

2vf
21

2
21

2 2 2

m atrix  of the  th ird  current (2,1):

S =  - S s u (2)2 . (2.61)

This is num erically equal to  the previous one if we order the fixed point fields according 

to  their conformal weights in the same way as for the  first current (see tab le  2.2). 

Indeed, the origin of th is equality is th a t these two extensions are isomorphic to  each 

other, having their fixed points and orbits equal weights.

Table 2.2.: Fixed point Resolution: Matrix S J—(2,1)

SJ=(2’1)

(1,0) 
<00, 02 > 

(C l)

(1, 0) <00, 02 > (1, 1)

2%/2
21

_V22
0

2
21

2 2 2

It is a bit more com plicated to  determ ine the S J m atrix  of the second current

(2,0). We would like to  use the m ain formula (2.58) where we need the  S  m atrix  of 

the extended theory. Observe th a t the extended theory  has 16 prim aries, of which 2 x 7  

come from the seven fixed points of J , all w ith  known conformal weights. Moreover, 

it also has central charge c <  3. There are not m any options one has to  consider. 

Indeed, one can show th a t the extended theory  coincides w ith the tensor product 

theory  S U (3 )i x U (1)48 extended by a particu lar integer spin simple current of order 

three. We denote it here by (1,16). I t has no fixed points and its S  m atrix  is known. 

Explicitly:

( S U (2)2 x  S U (2 )2 /Z 2 ) (2 ,0) =  (S U (3 ) i  x  U (1 )4 8 )( i,i6 ) . (2 .62)
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Using (2.58), we can now determ ine the  unknown S J = (2’0) by brute-force calculation. 

The result is given in tab le  2.3 (one can find more details in the  original paper [23]). 

The num bers a, b, c, d above are given by: a =  | , b =  , c =  ^ 2 - ^ , d =  ^ 2+ ^ 2 .

2. T he  P erm uta tion  Orbifold

Table 2.3.: Fixed point Resolution: Matrix S J=(2’0)

S J=(2,0) (1, 0) (1, 1) <0O, 02> (070) (M ) M (2,1)

(1,0) 2ia 2ia 0 2ib 2ib 2ib 2ib
(1, 1) 2ia 2ia 0 2ib 2ib 2ib 2ib

<00,02 > 0 0 0 2ia 2ia 2ia 2ia
(0,0) 2ib 2ib 2ia —2id 2id 2ic 2ic
(0,1) —2ib 2ib 2ia —2id 2id 2ic 2ic
(2,0) —2ib 2ib 2ia 2ic 2ic 2id 2id
(2,1) 2ib bi21 2ia 2ic 2ic 2id 2id

One can check th a t the m atrix  above is unitary, m odular invariant and produces 

sensible fusion coefficients.

A few rem arks are in order. F irst, it is interesting to  observe th a t the num bers a 

and b are related to  the S  m atrix  of the  original S U (2 )2 C FT, while c and d  come 

from the corresponding P  m atrix , P  =  T 1/2S T 2S T 1/2.

Second, th is m atrix  is not the  only possible one. There in fact exists a few other 

consistent 10 possibilities for S J where some entries have different sign, due to  other 

sign conventions in (2.58) for the  split fixed points..

2 .5 . E x am p le : S O ( N ) i

A nother interesting exam ple of fixed point resolution th a t we have worked out is 

the S O (N )i perm utation  orbifold. This is a relatively straightforw ard case since we 

know the  extended theories of all of its integer spin simple current extensions. In 

fact, they  can be derived from the same argum ents given in section 2.4.6 for the 

S U (2)2 perm utation  orbifold. In the  easier cases, the S J m atrix  can be com puted 

using (2.59), since the extension of the orbifold theory  gives back the tensor product 

theory  (or a theory  isomorphic to  it); in more com plicated situations, the  S J m atrix

10I.e. unitary, modular invariant and producing non-negative integer fusion coefficients.
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can be derived from (2.58) and the knowledge of the full, i.e. extended, S  m atrix  via 

the em bedding th a t we have m entioned before. This em bedding works as follows:

S O (N )perm -----------5» S O (2 N ) (2.63)

7 7 . exi/ext

S U (N ) x U (1)

i.e. the  extension of the  perm utation  orbifold gives S U (N ) x U (1) whose extension 

(w ith another particu lar current) is S O (2 N ), the group where the perm utation  

orbifold is embedded.

Let us rem ind the  reader a few facts about these two C F T ’s [30, 31]. The U (1)R C FT  

a t radius R  has central charge c = 1 ,  R  prim ary fields labelled by u =  0 ,1 , . . . ,  R  — 1 

w ith weight
u 2

h« =  7T5 m od Z. (2.64)2R

Its S  m atrix  and corresponding fusion rules are given by

S ««  =  - =  e-2ni ̂ , (2.65)

(u) • (u ') =  (u +  u ')  m od R. (2.66)

The S U (N )1 =  A (N  — 1)1 C FT  has central charge c =  N  — 1, N  prim ary  fields 

labelled by s =  0 , 1 , . . . ,  N  — 1 w ith weight

=  s2(N  — 1) m odZ . (2.67)
s 2N  V ’

Its S  m atrix  and corresponding fusion rules are given by

S ss, =  - 1 = e 2ni , (2.68)

(s) • (s ') =  (s +  s ') m o d N . (2.69)

For our study  of S O (N ) at level one, we only need to  determ ine the level of the 

S U (N ) and the radius of the U(1) factors. A fter a few trials, it is not difficult to  

convince ourselves th a t the  level of the S U (N ) factor is one and the radius of the U(1) 

factor is 16N, while the integer spin simple current (w ith order N ) th a t we need to

2.5. E xam ple: S O ( N )i
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extend th is p roduct group in order to  get S O (2 N ) is 11 (# ,  16), where the first en try  

denotes a particu lar field of the  S U (N ) 1 C FT  depending 12 on the  value N  and the 

second en try  another particular, bu t given, field of the U (1)16N C FT. Explicitly,

(S O (N )1 x S O (N ) 1 /Z 2)ext =  (S U (N )1 x U ( 1 ) ^  W  . (2.70)

The S  m atrix  of the tensor product theory  is sim ply the  tensor product of the  two S  

m atrices, S® «)(s, «,) =  Sss/S « « , while the S  m atrix  of the  extended theory, S', is the 

tensor product S  m atrix  m ultiplied by the  order N  of the current [4]. Hence the S  

m atrix  of the  extended tensor product (S U (N ) 1 x U (1)16N)(# ,16) is:

~ 1 [ 2 n i  f  . u u ' \  1 , ,
S’(s«)(s '« ') =  4  exp j  ~ n  ^ ss 1 6 J  J , (2.71)

where the factor N  in the denom inator is cancelled by the order N  in the  num erator. 

This gives the  following fusion rules:

(s, u) • (s ', u ') =  ((s +  s ') m od N, (u +  u ')  m od 16N ) . (2.72)

Recall th a t in the  extended theory  only certain  fields (s, u) appear, nam ely those 

w ith integer m onodrom y charge w ith respect to  the  current ( # ,  16). I t is given by

n  I \ #   ̂ s (N  — 1 ) +  u fr, -70\Q (# ,16)(s ,u ) = ------------- n ---------- m od Z . (2.73)

This allows us to  analytically relate the  labels s and u of the  fields in the  extension to  

the fields in the  perm utation  orbifolds, by com paring the weights of the fields in the 

perm utation, | h perm}, w ith the  ones in the extension, hs,« =  hs +  h«, and choosing s 

and u such th a t (2.73) is satisfied. This will be crucial when we use (2.58).

Let us move now to  study  the  fixed point resolution of the  S O (N )1 perm utation  

orbifolds, distinguishing the case of N  even and N  odd.

2. T he  P erm uta tion  Orbifold

11 It is convenient to label fields in the tensor product by pairs (s, u), with s and u labeling fields of the two factors. 
Sometimes other labels can be used, e.g. one single label I, with I = s • R + u or vice versa s = I mod R and 
u = Î Rj , squared brackets denoting the integer part.

12E.g. for low values of N , # = 4.
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2.5 .1 . B (n ) i  series

The B (n )i =  S O (N )i, N  =  2n + 1 , series has central charge c =  y  and three prim ary 

fields w ith weight hj = 0 ,  2, (i =  0,1 , 2 respectively). The S  m atrix  is the  same 

as the Ising model, as shown in tab le  2.4.

The B (n ) i series has two simple cu rren ts13, nam ely the fields w ith h0 = 0  (the 

identity) and h 1 =  2. In the tensor product they  give rise to  integer spin simple 

currents and can b o th  be used to  extend the perm utation  orbifold. Hence, according 

to  our notation , (.B (n)i)perm has four integer spin simple currents arising from the 

sym m etric and anti-sym m etric representations of ^ 0 and ^ 1. Explicitly they  are: 

(0, 0), (0, 1), (1, 0) and (1, 1). This situation  is very sim ilar to  the one already studied 

in section 2.4.6. The extension w .r.t. the  iden tity  (0,0) is trivial. The extension w .r.t. 

the  current (0,1) projects out all the  tw isted sector and gives back the  tensor product 

theory  B (n )1 x B (n )1; the  fixed points are all the  three off-diagonal fields (h(o,i> =  1, 

h(o,2> =  16, h(1j2> =  16 +  1) and hence the corresponding S J , w ith J  =  (0,1), is given 

by (2.59).

Also easy is the  extension w .r.t. the  current (1,1): it is indeed isomorphic to  the 

previous one. The fixed points are the  off-diagonal field (^0, ^ 1) (h =  1) and the two 

tw isted fields coming from ^ 2 (w ith h =  16 and N  +  2). All the ir weights are equal to  

the  weights of the  fixed points of the current (0, 1), hence, if we label them  according 

to  h, the  S J m atrix  for the  current (1,1) is num erically the  same as for (0,1).

A bit more involved is the S J m atrix  for the  current (1,0). For this, we need to  use 

the m ain formula (2.58).

13And only two, because N is odd. This will be different for the D(n)i series.
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(B(n)i)perm S J matrix for J  = (1, 0)

There are seven fixed points for the current J  =  (1, 0) of the perm utation  orbifold 

(B (n ) i)perm, coming from all possible sectors. From  the diagonal fields, we have

(2 , 0 ) and (2 , 1) (both  have h =  N ), from the off-diagonal (^0, ^ 1) (w ith h =  1 ) and 

from the tw isted (0 , 0 ) (h =  35), (0 , 1) (h =  32 +  1 ), (1, 0 ) (h =  N+T') and (1, 1) 

(h =  N328 +  1). We know the original S  m atrix  for these fields, given by S BHS. We 

also know the S  m atrix  of the extended theory, S  as in (2.71), given by the em bedding 

(2.63). Hence, to  obtain  the  desired m atrix , we can use the simplified version of the 

m ain formula (2.58) which reads:

=  1  [SaT S +  ( J )S aJ6* j  ( J )*] . (2.74)

Before giving the S J m atrix , there is a very im portan t issue th a t we should cover 

first. We m entioned before th a t the  labels of the  perm utation  and those of the 

extension are different bu t related. How can we exactly relate them ? Recall th a t 

in the  extension fields are defined by orbits of the  current, w ith all the  fields in 

the  same orbit having same weight (m odulo integer) and same S  m atrix  (see [4]). 

W ith in  each orbit in the  extended theory, we choose the  field w ith lowest weight as 

representative of the  split fields coming from the fixed point resolution. According to  

th is convention, every fixed point gets split in two fields ( s 1, u 1) and (s2, u 2) given by:

if n =  3,4, 7, 8 ,1 1 ,1 2 , . . .  ^  if [ ^ j  is odd

(2 . 0 ) — ► (0 , 2N ) &

(2.1) — ► (2 ,14N  +  8) &

( 0 ,14N )

(N  -  2 , 2N  -  8)

if n =  5, 6 , 9 ,10 ,13 ,14  . . .  ^  if -] is even

(2,0) (2 ,14N  +  8) & (N  -  2, 2N  -  8)

(2 ,1 ) (0, 2 N ) &  (0, 1 4 N )
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•  fo r a ll n

(^ 0 ,^ i)  —- (1, 4) & (N  — 1 ,16N  — 4)

M  - (0 ,N ) & (0 ,15N )

( M )  —-->■ ( 2 ,15N +  8) & (N  — 2, N  — 8)

(1, 0 ) - (N  — 1, N  — 4) & (1 ,15N  +  4)

( M )  - ->■ (3,12 — N ) & (1, N  +  4)

This tab le  also fixes the  order of which field we call “split field 1” and “split field 

2” . We m ust use fields only from the first set or only from the second set when 

com puting S J . B oth  the two sets will give the same result, bu t we cannot choose 

field representative random ly w ithout losing u n ita rity  an d /o r m odular invariance. 

It is interesting to  check th a t the orbits corresponding to  the two split fields are 

“conjugate” of each other, in the sense th a t s i +  s2 = 0  m od N  and u i +  u 2 = 0  mod 

16N .

The S J m atrix  is now given below. It is expressed in term s of the S  and P  

m atrices 14 of the  m other B (n )1 theory; also a sign e appears, depending on the value 

of N  =  2n +  1, e =  (-1 )1  ̂ ] , square brackets denoting the  integer part. We have 

checked th a t it is un ita ry  (S J (S J )t =  1), m odular invariant ((S J T J )3 =  —1 =  (S J )2) 

and it gives correct fusion coefficients.

14The P matrix is P = T1/2ST2 ST1/2 and for the B(n)\ series reads
0 cos ( nK" sin ( nN "

— co^ -
0

where N = 2n + 1.

0
0
1 /
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2. T he  P erm uta tion  Orbifold

SJS (2,0)(2,0) 2 *
N

SJS (2,0)(2,1) — * 
2

N

SJS (2,0)(0o,0i)

S J
'(2,0)(O0)

S J ___
(2,0)(0,1)

S J
(2,0)(1,0)

S J
S (2,0)((1,1)

— 2 — S 20 S 21 — 0

1 cniN 1
- e  2 6 4 -  2 S20 =

1 _ cniN 1
- e  7: e 4 -  -  S20

1 cniN 1
e — e 4 -----S 21 =

2 2 21
1   cniN 1

e -  e 4 -----S 21
2 2 21

1 f n N  
—* — sin -----

2 V 4
1 /  n N

- * — sin -----
2 V 4

1 / n N
* -  sin -----

2 4
1 / j N  

—* — sin -----
2 4

S J
S (2,1)(2,1) —  * 

2
N

S J
(2,1){0o,0 i)

S J
(2,1)(0,0)

S J
(2,1)(0,1)

S J
(2,1)(1,0)

J
(2,1)(1,1)

2  — S20 S 21

1
e — e 

2
iN 1 
4 + 2  S20

1 / i N
—* -  sin -----

2 4
n N \1 cniN 1 1 

e — e 4 +—  S20 — * — sin . ,
2 2 20 2 V 4 ;

1 cniN 1 1 (  n N  
—̂ - e  4 +—  S21 — * — sin --

2 2 21 2 V 4
1 cniN 1 1 (  n N  

—e -  e 4 +—  S21 — —* — sin -----
2 2 21 2 V 4

1

1

0

S J
S (0o,0i)(0o,0i)

S J
<0o,0i)(0,0)

2  -  (S00 S 11 +  S 01 S01 )

S J
'(0o,0i)(0T)

S J
<0o,0i)(1,0)

S J
(0o,0 i)(1,1)

0
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2.5. E xam ple: S O ( N )i

S  J_____
(0,0)(0,0)

S  J_____
(0,0)(0,1)

S  J(0,0)(1,0)

S J
(0,0)(1,1)

iK ^  . 1 . f  n N  
8 — — P 00 =  —i _  sln I -----

1
-i -  sin .

2 8
1 niN 1 1 /  n N

—  e 8 +—  P 00 =  —i -  sin -----
2 2 00 2 V 8

1 niN 1 1 ( n N
- -i e 8 -----P 01 =  i — cos

1 niK 1 1
-  i e 8 +—  P 01 =  i -  cos

/ i N

5:J
^(q7T)(q7T)

S J
(0,1)(1,0)

S J
(0,1)(1,1)

1   niN 1
2 6 8 — 2 Pq0

1 . nN  1 „-  i e 8 +  -  P qt

1 . 1 n
2 ie  8 — 2 P0i

i 2 sin
n N
” 8”

n N
i -  cos I -----

2 V 8
n N

i -  cos I -----
2 V 8

S J
(1,0)(1,0)

S J
(1,0)(1,1)

1
—  e 8 

2 — -  P n2 11
1 niN 1
— e 8 +—  P ii
2 2 11

1 ( n N  
=  i -  sin

2
1 ( n N \

i -  sin -----
2 8

S J
(i,i)(i,i)

1 niN 1 1 ( n N
—  e 8 -----P T1 =  i -  sin ------

2 2 11 2 V 8
(2.75)

2n, series has central charge c =  N  and four prim ary

2.5 .2 . D (n )T series

The D (n )T =  S O (N )T, N  

fields w ith weight hj =  0, T |, 2, T6 (i =  0 ,1 , 2, 3 respectively). The S  m atrix  is 

given in table  3.1.

All the  four fields of the D (n )T series are simple currents. In the  perm utation  

orbifold, they  give rise to  four integer spin simple currents, nam ely (0, 0), (0, 1), (2, 0) 

and (2 ,1), and to  four non-necessarily-integer spin simple current 15, nam ely (1,0),

(1,1), (3, 0) and (3 ,1). In this chapter we focus on the  former set, leaving the la tte r 

for the next chapter. Again, the current (0, 0) gives a triv ial extension. The current

For n multiple of 4, these currents have also integer spin. We will consider them in chapter 3.

1
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2. T he  P erm uta tion  Orbifold

Table 2.5.: S  matrix for D (n ) i

^D(n)i h = 0 h = h = h =

h = 0
h = N h = 1,6 
h = 11 
h = N  h = 16

A
( J r

( V

N N
16 2 16

2
2

2 2

(0,1) gives back the  tensor product D (n )i x D (n )i, w ith  the six off-diagonal fields

(h <0,2) =  2, h <1,3) =  f , h <0,1) =  16, h <1,2) =  H  +  2, h <0,3) =  f | , h <2,3) =  H  +  2 ) as

fixed points; the  S J m atrix  is again given by (2.59).

The current (2,1) gives a theory  isomorphic to  the tensor product. Its  fixed points 

are the fields (^0, ^ 2) (h =  2), (̂ >1, ^ 3) (h =  NN), two tw isted fields coming from ^  

(w ith h =  H  and N  +  1) and other two from ^ 3 (also w ith h =  N  and N  +  2), all 

w ith  same weights as for the off-diagonal fields. The S J m atrix  is again equal to  the 

one for (0,1), if the  fixed points are ordered su itab ly  according to  their weights.

As before, it is more difficult to  derive the S J m atrix  for J  =  (2,0), for which we 

need (2.58).

(D(n)i)perm S J matrix for J  = (2, 0)

There are six fixed points for the  current J  =  (2, 0) of the  perm utation  orbifold 

(D (n )1)perm, coming from off-diagonal and tw isted fields. They are: (̂ >0, ^ 2) (with 

h =  2), (^ 1, ^ 3) (w ith h =  f ), (0, 0) (h =  32), (0,1) (h =  32 +  2), (2,0) (h =  ) 

and (2,1) (h =  N+8 +  2).

The S J m atrix  can be derived following the  same procedure as before. We know 

S  and S a n d  we still have (2.74). We use the same principle as before to  choose 

the orbit representatives according to  their m inim al weight. The tab le  in th is case is:

•  if n is odd

( ^ 1, ^ 3) — ► (0, 2 N )  & ( 0 , 1 4 N )
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2.5. E xam ple: S O ( N )i

if n is even

( ^  , ^ 3) — ► ( 1 , 1 4 N  +  4) &  ( 3 , 1 4 N  + 1 2 )

for all n

(^0 , ^2 ) —" (1, 4) & 4)—N11—(N

(0 ,0) - (0, N ) & ( 0 ,15N )

( M )  - ( 2 ,15N +  8) & (N  — 2, N  — 8)

(2,0) - (N -  1, N  — 4) & ( 1 ,15N +  4)

(2 T ) - (N  --1 ,1 5  — N ) & (1, N  +  4)

This fixes our order of “split field 1” and “split field 2” . We m ust use fields only from 

the first set or only from the  second set as before. O rbits corresponding to  these two 

split fields are conjugates of each other.

The S J m atrix  is given below. It depends on the original S  and P  m atrices16 of 

the D (n )1 theory. We have defined the quan tity  r  =  n  m od 2 =  n  — 2 [ ^ ] , which is 0 

if n  is even and 1 if n  is odd. We recall th a t here N  =  2n. We have checked th a t it is 

u n ita ry  (S J (S J )t =  1), m odular invariant ((S J T J )3 =  —1 =  (S J )2) and gives correct 

fusion coefficients.

The P matrix for the D(n)i series is:
(

cos I 
0

0 0cos
0 e eP 0
0 e e cos
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2. T he  P erm uta tion  Orbifold

S JS {0O,02>{0O,02>

S J{0O,02>{01,03>

S J __
<0O,02>(O,Ü)

S J
{00 ,02 >(0,1)

S J{0o,02>(2,O)

S J{0o,02>(2,1)

2 — (Soo S22 +  S 02 S02 ) — 0 

2  — (Soi S23 +  S 03 S21 ) — 0

i
2

i
2

SJS {01,03>{01,03>

SJ 1
S{01 ,0)<(,03 —2
SJ 1 iS{01,03 > (OT) 2
SJ 1 iS{01 ,0)(,03 2
SJ 1
S{01,03 > (21) —2

1 iN — (S'il S33 +  S 13 S 13)

■n+Ær

■+Or,0 

•n + ̂ r,0

0

O

n+ôr,o

S J((0,0)((0,0)

S J((0,0)((0,1)

s J_...___
(0,0)(2,0)

s J_...___
(0,0)(2,1)

1   niN 1
2 e -  8 — 2  P00

1 7T iN 1
— ̂  e 8 +  P 00

1 . _ niN 1
-  i e 8 -----P 2
2 2 220

—i -  sin 
2

—i -  sin 
2

” 8”
n N
” 8”
n N
” 8”

1 niN 1 1 / n N
-  i e 8 +  — P 20 — i -  cos ( —̂

1

1

1
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2.6. Conclusion

s J_____
(0,1)(0,1)

S J____
(0,1)(2,0) 

S J
(0,1)(2,1)

1   niN
2 6 8
1 , n iN
2 * 6 8
1
— * e 
2

■ + 2  p
n iN 1

2 P
00

20

20

*
2 Sin

1 (
2

cos ^

1
* -  cos 

2

n N  
” 8”  

l 'n N  ̂

(  n N

S J
(2,0)(2,0)

5:J'(2 ^ (2 ^ )

1 _ nN  1 „  1 /  n N
—  e 8 -----P 22 =  * -  sin

1 n iN 1
2 6 8 +  2 P22

n N
* -  sin I -----

2 V 8

S J
(2,1)(2,1)

1 _niK  1 „
— 7: e 8 — — P 22

n N
* -  sin I -----

2 V 8
(2.76)

1

2 .6 . C o n c lu s io n

In th is chapter we have studied the simple current and fixed point s truc tu re  of 

p erm utation  orbifolds and we have asked the question of resolving fixed points in 

these extensions. We have not done it in general bu t only for the  S U (2 )2 orbifolds 

and for the B (n ) i and D (n )i series. The m ain results were presented in sections 2.4.4 

and 2.5. Besides the  particu lar expressions for the S J m atrices in those cases, we have 

also showed the  existence of a very special current, the  un-orbifold current J  =  (0,1), 

which is always present in the  perm utation  orbifold and whose action is to  un-do the 

orbifold giving back the initial tensor product.

At th is point we still have plenty of open questions. F irs t we would like to  solve 

the problem  in full generality by giving a sensible ansatz for the  S J m atrix  for any 

a rb itra ry  C FT. We expect th a t th is ansatz should depend neither on the particu lar 

C FT  nor on the particu lar current used in the extension. The results for the special 

cases considered here give some hints about such a general formula. This problem  

will be addressed and solved in chapter 4, where we will see how to  make an educated 

guess for the  S J m atrices in full generality and how th is guess can then  be checked.
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2. T he  P erm uta tion  Orbifold

Secondly, the two S O (N )i series are interesting since they  appear in the num erator 

of the coset C FT  defining N  =  2 m inim al models. However, once we have the  general 

formula, it will contain the S O (N )i series as a particu lar example and we will not 

have to  worry anym ore about the  specific details derived here. For example, in this 

chapter we have looked only at spin-1 currents of perm utation  orbifolds (apart from 

the special case (0 ,1)), bu t we will see in chapter 4 how to  generalize the results 

to  arb itrary-sp in  currents. These currents will be relevant to  impose world-sheet 

supersym m etry  on the perm utation  orbifold of two identical N  =  2 m inim al models. 

Moreover, using extensions by these higher-spin currents, we should be able to  derive 

a “super-BH S” formula for perm utation  orbifolds of supersym m etric R C F T ’s. This 

will be the subject of chapter 5 .
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3. Finishing the D(n)1 orbifolds

F or  a m o m e n t , n o th in g  happened .
T h e n , a f t e r  a second  or  so , n o th in g  c o n t in u e d  to  happen .

(D.  A d a m s ,  S o  Long ,  a n d  T h a n k s  f o r  A l l  the  F ish )

3 .1 . In tro d u c tio n

In the previous chapter we studied  the s tructu re  of order-two simple currents in 

p erm utation  orbifolds in two-dimensional conformal field theories [7]. The m ain tool 

was the BHS S  m atrix  for the perm utation  orbifold [5, 6]. We have seen th a t in 

general simple currents can only be generated from diagonal fields th a t correspond to  

simple currents in the  m other theory, while their fixed points can come from b o th  the 

untw isted (diagonal and off-diagonal) and the tw isted sector. We have also considered 

extensions of the perm utation  orbifold and their fixed point resolution.

M odular transform ation m atrices of simple current extensions [9, 10, 27] are often 

quite non-trivial due to  fixed points [21, 16]. So far we have been able to  derive the S  

m atrices corresponding to  extensions in the  case of S U (2 )2, B (n )1 and D (n )1 W ZW  

models [30, 31]. The procedure was described in the previous chapter (see also original 

paper [23]). This was com pletely done for the  first two models bu t only partia lly  for 

the  D ( n ) i . In fact, we provided the S  m atrix  for the  integer spin simple currents 

th a t exist for any value of n, bu t sometimes additional currents appear in the  D (n )1 

model whose fixed points m ust be resolved as well, in order to  use them  as extensions. 

G enerically fixed points can arise for integer spin and half-integer spin simple currents 

[4]. We will see th a t for particu lar ranks of D (n )1 there are addition currents whose 

fixed points m ust be resolved. In th is chapter we address those additional problems, 

providing a com plete picture for the  fixed point resolution in D (n )1 perm utation  

orbifold.
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Explicitly, there are two interesting situations where fixed points can occur and 

th a t we have not studied so far, bo th  w ith even rank n. W hen n  is m ultiple of four, 

n  =  4p w ith p  e  Z, there are additional integer-spin simple currents coming from 

the two spinor representations of the D (n )1 W ZW  model. The spinor fields have 

weight h =  n  and their sym m etric and anti-sym m etric representations in the  D (n )1 

perm utation  orbifold have weight h =  n . Similarly, when n  =  4p +  2, the  same two 

spinor currents generate half-integer spin simple currents in the  D (n )1 perm utation  

orbifold. A lthough the la tte r cannot be used to  extend the chiral algebra, they  can 

be used in com bination w ith half-integer spin currents of another factor in a tensor 

product. For example, one m ay tensor the perm utation  orbifold w ith an Ising model, 

and consider the product of the half-integer spin current of the  D (n )1 perm utation  

orbifold and the  Ising spin field. This is not ju s t of academic interest. Extended 

tensor products of rational conformal field theories are an im portan t tool in explicit 

four-dimensional string  constructions, and in the  vast m ajo rity  of cases one encounters 

fixed points. For th is reason the fixed point resolution m atrices we determ ine here 

and in the  previous chapter have a range of applicability far beyond the special cases 

used here to  determ ine them .

There is no known algorithm  for determ ining these m atrices in generic rational 

C F T ’s, even if their m atrix  S  is known. In the  previous chapter we m ade use of the 

fact th a t the  extension currents had spin 1 and led to  identifiable C F T ’s. This m ethod 

will not work here except in the special case of D (4 )1, where the  spinor currents of the 

perm utation  orbifold have spin 1. In th a t case one can make use of tria lity  of SO(8) 

to  determ ine the missing fixed point resolution m atrices. A lthough tria lity  does not 

extend to  larger ranks, it tu rn s  out th a t in the  o ther cases the fixed point spectrum  

is sufficiently sim ilar to  allow us to  generalize to  D (n )1, for any n.

The plan of the  chapter is as follows.

In section 3.2 we describe the D (4 p )1 perm utation  orbifolds extended by the two 

spinor currents and resolve the fixed points. In the special case p  =  1 we use tria lity  

of SO (8) to  determ ine the set of S J m atrices. From the case p  =  1 is indeed possible 

to  generalize the  result to  a rb itra ry  values of p.

3. F inishing the  D (n ) i  orbifolds
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In section 3.3 we repeat the  procedure for D (4p +  2)i perm utation  orbifolds. We can 

be fast here since very few changes are sufficient to  w rite down consistent S J m atrices. 

The content of th is chapter is based on [33].

3 .2 . D (4 p ) i  o rb ifo ld s

We s ta rt w ith the  D (n )1 W ZW  model as m other theory  and focus on the spinor 

currents th a t for even rank n  can have (half-)integer spin. Let us fix our notation. 

The D (n )i =  S O (N )i, N  =  2n, series has central charge c =  n  =  f  and four prim ary 

fields w ith weight h  = 0 ,  f 1 f  (i =  0,1 , 2, 3 respectively). The S  m atrix  is given 

in tab le  3.1.

3.2. D (4 p )1 orbifolds

Table 3.1.: S  matrix for D(n)i

h — 0 h = N  h = 1 h — 16 h ~ 2 h — N

h — 0
h —N

h —

(-2)n
_2i
(-2 r2

(-i)n

2
2

i6

All the  four fields of the D (n )i series are simple currents. In the  perm utation  

orbifold, they  give rise to  four integer-spin simple currents, nam ely (0,0), (0,1), (2, 0) 

and (2,1), and to  four non-necessarily-integer-spin simple currents, nam ely (1,0),

(1,1), (3,0) and (3,1). For n  m ultiple of four, the la tte r currents have also integer 

spin. In this chapter we w ant to  study  precisely these currents, coming from the 

spinor representations i =  1, 3 of the  D (n )i model.

There are already a few observations th a t we can make. F irst of all, there exists an 

autom orphism  th a t exchanges the  fields ^ 1 and ^ 3. This will have the consequence 

th a t the  perm utation  theories extended by the currents (1,0) and (3,0) will be 

isom orphic i (the fields having same weights and the  two theories having equal central

^The fields and ^3 also have same P-matrix entries. In fact, the P matrix for n = 4p is
f  ( - 1)p 0 0 0 \

0 1 0  0
0 0 ( - 1)p+1 0
0 0 0 1
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3. F inishing the  D (n ) i  orbifolds

charge); th is holds as well as for the extensions by (1,1) and (3,1). Secondly, when 

n  is m ultiple of four, i.e. n  =  4p w ith p  G Z, the  S  m atrix  of the  m other D (n )i 

theory  is the  same for every p. This will have the  consequence th a t the fusion rules of 

these currents in the perm utation  orbifolds are the same for every value of p. P u ttin g  

these two observations together, we conclude th a t for n  =  4p there will be only two 

universal S J m atrices to  determ ine2.

Let us illustra te  these points w ith the explicit construction. Consider3 the case w ith 

a rb itra ry  n  =  4p. The D (n )i weights are then  h =  0, n , 1, n and the orbit struc tu re

under the additional orbifold integer-spin simple currents (all w ith h =  n 

follows.

p) is as

J  =  (1, 0) Fixed points

h =  n

(^2, ^ 3}, h =  n  +  2 

(0,0), h =  16

(0 ,1), h =  16 +  2

(1. 0 ), h =  n
(1. 1), h =  n +  2

Length-2 orbits

((0, 0), (1 ,0)Y  h =  0

(0, 1), (1, 1) , h =  1

f(2, 0), (3 ,0)Y  h =  1

((2 ,1 ), (3 ,1 )) , h =  1

J  =  (1,1) Fixed points

h =  n

(^ 2, ^3}, h =  n  +  2

(2, 0), h =  16 +  4

(2 ,1), h =  16 + 1 +  2

m , h =  n

(3, l) , h = n +  2

Length-2 orbits

'( 0 , 0 ), (1, 1)Y  h =  0

(0,1), (1 ,0)Y  h =  1

(2.0), (3 ,1)Y h =  1

(2.1), (3 ,0)Y  h =  1

We recall that the P matrix, P = VTST2SVT, first introduced in [28], enters the BHS formulas [6] for the S 
matrix of the permutation orbifold in the twisted sector.

2 They will in general depend on p through a phase in order to satisfy modular invariance, since the T matrix 
depends on p.

3The case n = 4, that we will consider extensively later, is very interesting since it corresponds to SO(8)i where, 
due to triality, three out of four fields have equal weight.
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J  =  (3, 0) Fixed points

h =  n

(^ i , ^2}, h =  n  +  2 

(0,0), h =  16 

(0 ,1), h =  16 +  2

(3.0), h =  n
(3 .1), h =  n +  2 

J  =  (3,1) Fixed points

(^o , ^3}, h =  n

^2}, h =  f  +  2

(1.0), h =  n 

( m ) ,  h =  n +  2

M 0 )  h =  16 +  4
(2 .1), h =  16 + 1 +  2

Note th a t in going from the fixed points of (1, 0 )  to  (3, 0 ), the  fields ^ 1 and ^ 3 get 

interchanged: this provides isomorphic sets of fields in the  extensions.

The fixed points get split in to  two fields in the extended perm utation  orbifold and 

hence all the  theories above adm it 2 • 6 +  4 =  16 fields. B y changing n  =  4p, the 

weights of the  orbits and the ones of the fixed points m ight change, bu t there are a few 

things th a t rem ain invariant, namely: 1) the fact th a t the extension by the current

(1.0) (resp. (1 ,1)) is isomorphic (up to  field reordering) to  the  one by (3,0) (resp.

(3 .1)), as it can be seen by looking a t the weights of the  extended fields; 2) the  orbit 

and fixed-point struc tu re  (i.e. the fusion rules of the currents w ith any other field in 

the perm utation  orbifold) rem ains the same for a rb itra ry  p; th is has the consequence 

th a t we will have to  determ ine only two S J m atrices instead of four.

3 .2 .1 . S J m atrices for D (4p)1 p e rm u ta tio n  orbifolds

We have already noticed th a t there are in practice only two S J m atrices to  determ ine 

for the four above-m entioned integer-spin simple currents. So here we are going to  

derive S (1,0) and S (1,1); S (3,0) and S (3,1) are equal to  the former two, after proper

3.2. D (4 p )1 orbifolds

Length-2 orbits

((0, 0), (3 ,0)Y  h =  0 

((0 ,1 ), (3 ,1)Y h =  1

r n , 0 ) ,(2 ,0)Y  h =  1

((1 ,1 ), (2 ,1)Y h =  1

Length-2 orbits

((0 ,0 ), (3 ,1)Y h =  0 

((0 ,1 ), (3 ,0)Y  h =  1

r n ,  0), (2 ,1)Y h =  1

((1 ,1 ), (2 ,0)Y  h =  1
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field ordering.

It is instructive to  s ta rt w ith the D (4 )1 (p =  1) case. S O (8 )1 is special in the  sense 

th a t the  three non-trivial representations, i.e. the vector 8v and the two spinors 8s 

and 8c , have same weight (h =  2) and same dimension (dim =  8) and can be m apped 

into each other. This property  of SO (8) is triality. Due to  tria lity  of SO (8), the 

extensions by the currents (1, 0 ) , (2, 0 )  and (3, 0 )  m ust produce the same result. The 

extension by (2, 0 ) is already known from chapter 2 and, according to  our earlier 

argum ents, the extensions by (1 ,0 )  and (3 ,0 )  are equal.

Let us now work out the  S J m atrices corresponding to  the two integer-spin simple 

currents J  =  (1, 0) and J  =  (1,1). The extension by (1,0) of the  perm utation  orbifold 

is isomorphic to  an extension of the  tensor p roduct of an S U (8) and a U (1) factor as 

done in section 2.5:

(D (4 )1 X D (4 )1/ Z 2)(1,0) =  (S U (8 )1 x U (1)128) (4,16) , (3.1)

while the  extension by (1,1) is isomorphic to  the tensor product D (4 )1 x D (4 )1. This 

is exactly w hat happened for the already known currents (2, 0 ); in fact, due to  tria lity  

of SO (8), the  three theories extended by (1, 0 )  (2, 0 )  (3, 0 )  m ust be the same.

J  = (1 0)

We use the m ain formula (2.6), th a t we repeat here for convenience,

|G| £  * i ( J ) S J
J  EG

to  derive the S J m atrix  from the knowledge of the  extended m atrix  S  and the 

perm utation  orbifold m atrix  S (0,0) =  S BHS. The prefactor in (3.2) is a group 

theoretical factor and the ^ ¿ ’s are the group characters. As already done in the 

previous chapter, our field convention to  distinguish between the two split fixed points
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3.2. D (4 p )1 orbifolds

is:

(^0, ^ l)  —-  (1,4) & (7,124)

(^2, ^ 3) —- (1,116) & (3,124)

(0 0 )  — (0,120) & (0, 8)

( M )  - -  (6,0) & (2,0)

(1 0 )  - -  (7,4) & (1,124)

( U )  —- (1, 12) & (3,4)

where (s ,u )  denotes a field in the  extended theory  (s =  s +  8, u =  u +  128). Here 

the first en try  s is the  rank of the  anti-sym m etric representations of S U (8 )1, while 

the second en try  u gives the  weights of the  U (1)R representations (in th is specific 

case R  =  128) according to  hu =  2tr m od Z. Observe th a t field one and field two 

correspond to  com plem entary orbits. The S J m atrix  for the  (D (4 )1 x D (4 )1/ Z 2)(10) 

orbifold can be derived as done previously and is given in tab le  3.2. We denote it by 

SD4 , w ith  J  =  (1, 0), for reasons th a t will become clear later.

One can check th a t th is m atrix  is un ita ry  (S J (S J )t =  1) and m odular invariant 

( (S J )2 =  (S J T J )3, where T J is the  T  m atrix  restricted  to  the  fixed points) and gives 

non-negative integer fusion coefficients. Moreover, one can see th a t u n ita rity  and 

m odular invariance are preserved for p  = 1  m od 4: then  th is m atrix  can be used also 

in these situations.
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Observe th a t rescaling the S J m atrix  by a phase does not destroy un ita rity  bu t it 

does affect m odular invariance. B y a suitable choice of the  phase, it is possible to  

make a m odular invariant m atrix  out of S ^ ^  valid for all p. The correct choice is:

S (1-0) =  ( - ¿ ) p - 1 • S(140) =  e - t (m -2) • S ^  (3.3)

which will use for any value of p. Here m  =  2p is an even integer such th a t 

D (2 m ) 1 =  D (4p)1. This is again unitary, m odular invariant and gives non-negative 

integer fusion coefficients.

Let us make a final comment. W hat happens when we shift p  — p  + 1 ?  Under 

th is shift, the  fixed point weights change differently. In particular, for the  current

(1,0) the  shifts are h — h +  {2, 2, 4 , 1, 1, 1}. The T (1,0) m atrix  then  changes as 

T (1,0) — e -  d ia g ( - 1, - 1, i, i, - 1, - 1) • T (1,0) (the phase in front coming from the 

central charge), while the S (1,0) takes a phase, S (1,0) — —iS (1,0). These changes are 

such th a t m odular invariance is still preserved for every p.

J  = (l, l)

For th is current, recall th a t

(D (4)1 x D (4 ) 1/Z 2)(1,1) ~  D (4)1 x D (4 )1 . (3.4)

The split fixed points correspond to  fields in the  tensor product theory. We choose 

conventionally the  following scheme, bu t a few other choices are also possible.

3. F inishing the  D (n ) i orbifolds

(^0 , ^1} - - ^0 ^1 & ^1 ^0

(^2 , ^3} - - ^2 ^3 & ^3 ^2

(2 ,0) - ^0 ^2 & ^2 ^0

( 2 ° )  - ->■ ^1 ^3 & ^3 ^1

(3 ,0) - ^0 ^3 & ^3 ^0

(3 ,1) - ->■ ^1 ^2 & ^2 ^1
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The next step  is to  com pute the S J m atrix  for the  (D (4 )1 x D (4 )1/ Z 2)(11) orbifold. 

We call it again S J 4, w ith J  =  (1,1). O ur s tra tegy  is as follows. We first go to  the 

isomorphic tensor product theory  and use

S {mn){pq) =  SmpSnq -  SmqSnp (3.5)

as derived in (2.59) to  com pute the S J m atrix  there and then  we go back to  the 

extended perm utation  orbifold using the field m ap. We obtain  the S J m atrix  as in 

table 3.3.

3.2. D (4p)i orbifolds

The S J m atrix  obtained in th is way for (D (4 )1 x D (4 )1/Z 2)(11) is un ita ry  and 

m odular invariant, so it is a good m atrix  for the  extended theory. Moreover, this S J 

m atrix  is a good (i.e. un ita ry  and m odular invariant) m atrix  also for p  =  1 m od 4.

In order to  make th is m atrix  m odular invariant for any p, we again m ultiply by a 

phase. The choice is the same as before:

S (1-1) =  ( - ¿ ) p - 1 • S ^  =  e - t (m -2) • S(141) (3.6)

which will use for any value of p. This is again unitary, m odular invariant and 

gives non-negative integer fusion coefficients. The shift n  - n  +  16, corresponding to  

p  — p  +  4, changes all the  weights by integers, does not change S (1,1), bu t does change 

T (1,1) by a phase which is a cubic root of unity, thus preserving m odular invariance.

One can check formulas (3.3) and (3.6) in m any explicit examples. For instance, 

one can see th a t they  have good properties by looking a t a few values of p, bu t also 

considering tensor products like D (8 )1 x D (12)1 or D (8 )1 x D (16 )1 and extending

63



w ith m any current com binations ( J i ,  J 2), where J  belongs to  the  first factor and 

J 2 to  the second factor. In every example, the  fusion rules give non-negative integer 

coefficients.

3 .3 . D (4 p  +  2 ) i o rb ifo ld s

3. F inishing the  D (n ) i  orbifolds

So far we have not addressed half-integer spin simple currents. They m ight also adm it 

fixed points th a t m ust be resolved in the  extended theory. This happens for the D (n )1 

perm utation  orbifolds w ith n  =  4p+ 2 . In fact, the  four currents (1, 0 )  and (3, 0 ), w ith

0  =  0 ,1 , will have weight h =  2p+ 1 and will adm it fixed points. The orbit struc tu re  

is in this case w ith n  =  4p +  2 very sim ilar to  the previous situation  w ith n  =  4p, 

except for the fact th a t the  tw isted fields get reshuffled. The fixed point struc tu re  

is as follows. Observe th a t th is is very sim ilar to  the s truc tu re  for the previous case 

n  =  4p.

J  =  (1, 0) Fixed points
^ i ) , h = n

(^2^ 3}, h = f  +  2

(M M  h =  16 +  4
(2, ^  h =  16 + 1 +  2
(1,0), h =  f
(171), h =  f  +  2

J  =  (3, 0) Fixed points
h =  f

(^ i^^2 }, h =  f  +  2 

M M  h =  i6  +  4 
M M  h =  16 + 1 +  2
(M )), h =  f
(3, l) , h = f  +  2

(3.7)

J  =  (1,1) Fixed points
(^Ci ^1}, h =  f  
(^2 , ^3}, h =  f  +  2 
(0 2 ) ,  h =  16 

M M  h =  16 +  2
(M )), h =  f
(3 ,1), h =  f  +  2

J  =  (3,1) Fixed points
h =  f  

^2}  h =  f  +  2 

(OIo)’ h =  16 
(0 ,1), h =  16 +  2 

( M ) ,  h =  f  
(1, ^  h = f  +  2

Again, the current (1,0) (resp. (1 ,1)) generates the  same fixed points as the current

(3,0) (resp. (3 ,1)), hence we have to  determ ine only two, instead of four, S J m atrices,
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since S (1’̂ ) =  S ^ ’̂ ,  w ith  0  =  0 ,1 . A ctually the study  of the  previous section helps 

us a lot, since it is easy to  generate un ita ry  and m odular invariant m atrices out of 

two m atrices num erica lly  equal to  the  two S J 4 m atrices of tables 3.2 and 3.3 w ith 

the fields ordered as above. More tricky is to  check th a t also the fusion coefficients 

are non-negative integers if these currents are used in chiral algebra extensions (see 

com m ent below).

The more sensible choice is the  following. Let us have a closer look a t the fixed 

point s truc tu re  of the  n  =  4p and the  n  =  4p +  2 cases. They are very similar, bu t 

not quite. The weights of the  fixed points of the current (1, 0) in the n  =  4p case 

have the same expression as the  weights of the fixed points of the  current (1, 1) in the 

n  =  4p +  2 case, and sim ilarly for the (3, 0 )  current. So a n a tu ra l guess for the S J 

m atrices would involve interchanging the m atrices in tables 3.2 and 3.3 . Equivalently, 

sym m etric and anti-sym m etric representations are interchanged in going from n  =  4p 

to  n  =  4p +  2. Hence, we would expect S (1,0) ~  S ^ ^  and S (1,1) ~  S ^ ^ .  This is 

indeed the  case. The un ita ry  and m odular invariant 4 com binations are in fact?

S (1’0) =  e- t  • ( - ¿ ) p-1 • S ^  =  e- t (m-2) • S ^  (3.8)

and

S (1’1) =  e- t  • ( - ¿ ) p-1 • Sj}40) =  e- t (m-2) • S (1 0  (3.9)

giving also acceptable fusion rules. Here m  =  2p +  1 is an odd integer such th a t 

D (2 m )1 =  D (4p +  2 )1.

There are a few com m ents th a t we can make here. The first com m ent regards the 

labelling of the m atrices ju s t given. We observe th a t the m atrix  S (1,0) (resp. S (1,1)) 

contains the same fields as the m atrix  S^1̂  (resp. S ^ 1̂ )  except for the  fact th a t the 

tw isted fields corresponding to  the spinors are interchanged (but they  still have the 

same weights). We will then  keep the same labels as given in the  above scheme (3.7) 

and in tab le  3.3 (resp. tab le  3.2).

4Modular invariance reads here: (SJ )2 = ( — 1)pi-1 = (SJTJ )3 for J = (1, 0) and (SJ )2 = ( — 1)p — 1i-1 = (SJTJ )3 
for J = (1, 1), both with imaginary (SJ )2.

5Note that in order to use these relations one must order the six fields as indicated above, without paying attention 
to the actual labelling of the fixed point fields.

3.3. D (4p  +  2)i orbifolds
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The second com m ent regards the periodicity of the  m odular m atrices. Observe th a t 

in (3.7) a shift n  ^  n  + 1 6  (corresponding to  m  ^  m  +  8 and p  ^  p  +  4) changes 

all the  weights by integers, bu t the  T J m atrices will be invariant. Similarly, the  S J 

m atrices are invariant under the  same shift m  ^  m  +  8. This happened already for 

the  m odular m atrices in the n  =  4p case and it happens here again in the  n  =  4p +  2 

case. Hence, it seems th a t in com paring phases one should consider situations which 

have the  same p m od 4. On the o ther hand, in going from n  =  4p to  n  =  4p+ 2 , the S J 

formulas are similar, bu t there is one m ain difference, nam ely S^1̂  gets interchanged 

by S ^  and this is a com pletely different m atrix . The same consideration th a t we 

made after (3.3) about the  shift p  ^  p  + 1  can be repeated  here.

The last com m ent regards the fusion coefficients. Note th a t when we check the 

fusion rules, we cannot do it d irectly  from the single D (n )1 perm utation  orbifolds, 

exactly because the spinor currents have half-integer spin. Instead, we have to  tensor 

the  D (n )1 theory  w ith another one which also has half-integer spin simple currents 

(e.g. Ising model or the  D (n )1 model itself, m aybe w ith different values of n) such 

th a t the tensor p roduct has integer spin simple currents th a t can be used for the 

extension: those integer spin currents will then  have acceptable fusion coefficients. 

We have checked th a t th is is indeed the case for tensor products of the  perm utation  

orbifold C F T ’s w ith the Ising model, and also in extensions of different perm utation  

orbifold C F T ’s tensored w ith each other (we have also perform ed the la tte r check for 

n  =  4p, for com binations of integer spin currents).

3 .4 . C o n c lu s io n

In th is chapter we have com pleted the analysis in itia ted  in the  previous chapter 

regarding extensions of D (n )1 perm utation  orbifolds by additional integer spin simple 

currents arising when the  rank n  is m ultiple of four and by additional half-integer 

spin simple currents arising when the rank n  is even bu t not m ultiple of four. In 

b o th  situations fixed points occur th a t m ust be resolved in the extended theory. This 

m eans th a t we have to  provide the S J m atrices corresponding to  those ex tra  currents 

J . They will allow us to  obtain  the full S  m atrix  of the  extended theory  which satisfies

3. F inishing the  D (n )1 orbifolds
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3.4. Conclusion

all the necessary properties.

The currents in question are those corresponding to  the spinor representations i =  1 

and i =  3 of D (n )1, b o th  w ith weight h =  ^ . In the perm utation  orbifold they  

arise from the  sym m etric and the  anti-sym m etric representations of the  spinors, bo th  

w ith weight h =  ^ : so they  have integer spin for n  =  4p (p is integer) and half

integer spin for n  =  4p +  2. Moreover, they  produce pairwise identical extensions 

of the perm utation  orbifold, such th a t there are only two unknown m atrices to  

determ ine: S (1,^ ) =  S (3,^ ) (0  =  0 ,1). The solutions were given in sections 3.2 

and 3.3. This com pletely solves the fixed point resolution in extension of D (n )1 

perm utation  orbifold.

There is still more work to  do. F irst of all, we do not have any general expression 

yet for the  S J m atrix  in term s of the  S  (and m aybe P ) m atrix  of the  m other theory. 

This should be independent of the  particu lar C FT  a n d /o r the  particu lar current used 

to  extend the theory. Secondly, it would be interesting to  apply these C FT  results in 

S tring Theory. Suitable candidates appear to  be the m inim al models of the N  =  2 

superconform al algebra, which are the building blocks of G epner models [13, 14]. We 

will address the  first problem  in the next chapter, while string  theory  applications 

will be postponed to  the  second p a rt of th is work.
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4. The ansatz

I  d o n ’t kn o w ,  
a n d  I  w o u ld  r a th e r  n o t  guess .

(J . R .  R .  To lk ien ,  T h e  Lord  o f  the  R i n g s )

4 .1 . In tro d u c tio n

In the  first two chapters we have s ta rted  to  study  the  problem  of resolving the fixed 

points [17, 21, 16] in simple current [4, 9, 10, 27] extensions of perm utation  orbifold 

[5, 6] conformal field theories [7]. The aim  of this chapter is to  give a general solution 

to  th is problem , valid for all conformal field theories and all order-two simple currents, 

going much beyond the specific examples discussed previously. The stra tegy  will be 

to  ob tain  an ansa tz  for S J based on its m odular properties. To arrive a t th is ansatz  

we make use of the  following pieces of inform ation:

•  The BHS S  m atrix , S BHS, of the  unextended Z 2 orbifold, derived in [6]. This is 

the m atrix  S J for the special case J  =  0, which fixes all fields in the C FT.

•  The m atrix  S J for the anti-sym m etric com ponent of the  identity, the so-called 

un-orbifold current as described in chapter 2 . This m atrix  could be derived 

because this simple current undoes the perm utation  orbifold and gives back the 

original tensor product.

•  The m atrix  S J for some cases where J  has spin 1. Here we used the fact th a t 

the simple current extension can be identified w ith a known W ZW  model. This 

allowed us to  determ ine S J for the vector current of S O (N ) level 1. This was 

described in chapter 2 .

•  Using tria lity  in SO (8) this could be generalized to  the  spinor currents of SO(8) 

level 1, and from there to  all spinor currents of SO (2n) level 1, which have very
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4. T he  ansatz

sim ilar m odular properties. This was described in chapter 3.

Here we will use these previous works as “stepping stones” towards a general ansatz, 

which includes all the  aforem entioned results as special cases, and has a far larger 

range of validity. In particular, the  results of the  previous chapters were lim ited to  

low levels, such as in the  perm utation  orbifold of B (n )1, D (n )1 and A (1)k (com pletely 

for k =  2 and k  odd, partia lly  for k  even). By an educated guess, one could very 

well suspect th a t th is formula would depend on a few quantities of the  original or 

m other C FT  A, such as its S  m atrix , its P  m atrix , the  weight h j  of the simple 

current J ,  etc. This is the problem  th a t we address and solve in th is chapter. The 

formula which we obtain  is valid for any order-two simple current J  of any order-two 

perm utation  orbifold. In particular, th is extends the foregoing results for B (n ), D (2n) 

and A(1) to  a rb itra ry  level, bu t it also includes perm utation  orbifolds of m any other 

W ZW  models such as C (n ), E (7), as well as the  perm utation  orbifolds of m any coset 

C F T ’s, such as the  N  =  0 and N  =  1 m inim al superconform al models and some of 

the  currents of the  N  =  2 m inim al superconform al models. Not included are fixed 

points of simple currents of orders larger th an  two, which occur for example in the 

perm utation  orbifolds of A(2) level 3k, or D (2n  +  1) for even level.

The plan of th is chapter is as follows.

Since th is chapter contains the m ain C FT  result of th is whole work, we would 

like to  make it more or less independent from the previous chapter as well as self

contained, hence we s ta r t by fixing our no tation  and reviewing the construction of 

the  perm utation  orbifold, its S m a t r i x ,  together w ith its simple current and fixed 

point s tructure .

In section 4.3, we extend the  ansatz to  the m ost general case and com m ent about 

its un ita rity  and m odular invariance. The com plete proof th a t our ansatz is actually  

un ita ry  and m odular invariant is not given here, bu t can be found in the  original 

paper [34].
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4.2. The permutation orbifold

4.2. The  p erm uta tion  orbifold

In th is section we review a few facts th a t will be relevant about perm utation  orbifolds, 

already described in chapter 2. The Z 2-perm utation  orbifold

A perm =  (A  x A ) /Z 2 , (4.1)

by definition, contains fields th a t are sym m etric under the  interchange of the two A  

factors. Moreover, there is also a tw isted sector, as dem anded by m odular invariance. 

The S  m atrix  of A perm, denoted by S BHS, has been already presented in chapter 2, 

b u t for convenience reasons we will recall it here:

S {mn){pq) Smp Snq +  Smq Snp (4.2a)

S. . ( ) =  0 (4.2b)(mn)(P’X) v '

S (i’0)(j’X) =  2 S ij Sij (4.2d)

S (i,0){mn) Sim Sin (4.2e)

S ,. ,..— . =  1  e2ni0/2 Sip , (4.2f)(i’0)(p,x) 2

where the P  m atrix  (introduced in [26]) is defined by P  =  V T S T 2S V T .

If there is any integer or half-integer spin simple current in A, it gives rise to  an 

integer spin simple current in A perm, which can be used to  extend the orbifold C FT. 

We can denote the extended perm utation  orbifold by A perm. In the extension, some 

fields are projected  out while the rem aining organize themselves into orbits of the 

current. Typically untw isted and tw isted fields do not mix among themselves. As 

far as the new spectrum  is concerned, we do know th a t these orbits become the  new 

fields of A perm, b u t we do not norm ally know the new S  m atrix , S'.

In chapter 2, using the sufficient and necessary condition S B0HS =  S0qHS [25], 

it was proved th a t orbifold simple currents correspond to  the  sym m etric (0  =  0) 

and anti-sym m etric (0  =  1) representations (nam ely diagonal fields) of the simple 

currents in the  m other theory  A, hence the  no tation  (J, 0 ), being J  the corresponding
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4. T he  ansatz

simple current in the m other theory. Consequently, one simple current in A  generates 

two simple currents in A perm. The fixed point s truc tu re  arising in A perm was also 

determ ined in chapter 2 for currents w ith (half-)integer spin. Here we want to  consider 

currents w ith spin h J G 1 Z odd as well. In fact, if h J is quarter-integer, the  resulting 

perm utation  orbifold current has half-integer weight, and hence could have fixed 

points. The generalization is straightforw ard and involves small changes only for 

tw isted fixed points. In fact, by studying the fusion coefficients, we can show tha t:

•  diagonal fields: (i, ^) is a fixed point of (J, 0 )  if 0  =  0 and if i is a fixed point of 

J ,  i.e. J i  =  i;

•  off-diagonal fields: (m, n) is a fixed point of (J, 0 )

— either if m  and n  are bo th  fixed points of J , i.e. J m  =  m  and J n  =  n,

— or if m  and n  are in the  same J-o rb it, i.e. J m  =  n;

•  tw isted fields: (p, p) is a fixed point of (J, 0 ) if Q J (p) =  ^  + 2  h J m od Z, 

independently  of ^.

For the tw isted fixed points, the  proof can be found in the  appendix of the original 

paper [34]. Observe th a t for (half-)integer spin simple currents we can drop the 

additional 2 h j  from the m onodrom y charge.

Also note th a t there exist diagonal fixed points only for the sym m etric 

representation  of the simple current and th a t the  tw isted fixed points are determ ined 

by Q j(p ), the m onodrom y charge of p  w .r.t. J . Moreover, we will often have to  

distinguish between the two types of fixed points coming from the off-diagonal sector: 

for obvious reasons, we will call them  fixed-poin t-like o ff-diagonal fie lds  and orbit-like 

off-diagonal fie lds respectively in the  two cases.
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4.3. The general ansatz

4.3. The  general ansatz

Here we give the m ost general ansatz for the  fixed-point resolution m atrices S o f  

a (J, 0 )-ex tended  perm utation  orbifold. I t reads:

s (j >vo
(m,n)(p,q) =  s J SJ +  ( —1)^ SJ SJmp nq ^  v / mq np (4.3a)

s  (J>vo__
(m,n)(p,x)

S 
s 

J
J

 p
© 

CqA (4.3b)

S^J^)__
(P,0)(9,X)

=  B  1  einQj(p) P r  ein(0+x) 2 Jp?q (4.3c)

s (J>V0
S (i,0)(j,x)

_ 1 s J  s J— 2 (4.3d)

S (J>V0
(i,0){m,n)

_ s  J S Js im s in (4.3e)

s  (J>vo___
(i,0)(P,X)

=  C  1  ein^ Sip . (4.3f)

The no tation  in the ansatz is as follows. We denote by Q j(m )  the com bination 

of weights Q j (m) =  h j  +  hm — h j  ,m, while Q j(m )  is the  m onodrom y charge of 

the  field m  w .r.t. the current J  in the  m other theory  which gives rise to  the 

current (J, 0 ) in the perm utation  orbifold (independently of its sym m etric or an ti

sym m etric representation). These two quantities are obviously related  by Q J (m) =  

Q j(m )  m od Z. Using m odular invariance, one can show th a t these phases satisfy the 

following relations (see [34]):

B  =  ( —1)^ e3inhj , A 2 =  C 2 =  ( —1)^ e2inhj , (4.4)

h J being the weight of the simple current, which m ight depend on the  central charge, 

rank and level of the original C FT. These relations come from m odular invariance: so, 

we can see th a t B  is fu lly  fixed, while A and C  are fixed up to a sign. We could also 

have inserted a phase E  in the m atrix  elem ent S ( J’fw >. M odular invariance wouldr  (i,0)(m,n)
then  constrain it to  E 2 =  1, hence E  would have been ju s t a sign. As before in the 

simplified ansatz, these sign am biguities are com pletely understood  in term s of the 

general sign am biguities of fixed point resolution m atrices. W ith in  the three blocks 

(diagonal, off-diagonal, tw isted) they  are fixed because we w rite all m atrix  elements
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in term s of S J , S  and P , bu t this still leaves three relative signs between the  blocks. 

These signs are fixed by requiring th a t the result should recover the BHS m atrix. 

The la tte r has no free signs, because it is defined by a character representation. This 

therefore defines a convenient canonical choice for the signs. The special case of the 

BHS formula corresponds to  h J =  0  =  0 for the identity, hence B  =  1, while A and 

C  are ju s t signs, th a t m ust be taken positive. However, we emphasize th a t any other 

sign choice for A, C  or E  is equally valid; it is analogous to  a gauge choice. Note th a t 

some of the m atrices presented in the previous chapters use different sign conventions.

This ansatz more or less in terpolates our previous results of chapters 2 and 3, up 

to  the  above sign conventions. The phase in the tw isted-tw isted sector containing 

the h a tted  m onodrom y charge is necessary in order to  make S J sym m etric1 as it 

should be since, for order-two currents, S J  =  S J  1 [17]. We need to  pu t a h a t on 

Q j  in order to  avoid am biguities deriving from having the  m onodrom y charge in the 

exponent, since it is defined only m odulo integers. Sim ilarly to  w hat happens in the 

BHS formula (4.2), the  P  m atrix  enters the tw isted-tw isted sector.

A com m ent about the  m atrix  element S (J’̂ ) ----  is in order. We can actually  prove
(m,n)(p,X)

th a t the quan tity  Smp vanishes when J  • m  =  m  and 0  =  1 and use the second line 

of the ansatz also in th is case. In fact, first of all, since (p>, x) is a tw isted fixed point 

of (J, 0 ) and since h J m ust be (half-)integer in order for m  to  be fixed by J , we can 

drop the 2hJ contribution from the m onodrom y of p, i.e. Q J (p) =  ^ . Secondly, using

Sjm,p =  e2inQj(p) Smp [4], we have:

S =  S t =  e2inQJ (p) S =  e2inT S (4 5)u mp ‘~,Jm,p ° u mp ° ump ?

__
(m,n)(p,X)

laim ing th

also for 0  =  0 when (m, n) is fixed-point-like. We also recall th a t for orbit-like off-

4. T he  ansatz

implying th a t the  non-identically-to-zero option of S (J’̂  ^ — actually  also vanishes

when J  - m  =  m  and 0  =  1. So in our ansatz we are claiming th a t S (J’̂ ) ----  vanishes
<m,n)(p,x)

1In fact one can check that
(m) Pjm,p = (p) Pm,Jp = Amp

with _
Amp = VTmm X  {e2™Qj (1) SmlTtSip) VT pp

I
and Amp is symmetric.
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4.3. The general ansatz 

diagonal fields there exists a sim ilar relation between Smp and Snp:

Snp =  Sjm,p =  e2inQj(p) Smp =  e2in2 Smp , (4.6)

bu t we cannot infer much from here. I t is crucial in these m anipulations th a t the  field 

p  gives rise to  a tw isted field in the extended orbifold.

4.3 .1 . U nitarity  and  m odular invariance

The proofs of u n ita rity  and m odular invariance of the  ansatz are referred to  [34]. 

The calculation is interesting since we are able to  derive a few aside identities having 

to  do w ith projected sums of selected elements of the  un ita ry  S  and P  m atrices of 

the original theory. In order to  prove unitarity , we show th a t S (j,^ ) • S (J,V0t =  1. 

M odular invariance is the  sta tem ent th a t (S (J,V0)2 =  (S (j,^ ) • T (j,^ ))3, where T (j,^ ) 

is the T  m atrix  of the  perm utation  orbifold restricted  to  the fixed points of (J, 0 ). 

Using th is relation to  prove m odular invariance would be com putationally  heavy, due 

to  the double sum  arising in the  cube. Instead  we re-write the  constrain t as

T (j ,̂ ) -1 s (j ,̂ )T (j ,^ )-1  =  S (j ,^ )T (j ,̂ )S (j ,^ ) (4 7)

which is simpler since it involves only one sum  on the r.h.s. and no sums a t all 

on the l.h.s. Surprisingly enough, we find th a t the  phases in the  ansatz do not 

depend explicitly on the  central charge c of the m other C FT  (the central charge of 

the perm utation  orbifold is c =  2c). The reason for th is is th a t the  T  m atrices of 

the orbifold theory  re-arrange themselves into suitable functions of T  m atrices of the 

original theory. Explicitly (recall T  is diagonal: T j  =  Ti ):

T  J ’) =  Tm Tn , t J ^  =  T 2 , T ^ ) =  einx . (4.8)(m,n) m n ’ (i,0) i ’ (p— p

hence the central charge gets always re-absorbed in T. The phases A, B  and C  will 

be constrained by th is calculation to  be equal to  the  expressions given earlier.
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4.3 .2 . Checks

4. T he  ansatz

A lthough we have an explicit proof th a t our results satisfy the conditions of m odular 

invariance (see [34]), we do not have a general proof th a t all o ther R C FT  conditions 

are satisfied, although the sim plicity and generality of the answer suggests th a t this 

is indeed the  right answer. The next issue one could check is the  fusion rules of the 

extended C FT. C urrents of order two th a t have fixed points m ust have integer or half

integer spin. In the  la tte r case there is no extension, bu t one m ay consider instead the 

tensor product w ith an Ising model, extended w ith an integer spin product of currents. 

Indeed, also for integer spin currents one can consider arb itrarily  com plicated tensor 

products and any integer spin product current. All of these should give sensible fusion 

rules. We have built (4.3) into the program  kac [35], which com putes fusion rules for 

simple current extended W ZW  models and coset C F T ’s, and this gives us access to  a 

huge num ber of explicit examples. We have checked m any simple extensions, and also 

com binations of perm utation  orbifolds. For example, denote by X  the perm utation  

orbifold of C (3)2. I t has 85 prim aries and four simple currents, the  identity, the 

anti-sym m etric com ponent of the la tte r (which has spin 1) and two spin 3 currents K  

and L originating from sym m etric and anti-sym m etric product of the simple current 

of C (3 )2. We can now tensor X  w ith itself, and extend the result w ith (K , K ) or 

(K , L) or (L, L). This gives three d istinct C F T ’s w ith 2578, 2284 and 2102 prim aries 

respectively. Checking all their fusion rules is very tim e-consum ing, so we have ju st 

checked a large sample. The fusion rules we have checked in these cases, and m any 

others, have indeed integer coefficients. Note th a t our formalism allows us to  consider 

also the perm utation  orbifold of X  x X , and the simple current extensions thereof. For 

all these C F T ’s the  fusion rules are now explicitly available. Furtherm ore, for all these 

cases we can com pute the boundary  and crosscap coefficients as well as the  annulus, 

M oebius and Klein bo ttle  am plitudes using the formalism of [19] (generalizing earlier 

works, such as [36, 37, 38], and references cited in th is paper).
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4.4. Conclusion

In th is chapter we have addressed the problem  of fixed point resolution in (extensions 

of) perm utation  orbifolds or equivalently the  problem  of finding the S J m atrices for 

those classes of theories.

The results of th is chapter allow us to  make extensions of perm utation  orbifolds. 

We propose an ansatz for the S J m atrices valid in the  general case of simple currents 

of order 2. We have also shown how to  get back the BHS formula when we extend the 

p erm utation  orbifold by the identity  current (J, 0 )  =  (0,0). This ansatz is un ita ry  and 

m odular invariant. Moreover, unlike the  results of the  previous chapters, it does not 

depend on any explicit details of the  particu lar C FT  used in the m other theory, other 

th an  its m odular properties. I t depends only on the weight h J of the  current used 

in the  extension (via phases) and on the m atrices S  and T  (via the m atrix  P ) of the 

m other theory. This implies th a t it can be used freely in any sequence of extensions 

and Z 2 perm utations of C F T ’s, thus leading to  a huge set of possible applications.

There are still further generalizations possible: the extension of th is result to  higher 

order perm utations and the  extension to  higher order currents, and the com bination 

of both . However, we will not discuss these problem s here.

4.4. Conclusion
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4. T he  ansatz
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STRING THEORY

Part II.
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About Part II

I  t h i n k  the  M o o n  is  a w o r ld  like th is  one,  
a n d  th e  E a r th  is  i ts  m o o n .

(E . R o s ta n d ,  C yr a n o  de B erg era c )

P art II focuses on S tring Theory. In particular, we address the problem  of 

constructing four-dimensional string theories using the perm utation  orbifold. Not 

surprisingly, our approach will be based on C FT  and we will apply the knowledge 

and the results of P a rt I to  build m odular invariant partitio n  functions.

O ur m ethod of generating spectra  consists of several ingredients. F irst of all, we 

adap t G epner’s construction [13, 14] to  include the perm utation  orbifold. Secondly, 

we look a t the spectra  generated by these perm uted G epner models obtained by 

extending it by a subset of all possible simple currents.

G epner models are constructed  out of tensor products of smaller C F T ’s, the  so- 

called N  =  2 superconform al m inim al models. Moreover, the  to ta l central charge 

of the tensor product C FT  m ust add up to  the particu lar value of nine. There are 

finitely-m any (and in fact only 168) com binations of the m inim al models th a t have 

the correct value for the  central charge. Furtherm ore, in order to  guarantee space

tim e and world-sheet supersym m etry, additional constrain ts m ust be imposed or, 

equivalently, the tensor product theory  m ust be extended by a suitable set of specific 

integer-spin simple currents. Sometimes, it happens th a t two (or more) of the  factors 

are identical. W hen th is is the case, we can replace the  full block by its perm utation  

orbifold. Since the la tte r m ust also be supersym m etric, before being able to  use it in 

the G epner model we need to  super-sym m etrize it. This is done again by a simple 

current extension.

Already by looking a t the  sub-block of the perm utation  orbifold for two N  =  2 

m inim al models, a very interesting m athem atical s truc tu re  appears. For example,
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we learn how to  make the orbifold supersym m etric and we discover th a t extended 

N  =  2 perm utations generate sometimes “exceptional” simple currents, th a t were 

not expected a priori, because they  have a com pletely different origin from standard  

orbifold currents, and whose existence is related  to  the presence of special relations 

involving S -m atrix  elements. In some cases, these exceptional currents have fixed 

points th a t rem ain currently  unresolved.

Having th is m achinery ready, we can build, m u ta tis  m u tand is, the  supersym m etric 

orbifold of N  =  2 m inim al models into G epner’s scheme. Using the simple current 

formalism, we are able to  construct hundreds or thousands of spectra  corresponding 

to  each perm utation  orbifold of standard  G epner models. All these spectra  will have 

S tandard-M odel structure , since we explicitly break the S 0 (1 0 ) coming from the 

fermionic sector of the  heterotic string in G epner construction into S U (3) x S U (2) x 

U (1).

As far as the  num ber of families is concerned, one then  notices th a t the  num ber three 

is strongly suppressed. This was already the case for conventional G epner models. 

However, there exists a way to  deal w ith th is problem  and make the num ber three 

as abundan t as two or four, or a t least of the same order of m agnitude. This is the 

“lifting” procedure [39, 40, 41], which allows to  replace a sub-block from the tensor 

p roduct in Gepner models by an isomorphic C FT  w ith identical m odular properties.
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5. Permutation orbifolds of N  =  2 minimal models

A l l  w e  have  to  decide  is  w h a t  to  do w i th  the  t i m e  th a t  is  g iv e n  us.
(J . R .  R .  To lk ien ,  T h e  Lord  o f  the  R i n g s )

5 .1 . In tro d u c tio n

In this and the next chapter we consider applications of the  previous results 

on fixed point resolution in extensions of perm utation  orbifolds to  string theory  

phenomenology, where one is in terested  in com puting four-dimensional particle 

spectra, possibly close to  the  S tandard  Model. G enerically ra tional C F T ’s are very 

useful tools for com puting features of phenomenological in terest in pertu rbative string 

theory. However, the  set of R ational C F T ’s a t our disposal is disappointingly small. 

The only in teracting  rational C F T ’s th a t we can really use for building exact string 

theories are tensor products of N  =  2 m inim al models, also known as “G epner m odels” 

[13, 14]. H istorically the first area of application of ra tional C FT  model building was 

the heterotic string.

The full power of rational C FT  model building only m anifests itself if one uses the 

com plete set [42] of simple current m odular invariant partition  functions (M IP F ’s) 

[9, 27] (See [4] for a review of simple current M IP F ’s. The underlying sym m etries 

were discovered independently  in [10]). A lready basic physical constraints like world- 

sheet and space-tim e supersym m etry require a simple current M IPF. As we know 

by now, although the simple current sym m etries can be read off from the m odular 

transform ation m atrix  S, and the  corresponding M IP F ’s can be readily constructed, 

often additional inform ation is required when the simple current action has fixed 

points [4, 16]. In order to  make full use of the  com plete simple current formalism we 

need the following d a ta  of the  C FT  under consideration:

•  The exact conformal weights.
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5. P erm uta tion  orbifolds o f N  =  2 m inim al m odels

•  The exact ground sta te  dimensions.

•  The m odular transform ation m atrix  S.

•  The fixed point resolution m atrices S J , for simple currents J  w ith fixed points.

Not all of th is inform ation is needed in all cases. In heterotic spectrum  com putations 

all we need to  know is the  first two items, plus the simple current orbits im plied by 

S. To com pute the  Hodge num bers of heterotic com pactifications, we only need to  

know the  exact ground s ta te  dimensions of the  R am ond ground states.

In addition to  G epner models, for which all th is inform ation is available, there 

is a t least another class th a t is potentially  usable: the perm utation  orbifolds. For 

perm utation  orbifolds, it has been known for a long tim e how to  com pute their weights 

and ground sta te  dimensions, bu t there was no formalism for com puting S  and S J . 

In th is case it has been possible to  com pute the Hodge num bers and even the  num ber 

of singlets for the  diagonal invariants [5, 43]. However, meanwhile it as become clear 

th a t the values of Hodge num bers offer a ra th e r poor road m ap to  the heterotic string 

landscape. In particu lar they  lead to  the  wrong impression th a t the num ber of families 

is large and very often a m ultiple of 4 or 6. The former problem  disappears if one allows 

breaking of the  gauge group E6 to  phenomenologically more a ttrac tive  subgroups 

(ranging from S 0 (1 0 ) via S U (5) or Pati-Salam  to  ju s t S U (3) x S U (2) x U (1) (times 

other factors) by allowing asym m etric simple current invariants [39, 44], whereas the 

second problem  can be solved by modifying the bosonic sector of the heterotic string, 

for example by m eans of heterotic weight lifting [40], B-L lifting [41]. All of these 

m ethods require knowledge of the  full simple current s truc tu re  of the  building blocks. 

This in its tu rn  requires knowing S.

A first step  towards the com putation  of S  for Z 2 perm utation  orbifolds was made 

in [6], alm ost ten  years after perm utation  orbifolds were first studied. W hile this 

m ight seem sufficient for perm utation  orbifolds in heterotic string  model building, we 

will see th a t even in th a t case more is needed. The crucial ingredient is fixed point 

resolution. Therefore we expect th a t significant progress can be m ade by applying the 

results of chapters 2, 3 and especially 4, extending the BHS formula [6] to  fixed point
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resolution m atrices S J , for currents J  of order 2. Since in N  =  2 m inim al models 

all currents w ith fixed points have order 2, th is seems to  be precisely w hat is needed. 

The purpose of th is chapter is to  determ ine which of the  C FT  d a ta  listed above can 

now be com puted for perm utations orbifolds of N  =  2 m inim al models, and provide 

algorithm s for doing so.

5.1 .1 . Basic concep ts

Following the discussion so far, th roughout this work we will always consider the 

p erm utation  orbifold:

( A x A ) / Z 2 . (5.1)

Moreover, we look a t its sim ple-current extensions and its simple current M IP F ’s. 

We have already seen th a t the  orbifold currents always adm it fixed points, th a t were 

resolved by the formula (4.3) for the S J m atrices.

Here we w ant to  apply the  results of the previous chapters about fixed point 

resolution in simple current extensions of perm utation  orbifolds to  the  physically 

interesting case of N  =  2 m inim al models. This m ay seem to  be straightforw ard, as 

a supersym m etric C FT  is ju s t an exam ple of a C FT, and the aforem entioned results 

hold for any  C FT . However, the  perm utation  orbifold obtained by applying the BHS 

formula (4.2) tu rns out n o t to  have world-sheet supersym m etry. This is related  to  

the fact th a t a straightforw ard Virasoro tensor product (the sta rting  point for the 

p erm utation  orbifold) does not have world-sheet supersym m etry  either, for the simple 

reason th a t tensoring produces com binations of R and NS fields. The solution to  this 

problem  in the case of the  tensor product is to  extend the  chiral algebra by a simple 

current of spin 3, the  product of the  world-sheet supercurrents of the  two factors (or 

any two factors if there are more th an  two). One m ight call th is the  supersym m etric 

tensor product. However for th is extended tensor product the BHS formalism of [6] 

is not available. One can follow two paths to  solve th a t problem: either one can try  

to  generalize [6] to  supersym m etric tensor products (or more generally to  extended 

tensor products) or one can try  to  supersym m etrize the perm utation  orbifold. We 

will follow the  second path .

5.1. In troduction
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One m ight expect th a t the  chiral algebra of perm utation  orbifold has to  be extended 

in order to  restore world-sheet supersym m etry. T ha t is indeed correct, bu t it tu rns 

out th a t there are two  plausible candidates for th is extension: the sym m etric and the 

anti-sym m etric com bination of the world-sheet supercurrent of the m inim al model. 

Denoting the la tte r as Tf , the two candidates are the  spin-3 currents (Tf , 0) and 

(T f , 1). Som ewhat counter-intuitively, it is the  second one th a t leads to  a C FT  w ith 

world-sheet supersym m etry. The first one, (Tf , 0), gives rise to  a C FT  th a t is similar, 

b u t does not have a sp in-3/2 current of order 2.

B oth  (Tf , 0) and (Tf , 1) have fixed points, bu t we know their resolution m atrices 

from the general results of chapter 4 . T hey come in handy, because it tu rns out th a t 

one of these fixed points is the off-diagonal field (0, Tf } of conformal weight | . As 

s ta ted  above, th is is not a simple current of the perm utation  orbifold, bu t it is a well- 

known fact th a t chiral algebra extensions can tu rn  prim aries into simple currents. 

This is indeed precisely w hat happens here. Since we know the fixed point resolution 

m atrices of (Tf , 0) and (Tf , 1) we can work out the orbits of th is new simple current. 

I t tu rns out th a t in the former extension (0,T f } has order 4, whereas in the  la tte r it 

has order 2. We conclude th a t the la tte r m ust be the  supersym m etric perm utation  

orbifold; we will refer to  the  former C F T  as “X ” . The fixed point resolution also 

determ ines the action of the  new world-sheet supercurrent (0, Tf  } on all o ther fields, 

combining them  into world-sheet superfields of either NS or R type.

The current (0, Tf } has no fixed points, as one would expect in an N  =  2 C FT  

(because it has two supercurrents of opposite charge, and acting w ith either one 

changes the  charge). However, there are in general more off-diagonal fields th a t tu rn  

into simple currents. Some of these do have fixed points, and since the simple currents 

originate from fields th a t were not simple currents in the  perm utation  orbifold, our 

previous results do not allow us to  resolve these fixed points. We find th a t th is problem  

only occurs if k =  2 m od 4, where k =  1 . . .  to is the integer param eter labelling the 

N  =  2 m inim al models.

To prevent confusion we list here all the  C F T ’s th a t play a role in the story:

5. P erm uta tion  orbifolds o f N  =  2 m inim al m odels
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5.1. In troduction

•  The N  =  2 m inim al models.

•  The tensor product of two identical N  =  2 m inim al models. We will refer to  this 

as (N  =  2)2.

•  The BHS-orbifold of the  above. This is the  perm utation  orbifold as described in 

[6]. I t will be denoted (N  =  2)0rb.

•  The supersym m etric extension of the tensor product. This is the extension of the 

tensor product by the spin-3 current Tf <8>Tf . We will call th is C FT  (N  =  2)Susy.

•  The supersym m etric perm utation  orbifold (N  =  2 ) |usy_orb. This is BHS orbifold 

extended by the spin-3 current (Tf , 1).

•  The non-supersym m etric perm utation  orbifold X . This is BHS orbifold extended 

by the spin-3 current (Tf , 0).

The plan of th is chapter is as follows.

In section 5.2 we review the theory  of N  =  2 m inim al models, their spectrum  and 

S  m atrix . As far as the  characters are concerned, we recall the coset construction 

and sta te  a few known results from paraferm ionic theories, in particu lar the string 

functions. In section 5.3, for convenience reasons, we recall relevant properties about 

general perm utation  orbifolds, the  BHS formalism and its generalization to  fixed point 

resolution m atrices, th a t we have already described in the first p a rt of th is work. 

Then in section 5.4 we move to  the  perm utation  orbifold of N  =  2 m inim al models. 

We consider extensions by the various currents related  to  the  spin-1 world-sheet 

supercurrent and explain how the exceptional off-diagonal currents appear. We also 

work out the  special extensions of the orbifold by the  sym m etric and anti-sym m etric 

representation  of the  world-sheet current. In section 5.5 we study  the exceptional 

simple currents and in particu lar the ones th a t have got fixed points. We give the 

structu re  of these off-diagonal currents as well as of their fixed points, in the case 

they  have any. We illustra te  the general ideas w ith the  example of the  m inim al model 

a t level two. In section 5.6 we sum m arize the  orbit and fixed point struc tu res for
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the  various C F T ’s we consider, we present the analogous results for N  = 1  m inimal 

models, where sim ilar issues arise, and also some interesting differences. In section 

5.7 we give our conclusions. We collect some technical details in appendix A . This 

chapter is based on [45].

5. P erm uta tion  orbifolds o f N  =  2 m inim al m odels

5 .2 . N  =  2 m in im a l m o d e ls

In th is section we review the m inim al model of the  N  =  2 superconform al algebra.

5.2 .1 . T h e  N  =  2 SCFT and  m inimal m odels

The N  =  2 superconform al algebra (SCA) was first in troduced in [46]. I t contains 

the stress-energy tensor T (z) (spin 2 ), a U (1) current j ( z )  (spin 1) and two fermionic

currents T ± (z) (spin 3 ). Using the  mode expansion

^n+2 j (z) =  £
J n

yn+1 T± (z) £
n£Z n£Z r£Z±v

G±
zr + 2

the (anti-)com m utator algebra is

J n]

{G + , G s }

=  (m -  n )L m+„ +  1 2 (m 3 -  m )^m’

=  —n J,m+n :

2Lr+s +  (r  — s ) J r+s +  3 (r — 4 )^r,-s

{G + ,G + } =  { G - , G -  } =  0 ,

[Jm ,G ±] =  ±  ̂ g ;

[J m, J n]

(5.2)

(5.3a)

(5.3b)

(5.3c)

(5.3d)

(5.3e)

(5.3f)

The shift v can in principle be real, bu t for our considerations we take it to  be integer 

(NS sector) or half-integer (R  sector). U n itary  representations of the  N  =  2 SCA can 

exists for values of the  central charge c >  3 (infinite-dimensional representations) and 

for the discrete series c <  3 (finite-dimensional representations). The la tte r ones are 

discrete conformal field theories, the  N  =  2 m inim al models, whose central charge is

n
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5.2. N  =  2 m inim al m odels

specified by an integer num ber k, called the level, according to:

3k
(5.4)

k +  2 '

The C artan  subalgebra is generated by L 0 and J 0, hence prim ary  fields, denoted by

^ ,m ,s =  (l,m , s ) , (5.5)

are labelled by their weights h and charges q:

Lo|h, q) =  h |h , q) , Jo |h ,q ) =  q|h, q) . (5.6)

The allowed values for h and q are given by

l(l +  2) — m 2 s2 m s 2
hl,m,s =  4(k +  2) +  ¥  , qm,s =  — k + 2  +  T  , (5.7)

where l, m, s are integer num bers w ith the  property  th a t

•  l =  0, 1 , . . . ,  k

•  m  is defined m od 2(k +  2) (we will choose the range —k — 1 <  m  <  k +  2)

•  s is defined m od 4 (we will choose the range —1 <  s <  2, w ith s =  0, 2 for the 

NS sector and s =  ±1  for the  R sector).

In addition, in order to  avoid double-counting, one has to  take into account th a t not 

all the  fields are independent bu t are ra th e r pairwise identified:

^l,m,s ^  —I,m+k+2,s+2 . (5.8)

This identification is realized as a formal simple current extension.

In order to  be able to  say som ething about the characters of the  m inim al model, 

let us m ention the coset construction. The N  =  2 m inim al models can be described 

in term s of the  coset
SU(2)k x U (1)4

U (1}‘2(k+2) . (5'9)
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Throughout this work, we use the convention th a t U (1)N contains N  prim ary fields 

(w ith N  always even). The characters of th is coset are decomposed according to

k+2
x f U(2)fc (T) • xU (1)4 (T) =  £  xm(1)2(k+2) (t ) • Xl,m,s(T) , (5.10)

m= — k — 1

where Xi,m,s are the characters (branching functions) of the  coset theory. Their 

conformal dimension can be read off from the above decom position and agrees w ith

(5.7).

5. P erm uta tion  orbifolds o f N  =  2 m inim al m odels

5.2 .2 . Paraferm ions

We will soon see th a t Xi,m,s will be determ ined in term s of the  so-called string  

fu n c tio n s, which are related  to  the characters of the para ferm ion ic  theories  [47, 48]. 

In order to  determ ine Xi,m,s, let us consider S U (2 )k representations. Using the Weyl- 

Kac character formula [49, 50], S U (2 )k characters are given by a ra tio  of generalized 

th e ta  functions:

x fu(2)fc(t z) _Qj +i,k+2 z )  +  Q - i,k+ 2(T z) (5 11)
1 , Q i,2 (t, z) +  0 _ i ,2 ( t ,  z) , .

where by definition

0 ; ,k ( t ,z ) =  J2 qkn e—2innkz . (5.12)
neZ+ 2k

Parafermionic conformal field theories are given by the coset

SU (2)k c 2(k — 1) (513) 
U(1)2k , k +  2 . ( . )

We can decompose SU(2)k characters in term  of U(1)2k and parafermionic characters

as

x fu(2)k (t, z) =  ] r  xm(i)2k ( t ,z )  • xp,mmak w . (5.14)
m= — k+1

This decomposition also gives the weight of the parafermions:

h; m =  ( +—) ------- , l =  0 ,1 ,. . . ,  k , m =  —k +  1,. . . ,  k . (5.15)i,m 4(k +  2) 4k , , , , , , , V ’
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5.2. N  =  2 m inim al m odels

Using the fact th a t U (1)2k characters are ju s t th e ta  functions,

u (1)2* ^  ^  _  e m,k(T, z)( r , z ) =  m,kV)   ̂ , (5.16)
n (T)

the SU(2)k characters become

xmu(2)k( t , z ) =  £  e m, kT ? z ) • xj;ma‘ m =  £  e m,t m • c < m ( t ) , ( 5 .17)
m= —k+1 m= —k + 1

being C l ; ( t ) =  ^(7) x j m * ( t ) the  SU(2)k string functions. Here, n(T) is the  Dedekind 

e ta  function, which is a m odular form of weight 1 ,

OO OO

n(T) =  q24 ^  (1 -  qk) , n(T ) -1  =  q- 24 £  P (n )q n , q =  e2inT , (5.18)
k=1 n=0

w ith P (n )  the  num ber of partitions of n.

As an example, consider the case w ith k =  1. Since the characters of XmU(2)l are 

the same as the  characters of xin(1)2, we have

X p T  ( t ) =  x?*1rai ( t ) =  1 , x j *!*1 ( t ) =  xC oai ( t ) =  0 . (5.19)

These relations for k = 1  generalize to  a rb itra ry  k to  give selection rules for the 

string functions. By decomposing S U (2) representations into U (1) representations, 

the  branching functions (i.e. the  paraferm ions) should not carry  U(1) charge, since 

they  correspond to  the  coset (5.9) where the U (1) p a rt has been m odded out. Bearing 

th is observation in m ind, the  general S U (2 )k-character decomposition, including the 

selection rules, is

k
x f U(2)* ( t , z ) =  £  C £ ( t)  • e m,k(T,z) . (5.20)

m = — k + 1 
l + m = 0 mod 2

The selection rule is clearly l +  m  =  0 m od 2, hence

C (m =  0 if l +  m  =  0 m o d 2 .
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5.2 .3 . S tring  functions and N  =  2 C haracters

The string functions of S U (2)k are Hecke m odular forms [50]. They can be expanded 

as a power sum  w ith integer coefficients as

5. P erm uta tion  orbifolds o f N  =  2 m inim al m odels

c(fc2  (t ) =  exp
f  l(l +  2) m 2 c n

2inT ( 4 i T i )  -  4fc -  24/_  g q ’ (5 .21)

w ith c =  k3p2 , where p n is the  num ber of sta tes in the  irreducible representation 

w ith highest weight l for which the value of J 3 and N  are m  and n. These integer 

coefficients depend in general on the  string function labels l and m  and are most 

conveniently ex tracted  from the following expression 1:

C (,m (t) =  n(T)—3 £  sign(x) e2inT[(k+2)x2—ky2l , (5 .22)
— \ x\ <y<\ x\

where x and y belong to  the  range

( * ,y ) »r ( 2  - x . 1 + y )  ^  m ) + z 2 . (523)

Equation (5.22) is actually  the solution to  (5.17), when the l.h.s. is given as in (5.11).

The string functions satisfy a num ber of properties, th a t can be proved by looking 

a t (5.22) and a t the sum m ation range (5.23):

•  C (,m =  0, if l +  m  =  0 m od 2;

•  =  C £+2fc , Le. m  is defined m od 2k ;

.  C (k) _ C (k) ;c l,m C l,—m

c (k) =  C (k)•  c l,m _  c k —i,fc+m'

Using th e ta  function m anipulations, the  characters of the  N  =  2 superconform al 

algebra can be expressed in term s of the string  functions as [14, 57]

Xi,m,s ( t , z) ^  '  Cl,m+4j — s ( t  ) • ®2m+(4j — s)(fc+2),2fc(fc+2) ( t , kz) . (5.24)
j  mod k

■'"There exist many different ways of determining the SU(2)k string functions. See for example [51], where a 
derivation is given in terms of representation theory of the parafermionic conformal models, or [52], where a new 
basis of states is provided for the parafermions. Our formula is the standard one, given in [50]. It also agrees 
with [53, 54] For equivalent, but different-looking, expressions, see [55, 56].
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This expression is invariant under any of the transform ations s ^  s +  4 and 

m  ^  m  +  2(k +  2), which shows th a t m  is defined m odulo 2(k +  2) and s m odulo 4. 

Also, Xi,m,s =  0 if l +  m  +  s =  0 m od 2 and moreover Xi,m,s is invariant under the 

sim ultaneous interchange l ^  k — l, m  ^  m  +  k +  2 and s ^  s +  2. In the following, 

we will choose the standard  range

l =  0 , . . . ,  k , m  =  —k — 1 , . . . ,  k +  2 , s =  —1 , . . . ,  2 (5.25)

for the  labels of the  N  =  2 characters. This range would actually  produce an 

overcounting of states, since there is still the  identification >̂;,m,s ~  ^ k—i,m+ k+2,s+2 to  

take into account. For th is purpose, it is more practical to  consider the  smaller range

•  for k=odd:
k

{0 <  l <  — , Vm, Vs} (5.26)

•  for k=even:

{0 <  l <  — , Vm, Vs} |^|{1 =  — , m  =  1 , . . . ,  k + 1 ,  Vs} |^ | (5.27) 

U {1 =  2 , m  =  0, s =  0, 1} |^|{1 =  — , m  =  k +  2, s =  0,1}

which autom atically  im plem ents the  above identification as well as the  constraint 

l +  m  +  s =  0 m od 2 2. Taking th is into account, the  num ber of independent 

representations is given by

#(fields) =  (k +  1) • 2(k +  2) • ^  • 1  • 2  =  2(k +  1)(k +  2 ), (5.28)

from I from m from s ident. constr.

while the  num ber of simple currents is

# (sim p le  currents) =  4 (k +  2 ), (5.29)

in correspondence w ith all the  fields having l =  0 (as we will see in the  next 

subsection).

5.2. N  =  2 m inim al m odels

Observe however that formula (5.7) might give a negative weight for a field with labels (l,m ,s) in the range 
above. When this happens, we consider its identified primary with labels (k — l,m + k + 2,s + 2), which is 
guaranteed to have positive weight.
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To actually  com pute the m inim al model characters using (5.24) is a com plicated 

m atte r th a t can only be done reliably using com puter algebra. Results for the  ground 

s ta te  dimensions are readily available in the  literature , bu t as we will see, th is is 

not sufficient to  determ ine the  conformal weights and ground sta te  dimensions of the 

p erm utation  orbifold.

5. P erm uta tion  orbifolds o f N  =  2 m inim al m odels

5.2 .4 . M odular tran sfo rm atio n s and  fusion rules

The coset construction has the additional advantage of m aking clear w hat the m odular 

S  m atrix  is for the  m inim al models. I t is ju s t the product of the  S  m atrix  of S U (2) 

a t level k, the  (inverse) S  m atrix  of U (1) at level 2(k +  2) and the S  m atrix  of U (1) 

a t level 4:

S, ,«') =  (2)k ( s u (1W > )  1 ; SSJ1)4 =  (5.30)

1 s i n f 7 ^ (l + 1)(// +  1) )  ^ ^ ^  .2(k +  2) \ k  +  2 

The corresponding fusion rules are

(1, m  s) • (^  m  s/) =  ^  ^(2+m+'2- )M, 0 0 (^  ^  ^ , (5.31)
A,^,a

where N * ff are the  S U (2 )k fusion coefficients. Here, ¿¡¡fo is equal to  0, except if x =  0 

m od p, in which case it is 1. Since the S U (2)k current algebra has only two simple 

currents, nam ely the  fields w ith l =  0 (the identity) and w ith l =  k, then  all the  fields 

^o,m,s , and only these, are simple currents (recall the  field identification of the  N  =  2 

m inim al models). In particular, the  field TF =  (0,0, 2) (w ith l =  0) will be relevant 

in the sequel. I t has spin |  and m ultiplicity two: it contains the (two) fermionic 

generators T ± (z ) of the N  =  2 superconform al algebra. A nother field which will be 

relevant in chapter 6 is the  so-called spectral-flow operator S F =  (0 ,1 ,1 ), which is 

also a simple current and has spin h =  .
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5 .3 . P e r m u ta t io n  o rb ifo ld

5.3. P erm uta tion  orbifold

Before going into the details of the perm utation  orbifold of the  N  =  2 m inim al models, 

let us recall a few properties of the  BHS perm utation  orbifold [6], restricted  to  the Z 2 

case

A perm =  (A  x A ) /Z 2 . (5.32)

If c is the  central charge of A, then  the central charge of A perm is 2c. The typical (for 

exceptions see chapter 2) weights of the fields are:

•  h (i,£) 2hi

•  h (i,j) hi +  hj

•  h (* ,0  =  1  +  H  +  2

for diagonal, off-diagonal and tw isted representations. Sometimes it can happen th a t 

the naive ground sta te  has dimension zero: then  one m ust go to  its first non-vanishing 

descendant whose weight is increm ented by integers.

For the sake of th is chapter, we are m ostly interested in the orbifold characters. Let 

us recall the  BHS expressions [6] for the  diagonal, off-diagonal and tw isted Z 2-orbifold 

characters. We denote by x  the characters of the original (m other) C FT  A  and by X  

the characters of the  perm utation  orbifold A perm:

X <i,j)(r)  =  Xi(-)  • X j( t )  (5.33a)

X (î ,«)(t ) =  1  X2(t  ) +  einÇ 1  Xi(2T ) (5.33b)

1 T - c —1 1 T + 1
X ( ^ ( r )  =  - x i ( 2 ) +  e- in « T  2 2 Xi( - ^ ¡ ~ )  (5.33c)

where T  2 =  e - i n ( i i - 24) . Now, each character in the  m other theory  can be expanded 

as

x ( - ) =  qhx - 24 £  dn qn (w ith q =  e2inT) (5.34)
n=0
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5. P erm uta tion  orbifolds o f N  =  2 m inim al m odels

for some non-negative integers dn . Observe th a t the  dn ’s can be ex tracted  from

. (5.35)
n! dq' \fc=0 /  q=0

Similarly, each character of the perm utation  orbifold can be expanded as

X ( t ) =  qh x - 12 E  D „q” (5.36)
n=0

for some non-negative integers D n . A relation sim ilar to  (5.35) holds for the D n ’s.

Using (5.33) and (5.35), we can im m ediately find the relationships between the dn ’s 

and the D n ’s. Here they  are:

=  £  d«  d k -„ (5.37a)
n=0

1  ̂ f 0 if k =  oddJ- X  “ ,/ A \  ,  n. \ I( i) 1 ^  ( ) f 0 if k =  odd
’ 0  =  V  dCj) dkj) +   ̂ 1 ini (5.37b)k 2 n k -n  1 | 1 dk if k =  even v 1

n=0 I 2 2

D ii,?) =  4 +  (5 .37c)

These expressions are particu larly  interesting because they  tell us th a t, if we want 

to  have an expansion of the  orbifold characters up to  order k, then  it is not enough 

to  expand the original characters up to  the same order k (it would be enough for 

the  untw isted fields), b u t ra ther we should go up to  the higher order 2k +  1, as it 

is im plied by the th ird  line of (5.37). Using the  characters (5.33), one can com pute 

their m odular transform ation and find the orbifold S  m atrix , S BHS [6], th a t we have 

already given in (4.2).

5 .4 . P e r m u ta t io n s  o f  N  =  2 mi n i ma l  m o d e ls

In th is section we consider the  perm utation  orbifold of two N  =  2 m inim al models at 

level k. The C FT  resulting from m odding out the  Z 2 sym m etry  in the tensor product 

(N  =  2)k <g> (N  =  2)k is known from [5, 6, 43]. Here we focus m ostly  on the new 

interesting features arising when one extends the theory  w ith various simple currents. 

As already m entioned, each N  =  2 m inim al model a t level k adm its a
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5.4. P erm uta tions o f  N  =  2 m inim al m odels

supersym m etric current Tf  (z) w ith ground sta te  m ultiplicity equal to  two and spin 

h =  2. In the coset language, it corresponds to  the  NS field partner of the identity, 

nam ely (l, m, s) =  (0,0, 2). This current transform s each NS field into its NS 

p artn er (with different s) and each R field into its R conjugate (corresponding to  

the o ther value of s). In order to  see this, note th a t the  m  and s indices are 

ju s t U (1) labels, hence in the  fusion of two representations they  sim ply add up: 

(s) x (s ') =  (s +  s 'm o d 4 )  and (m) x (m ') =  (m  +  m 'm o d 2 (k  +  2)).

The field Tf  (z) has simple fusion rules w ith any other field and it generates 

two integer-spin simple currents in the perm utation  orbifold, corresponding to  the 

sym m etric and anti-sym m etric representations (Tf , 0) and (Tf , 1) of diagonal-type 

fields, bo th  w ith spin h =  3. B oth  these currents can be used to  extend the 

perm utation  orbifold. They are bo th  of order two and, interestingly (but not 

com pletely surprisingly), their p roduct gives back the anti-sym m etric representation 

of the  identity:

(Tf , 0) • (Tf , 1) =  ( 0 , 1),  (5.38)

w ith all the  o ther possible products obtained from th is one by using cyclicity of the 

order two. In o ther words, the fields (0, 0), (Tf , 0), (0,1), (Tf , 1) form a Z 4 group 

under fusion.

We will s tudy  the extensions in the next two subsections, where we will also see the 

new C FT  structu re  coming from interchanging extensions and orbifolds. Before we 

do this, however, let us first m ention some generic properties of the orbifold. Consider 

the  perm utation  orbifold of two N  =  2 m inim al models a t level k and extend it by 

either the sym m etric or the anti-sym m etric representation of Tf  (z). The resulting 

theory  has the  old stan d ard  simple currents coming from ^ 0 ,m , s (or equivalently

, m+ k+ 2 ,s+2, by the identification) in the  m other theory  (in num ber equal to  the 

num ber of simple currents of the (N  =  2)k m inim al model and corresponding to  the 

orbits of their diagonal representations according to  the fusion rules given in the next 

two subsections) and an equal num ber of exceptional simple currents th a t were not 

simple currents before the  extension (since coming from fixed off-diagonal orbits of
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as we will see below).

The structu re  of the exceptional simple current is very generic: it is the same 

for b o th  (T p , 0) and (T p , 1), so we can consider bo th  here. The word exceptional 

m eans th a t they  are simple currents ju s t because their extended S  m atrix  satisfies 

the  relation S 0J =  S00 [25]. F irst of all, note th a t the  orbifold simple currents come 

from sym m etric and anti-sym m etric representations of the m other simple currents, 

hence there are as m any as twice the num ber of simple currents of the  m other m inimal 

theory. Secondly, all the  exceptional currents correspond to  the  label l =  0 (or 

equivalently l =  k) as it should be, since related  to  the  S U (2)k algebra. This has the 

following consequence. Recall the orbifold (BHS) S  m atrix  in the untw isted sector:

5. P erm uta tion  orbifolds o f N  =  2 m inim al m odels

This equality will soon be useful. In particular, the factor 2 will d isappear in 

the extension, prom oting the off-diagonal fields ((0, m, s), (0, m, s +  2)} into simple 

currents. We will come back la ter to  these exceptional currents.

Let us show now th a t these exceptional simple currents of the (Tf  , ")-ex tended  

orbifold correspond exactly to  those particu lar off-diagonal fixed  p o in ts  whose (Tf , " ) -  

orbits ( "  =  0, 1) are generated from the simple currents of the m other N  =  2 m inimal 

model.

Consider off-diagonal fields of the form ((0, m, s), (0, m, s +  2)}. They are fixed poin ts3 

of (Tf , " ) ,  since Tf  • (0, m, s) =  (0, m, s +  2). The num ber of such orbits is equal to  

half the  num ber of simple currents in the  original m inim al model (i.e. those fields 

w ith l =  0). In the extension, they  m ust be resolved. This m eans th a t each of them

qBHS
S (i» (j,x )

Using the m inim al-m odel S  m atrix  (5.30) one has:

S (0,0,0)(0,m,s)

and hence
oBHS _  9 oBHS
S ((0,0,0),0),((0,m,s),(0,m,s+2)) =  2 S ((0,0,0),0),((0,0,0),0) . (5.39)

3This is proved in the next subsections.
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will give rise to  two “sp lit” fields in the  extension. Hence their num ber gets doubled 

and one ends up w ith a num ber of split fields again equal to  the  num ber of simple 

currents of the original m inim al model. Moreover, the  extended S  m atrix , S, will be 

expressed in term s of the S J m atrix  corresponding to  J  — (Tf , " ) ,  according to

S(„,a )(6l/3) =  C  • [Sf6HS +  ( - 1 ) “ +^ S(TF ’̂ ]  . (5.40)

Recall th a t the  S J m atrix  is non-zero only if the  entries a and b are fixed points. The 

labels a  and 3  keep track of the  two split fields (a , 3  =  0 , 1). The factor C  in front 

is a group theoretical quantity, th a t in case a and b are b o th  fixed, is equal to  2.

The generic formula for S J as given in [34] was recalled in (4.3). In particular, the 

untw isted (i.e. diagonal and off-diagonal) entries of S J vanish, since Tf  does not have 

fixed points:

s ( t f  ,V0 _ aTF aTF +  ( i ) V 1 qTf aTF _  0
S (m,n)(p,q) I i ) — u

s ( t f  >V0 _ 1 STf sT f — 0
S (i,0)(j,x) =  2 ^¿5 ^¿5 — 0

s ( t f,V0 _ sT f sT f — 0
°(i,0)<m,n) _  — U .

5.4. P erm uta tions o f  N  =  2 m inim al m odels

This implies th a t

‘S’(a,a)(6,^) =  C  • SfbHS (5.41)

for each split field corresponding to  untw isted fixed points a, b. If either a or b are not 

fixed points, then  S (Tf,^ ) is autom atically  zero and the S  is given directly  by S BHS, 

up to  the  overall group theoretical factor C  in front, which is equal to  2 if b o th  a and 

b are not fixed points and 1 if only one en try  is fixed. Using (5.39), th is implies th a t 

after fixed point resolution one would have

S ((0,0,0),0)<(0,m,s),(0,m,s+2))a =  S ((0,0,0),0)((0,0,0),0) (a  =  °  1) . (5.42)

This m eans th a t

((0, m, s), (0, m, s +  2)}a a  =  0, 1 (5.43)

are the  exceptional simple currents in the extended theory, being ((0, 0, 0) , 0) the 

iden tity  of the perm utation  orbifold and (0, m, s) simple currents in the  m other theory.
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The label m  runs over all the  possible values, m  G [—k — 1, k  +  2]; the label s is fixed 

by the constrain t l +  m  +  s =  0 m od 2. This is the origin of the exceptional currents in 

the  extended perm utation  orbifold of two N  =  2 m inim al models. Note th a t, since in 

the  off-diagonal currents bo th  fields appear w ith s and s +  2, we can fix once and for 

all the  s-labels in the  exceptional currents to  be s =  0 in the  NS sector and s =  — 1 

in the  R sector.

These exceptional simple currents m ay in principle have fixed points. However, it 

tu rn s  out to  be not the  case in general: in fact, we will see th a t only four of the  several 

exceptional currents have fixed points and only if k =  2 m od 4. We will come back 

to  this later.

5 .4 .1 . Extension by (Tf , 1)

Let us s ta r t by studying how the current under consideration, (Tf , 1), acts on different 

fields in the  orbifold. By looking at some specific examples or by com puting the fusion 

rules, one can show th a t the orbits are given as in the  following list. We denote the 

N  =  2 m inim al representations as i — (l, m, s) and the “shifted” representations as 

Tf  • i — (l, m, s +  2).

•  Diagonal fields (i ,£) (recall th a t £ is defined m od 2)

(Tf , 1) • (i ,£) =  (T f  • i , £ +  1) (5.44)

•  Off-diagonal fields (i, j}

(Tf , 1) • ( i  j} =  (Tf  • ^  Tf  • j} (5.45)

•  Tw isted fields (i, £) (recall th a t £ is defined m od 2)

(Tf , 1) • (  =  ( 0 + 1 )  if i is N S  (s =  0, 2)

(Tf , 1) • ( i ,£) =  (i ,£) if i is R  (s =  — 1  1)

5. P erm uta tion  orbifolds o f N  =  2 m inim al m odels

(5 .46)
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A com m ent about possible fixed points is in order, since they  get split in the extension 

and need to  be resolved. Observe th a t there cannot be any fixed points from the 

diagonal representations, since Tf  does not leave anything fixed. They will become 

all orbits and will all be kept in the extension, since they  have integer monodromy:

Q (TF ,1) ( i  £) =  2hTp +  2hi — 2 ^ hi +  G Z .

The num ber of such orbits is equal to  the num ber of fields in the  m other m inimal 

model.

On the o ther hand, there are in general fixed points for off-diagonal and tw isted 

representations. The off-diagonal fixed points arise when j  =  Tf  • i, i.e. in our 

no tation  when (i,j}  is of the form ((l, m, s), ( l ,m,  s +  2)}. W hen l =  0, after splitting, 

these will be the  exceptional simple currents in the extended theory. The rem aining 

off-diagonal fields organize themselves into orbits, of which some are kept and some 

are projected  out, depending on their monodromy. In particular, using

Q (Tf ,1) (i, j } =  2Ht f +  (hi +  h j ) — (Ht f .i +  Ht f j ) m od Z ,

and the fact th a t, from the term  Sj- in (5.7), hi — hTF,i is 2 if i is NS and 0 if i is R, 

we see th a t the orbit ((i, j}, (Tf  • i, Tf  • j}) is kept only if i and j  are b o th  NS or bo th  

R, otherwise they  are projected  out.

The tw isted fixed points come from all the  R representations and are kept in the 

extension, while the  tw isted fields coming from NS representations are not fixed and 

projected  out in the extension, since their m onodrom y charge

Q (Tf ,1)(i,£ ) =  2hTF +  h ( ^  — h (i ^ ) m od Z

is half-integer, being (Tf  , 1) of integer spin and the difference of weights between a 

(0  =  0)-tw isted field and the corresponding (0  =  1)-twisted field equal to  2.

For k =  2 m od 4 some of the  exceptional currents in the extension have fixed points, 

either of the off-diagonal or tw isted type, none of diagonal kind. They are specific 

(Tf  , 1)-orbits of off-diagonal fields plus all the  tw isted (Tf  , 1)-fixed points (necessarily 

in the  R am ond sector of the  original m inim al model). At the m om ent of w riting this
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work, we are not able to  resolve them : in o ther words, their S J m atrices are unknown, 

J  denoting any of the  exceptional currents.

One im portan t exceptional current of the perm utation  orbifold is the w orld-sheet 

supersym m etry  current, which is the  only current of order two and spin h =  | : it is 

the  off-diagonal field coming from the tensor product of the identity  w ith Tf (z). It 

does not have fixed points, because Tf  does not. Let us denote it by J^bS' — (0, Tf }. 

By the  argum ent given above, JWb' is guaranteed to  be fixed by (Tf , 1). This means 

th a t in the  extension it gets split in to  two fields, th a t we denote by (0, Tf }a , w ith 

a  =  0 or 1. In appendix A we check th a t indeed (0, Tf }a has order two:

(0 ,T f }a • (0, Tf }a =  (0,0) ,  (5.47)

where (0,0) is the iden tity  orbit.

Now consider the  tensor product of two m inim al models. We can either extend 

by Tf (z) <g> Tf (z) to  make the product supersym m etric or we can m od out the  Z 2 

sym m etry and end up w ith the perm utation  orbifold. Let us s ta r t w ith the la tte r 

option. We know from the first p a rt of this work th a t one can go back to  the  tensor 

product by extending the orbifold by the anti-sym m etric representation  of the identity, 

(0,1). W hat we do instead is extending the  orbifold by (Tf , 1). The resulting theory  

is the  N  =  2 supersym m etric perm utation  orbifold which has the  world-sheet spin- 2 

current in its spectrum .

Alternatively, we can change the order and perform  the extension before orbifolding. 

Note th a t each N  =  2 factor is supersym m etric, bu t the  product is not. In order 

to  make it supersym m etric, we have to  extend it by the tensor-product current 

Tf (z) <g> Tf (z). As a result, in the tensor product only those fields survive whose 

two factors are either b o th  in the  NS or bo th  in the R sector. In th is way, the fields in 

the  product have factors th a t are aligned to  be in the  same sector. Now we still have 

to  take the Z2 orbifold. S tarting  from the supersym m etric product, by definition, we 

look for Z 2-invariant s ta tes/com binations and add the proper tw isted sector. We will 

refer to  th is m echanism  which transform s the supersym m etric tensor product into the 

supersym m etric orbifold as super-BH S, in analogy w ith the stan d ard  BHS from the
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tensor product to the orbifold. The following scheme summarizes this structure:

As a check, let us consider the following example. Take the case of level k = 1. The 

(N  = 2) 1 minimal model has central charge equal to one and twelve primary fields 

(all simple currents). Its tensor product has central charge equal to two, as well as 

its Tf  <g> Tf -extension and Z 2-orbifold.

B y  extending the tensor product by the current Tf  <g> Tf  , one obtains the 

supersymmetric tensor product, with 36 fields. Instead, by going to the orbifold 

and extending by the current (Tf , 1), one obtains the supersymmetric orbifold with 

60 fields. As a side remark, there is only one theory with this exact numbers of fields 

and same central charge and that is in addition supersymmetric, but only by working 

out the spectrum one can prove without any doubt that the theory in question is the 

(N  = 2)4 minimal model, which is indeed supersymmetric.

We can continue now and extend the supersymmetric orbifold by the current (0,1). 

This operation is the inverse of the Z 2-orbifold (super-BHS). As expected, we end 

up to the supersymmetric tensor product. Equivalently, the Z 2-orbifold of the 

supersymmetric tensor product gives back the supersymmetric orbifold, consistently.

5.4.2. Extension by (Tf , 0)

Many things here are similar to the previous case. Let us start by giving the fusion 

rules of the current (Tf , 0) with any other field in the permutation orbifold.

• Diagonal fields (i,£ ) (recall that £ is defined mod 2)

4 \(0,1); BHS

(N  = 2)0rb

(N  = 2)2

(Tf , 0) • (*+ ) = (!>  • ¿ ,0 (5.48)

103



• Off-diagonal fields (i, j )

(TF , 0) • (i, j )  = (TF • ^ TF • j )

5. P erm uta tion  orbifolds o f N  =  2 m inim al m odels

(5.49)

• Twisted fields (i, £) (recall that £ is defined mod 2)

(Tf , 0) • (  (  if i is N S  (s = 0, 2)

(5.50)

(Tf , 0) • (i, £) = (i,£  + 1) if i is R  (s = -1, 1)

Again, the current (Tf , 0) does not have diagonal fixed points, but does have off

diagonal and twisted fixed points. The off-diagonal ones are like before, while 

the twisted ones come this time from NS fields. Twisted fields coming from R  

representations are projected out in the extension. Each fixed point is split in two in 

the extended permutation orbifold and must be resolved. Moreover, there w ill also 

be orbits coming from the diagonal and off-diagonal fields.

Also for (Tf , 0)-extensions, a few exceptional currents might have fixed points. They 

are either off-diagonal (Tf , 0)-orbits or all the twisted (Tf , 0)-fixed points (necessarily 

of Neveu-Schwarz origin).

As before, consider now the tensor product of two minimal models and its 

permutation orbifold. Extend the orbifold with the current (Tf , 0), i.e. the symmetric 

representation Tf  (z). One obtains a new, for the moment mysterious, C FT  that we 

denote by X . X  is not supersymmetric, since it does not contain the world-sheet 

supercurrent of spin h = | . To be more precise, X  does contain a spin |-current, 

which is again the off-diagonal field (0,Tf ). However, it is not the world-sheet 

supersymmetry current. The reason is that in this case (0,Tf ) (or rather the two 

split fields (0, Tf )a , with a  = 0 or 1) has order 4, instead of order 2: acting twice 

with JW b '(z ) we should get back to the same field, but we do not. As we prove in 

appendix A :

( 0 ,T f ) a  • (0 , T f ) a  =  ( 0 , 1 ) ,  (5 .5 1 )
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with (0,1) • (0,1) = (0,0). Hence there is no such a current as JWb '(z ) in X . 
Continuing extending this time by the current (0, 1) we get back to the familiar 

theory (N  = 2)Susy. The summarizing graph is below:

5.4. P erm uta tions o f  N  =  2 m inim al m odels

5.4.3. Common properties

B y  looking at the two graphs, we notice that there are two distinct ways of reproducing 

the behavior of the current Tf  <g> Tf  which makes the tensor product of two minimal 

models supersymmetric. We can go either through the supersymmetric permutation 

orbifold or through the non-supersymmetric C FT  X , as shown below.

(N  = 2)2

(N  — 2)Susy_ 0 rb

(N  — 2)SuSy

We can summarize the commutativity of this diagram as:

(Tf  <g) Tf ) o (0,1) — (0,1) o (Tf , ^ ) (5.52)

when acting on (N  — 2)0 rb. The small circle o means composition of extensions, e.g. 

( J 2 o J i ) A  means that we start with the C FT  A , then we extend it by the simple 

current J 1 and finally we extend it again by the simple current J 2.

It  is useful to ask what happens to the exceptional current (0,Tf } (which coincides
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with JW b '(z ) for the (TF , 1)-extension). Using the fusion rules given earlier, it is easy 
to see that (0,TF } is fixed by both (TF , 0) and (TF , 1), because of the shift by TF in 

both the factors in off-diagonal fields and the symmetrization of the tensor product. 

As a consequence, the fixed point resolution is needed in both situations for the field 

(0,T f  }.

Let us make a comment on the nature of the C FT  X . We have already stressed 

enough that it is not supersymmetric. However, by looking at it more closely, it is 

quite similar to the supersymmetric orbifold (N  = 2 )|usy_ orb. For example, they 

contain the same number of fields and in particular they have the same diagonal and 

off-diagonal fields. They only differ for their twisted fields, being of R  type in the 

supersymmetric orbifold and of NS type in X .

Another interesting point is that the (0,1) extension of both X  and (N  = 2 )|usy_ orb 

gives back the same answer, namely the (N  = 2)Susy. One could ask how this happens 

in detail. The reason is that, after the (TF , —)-extension (either — = 0 or 1) of the 

orbifold, one is left with orbits and/or fixed points corresponding to orbifold fields 

of diagonal, off-diagonal and twisted type. In  particular, as we already mentioned 

before, from the twisted fields only the fixed points survive, with the difference that 

for — = 1 they come from the Ramond sector and for — = 0 from the NS sector. 

However, they are completely projected out by the (0 ,1)-extension, which leaves only 

untwisted (i.e. off-diagonal and diagonal -both symmetric and anti-symmetric-) fields 

in the supersymmetric tensor product4.

5.5. Exceptional sim ple currents and fixed points

Let us be a bit more precise on the exceptional simple currents which admit fixed 

points. There are four of them and they are always related to the following mother- 

theory simple currents

k +2 k +2 
J+ = (l, m, s) = (0, , s) = (k, - ,  s + 2) (5.53)

4The reason is that the current (0, 1) always couples a twisted field (p, 0) to its partner (p, 1), as it is shown in 
appendix A. Since these fields have weights which differ by 1, then their monodromy will be half-integer and 
they will be projected out in the (0, 1)-extension.
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and

J_  = (0, -  k- ± ^ , s) = (k, ^ , s + 2) (5.54)

(with s = 0 in the NS sector, s = -1 in the R  sector). We w ill soon prove that s 

must be in the NS sector. i.e. s = 0, otherwise there are no fixed points. Using the 

facts that m is defined mod 2(k + 2) and that s is defined mod 4, together with the 

identification (l, m, s) = (k — l, m + k + 2, s + 2), it is easy to show that J+  and J _  are 

of order four, i.e. J+4 = J _  = 1. Moreover, we w ill soon show that off-diagonal fixed 

points of the exceptional currents originate from fields in the mother N  = 2 theory 

with /-label equal to / = k . One can easily check that, on these fields, the square of 

J± , J-2, acts as follows. For J± in the R  sector, J^  fixes any other field (either R  or 

NS) of the original minimal model:

k k
(J± G R ) J± : (/ = —, m, s) — > (/ = —, m, s) = ^  J± ~  0 = (0, 0, 0 ), (5.55)

acting on them effectively as the identity; for J± in the NS sector, J^  takes an R  

(N S) field into its conjugate R  (N S) field:

k k
(J±  G N S ) J±  : (/ = —, m, s) — > (/ = - ,m ,s  + 2 )= ^  J± ~  TF = (0,0, 2),

(5.56)

acting effectively as the supersymmetry current.

Having introduced now the currents J± in the mother theory, we can write down 

the four simple currents in the orbifold theory extended by (TF , —) which admit fixed 

points. Recalling that TF = (0,0, 2) acts by shifting by two the s-labels in the original 

minimal model, we can consider the following off-diagonal fields in the permutation 

orbifold:

(J± ,T f  • J± } . (5.57)

The two off-diagonal combinations above satisfy the condition (5.39); hence, after 

fixed point resolution, each of them generates two exceptional simple currents (for a 

total of four) in the (TF , —)-extended theory:

5.5. E xceptional sim ple currents and fixed  p o in ts

( J ± , T f  • J ± } a  , a  =  0 , 1 ,  (5 .5 8 )
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being Tf  • J± = (0, ± k j2, s + 2). This is another way of re-writing (5.43), specialized 

to the exceptional currents that have fixed points.

If  one wants to be very precise about the fixed points, one should study the fusion 

coefficients, which is in the present case very complicated, but in principle doable. 

However, we can still make some preliminary progress using intuitive arguments. First 

of all, since the resolved currents (5.43) carry an index a  which distinguishes them, but 

are very similar otherwise, it is reasonable to expect that they might have the same 

fixed points and that hence the fixed-point conformal field theories corresponding to 

the exceptional currents might be pairwise identical.

Secondly, observe that in (5.43) the field (0, m, s) is equivalent to (k, m + k + 

2 mod 2(k + 2), s + 2 mod 4). From the S U (2 )k algebra, the field labelled by / = k is 

the only non-trivial simple current with fusion rules given by

(k) • (j)  = (k — j ) , (5.59)

so in order for it to have fixed points, k must be at least even. Moreover, j  is a 

fixed point of the S U (2 )k algebra if and only if j  = | . This argument tells us that 

off-diagonal fixed points of (5.43) must be orbits whose component fields have /-label 

equal to / = | .

Actually there are only four (coming from the above two resolved) exceptional simple 

currents which have fixed points and the corresponding four fixed-point conformal field 

theories are pairwise identical. Indeed, the exceptional simple currents have m-label 

equal to m = ± , even s-label and hence the generic constraints /+m+s = 0 mod 2 

implies that k = 2 mod 4.

Let us describe more in detail the exceptional simple currents with fixed points. 

Consider again (5.58) and study the fusion rules of (5.57). We are most interested 

in off-diagonal fixed points, because they have an interesting structure; as far as the 

other kind (namely twisted) of fixed points is concerned, they are as already reported 

in the previous section (namely of NS type for (TF , 0) and of R  type for (TF , 1)).
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Compute the fusion rule of the current (J± , Tf  J± ) with any field of the form:

( f , J± f '} ,  (5.60)

where f ' has either the same s-label as f  or different; in other words, either f ' = f  

or f ' = Tf  • f . Here, f  and f ' label primaries of the original N  = 2 minimal model 

which might be fixed points of (5.58), having their /-values equal to / = k . Explicitly, 

f  = ( k , m, s) and f ' = ( | , m, s'), with s' = s or s' = s + 2.

We would like to show that the fields (f, J± f '} constitute the subset of off-diagonal 

fixed points for the exceptional currents. For most of them, this subset will be empty, 

but not for (5.58). As a remark, note that not all the fields in (5.60) are independent, 

since they are identified pairwise by the extension. We will come back to this at the 

end of this subsection.

Now let us compute the fusion rules. Naively:

(J± ,T f  J± M f , J± f '} <X (J±  ®  Tf  J± + Tf  J± ®  J± ) • ( f  ®  J± f ' + J± f ' ®  f )

= (J±  f  ®  Tf  f ' + J± f ' ®  Tf  J± f  +

+Tf  J± f  ®  J± f ' + Tf  J± f ' ®  J± f ).

For currents in the R  sector, J^  = 1, while J^  = Tf  in the NS sector; hence the 

above expression simplifies in both cases:

{
( J± f  ®  Tf f ' + f ' <g) Tf  J± f  + R  sector 

^ T f J± f  ®  f ' + T f f ' ®  J± f ).

( J± f  ®  f ' + Tf f ' ®  Tf  J± f  + NS sector 
+Tf  J± f  ®  Tf f ' + f ' ®  J± f )

In  terms of representations, we can decompose the r.h.s. in two pieces corresponding 

to the following symmetric representations:

(R ) (J± ,T f  J± }^ (f ,J± f '}  = (J± f,T F  f '}  + (f ',T F  J± f}

(N S) (J± ,T f  J± }^ (f ,J± f '}  = ( f ', J± f }  + (Tf  f ',T F  J± f} (5.61)

We have replaced here the proportionality symbol with an equality: a more accurate 

calculation of the fusion coefficients would show that the proportionality constant is

5.5. E xceptional sim ple currents and fixed  p o in ts
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indeed one. It  is crucial that none of the two pieces in the first line (R  sector) reduces 

to (f, J± f '} as on the l.h.s.; on the contrary, either of them does, respectively if f  = f ' 

and f ' = Tf  • f , in the second line (NS sector). For example, in the NS situation, 

this is obvious in the case f  = f '; if f ' = Tf  • f  instead, we must remember that the 

brackets means symmetrization and that off-diagonal fields that are equal up to the 

action of (Tf , —) are actually identified by the extension. Sim ilar arguments hold for 

the R  situation as well.

Note here that the two pieces in (5.61) are related by the application of Tf : if we 

talked about tensor product fields then the relation would be given by the tensor 

product Tf  <g> Tf  , but since we are working in the orbifold, it is actually provided by 

the diagonal representation (Tf  , —).

Let us move now to the extended orbifold. From the fusion rules given earlier, in 

the permutation orbifold extended by (Tf , —), off-diagonal fields belong to the same 

orbit if and only if

(Tf , —) • ( i  j }  = (Tf  • ^ TF • j }  . (5.62)

Since

(Tf , —) • (f, J± f '} = (Tf f, Tf  J± f '} ,  (5.63)

then the two quantities appearing on the r.h.s. of (5.61) are identified by the extension 

and add up to give

(R ) (J± ,T f J± M f , J± f '}  = ( J± f ,T F f '} , 

(N S) (J± ,T f  J± M f , J± f '} = ( f ', J± f }.  (5.64)

As a consequence, exceptional currents coming from R  fields never have fixed points 

(neither if f  = f ' nor if f ' = Tf  • f ), while NS fields do have. This shows that the 

exceptional simple currents with fixed points arise only for NS fields in the mother 

theory and they are exactly of the desired form.

As a consistency check, let us give the following argument about the currents (5.58) 

(equivalently, identify / ^  k — / ,... etc). We have already established that k must be 

even in order for the currents to have fixed points, so we can discuss the two options
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of k = 4p and k = 2 + 4p (for p G Z ) separately. In  the former case, k = 4p,

3k 3p
h(J±,Tf -J±)„ = hJ± + J± = 2 • 16 = Y  • (5.65)

This is either integer or half-integer, depending on p, so the currents might admit 

fixed points. However, the current m-label is equal to 2p + 1 G Z odd; since the /-label 

is even, then the N  = 2 constraint forces the s-label to be ±1. As a consequence, the 

currents (5.58) are of Ramond-type and hence cannot have fixed points. In  the latter 

case, k = 2 + 4p,

V ± ,TF J ±)a = h j± + hTF J ± = ^ ̂  — 1 )  + ( H  + f )  = 1 + Y  • (5.66)

This is either integer or half-integer, depending on p, so the current can have fixed 

points. Moreover, since the m-label of the exceptional current is now equal to 

2p + 2 G Z even, the currents (5.58) are now of NS-type, hence they w ill have fixed 
points.

Needless to say, we do expect all a priori possible fields of the form (5.60) to 

survive the (Tf  , — )-extension, the reason being that their (Tf  , — )-orbits must have 

zero monodromy charge with respect to the current (Tf , —). As an exercise, let us 

compute this charge and prove that it vanishes (mod integer). For this purpose, we 

need to know the weight of (5.60). Since

hj± ƒ = hf — —6 (k + 2 ± 4m) (5.67)

m being the m-label of the field f , then

hf,J± ƒ') = + hJ± f' = 2hf — 1 (k + 2 ± 4m) + 1 ƒ ',Tf ƒ • (5.68)

Similarly, we need to compute ĥ Tp ƒ ,Tf j± f'). Since

hTF J± ƒ = hTF ƒ — Y6(k + 2 ± 4m) (5.69)

then again

h(TF ƒ,TF J± ƒ') = hTF ƒ + hTF J± ƒ' = 2hTF ƒ — 8 (k + 2 ± 4m) + 2 ^ƒ ',Tf ƒ • (5.70)
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5. Permutation orbifolds of N  = 2 minimal models 

Hence:

Q (Tf ,V )((f  J ±f ' } ) = h(TF,V0 + h<ƒ,J±ƒ') — h(TF ƒ,TF J± ƒ') = 0 (mod Z ) , (5.71)

i.e. these fields are kept in the extension and organize themselves into orbits. Still, 

some fields seem not to appear among the off-diagonal fields that we would expect. 

The solutions to this problem is provided by the extension: fields are pairwise 

identified. In  fact, as a consequence of (5.61), two fields related by the action of

(5.57) are mapped into each other by (Tf , —) and hence are identified by the currents

(5.58) in the extension.

W hat happens in determining the fixed points of the exceptional currents is the 

following. Start with a field f  which has /-label equal to and apply J±  on f , 

recalling that J 4 = 1 and J2  = Tf  for NS-type currents,

J± T F f J±  f

Tf  f

as shown in the graph. The four fields organize themselves pairwise into two J±-orbits 

which are related by the action of Tf , or better of (Tf , —). In  fact, from the fusion 

rules of (Tf  , —) with off-diagonal fields it follows that

(Tf , —) • (f, J± f} = (Tf f, J± T f f }  . (5.72)

Each J±-orbit has the same form as (5.60). In  the (Tf , —)-extension they are identified 

and become fixed points of the exceptional simple currents (5.58).

Similarly, we can organize the fields differently. For instance, by starting from the 

J±-orbit (f, J± T f f }, we have

(Tf , —) • (f, J± T f f } = (Tf f, J± f } , (5.73)

where we used TF = 1. The same argument holds if we start from any J±-orbit of
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two consecutive fields in the graph above: the (Tf , — )-extension w ill always identify 

it with the remaining orbit.

In  the next subsection we give and explicit example corresponding to the “easy” 

case of minimal models at level two.

5.5. E xceptional sim ple currents and fixed  p o in ts

5.5.1. k = 2 Example

In  order to better visualize the structure of the exceptional simple currents and 

their fixed points, let us consider the k = 2 case, where we permute two N  = 2 

minimal models at level two. This case is easy enough to be worked out explicitly, 

but complicated enough to show all the desired properties. This minimal model has 

24 fields (12 in the R  sector and 12 in the NS sector), of which 16 simple currents. 

Its permutation orbifold has got 372 fields, of which 32 simple currents coming from 

diagonal (symmetric and anti-symmetric) combinations of the original simple currents. 

The ones with (half-)integer spin have generically got fixed points which we know how 

to resolve from chapter 4.

In the (Tf  , —)-extended orbifold theory, the exceptional currents with fixed points 

are

(J± ,T f  • J± }a , a  = 0, 1, (5.74)

with

J+ = (0,2,0) and J _  = (0, —2,0). (5.75)

Their off-diagonal fixed points are of the form

( f , J± f '} ,  (5.76)

with f  and J± f ' given by

f = (1 , 1 , 0) and J± f ' = (1 , — 1 , 0)

f = (1, 2, 1) and J± f ' = (1, 0, 1)

f = (1, —1, 0) and J± f ' = (1 , 1 , 2)

f = (1, 2, 1) and J± f ' = (1, 0, —1)
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To these, we still have to add the twisted fixed points, but we know already exactly 

what they are. One can observe that some fields appear twice, e.g. (1, 2,1), and other 

fields never appear, e.g. (1, 2, —1). This can be easily explained. The reason why 

some of them appear more than once is because f  and f ' can have either equal or 

different s-values (J±  only acts on the m-values).

Similarly, some fields are identified by the (Tf , — )-extension and hence they seem 

never to appear. For example, the off-diagonal field ((1, 2, —1), (1 ,0,1)} seems not to 

be there, but it is actually identified with ((1, 2, 1), (1, 0, —1)}, which appears in the 

last line of the list above; sim ilarly ((1, 2, —1), (1, 0, —1)} seems again not to be there 

as well, but it is identified with ((1, 2, 1), (1, 0, 1)} which is there in the second line of 

the same list.

More in general, this is a consequence of (5.61). In  the present situation we see this 

explicitly. Let us look at the current

((0, 2, 0), (0, 2, 2)} (5.77)

in the permutation orbifold and compute its fusion rules with the off-diagonal field

((1, 2, —1), (1, 0,1)}:

((0, 2,0), (0, 2, 2)} • ((1, 2, —1), (1,0,1)} = ((1, 2, —1), (1,0,1)} + ((1, 2,1), (1, 0, —1)} .

(5.78)

We see the appearance of the second term on the r.h.s., which is also an off-diagonal 

field, so we are led to ask about its fusion as well:

((0, 2,0), (0, 2, 2)} • ((1, 2,1), (1, 0, —1)} = ((1, 2, —1), (1,0,1)} + ((1, 2,1), (1, 0, —1)},

(5.79)

which is exactly the same as the first one. However, observe that the current (Tf , —) 

relates the two terms on both r.h.s.’s:

(Tf , —) -((1,2, —1), (1,0,1)} = ((1,2,1), (1,0, —1)}

(Tf  , —) -((1, 2,1), (1, 0, —1)} = ((1, 2, —1), (1,0,1)} . (5.80)

Then, they form one orbit in the (Tf , — )-extension and, since they have integer
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monodromy charge, this off-diagonal orbit survives the projection. Due to (5.78) 

and (5.79), this orbit becomes an off-diagonal fixed point of the exceptional current 

in the (Tf , — )-extended orbifold.

As a comment, we remark that it is not known at the moment how to resolve these 

fixed points. The reason is that they are fixed points of an off-diagonal current for 

which there is no solution yet, unlike for the fixed points of diagonal currents for 

which the solution exists and was provided by our ansatz in chapter 4.

5.6. O rb it structure for N  = 2 and N  = 1

In this section we want to summarize the simple current orbits for the theories 

considered here, and give the analogous results for N  = 1 minimal models for 

comparison. Most of the construction, and in particular the definition of the six 

kinds of C FT  listed in the introduction works completely analogously for N  = 2 and 

N  = 1 . The world-sheet supercurrent, originating from the diagonal field (0, Tf }, 

comes in both cases from a fixed point. However, a novel feature occurring for N  = 1 

but not for N  = 2 is that this supercurrent itself has fixed points whose resolution 

requires additional data.

Another important difference between the N  = 2 and N  = 1 permutation orbifolds 

is that in the latter case the supersymmetric and the non-supersymmetric orbifold 

(the extensions of the BH S orbifold by (Tf , 1) or (Tf , 0) respectively) have a different 

number of primaries, whereas for N  = 2 this is the same.

The simple current groups of all these theories are as described below. A few 

currents always play a special role, namely

• The “un-orbifold” current. This is the current that undoes the permutation 

orbifold. In  the BH S orbifold this is the anti-symmetric diagonal field (0,1), 

which has spin-1. If  the theories are extended by (Tf , 1) or (Tf , 0) this field 

becomes part of a larger module, but is still the ground state of that module.

• The world-sheet supercurrent(s). This has always weight | , and can have 

fixed points only for N  = 1 (and then it usually does). The supersymmetric
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5. P erm uta tion  orbifolds o f N  =  2 m inim al m odels

permutation orbifolds always have two of them, which originate from the split 

fixed points of the off-diagonal field (0,Tf }. Note that this multiplicity, two, has 

nothing to do with the number of supersymmetries. The latter is given by the 

dimension of the ground state of the supercurrent module. The fusion product 

of the two supercurrents is always the un-orbifold current. These spin-1 currents 

also occur in the non-supersymmetric theory X , except in that case they generate 

a Z 4 group, whereas in the supersymmetric case the discrete group they generate 

is Z 2 x Z 2.

• The Ramond ground state simple currents. These exist only for the N  = 2 and 

not for the N  = 1 superconformal models.

In  the following we call a fixed point “resolvable” if we have explicit formulas for the 

fixed point resolution matrices, and unresolvable otherwise. Therefore, “unresolvable” 

does not mean that the fixed points cannot be resolved in principle, but simply that 

it is not yet known how to do it. Note that the choices of generators of discrete 

groups described below are not unique, but we made convenient choices. As much 

as possible, we try to choose the special currents listed above as generators of the 

discrete group factors.

• N  = 2, k = 1 mod 2.

— The minimal models have a simple current group Z 4k+8. As its generator 

one can take the Ramond ground state simple current. The power 2k + 4 of 

this generator is the world-sheet supercurrent. None of the simple current 

has fixed points.

— The supersymmetric permutation orbifold has a group structure Z 4k+8 x Z 2. 

The first factor is generated by the Ramond ground state simple current. 

The power 2k + 4 of this generator is the un-orbifold current. This is the 

only current that has fixed points, which are resolvable. The factor Z 2 is 

generated by the world-sheet supercurrent.

— The non-supersymmetric permutation orbifold X  also has a group structure
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Z 4k+8 x Z 2. The spin-1 fields originating from the diagonal field (0, Tf } have 

order 4, and generate a Z k+2 subgroup of Z 4k+8. The order-two element of 

Z 4k+8 is, just as above, the un-orbifold current. Also in this case it has 

resolvable fixed points.

• N  = 2, k = 0 mod 4.

— The minimal models have a simple current group Z 2k+4 x Z 2. As the 

generator of the first factor one can take the Ramond ground state simple 

current, and the world-sheet supercurrent can be used as the generator of 

the second. The middle element of the Z 2k+4 factor is an integer spin current 

with resolvable fixed points.

— The supersymmetric permutation orbifold has a group structure Z 2k+4 x 

Z 2 x Z 2. The first factor is generated by the Ramond ground state simple 

current. The second factor by the un-orbifold current. The last factor is 

generated by the world-sheet supercurrent. The middle element of the first 

factor and the generator of the second factor, as well as their product have 

resolvable fixed points.

— The non-supersymmetric permutation orbifold X  has a group structure 

Z 2k+4 x Z 4. The spin-1 fields originating from the diagonal field (0,Tf } 

have order 4 and can be chosen as generators of the Z 4 factor. There are 

three non-trivial currents with resolvable fixed points, which have the same 

origin (in terms of minimal model fields) as the ones in the supersymmetric 

orbifold.

• N  = 2, k = 2 mod 4.

— The minimal models have a simple current group Z 2k+4 x Z 2. The structure 

is exactly as for k = 0 mod 4.

— The supersymmetric permutation orbifold has a group structure Z 2k+4 x Z 2 x 

Z 2. One can choose the same generators as above for k = 0 mod 4. The 

fixed point structure is also identical, except that there are four additional
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currents with unresolvable fixed points. These four currents are the two 

order 4 currents of Z 2k+4 multiplied with each of the two world-sheet 

supercurrents.

— The non-supersymmetric permutation orbifold X  has a group structure 

Z 2k+4 x Z 4. As in the supersymmetric case, there are three non-trivial 

currents with resolvable fixed points, and four with unresolvable fixed points. 

These currents have the same origin as those of the supersymmetric orbifold.

• N  = 1 , k = 1 mod 2.

— The minimal models have a simple current group Z 2, generated by the world- 

sheet supercurrent. This current has resolvable fixed points.

— The supersymmetric permutation orbifold has a group structure Z 2 x Z 2. The 

two factors can be generated by the un-orbifold current and by the world- 

sheet current. The fourth element also has spin-1, and is an alternative 

world-sheet supercurrent. The un-orbifold current has resolvable fixed 

points, the supercurrents have unresolvable fixed points.

— The non-supersymmetric permutation orbifold X  has a group structure Z 8. 

The order-2 element in this subgroup is the un-orbifold current, which has 

resolvable fixed points. None of the other currents have fixed points.

• N  = 1 , k = 0 mod 2.

— The minimal models have a simple current group Z 2 x Z 2. A ll currents have 

resolvable fixed points. One of them is the world-sheet supercurrent.

— The supersymmetric permutation orbifold has a group structure Z 2 x Z 2 x Z 2. 

Two of the three factors are generated by the un-orbifold current and one of 

the world-sheet supercurrents. A ll currents have fixed points, and for four 

of them, including the supersymmetry generators, they are unresolvable.

— The non-supersymmetric permutation orbifold X  has a group structure 

Z 4 x Z 2 . A ll currents have fixed points, and for four of them they are 

unresolvable.
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5.7. Conclusion

In  this chapter we have studied permutations and extensions of N  = 2 minimal models 

at arbitrary level k. These models are very interesting for several reason: not only 

because they are non-trivial solvable conformal field theories, but also because they 

are the building blocks of Gepner models which have some relevance in string theory 

phenomenology.

Our main points are two. First of all, a new structure arises relating conformal field 

theories built out of minimal models. Starting from the tensor product we perform 

Z 2-orbifold and extension in both possible orders, generating in this way new C F T ’s. 

Some of them are easily recognizable, such as the N  = 2 supersymmetric orbifold 

obtained by extending the standard permutation orbifold by the current (Tf  , 1). Some 

others are however not known, like the C FT  that we have denoted by X , obtained by 

extending the orbifold by (Tf , 0). Secondly, unexpected off-diagonal simple currents 

appear due to the interplay of the orbifold and the extension procedure. Sometimes 

they have fixed points that need to be resolved. However, because they are related to 

off-diagonal currents, we do not know how to resolve them at the moment.

5.7. Conclusion
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6. Permutation orbifolds of heterotic Gepner models

W h a t  is i t  t h a t  breathes  fi re  i n t o  the  equa t ions  
a n d  m a k e s  a u n i v e r s e  f o r  t h e m  to  de scr ibe?

Th e  u s u a l  approach  o f  s c ience  
o f  c o n s t r u c t i n g  a m a th e m a t i c a l  m o d e l  

c a n n o t  a n s w e r  the  q u es t io n s  
o f  w h y  there  s h o u ld  be a u n i v e r s e  f o r  the  m o d e l  to  describe.

(S.  H a w kin g ,  A  B r i e f  H i s to r y  o f  T i m e )

6.1. Introduction

We are finally able to apply our previous results on permutation orbifolds to the 

phenomenologically interesting case of four-dimensional string model building. The 

traditional way of constructing particle spectra is due to Gepner, who used special 

tensor products of N  = 2 minimal models on which space-time and world-sheet 

supersymmetries can be imposed by suitable simple current extensions. The models 

that we are going to construct can be called permuted Gepner models, since the N  = 2 

building blocks w ill be replaced, when possible, by their N  = 2 supersymmetric 

permutation orbifolds, described in the last chapter. Moreover, we w ill deal with 

heterotic Gepner models, where Gepner’s construction is carried on only on the right 

supersymmetric sector of the string. In  fact, heterotic string theory [60] is the oldest 

approach towards the construction of the standard model in string theory. It  owes its 

success to the fact that the gross features of the standard model appear to come out 

nearly automatically: families of chiral fermions in representations that are structured 

as in S0(10)-based G U T  models.

In  constructing spectra, C F T ’s [7] turn out to be very useful. A  general heterotic 

C FT  consists of a right-moving sector that has N  = 2 world-sheet supersymmetry and 

a non-supersymmetric left-moving sector. Most existing work has been limited either 

to free C F T ’s (bosons, fermions or orbifolds) for these two sectors, or to interacting
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C F T ’s where the bosonic sector is essentially a copy of the fermionic one. Furthermore 

the interacting C F T ’s themselves have mostly been limited to tensor products of 

N  = 2 minimal models [13, 14].

Already in the late eighties of last century ideas were implemented to reduce some 

of these limitations of interacting C F T ’s. Instead of minimal models, Kazama-Suzuki 

models were used [61]. Another extension was to consider permutation orbifolds of 

N  = 2 minimal models [5, 43]. But both of these ideas could only be analyzed in a 

very limited way themselves. The real power of interacting C FT  construction comes 

from the use of simple current invariants [9, 10, 27, 42, 62], which greatly enhance the 

number and scope of the possible constructions. In  particular the left-right symmetry 

of the original Gepner models could be broken by considering asymmetric simple 

current invariants [44], allowing for example a breaking of the canonical E  subgroup 

to S0(10), S U (5), Pati-Salam models or even just the standard model (with some 

additional factors in the gauge group). However, precisely this powerful tool is not 

available at present in either Kazama-Suzuki models or permutation orbifolds. The 

original computations were limited to diagonal invariants, where with a combination 

of a variety of tricks the spectrum could be obtained. Up to now, all that is available 

in the literature is a very short list of Hodge numbers and singlets for (2, 2) spectra 

with gauge groups [5, 43, 63, 64, 65, 66] (the last paper discusses permutation 

orbifolds of Kazama-Suzuki models). To use the full power of simple current methods 

we need to know the exact C FT  spectrum and the fusion rules of the primary fields 

of the building blocks. The former has never been worked out for Kazama-Suzuki 

models, and the latter was not available for permutation orbifolds until recently.

Using pioneering work by Borisov, Halpern and Schweigert [6], in chapters 2-4 

we have extended their results to fixed point resolution matrices [23, 33, 34], while in 

chapter 5 we have constructed the Z 2 permutation orbifolds of N  = 2 minimal models 

[45]. These can now be used as building blocks in heterotic C FT  constructions, on 

equal footing, and in combination with all other building blocks, such as the minimal 

models themselves and free fermions. Furthermore we can now for the first time apply 

the full simple current machinery in exactly the same way as for the minimal models.
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6.1. In troduction

Meanwhile, another method was added to this toolbox, allowing us to advance a bit 

more deeply into the heterotic landscape, and away from free or symmetric C F T ’s. 

This is called “heterotic weight lifting” [67], a replacement of N  = 2 building blocks in 

the bosonic sector by isomorphic (in the sense of the modular group) N  = 0 building 

blocks (more precisely, replacing N  = 2 building blocks together with the extra E 8 

factor). This method requires knowledge of the exact C FT  spectrum, which indeed 

we have. A  variant of this idea is the replacement of the U (1 )B-L factor (times E 8) 

by an isomorphic C FT . This has been called “B-L lifting” .

The purpose of this chapter is to put all these ingredients together using permutation 

orbifolds of N  = 2 minimal models as building blocks in combination with minimal 

models. We want to do this for the following reasons:

• Check the consistency of the permutation orbifold C F T ’s we presented in chapter 

5. Chiral heterotic spectra are very sensitive to the correctness of conformal 

weights and ground state dimensions of the C FT , as well as the correctness of 

the simple current orbits. This is especially true for weight-lifted spectra, because 

they have non-trivial Green-Schwarz anomaly cancellations.

• Compare our results with those of previous work on permutation orbifolds 

[5, 43]. These results were obtained using a rather different method, by applying 

permutations directly to complete heterotic string spectra.

• Check if the generic trends on fractional charges and family number are confirmed 

also in the class of permutation orbifolds.

• Add a few more items to the growing list of potentially interesting three-family 

interacting C FT  models.

The key ingredient of the present discussion is our previous chapter 5, where 

we have studied permutations, together with extensions in all possible order, and 

found very interesting novelties. For example, we have determined how to construct 

a supersymmetric permutation of minimal models: in particular, the world-sheet 

supersymmetry current in the supersymmetric orbifold turns out to be related to
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the anti-symmetric representation of the world-sheet supersymmetry current of the 

original minimal model. When the symmetric representation is used, instead, one 

ends up with a conformal field theory, which is isomorphic to the supersymmetric 

orbifold, but it is not supersymmetric itself.

In  the extended permuted orbifolds so-called exceptional simple currents appear, 

which originate from off-diagonal representations. Generically, there are many of 

them, depending on the particular model under consideration, and they do not have 

fixed points. However, if and only if the “level” of the minimal model is equal to k = 2 

mod 4, four of all these exceptional currents do admit fixed points. As a consequence, 

in those cases the knowledge of the modular S  matrix is plagued by the existence of 

non-trivial and unknown S J  matrices (one S J  matrix for each exceptional current J ). 

The full set of S J  matrices is available for standard Z 2 orbifolds (see [23, 33, 34]), but 

not for their (non-)supersymmetric extensions, due to these four exceptional currents 

with fixed points [4, 16, 17, 20, 21, 22].

Here we consider permutations in Gepner models. One starts with Gepner’s 

standard construction where the internal C FT  is a product of N  = 2 minimal models. 

Sometimes there are (at least) two N  = 2 identical factors in the tensor product. 

When it is the case, we can replace these two factors with their permutation orbifold. 

Moreover, one also has to impose space-time and world-sheet supersymmetry, which 

is achieved by suitable simple-current extensions.

This chapter is organized as follows. In  section 6.2 we review the standard 

construction of heterotic Gepner models. In  section 6.3 we review the main ingredients 

and the most relevant results of Z 2 permutation orbifolds when applied to N  = 2 

minimal models. In  section 6.4 we describe the heterotic weight lifting and the B-L 

lifting procedures, which allow us to replace the trivial factor plus either one N  = 2 

minimal model or the U (1 )B-L with a different C FT , which has identical modular 

properties, in the bosonic (left) sector. In  section 6.5 we compare our results on (2,2) 

spectra with the known literature. In  section 6.6 we present our phenomenological 

results concerning the family number distributions, gauge groups, fractional charges 

and other relevant data. In  appendix B  we derive a few facts about simple current
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invariants. Appendix B.1.2 contains tables summarizing the main results for the four 

cases (standard Gepner models and the three kinds of lifts). The content of this 

chapter is based on [68].

6.2. H etero tic  Gepner m odels

In this section we review the construction of four-dimensional heterotic string theory. 

The starting point is a set of bosons X M (u = 0 ,..., 3) for both the right and 

left movers, a right-moving set of N SR  fermions ■+, plus corresponding ghosts, 

and an internal C FT  with central charges (cL ,cR ) = (22, 9), that we denote by 

C22,9 = C22 x C9. Observe that the right-moving superconformal field theory 

(X , -0)+ghosts has central charge c = 3. Equivalently, one can think of it as the 

conformal field theory of two bosons X i and their fermionic superpartners +  in light- 

cone gauge. The fermions +  form an SO (2 )i abelian algebra, with central charge 

c =1.

The next step is to replace the N SR  SO (2 ) i fermions by a set of 13 bosonic fields 

living in the maximal torus of an (E 8) i x S0 (10 ) i affine Lie algebra. This is the 

bosonic string map [69], which transforms the fermionic C FT  into a bosonic one with 

same modular properties. The total right-moving C FT  has now central charge equal 

to cR = 2 + 9+13 = 24, as the left-moving bosonic theory. Hence, all four-dimensional 

heterotic strings correspond to all compactified bosonic strings with an internal sector:

C22,9 x ((E8 ) i X S0 (1 0 )i ) r  . (6.1)

To summarize:

Left-moving (X M, ghost) x C22 

Right-moving (X m,ghost) x Cg x (E 8) i x S0 (10 ) i

with yU, = 0 ,..., 3. Equivalently, in light-cone gauge one uses X i instead of 

(X  m, ghost).

In  the right-moving sector, all the C FT  building blocks have N  = 2 worldsheet 

supersymmetry. This implies the existence of two operators with simple fusion rules:
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the worldsheet supercurrent TF and the spectra flow operator S F . In  general, the 

internal C FT  in the fermionic sector is itself built out of N  = 2 building blocks, that 

have such currents as well.

In  order to preserve right-moving world-sheet supersymmetry, the total supercurrent 

T Ji + Tjn* must have a well-defined periodicity, since it couples to the gravitino. 

Here, T Ji = ^Md X M is the world-sheet supercurrent in space-time and T j^  is the 

supercurrent of the internal sector. Hence the allowed states will have the same spin 

structure in all the subsectors of the tensor product, namely the R  (N S) sector of 

S0 (10 ) i must be coupled to the R  (N S) sector of the internal C FT . This result is 

achieved by an integer-spin simple current extension of the full right-moving algebra, 

where the current is given by the product of the supercurrents T • T j^ : it corresponds 

to projecting out all the combinations of mixed spin structures. When the internal 

C FT  is a product of many sub-theories, as in the case of Gepner models, each with 

its own world-sheet supercurrent TF,j, then one has to extend the full right-moving 

algebra by all the currents T Ji • T . In  simple current language this means that we 

extend the chiral algebra by all currents

W i = (0 ,..., 0, TF,i, 0 ,..., 0; V ), (6.2)

where we use a semi-colon to separate the internal and space-time part, and we use 

the standard notation 0, V, S, C  for S0 (10 ) i simple currents (or conjugacy classes).

A  sufficient and necessary condition for space-time supersymmetry is the presence 

of a right-moving spin-1 chiral current transforming as an S0 (1 0 ) i spinor. Hence this 

current must be equal to the product of the spinor S  of the S0 (10 ) i , which has spin 

h = 8, times an operator S lnt from the Ramond sector of the internal C FT  C9, which 

must then have spin h = | . This last value saturates the chiral bound h > 24 for the 

internal right-moving C FT  which has central charge c = 9, hence S lnt corresponds to 

a Ramond ground state.

Among the Ramond ground states, one is very special. N  = 2 supersymmetry 

possesses a one-parameter continuous automorphism of the algebra, known as spectral 

flow, which, when restricted to half-integer values of the parameter, changes the spin
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structures and maps Ramond fields to NS fields, hence uniquely relating fermionic to 

bosonic fields. In  particular, under spectral flow, the NS field corresponding to the 

identity is mapped to a Ramond ground state which has h = 24 and is called the 

spectral-flow operator. Not surprisingly, the spectral flow operator is related to the 

N  = 1 space-time supersymmetry charge. We w ill denote it as S F .

In  our set-up of four dimensional heterotic string theories, N  = 1  space-time 

supersymmetry is achieved again by a simple current extension. The current in 

question is the product of the space-time spin field S sp with Sint, where S lp t is 

the spectral-flow operator. If  the internal C FT  is built out of many factors, then 

Smt = <S)j S F,i, where S F i is the spectral-flow operator in each factor. In  simple 

current language, the space-time supersymmetry condition amounts to extending the 

chiral algebra of the C FT  by the simple current

Ssusy = (S  f ,1 ,. . . ,S  F,r ; S ) , (6.3)

where r denotes the number of factors. Obviously these simple current extensions 

must be closed under fusion, in combination with all world-sheet supersymmetry 

extensions discussed above. Modular invariance of the final theory is then guaranteed 

by the simple current construction.

So far everything holds for any combination of superconformal N  = 2 building 

blocks. The only ones available in practice (prior to this work) are suitable 

combinations of free bosons and/or fermions, and N  = 2  minimal models. We have 

already discussed N  = 2 minimal models in chapter 5. These are unitary finite

dimensional representations of the N  = 2 superconformal algebra, which exist only 

for c < 3. They are labelled by an integer k, in terms of which the central charge is

3k , ,c = ---- . (6.4)
k + 2 V ’

Using the coset description of the N  = 2 minimal models

S U (2 )fc x U (1)4 
U (1)2(fc+2)

one can label representations by three integers (l, m, s), where l is an S U (2 )k quantum
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number and m and s are U (1) labels. The range is: l = 0 ,..., k, m = —k — 1 ,..., k+2, 

s = — 1 ,..., 2 (s = 0, 2 for NS sector, s = ±1 for R  sector). Moreover, fields 

satisfy the constraint l + m + s = even and are pairwise identified according to 

~  f̂c-i,m+fc+2,s+2, which is realized as a formal simple current extension.

Now consider the right-moving algebra of the heterotic string. The internal C FT  

Cg can be built as a product of a sufficient number of N  = 2 minimal models such 

that

£  k T 2  = 9 • (M )i
so the full algebra is

0 ( N  = 2)i <g> (E s ) i <g> S0 (10 ) i (6.7)
i

and representations are labelled by

^ (/ i,m i, si) <g> (0) <g> (so ). (6.8)
i

Observe that the (E 8 )1 algebra has only one representation, i.e. the identity, and it is 

often omitted in the product. Here s0 denotes one of the four S0 (1 0 )1 representations, 

s0 = O, V, S, C . As discussed above, we impose world-sheet and space-time 

supersymmetry by simple-current extensions. The world-sheet supercurrent for each 

N  = 2 minimal model is labelled by Tp,i = (0, 0, 2) and the spectral-flow operator 

is S F i = (0,1,1). These are used in the world-sheet and space-time chiral algebra 

extensions (6.2) and (6.3).

These chiral algebra extensions are mandatory only in the fermionic sector. 

However, modular invariance does not allow an extension in just one chiral sector. 

The most common way of dealing with this is to use exactly the same C FT  in the 

left-moving sector, with exactly the same extensions. Of course any N  = 2 C FT  is 

a special example of an N  = 0 C FT . This construction leads to (2, 2) theories, with 

spectra analogous to Calabi-Yau compactifications, characterized by Hodge number 

pairs and with a certain number of families in the (27) of E 6. On the other hand, 

modular invariance is blind to most features of the C FT  spectrum. It  only sees the 

modular group representations. This makes it possible to use in the left, bosonic,

6. P erm uta tion  orbifolds o f hetero tic  Gepner m odels
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sector a different set of extension currents than on the right. In  particular one can 

replace the image of the space-time current by something else, thus breaking to 

S0(10). Furthermore one can break world-sheet supersymmetry in the bosonic sector. 

One can even go a step further and break S0(10) and E 8 to any subgroup, as long as 

this breaking can be restored by means of simple currents. Those currents are then 

mandatory in the fermionic sector (since otherwise the bosonic string map cannot be 

used), but can be replaced by isomorphic alternatives in the left sector. In  general, 

we w ill call this class (0, 2) models.

A ll the aforementioned possibilities will be considered in this chapter, except E 8 

breaking. The S0(10) breaking we consider is to S U (3) x S U (2) x U (1 )30 x U (1 )20, 

where the first three factors are the standard model gauge groups with the standard 

SU (5 )-G UT normalization for the U (1). The fourth factor corresponds in certain 

cases to B  — L. It  is known that under such a breaking fractionally-charged particles 

may arise [72, 73, 74]. They can be either chiral or non-chiral, or even absent in the 

massless sector. We will investigate when these options occur.

6.3. Orbifolds of N  = 2 m inim al m odels

In chapter 5 the permutation orbifold of N  = 2 minimal models was studied. 

Extensions and permutations were performed in all possible orders and a nice 

structure was seen to arise, together with exceptional off-diagonal simple currents 

appearing in the extended orbifolds. In  this section we recall the procedure of 

how to build a supersymmetric permutation orbifolds starting from N  = 2 minimal 

models. We w ill restrict ourselves to Z 2 permutations, because a formalism to build 

permutation orbifold C FT 's  for higher cyclic orders is not yet available.

Consider the internal C FT  Cg to be a tensor product of r minimal models such that 

the total central charge is equal to 9. We denote such a theory as1

(k i ,k2,k3 . . . ,k r ), (6.9)

each ki parametrizing the ith minimal model. Suppose that two of the ki ’s are equal:
■'"Note that here we mean the unextended tensor product. In particular, world-sheet supersymmetry extensions are 

not implied.
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then the two corresponding minimal models are also identical and one can apply the 

orbifold mechanism to interchange them. We w ill use brackets to label the block 

corresponding to the orbifold C FT : e.g. if k2 = k3, then the permutation orbifold will 

be denoted by

(k i, (^2,^3) . . . ,k r ) . (6 .10)

Multiple permutations are of course also possible. For convenience, we will follow 

the standard notation, used extensively in literature, of ordering the minimal models 

according to increasing level, namely k  < ki+1. Consequently, identical factors will 

always appear next to each other. The orbifolded theory has the same central charge 

of the original one, namely r C = 9, and hence can be used to build four dimensional 

string theories.

Note that by (k, k) we mean the supersymmetrie permutation orbifold, which, 

as explained in chapter 5, is obtained from the minimal model with level k by 

first constructing the non-supersymmetric BH S orbifold (which we w ill denote as 

[k, k]), extending this C FT  by the anti-symmetric combination of the world-sheet 

supercurrent (TF , 1), and resolving the fixed points occurring as a result of that 

extension. This fixed point resolution promotes some fields to simple currents. A ll 

these simple currents will be used to build M IP F ’s, using the general formalism 

presented in [42].

Fixed point resolution enters the discussion at various points, and to prevent 

confusion we summarize here some relevant facts. In  the following we consider chains 

of extensions of the chiral algebra of a C FT , and denote them as (C F T )n. Here 

(CFT )o is the original C FT , (C F T ) 1 a first extension, (C F T )2 a second extension etc. 

In  this process the chiral algebra is enlarged in each step. The number of primary 

fields can decrease because some are projected out and others are combined into new 

representations, but it can also increase due to fixed point resolution (apart from 

some special cases the decrease usually wins over the increase). We are not assuming 

that each extension is itself “indecomposable” (i.e. not the result of several smaller 

extensions), but in practice the case of most interest will be a chain of extensions of
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• Simple currents J  are characterized by the identity S 0J = S 00, where S  is the 

modular transformation matrix. For all other fields i, S 0i > S 00.

• In  an extension by a simple current of order N , the matrix elements S 0 ƒ of fixed 

point fields are reduced by a factor of N . For this reason a fixed point field of 

(C F T )n can be a simple current of (C F T )n+1. We will call these “exceptional 

simple currents” .

• Exceptional simple currents can be used to build new M IP F ’s in (C F T )n+1, but 

such M IP F ’s are not simple current M IP F ’s of (C F T )n. They are exceptional 

M IPF 's .

• If  the fixed point resolution matrices of (C F T )n are known, we can promote the 

exceptional simple currents of (C F T )n+1 to ordinary ones. This makes it possible 

to treat them on equal footing with all other simple currents of (C F T )n+1.

• Obviously, this process can be iterated: exceptional simple currents of (C F T )n+1 

can themselves have fixed points, which can become simple currents of (C F T )n+2.

• If  we know the fixed point resolution matrices of (C F T )n, we also know all the 

fixed point resolution matrices of the ordinary simple currents of (C F T )n+1, 

but if the exceptional simple currents have fixed points, there is currently no 

formalism available to determine their fixed point resolution matrices.

In  the previous chapters 2-4 we have developed a formalism for all fixed point 

resolution matrices of the BH S permutation orbifolds. This plays the role of (C F T )0 

in the foregoing. The supersymmetric permutation orbifold (k, k) is (C F T )1. It 

always has exceptional simple currents, but only for k = 2 mod 4 they have fixed 

points. As explained above, we cannot resolve these fixed points, but in heterotic 

spectrum computations this is not necessary. This would be necessary if we want to 

go beyond spectrum computations to determine couplings. In  spectrum computations, 

fixed point fields f  appear in the partition function as character combinations of the

6.3. Orbifolds o f  N  =  2 m inim al m odels

o r d e r  2. T h e  fo llo w in g  f a c ts  a r e  im p o r t a n t .
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form

N f X f (,r)X f ( t ^ N f > l , (6.11)

which is resolved into a certain number of distinct representations (f, a ) that 

contribute to the partition function as in (2.4). Note that for N f > 4 the last 

condition has several solutions, and to find out which one is the right one the twist 

on the stabilizer of the fixed point must be determined [17]. However, here we merely 

want to add up the values of N f for a left-right combination of interest, and the 

individual values of ma do not matter.

A few fields of the supersymmetric orbifold w ill be relevant in the following, all of 

untwisted type. They are:

• The symmetric representation of the spectral flow operator (S f , 0), with S F = 

(0,1,1). It  w ill be relevant to make the whole theory supersymmetric.

• The world-sheet supercurrent of the supersymmetric orbifold, that we denote by

(0 ,Tf  ) 2.

• The anti-symmetric representation of the identity, denoted by (0,1). We will 

call it the “un-orbifold current” since the extension by this current undoes the 

orbifold, giving back the original tensor product.

The un-orbifold current exists in the BH S orbifold [k, k] as well as in the 

supersymmetric orbifold (k, k). Denoting extension currents by means of a subscript, 

we have the following C FT  relations

(k  k) = [k  k]unorb 

(k, k)(TF ,tf  ) = (k, k)unorb

that can be checked using the box diagrams given in chapter 5.

In general, the full set of simple current M IP F 's  obtained from the permutation 

orbifold C FT  (k1, (k2,k3) . . . ,  kr ) w ill have a partial overlap with those of

2 Actually, since (0, Tp ) is a fixed point of (Tp , 1) in the unextended orbifold, there exist two fields (0, Tp ) a (with 
a = 0, 1) in the supersymmetric orbifold corresponding to the two resolved fixed points. One can use any of 
them, since they produce the same CFT.
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straight tensor product (k1, k2, k3, . . . ,  kr ). Since the set of simple currents of 

(k1, (k2, k3) . . . ,  kr ) includes the un-orbifold current one might expect that the latter 

set is entirely included in the former. However, this is not quire correct, since 

the supersymmetric permutation orbifold has fewer simple currents than the tensor 

product from which it originates, as explained above. In  the extension chain, 

(k, k )unorb is (C F T )2. In  both steps in the chain

(CFT )0  = [k,k]

I

(C F T )1 = (k,k)

I

(C F T )2 = (k, k )unorb = (k  k )(TF ,TF )

exceptional simple currents appear. Those of the first step are promoted to ordinary 

simple currents using fixed point resolution in the BH S orbifold. We then work 

directly with (k, k) as a building block, but by doing so we cannot use the exceptional 

simple currents emerging in the second step. In  this case the exceptional simple 

currents could be used by working with (k, k )(Tp Tp) directly, but then we are back 

in the unpermuted theory. So the point is not that these M IP F 's  are unreachable, 

just that they cannot be reached using the simple currents of (k, k). Obviously, if 

we were to use a different exceptional simple current in the second extension, such 

that (C F T )2 is a new, not previously known C FT  with exceptional simple currents, 

some of its M IPF 's  cannot be reached using simple current methods neither from 

(C F T )i nor from (C F T )2. In  all cases, one can try to derive such M IP F ’s explicitly as 

exceptional invariants, and they can then be taken into account in heterotic spectrum 

computations, but this requires tedious and strongly case-dependent calculations. But 

in this chapter we only consider simple current invariants, without any claim regarding 

completeness of the set of M IP F ’s we obtain.

The phenomenon of exceptional simple currents is nothing new, and occurs for
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example in the D-invariant of A 14 (which is isomorphic to A 21), or the extension 

of the tensor products of two Ising models extended by the product of the fermions 

(turning it into a free boson).

The simplest explicit example occurs for k = 1. In  this case the discussion can be 

made a bit more explicit, since the permutation orbifold is itself a minimal model, 

namely the one with k = 4:

(1,1) = (4)

(1, 1)(Tp ,Tp) = (4)unorb = (4 )D

The minimal k = 1 model has 12 primaries, all simple currents, and hence the tensor 

product (1,1) has 144 simple currents. To make the tensor product world-sheet 

supersymmetric we have to extend it by (Tf ,T f ), reducing the number of simple 

currents by a factor of four3 to 36. The k = 4 minimal model has 24 simple currents. 

If  we extend the k = 4 minimal model by the un-orbifold current (which can be 

identified as such in the (1, 1) interpretation), these 24 original simple currents are 

reduced to 12. Since the resulting C FT  is isomorphic to (1 ,1)(Tp,Tp) there must be 

24 additional simple currents. Indeed there are, but they are exceptional. They are 

related to the aforementioned exceptional currents in the D-invariant of A 14. This is 

also the only example of exceptional simple currents in N  = 2 minimal models, and 

clearly in this case no M IP F ’s are missed, since we can explicitly consider (1,1) as 

well as (4) D. There might exist additional examples of exceptional simple currents in 

tensor products of N  = 2 minimal models.

If  the chiral algebra contains the un-orbifold current of a permutation orbifold, we 

obviously get nothing new. Therefore we demand that this current is not in the chiral 

algebra. In  general, it would be possible to forbid it in either the left or the right 

chiral algebra. This is already sufficient to find new cases. We do this, for example, 

with the S U (5) extension currents of the standard model, which are required in the 

right (fermionic string) chiral algebra, but not in the left one. However, it turns out
3Of the 12 simple currents of the minimal k =1 model, 6 are in the Ramond and 6 in the NS sector. In the 

extended tensor product, only fields with factors both in the R or in the NS sector survive (thus reducing their 
number by a factor of two) and they are moreover pairwise identified by the extension (thus giving another 
factor of two).
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that the un-orbifold current is local with respect to all other simple currents.

In  appendix B.1 we prove a small theorem about simple current invariants. Consider 

a simple current modular invariant partition function

In the theorem it is shown that: if a current J  that is local with respect to all currents 

used to construct the modular invariant appears on the right hand side (holomorphic 

sector) of the algebra, then it w ill also appear on the left hand side (anti-holomorphic 

sector):

Furthermore we show that the un-orbifold current is local with respect to all other 

currents. Therefore the existence of the un-orbifold current on one side implies its 

existence also on the other side. Hence it is sufficient to forbid its occurrence in either 

the left or the right sector.

However, there are a few cases where it cannot be forbidden at all, because it is 

generated by combinations of world-sheet and space-time supersymmetry in the right 

(fermionic) sector, where such chiral algebra extensions are required. In  general, a 

tensor product is extended by the currents S susy and W j, as explained in the previous 

section.

If  k is even, the un-orbifold current does not appear on the orbit of the Ramond 

spinor current S  , and hence can never be generated. For arbitrary k we have in the 

supersymmetric permutation orbifold

so that for k odd one can obtain the un-orbifold current as a power of (S f ,0). Note 

that instead of 2(k + 2) one could use any odd multiple of 2(k + 2). In  the tensor 

product S  is combined with the spinor currents of all the other factors, which will be 

raised to the same power. Now note that in minimal models of level k the following

(6.12)

M u  = 0 ^  M j  o = 0 . (6.13)

(6.14)
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is true
S 2(fc+2) = ƒ  0 if k even (6 15) 

= \ T f  if k odd . (6.15)

Furthermore, the value 2(k + 2) is the first non-trivial power for which either the

identity or the world-sheet supercurrent is reached. It follows that if the tensor

product contains a factor with k  even, the complete susy current (S Fj1, . . . ,  S F,r ; S )

must be raised to a power that is a multiple of four in order to reach either the

identity or a world-sheet supercurrent. This is true for minimal model factors as well

as supersymmetric permutation orbifolds (k j, kj).

Consider then a tensor product (k i, . . . ,  km_ i, (km, km), km+2, . . . ,  kr ). Take the 

susy current

(SF,1, . . . , S  F,m-1, (S f , 0), SF,m+2, . . . S  F,r; S )

to the power 2M , where M  is the smallest common multiple of kj + 2, for all i 

(including i = m). If  all kj are odd, this yields

^ F .b  . . . , TF,m_ 1, (0, 1), TF,m+2 , . . . T F,r ; V ) (6.16)

Since this is a power of an integer spin current, the susy current, it must have 

integer spin. Therefore the number of TF j must be odd. Indeed, it is not hard 

to show that eqn. (6.6) can only be satisfied with all kj odd if the total number of 

factors, r, is odd. It  then follows that all entries TF j as well as the representation

V  of S0 (1 0 )i can be nullified by world-sheet supersymmetry. Hence it follows that 

the un-orbifold current of (km, km) is automatically in the chiral algebra. It  also 

follows that if one of the kj is even the un-orbifold current is not in the chiral algebra 

generated by Ssusy and W j . The same reasoning can be applied to tensor products 

containing more than one permutation orbifold. The conclusion is that the un-orbifold 

currents of each factor separately are not generated by Ssusy and W j , but if all kj 

(in minimal models as well as the permutation orbifolds) are odd, the combination 

(0 ,..., (0 ,1 ),..., (0 ,1 ),..., 0; 0), with an un-orbifold component in each permutation 

orbifold, w ill automatically appear. Obviously, if there is more than one permutation 

orbifold factor this does not undo the permutation.
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The set of tensor combinations with only odd factors is rather limited, namely

( 1, 1, 1, 1, 1, 1, 1, 1, 1)

(3, 3, 3, 3, 3)

(1, 3, 3, 3,13)

(1,1, 7, 7, 7)

(1,1, 5, 5,19)

(1,1, 3,13,13)

We w ill not consider permutations of k = 1 , because (1,1) = 4, and hence nothing 

new can be found by allowing (1, 1) . Furthermore there is no need to consider any 

single permutations in the foregoing tensor products. However, we do expect the 

combinations (3, (3, 3), (3, 3)), ((1,1), (7, 7), 7) = (4, (7, 7), 7) and ((1,1), (5, 5), 19) = 

(4, (5, 5), 19) to yield something new.

For technical reasons in this work we consider only permutations of minimal models 

having level k < 10: computing time and memory use become just too large for large 

k. Nevertheless, the interval k G [2,10] still covers almost all the standard Gepner 

models where at least two factors can be permuted.

6.3.1. Permutations of permutations

An additional thing that one could try to do (and which we can in principle do with 

our formalism, since we know all the relevant data that are needed) is to consider 

permutations of permutations. Permutations of permutations are possible only for a 

few Gepner models, because one would need to have a number of factors in the tensor 

product which is larger than four and with at least four identical minimal models. Out 

of the 168 possibilities, there are only a few combinations that have these properties.
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They are:

(6, 6, 6, 6)

(1,4,4, 4, 4)

(3, 3, 3, 3, 3)

(1, 2, 2, 2, 2,4)

(2, 2, 2, 2, 2, 2) (6.17)

As before we restrict the k > 1. Observe that the maximal level is k = 6, so these 

cases are actually all the possibilities that one can consider and one can relax here 

our previous restriction to k < 10.

The approach one should take is the following. Consider a block of four identical 

minimal models. As before we can permute the factors pairwise and obtain a tensor 

product of two larger blocks, but again identical. Hence we can permute them again 

and end up with only one big block which replaces the four ones that we started with:

(k ,k ,k ,k )

((k ,k ), (k ,k ))

((k ,k ), (k ,k ))

Although straightforward, we have not performed this calculation here. There are 

only very few cases to analyze, namely the five listed above, but, on the one hand, it 

is a pretty lengthy computation and on the other hand we do not expect drastically 

different spectra in comparison with normal permutations.

6.4. Lifts

In [67] the authors describe a new method for constructing heterotic Gepner-like 

four-dimensional string theories out of N  = 2 minimal models. The method consists 

of replacing one N  = 2 minimal model together with the E 8 factor by a non-
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supersymmetric C FT  with identical modular properties. Generically this method 

produces a spectrum with fewer massless states. Surprisingly, it is possible to get 

chiral spectra and gauge groups such as S0<10), S U (5) and other subgroups including 

the Standard Model. However, the most interesting feature is probably the abundant 

appearance of three-family models, which are very rare in standard Gepner models 

[39]. Let us review how it is done in more detail, at least in the simplest case.

Start from the coset representation of the minimal model:

SU (2)k x U (1)4
U ( 1 W ,   ̂ (6.18)

subject to field identification by the simple current < J, 2, k + 2). Here J  is the simple 

current of the SU  <2)k factor and the UN fields are labelled by their charges as 

0 ,..., N  — 1. The product of the N  = 2 minimal model and the E 8 factor is then

/ ^  x U <D4 \ x (6.19)
V U (1)2(fc+2) /(J,2,fc+2)

where the brackets denote this identification. The next step is to remove the 

identification and mod out E 8 by U<1)2(k+2): the new C FT  is then

E 8
SU<2)k x U <1)4 x — — 8--- . (6.20)

U (1)2(fc+2)

Finally we restore the identification by a standard order-2 current extension of the 

resulting C FT . This procedure works provided we can embed the U<1)2(k+2) factor 

into E 8. Some examples of how to embed U<1)2(k+2) into E 8 are given in [67]. 

Finally, one can check explicitly that the modular S  and T  matrices are the same 

as for the N  = 2 minimal model times E 8, as they must be by construction. The 

resulting C FT  is SU<2)k x U<1)4 x X 7, where is the reminder of E 8 after dividing 

out U<1)2(k+2). has central charge 7 and modular matrices S  and T  given by 

the complex conjugates of those of U<1)2(k+2) (since the ones of E 8 are trivial). 

Generically, this procedure raises the weights of the primaries in the new C FT , hence 

the name “weight lifting” .

As it appears from above, the lifting of Gepner models is achieved by only a slight 

modification of standard Gepner models. A ll one has to do is to shift the weights
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of some fields in the left-moving C FT  by a certain integer, and replace the ground 

state dimensions by another, usually larger, value. In [67] a list of possible lifts is 

given for N  = 2  minimal models at level k. Not for any level there exists a lift and 

sometimes for fixed k there are more lifts. When applied to standard Gepner models, 

a lot of new “lifted” Gepner models are generated. Notationally, if a Gepner model 

is denoted by <ki,. . . ,  k j,. . . ,  kr ), the corresponding lifted model w ill be denoted by 

<ki,. . . ,  k j,. . . ,  kr ), where the lift is done on the ith N  = 2 factor. If  for a given k 

there exists more than one lift, we use a tilde to denote it.

In  [41] a different class of lifts was considered, the so called B-L lifts. In  this case one 

replaces the U<1)2o (with 20 primaries), that is the remainder of SU<3) x SU<2) x U<1) 

embedded in S0<10). In  the Standard Model the abelian factor is the U<1)Y 

hypercharge (denoted also as U<1)30, with 30 primaries). The U<1)20 that we replace 

here corresponds to B  — L, hence the name “B-L lifting” . It  is not possible to simply 

replace the U<1)20 by an isomorphic C FT  with 20 primaries, central charge c = 1 and 

same modular S  and T  matrices, since all the c = 1 C F T ’s are classified. Again, what 

one can do is to add the E 8 factor and replace the E 8 x U<1)20 block, which has central 

charge c = 9. As it turns out, there are only two possible B-L lifts, that we denote by 

A  and B . In  terms of compactifications from ten dimensions these possibilities can 

be distinguished as follows. If  one compactifies the E 8 x E 8 heterotic string one gets 

S0<10) x E 8 in four dimensions. The standard model can be embedded in S0<10) 

(trivial lift, i.e. standard, unlifted B  — L ) or E 8 (lift A ). If  one compactifies the 

SO<32)/Z2 heterotic string, one gets SO<26), in which the standard model can then 

be embedded via an S0<10) subgroup; this yields lift B . As explained in [41] both lift 

A  and lift B  yield, perhaps counter-intuitively, chiral spectra. In  the unlifted case, 

the number of families is typically a multiple of 6, and sometimes 2; for lift A, the 

family number quantization unit was found to be usually 1, whereas for lift B  it was 

usually 2.

In  this chapter we will apply all these kinds of lifts to permuted Gepner models. This 

means that we make, when possible, all sorts of known lifts (namely, standard weight 

lifting and B-L lifting) for the N  = 2 factors that do not belong to the sub-block(s)
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of the permutation orbifold. Note that permutations and lifting act independently: 

a given minimal model factor is either unchanged, or lifted, or interchanged with 

another, identical factor. It  may well be possible to construct lifted C F T ’s for the 

permutation orbifolds themselves, but no examples are known, and they are in any 

case not obtainable by the methods of [67], because there only a single minimal model 

factor is lifted. There is one exception to this: there is one known simultaneous lift of 

two minimal model factors with k = 1. Conceivably one could apply a permutation 

to those two identical factors in combination with this lift. We have however not 

investigated this possibility.

6.5. Com parison w ith  known results

To compare our results with previous ones on permutation orbifolds [5, 43], it is 

important to understand the differences in these approaches. These authors first 

construct the basic Gepner model with all world-sheet and space-time supersymmetry 

projections already in place in the left- as well as the right-moving sector.

They start from either the diagonal (A-type) invariants of all the minimal 

models, or the D and E-type (exceptional) invariants. They then apply a cyclic 

permutation to the minimal model factors that are identical. They allow for additional 

phase symmetries occurring in combination with the permutations. This combined 

operation is applied to the full partition function.

B y  contrast, we first build an N  = 2 permutation orbifold, then tensor it with other 

building blocks (either minimal models or other N  = 2 permutation orbifolds), then 

impose world-sheet and space-time supersymmetry, but only on the fermionic sector, 

and consider general simple current modular invariants.

So the differences can be summarized as follows

• In  [5, 43] general cyclic Z L permutations are considered, while our results are 

limited to L  = 2.

• In  [5, 43] extra phases are modded out in combination with the permutations.

• In  [5, 43] permutations of D and E-invariants are considered.

6.5. Comparison w ith  know n results
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• We only consider permutations of factors with 2 < k < 10.

• We consider general simple current invariants.

• We consider not only <2, 2) but also <0, 2) invariants and breaking of S0<10).

In  order to make a comparison we w ill ignore the last point and focus on <2, 2) 

models. Since simple current invariants include D-invariants as special cases, and 

because they involve monodromy phases of currents with respect to fields, one might 

expect that at least part of the limitations in the second and third point are overcome. 

Exceptional invariants can be taken into account in our method by multiplying the 

simple current modular matrix with an explicit exceptional modular matrix. Indeed, 

in standard Gepner models we have taken them into account, and analysed the class 

of <1,16*, 16*, 16*) three-family models [70]. In  the present case one could easily use 

exceptional invariants in those factors that are not permuted. To use permutations of 

exceptional invariants we would first have to construct the exceptional M IP F  explicitly 

in the permutation orbifold C FT , which can be done in principle with a tedious 

computation. The first point is, however, much harder to overcome, because it would 

involve extending the BH S construction to higher cyclic orders.

Now let us see how the comparison works out in practice. In  [43] a table is presented 

with all models where cyclic permutations, phase symmetries and cyclic permutations 

together with phase symmetries have been modded out. For each model the authors 

give the number of generations n27, anti-generations n^y and singlets n1. The first 

two numbers are equal to Hodge numbers of Calabi-Yau manifolds, namely h21 = n27 

and h11 = n^y. These quantities are first obtained by using modular invariance of the 

partition function of the cyclically-orbifolded Gepner models and are then compared 

with the same quantities derived by using topological arguments applied to the smooth 

Calabi-Yau manifold after that the singularities have been resolved. The number of 

families is specified by ngen = n27 — n^y. The total number of singlets is strongly 

dependent on the multiplicities of the (descendants) states of the N  = 2  minimal 

models, which can be read off directly from the character expansions. The singlet 

number n1 turns out to be crucial for differentiating different models with equal n27

6. P erm uta tion  orbifolds o f hetero tic  Gepner m odels
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and n^y. Our comparison is based on these three numbers. In  table <6.1) we list the 

values we obtained for these three numbers in the cases we considered. Note that these 

are the numbers obtained without any simple current extensions or automorphisms. 

The cases marked with a * are x T2 type compactifications with an E 7 spectrum; 

the numbers that are indicated are the ones obtained after decomposing E 7 to E 6.

In comparing the A-type invariants without phase symmetries, we get agreement, 

but in a somewhat unexpected way. In  [43] one-permutation models are not 

considered, because the authors argue that they always produce the same spectra 

as unpermuted Gepner models. However, we do manage to build one-permutation 

models as explained in section 6.3. The only Gepner combinations for which 

the one-permutation models yield nothing new are the purely-odd combinations. 

Furthermore, the one-permutation orbifolds do indeed yield new results. For example, 

for the combinations <2, 2, 2, 2, (2, 2}) the three numbers are <90, 0, 284) as opposed to 

<90,0, 285) for the unpermuted case; for <6, 6, (6, 6}) we find <106, 2, 364) as opposed 

to <149,1, 503); for <(3, 3}, 10, 58) we get <75, 27, 392) as opposed to <85, 25,425). 

These three example illustrate three distinct situations. In  the first example, the 

only difference with the unpermuted case is that the number of singlets is reduced 

by one. In  the second example, the Hodge pair <106, 2) does occur for a non-trivial 

simple current invariant of the tensor product <6, 6, 6, 6), namely (6a , 6a , 6a , 6d ), but 
with 365 singlets instead of 364. In  the last example the Hodge pair <75, 27) does 

not occur for any simple current M IP F  of <3, 3,10, 58) (the only other combination 

that occurs is <53, 41, 401) plus the mirrors, so that even the Euler number of the 

permutation orbifold is new)4

In order to make a non-trivial comparison between our spectra and those of [43] we 

have to look at Gepner models with two permutations. It  turns out that our spectra 

(specified by n27, n^y and n1) do agree with those of [43]. However, to get the full 

match, we always have to extend the model by one current. This current is (see 

section 6.3) the double un-orbifold current, which has the un-orbifold current in each 

of the two factors corresponding to the permutation orbifold and the identity current

4For a complete list of Hodge number and singlets of Gepner models see [71].
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in the remaining factors. Also in this case we already get new spectra even if we do 

not extend by this current. Consider for example <(6, 6}, (6, 6}). As mentioned above, 

the <6, 6, 6, 6) gives <149,1, 503); the completely unextended spectrum we get for the 

<(6, 6}, (6, 6}) yields <77,1, 269); if we extend the two permutation orbifold C F T ’s by 

the current combination <<0,1), <0,1)) (where <0,1) is the un-orbifold current) we find 

<83, 3, 301), which is precisely the result quoted in [43] for the permutation orbifold. It 

is noteworthy that [43] lists a triplet <77,1, 271) for the combination (6d , 6D, 6a, 6a), 

which from our perspective is a simple current invariant of <6, 6, 6, 6). Again we see two 

spectra with a minor difference only in the number of singlets, which we w ill comment 

on below. In  one case we could not make a comparison, because in [43] no result is 

listed for <2, 2, (2, 2}, (2, 2}) without extra phases. In  all other cases our results agree 

with [43]. The need for extending by a combination of un-orbifold currents suggests 

that such currents are automatically generated or im plicitly present in the formalism 

used in [43], for reasons we do not fully understand, but which are presumably related 

to an interchange in the order of two operations: permutation and simple current 

extension. This is also consistent with the fact that these authors find no new results 

for single permutations: if an un-orbifold current is automatically present in that 

case, one inevitably returns to the unpermuted case. Note that for <3, (3, 3}, (3, 3}) 

we have seen before that the separate un-orbifold current of each permutation orbifold 

is automatically present in the chiral algebra, and hence so is the combination of the 

two. Therefore in this case we do not have to extend by <0, <0,1), <0,1)) to find 

agreement with [43] because the extension is already automatically present.

Let us now compare the cases with extra phase symmetries. In  almost all cases, 

using the simple-current formalism, we recover for a given suitably-extended model the 

same Hodge numbers and the same singlet number as in those spectra where both the 

phase symmetry and the permutation symmetry have been modded out. In  a sense, 

these phase symmetries correspond to simple current extensions or automorphisms. 

The only two exceptions, out of the many successful instances, both coming from 

the 26 Gepner model (nr. 21 of Table I I  in [43]) with two permutations and phase 

symmetries, are

6. P erm uta tion  orbifolds o f hetero tic  Gepner m odels
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• (21)(43)56, 111100 (n27 = 21, nw  = 21, m = 180, x = 0),

• (21)3(54)6, 333111 (n27 = 44, n ^  = 8, m = 199, x = -72),

where the first entry is the permutation orbifold and the second one is the phase 

symmetry. We were not able to find these two cases using our procedure.

There are a few other cases that we do not have, but for reasons that are easy to 

understand. Consider model nr. 168 in the same table. It  corresponds to the 64 

Gepner model. The double permutation that we reproduce is the one labelled as

• 6a 6a 6a 6a : (21)(43) (n27 = 83, n^y = 3, n i = 301, x = -160).

The other two, with D invariants

• 6a 6a 6d 6d : (21)(43) (n27 = 45, n ^  = 1, n i = 181, x = -88),

• 6d 6d 6d 6d : (21)(43) (n27 = 35, n ^  = 3, n i = 154, x = -64),

are not present. However these are not comparable with our 64 since they come out 

of a different construction. In  fact, the D invariant is obtained as a simple current 

automorphism of the k = 6 Gepner models by the S U (2 )k current (k, 0,0) (with 

k = 6). This current has spin h = |  = | . In  [43] the authors consider the permutation 

of two such k = 6 models, each with such a simple current automorphism. This is 

different from what happens here. Here, we immediately replace the block by its 

permutation orbifold; moreover, when we extend it by the current (TF , 1) to build 

the supersymmetric permutation orbifold, the off-diagonal field ((0 ,0 ,0)(6, 0, 0)} with 

spin h = 3 (the obvious candidate for creating the automorphism invariant) is not a 

simple current. We expect that the permutation orbifold of two 6D models is present 

as an exceptional invariant of (6, 6}.

The spectra mentioned in the last two paragraphs, that were present in [43] but 

absent in our results, might also be understood as follows. As explained in 6.3, one 

may consider simple current extension chains of the form

(C F T )0 ^  (C F T )1 ^  (C F T )2 ^  ...
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In  this chain, the supersymmetric permutation orbifold is <CFT)t . We can use all its 

simple currents to build M IP F ’s, and in particular we find all simple current extensions 

<CFT)2. However there are situations where <CFT)2 itself has new simple currents 

that are exceptional, and whose orbits cannot be fully resolved because we do not have 

the complete fixed point resolution formalism for <CFT)t available. Therefore M IP F ’s 

generated by such second order exceptional simple currents cannot be obtained. At 

best, one could try to get them by explicit computation as exceptional M IP F ’s of 

<CFT)r  The problem of unresolvable fixed points occurs precisely for supersymmetric 

permutation orbifolds when k = 2 mod 4, and therefore might be relevant precisely 

in these examples.

Table 6.1.: Hodge data for permutation orbifolds of Gepner models.
Tensor product h-21 h ii Singlets

(1,1,1,1,1,1, (2, 2)) 23* 23* 177
(1,1,1,1,1, (4,4)) 84 0 249
(1,1,1,1, (10,10)) 57 9 248
(1,1,1,1, (2 , 2), 4) 35 11 229
(1,1,1, (2, 2), 2, 2) 23* 23* 175
(1,1,1, 2, (6, 6)) 23* 23* 173
(1,1,1, (4,4), 4) 73 1 242
(1,1,1, (3, 3), 8) 23* 23* 173

(1,1,1, (2, 2), (2, 2)) 23* 23* 173
(1,1, 2, 2, (4, 4)) 35 11 211
(1,1, (2, 2), 2,10) 46 10 234
(1,1, 4, (10,10)) 75 3 279
(1,1, (6, 6), 10) 37 13 211
(1,1, (2, 2), 4, 4) 51 3 250

(1,1, (2, 2), (4, 4)) 35 11 209
(1, 2, 2, (10,10)) 61 1 251
(1, (2, 2), 2, 2, 4) 61 1 260
(1, 2,4, (6, 6)) 51 3 235
(1, 2, (4,4), 10) 62 2 241
(1, 2, (3, 3), 58) 41 17 273
(1, (4, 4), 4,4) 84 0 279

(1, (2, 2), 10,10) 89 5 343
(1, (3, 3), 4, 8) 41 5 219
(1, (2, 2), 5, 40) 35 35 329

Continued on next page
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T able 6 .1  -  c o n t in u e d  f ro m  p r e v io u s  p a g e
model h-21 h ii Singlets

(1, (2, 2), 6, 22) 68 8 297
(1, (2 , 2), 7,16) 43 19 289
(1, (2, 2), 8,13) 27 27 249

(1, (2, 2), (2, 2), 4) 61 1 259
((2, 2), 2, 2, 2, 2) 90 0 284
(2, 2, 2, (6, 6)) 73 1 251
(2, 2, (4, 4), 4) 51 3 242
(2, 2, (3, 3), 8) 41 5 218

(2, 2, (2, 2), (2, 2)) 90 0 283
(2, (10,10), 10) 105 3 380
(2, (8, 8), 18) 79 7 322

((2, 2), 2, 3,18) 65 5 279
(2 , (7, 7), 34) 63 15 312

((2, 2), 2, 4,10) 69 3 265
((2, 2), 2, 6, 6) 86 2 297

(2, (2, 2), (6, 6)) 73 1 250
(3, (6, 6), 18) 51 11 254
(3, (5, 5), 68) 53 29 328
(3, (8, 8), 8) 99 3 346

(3, (3, 3), (3, 3)) 59 3 228
(4,4, (10,10)) 94 4 334
(4, (6, 6), 10) 55 7 238
(4, (5, 5), 19) 41 17 238
(4, (7, 7), 7) 66 6 270
((5, 5), 5,12) 83 5 308
((6, 6), 6, 6) 106 2 364

((4,4), 10,10) 101 5 370
((3, 3), 10, 58) 75 27 392
((3, 3), 12, 33) 47 31 306
((3, 3), 13, 28) 97 13 404
((3, 3), 18,18) 125 9 490
((2 , 2), 3, 3, 8) 39 15 249
((2, 2), 4, 4,4) 60 6 285
((4, 4), 5,40) 65 17 334
((4, 4), 6, 22) 70 10 304
((4, 4), 7,16) 79 7 308
((4, 4), 8,13) 48 12 242
((3, 3), 9,108) 69 49 466
((6, 6), (6, 6)) 77 1 269

((2, 2), (4, 4), 4) 51 3 240
((2, 2), (3, 3), 8) 41 5 216

((2, 2), (2, 2), (2, 2)) 90 0 282
(1, (2, 2), (10,10)) 61 1 250

Continued on next page
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T a b le  6 .1  - continued from previous page
model h-21 h ii Singlets

((4,4), (10,10)) 75 3 273
(1, (4,4), (4,4)) 73 1 234

As already mentioned, the list of Hodge numbers and singlets in table (6.1) is 

obtained without any simple current extensions other than those required to get a 

(2, 2) model. The complete list obtained with arbitrary simple currents can be found 

on the website [71].

Although the results in table (6.1) are for (2, 2) models, the focus of the present 

chapter was on (0, 2) models. We can compare the results with those of [39] and 

ask what permutation orbifolds add. Consider first the set of (0, 2) models closest to 

(2, 2) models, namely those with an E  gauge symmetry. They are characterized 

by the same three numbers n27, n^y and ni, but since there is not necessarily a 

world-sheet supersymmetry in the bosonic sector they may not have a Calabi-Yau 

interpretation. For simplicity we w ill refer to these as “pseudo Hodge pairs” and 

“pseudo Hodge triplets” . In  the complete set of standard Gepner models without 

exceptional invariants we obtained a total of 14185 different pseudo Hodge pairs and 

9604 different pseudo Hodge triplets. For the genuine permutation orbifolds (without 

extensions by un-orbifold currents) these numbers are respectively 498 and 3830. Note 

that some permutation orbifolds with k > 10 were not considered. How many of the 

permutation orbifold numbers are new? If  we combine the data for pseudo Hodge 

pairs and remove identical ones, we obtain a total of 1447 pseudo Hodge pairs, so 

that the total has increased by a mere 29. But if we look at pseudo Hodge triplets, 

the increase is much more substantial. This number increases from 9604 to 12145, an 

increase of 2541 or about 26%. We tentatively conclude that permutation orbifolds 

mainly give new points in existing moduli spaces. The following observation is further 

evidence in that direction.
5 For the standard, unpermuted Gepner models, the number of genuine Hodge number pairs with world-sheet

supersymmetry in both sectors is 906. A list can be found on the website [71].
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One remarkable feature of the permutation orbifold spectra is the occurrence of 

identical Hodge numbers and a number of singlets that is almost the same. For 

example, in the set of permutation orbifolds obtained from the (2, 2, 2, 2, 2, 2) tensor 

product we find spectra with (genuine) Hodge numbers (90, 0), and either 282, 283, 

284 or 285 singlets. A  closer look at the spectrum reveals what is going on here. We 

also compute the number of massless vector bosons in these spectra, and it turns out 

that this is respectively 2,3,4 and 5 (in addition to those of E 6) in these cases. This 

is consistent with the occurrence of a Higgs mechanism that has made one or more 

of the vector bosons heavy by absorbing the corresponding number of singlets. So 

apparently we are finding points in the same moduli space, but with a vev for certain 

moduli fields so that some of the U (1 )’s are removed. This is expected to occur in 

Gepner models, but it is nice to see this happen entirely within RC FT . The same 

observation was made in [43]. The reduction of the number of U  (1 )’s by itself has 

a straightforward reason: each N  = 2 model has an intrinsic U (1), and replacing 

two minimal models by a permutation reduces the number of U (1 )’s by 1. Hence 

the (2, 2, 2, 2, 2, 2) model generically has five U (1 )’s (six, minus one combination that 

becomes an E  Cartan-subalgebra generator), and ((2, 2), (2, 2), (2, 2}) generically has 

only two. However, the number of vector bosons can be larger than that because the 

simple current M IP F ’s add extra generators to the chiral algebra. Indeed, among the 

M IP F ’s of ((2, 2), (2, 2), (2, 2}) we do not only find (90,0, 282, 2) (where the last entry 

is the number of U (1 )’s), but also (90,0, 283, 3) and (90, 0, 284, 4).

6.6. Results

The C FT  approach, based on simple currents extensions, turns out to be extremely 

powerful. Although we have considered in this work only order-two permutations, the 

number of new modular invariant partition functions or, equivalently, the number of 

new spectra for each model is huge, in the order of a few thousands. Simple currents 

allow us to generate a huge number of four dimensional spectra.

Here we discuss the more phenomenological aspects of our results, considering the 

breaking of S0 (10) into subgroups, including the Standard Model. Conceptually
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this is very similar to work on unpermuted Gepner models presented in [39, 40, 41], 

to which we refer for more detailed descriptions. In  these papers several, mostly 

empirical, observations were made regarding the resulting spectra. The main question 

of interest here is if these observations continue to hold as we extend the scope of 

R C F T ’s considered.

6.6.1. Gauge groups

W ith in S0 (10), all the simple currents of the conformal field theory constructed 

out of the Standard Model in the left (bosonic) sector extend the algebra to 

one of the following gauge groups: S0(10) itself and any of the seven rank-5 

subgroups, namely the Pati-Salam group S U (4) x S U (2) x S U (2), the Georgi-Glashow 

G U T  group S U (5) x U (1), two global realizations of left-right symmetric algebra 

SU (3 ) x SU (2 ) x SU (2 ) x U (1), and three global realizations of the standard model 

algebra S U (3) x S U (2) x U (1) x U (1). Counted as Lie-algebras there are just five 

of them, but the last two come in several varieties when we describe them as C FT  

chiral algebras. These are distinguished by the fractionally charged (here “charge” 

refers to unconfined electric charge) representations that are allowed. For the left- 

right algebra this can be either 3 or 6 , (we call these “LR , Q=1/3” and “LR , Q=1/6” 

respectively) and for the standard model this can be 2, 1 or 6 (SM , Q=1/2, 1/3 or 

1/6). In  the string chiral algebra these different global realizations are distinguished 

by the presence of certain integer spin currents. If  these currents have conformal 

weight one, they manifest themselves in the massless spectrum as extra gauge bosons. 

This happens in particular for the highly desirable global group corresponding to the 

standard model with only integer unconfined electric charge. In  this class of heterotic 

strings this necessarily implies an extension of the standard model to (at least) S U (5). 

Furthermore, if the standard model gauge group is extended to S U (5), this group 

cannot be broken by a field-theoretic Higgs mechanism, because the required Higgs 

scalar, a (24), cannot be massless in the heterotic string spectrum. A  heterotic string 

spectrum contains either these massless vector bosons, or fractionally charged states 

that forbid the former because they are non-local with respect to them [72] (see also
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[73, 74]).

These eight gauge groups are obtained as extensions of the affine Lie algebra 

S U (3 )1 x S U (2 )1 x U30, with a U (1) normalization that gives rise to SU (5)-G UT 

type unification. In  general, there is an additional U (1) factor that corresponds to a 

gauged B  — L  symmetry in certain cases. In  B-L lifted spectra this U (1) is replaced 

by a non-abelian group. In  addition, the gauge group consists out of a U (1) factor 

for each superconformal building block, which sometimes is extended to a larger 

group, depending on the M IP F  considered. There may also be extensions of the 

standard model gauge group outside S0(10), such as E  or trinification, SU (3 )3. In 

standard Gepner models there is furthermore an unbroken factor, which in lifted 

Gepner models is replaced by certain combinations of abelian and non-abelian groups. 

In  scanning spectra we focus only on the aforementioned eight (extended) standard 

model groups.

6.6.2. M IPF scanning

Since it is essentially impossible to construct the complete set of distinct M IP F ’s, 

we use a random scan. This is done by choosing 10.000 randomly chosen simple 

current subgroups H  (see appendix B ) generated by at most three simple currents. 

Furthermore, if the number of distinct torsion matrices X  is larger than 100, we make 

100 random choices. The entire set is guaranteed to be mirror symmetric, because for 

every given spectrum one can always construct a mirror by multiplying the M IP F  with 

a simple current M IP F  of S0 (1 0 )1 that flips the chirality of all spinors. Note that 

this does not imply anything about mirror symmetry of an underlying geometrical 

interpretation. It  is a trivial operation on the spectrum that can however be used to 

get some idea on the completeness of the scan.

6.6.3. Fractional Charges

Fractional charges can appear either in the form of chiral particles, or as vector-like 

particles (where “vector-like” is defined with respect to the standard model gauge 

group) or only as massive particles, with masses of order the string scale. If  a spectrum
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has chiral fractionally charged particles, we reject it after counting it. In  nearly all 

remaining cases the spectrum contains massless vector-like fractional charges (unless 

there is G U T  unification). We regard such spectra as acceptable at this stage. Since 

no evidence for fractionally charged particles exists in nature, with a lim it of less 

than 10-20 per nucleon [75], clearly these vector-like particles w ill have to acquire 

a mass. Furthermore this w ill almost certainly have to be a huge (G U T  scale or 

string scale) mass, since otherwise their abundance cannot be credibly expected to be 

below the experimental lim it. This can in principle happen if the vector-like particles 

couple to moduli that get a vev. An analysis of existence of couplings is in principle 

doable in this class of models, although there may be some technical complications in 

those cases where no fixed point resolution procedure is available at present (namely 

the permutation orbifolds with k = 2 mod 4). However, this analysis is beyond 

the scope of this work, and we treat spectra with vector-like fractional charges as 

valid candidates, for the time being. Just as in previous work [39, 40, 41, 76], 

there are extremely rare occurrences of spectra without any massless fractionally 

charged particles at all, but we only found examples with an even number of families. 

Examples with three families were found in [76] by scanning part of the free-fermion 

landscape. In  the context of orbifold models and Calabi-Yau compactifications, it is 

known that G U T  breaking by modding out freely acting discrete symmetries leads to 

spectra without massless fractional charges ( [77]; see [78] for a recent implementation 

of this idea in the context of the “heterotic mini-landscape” [79, 80, 81]). While 

these models do fit the data on fractional charges, the question remains for which 

fundamental reasons such vacua are preferred over all others, especially if they are 

much rarer.

In  table (6.2) we display how often four mutually exclusive types of spectra occur 

in the total sample, before distinguishing M IP F ’s. The types are: spectra with 

chiral, fractionally charged exotics, chiral spectra with a G U T  gauge group SU (5 ) 

or S0 (10), non-chiral spectra (no exotics and no families), spectra with N  families 

and massless SU (5 ) vector bosons and vector-like fractionally charged exotics, and 

the same without massless fractionally charged exotics. For comparison, we include
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some results based on the data of [39, 40, 41]? A ll lines refer to Gepner models, except 

the one labelled “free fermions” . The results on free fermions are based on a special 

class that can be analysed with simple current in a way analogous to Gepner models, 

as explained in [39]. It  does not represent the entire class of free fermionic models. 

For other work on this kind of construction, including three family models, see [76, 82] 

and references therein.
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Type Chiral Exotics GUT Non-chiral N > 0 fam. No frac.
Standard* 37.4% 32.7% 20.5 % 9.3% 0
Standard, perm. 29.7% 33.4 % 27.9 % 8.9% 0
Free fermionic 1.5% 2.9% 94.4% 1.1% 0.072%
Lifted 28.3% 18.7% 51.9% 1.1% 0.00051%
Lifted, perm. 26.8% 8.9% 62.7 % 1.6% 0.00078%
(B-L) Type-A 21.3% 28.0% 50.4 % 0.3% 0.00017%
(B-L)Type-A, perm. 22.8% 8.1 % 69.1 % 0.03% 0
(B-L)Type-B 38.5% 8.7% 52.1% 0.6% 0
(B-L)Type-B, perm. 27.6% 7.3 % 65.0 % 0.1% 0

Table 6.2.: Relative frequency of various types of spectra. An asterisk indicates that exceptional 
minimal model M IPF’s are included.

In table (6.3) we specify the absolute number of distinct M IP F ’s (more precisely, 

distinct spectra, based on the criteria spelled out in [39, 40, 41]) with non-chirally- 

exotic spectra. The column marked “Total” specifies the total number of distinct 

spectra without chiral exotics, the third column lists the number of distinct 3-family 

spectra and the last column the number of distinct N-family spectra, in both cases 

regardless of gauge group and without modding out mirror symmetry.

6.6.4. Family number

In  this subsection we would like to say something about the distributions of the 

number of families emerging from the spectra of permuted Gepner models. The 

common features of all the different cases is that an even number of families is always
6We thank the authors for making their raw data available to us.
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6. P erm uta tion  orbifolds o f hetero tic  Gepner m odels

Type Total 3-family N  family, N > 0
Standard* 927.100 1.220 369.089
Standard, perm. 245.821 0 64.085
Free fermionic 504.312 0 19.655
Lifted 3.177.493 85.864 537.581
Lifted, perm. 601.452 4.702 54.926
(B-L) Type-A 445.978 24.203 155.425
(B-L) Type-A, perm. 155.784 778 6.758
(B-L) Type-B 206949 0 55917
(B-L) Type-B, perm. 156.309 0 6.861

Table 6.3.: Total numbers of distinct spectra.

more favourable than an odd one and these distributions decrease exponentially when 

the number of families increases.

Figure 6.1 shows the distribution of the number of families for permutation orbifolds 

of standard Gepner Models. A ll family numbers are even, as is the case for 

unpermuted Gepner models (we did not include exceptional M IP F ’s, which provides 

the only way to get three families in standard Gepner models). The greatest common 

denominator A  of the number of families for a given tensor combination displays a 

similar behavior as observed in [39]. Two classes can be distinguished. Either A  = 6 

(or in a few cases a multiple of 6), or A  = 2 (sometimes 4), but there are no M IP F ’s 

with a number of families that is a multiple of three. In  other words, the set of family 

numbers occurring in these two classes have no overlap whatsoever. It follows that 

in the second class there are no spectra with zero families. An interesting example 

is (3, (6, 6), 18). It  has no spectra with chiral exotics, all spectra are chiral and have 

4, 8, 16, 20, 28, 32, 40 or 56 families, of types S0(10), Pati-Salam, S U (5) x U (1) 

or SM , Q = 1/2. If  we compare this with the unpermuted Gepner model we find 

some striking differences. In  that case the same group types occur, but now there 

are spectra with chiral exotics, and the family quantization is in units of 2, not 4. In 

[39] an intriguing observation was made regarding the occurrence of these two classes. 

The second class was found to occur if all values k  of the factors in the tensor product 

are divisible by 3. This observation also holds for permutation orbifolds, if one uses 

the values of kj of the unpermuted theory.

In figure 6.2 we show the family distribution for lifted Gepner models. As expected,
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this distribution looks a lot more favourable for three family models. The number 

three appears with more or less the same order of magnitude as two or four. However, 

there are some clear peaks at even family numbers, which were not visible in the 

analogous distribution for unpermuted Gepner models presented in [40]. For this 

reason three families are still suppressed by a factor of 3 to 4 with respect to 2 or 4 

families.

B-L lifts give similar results to those presented in [41]. Figure 6.3 contains the 

distribution of the number of families for permutation orbifolds of B-L lifted (lift A ) 

Gepner models. Figure 6.4 contains the same, but for the lift B . Here, odd numbers 

are completely absent. Note that certain group types (namely those without a “B  — L ” 

type U (1) factor) cannot occur in chiral spectra in these models, and that in the type 

that do occur the U (1) is replaced by a non-abelian group.

6.7. Conclusions

In this chapter we have considered Z 2 permutation orbifolds of heterotic Gepner 

models. This should be viewed as an application of the previous chapter 5 where Z 2 

permutations were studied for N  = 2 minimal models, which are the building blocks 

in Gepner construction.

Our main conclusion is that these new building blocks work as they should. They 

can be used on completely equal footing with all other available ones, which are the 

N  = 2 minimal models and some free-fermionic building blocks. We have checked 

the combination with minimal models and found full agreement with previous results 

on permutation orbifolds whenever they were available. The comparison did bring 

a few surprises, especially the fact that we were able to get new spectra for single 

permutations, where the old method of [43] gave nothing new.

We were able to go far beyond the old approach by finding many more (2, 2) 

models, as well as new (0, 2) models with S0(10) breaking. We combined all this 

with heterotic weight lifting and B-L lifting. The main conclusion is that in most 

respects all observations concerning family number and fractional charges made for 

minimal models continue to hold in this new class. Also in this case weight lifting

6.7. Conclusions
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greatly enhances the set of three family models in comparison to neighboring numbers. 

Although this appears to give some entirely new models (Hodge number pairs that 

were not seen before), we found additional evidence for the observation of [43] that 

many of these models look like additional rational points in existing moduli spaces.

6. P erm uta tion  orbifolds o f hetero tic  Gepner m odels
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6.7. Conclusions
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Figure 6.1.: Distribution of the number of families for permutation orbifolds of standard Gepner Models.
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6. P erm uta tion  orbifolds o f hetero tic  Gepner m odels
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Figure 6.2.: Distribution of the number of families for permutation orbifolds of lifted Gepner Models.
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Figure 6.3.: Distribution of the number of families for permutation orbifolds of B-L lifted (lift A) Gepner
Models.
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7. Conclusion

B u t  break , m y  h e a r t , 
f o r  I  m u s t  ho ld  m y  tongue .

( W .  S h a k es p e a re , H a m le t )

In  this thesis we have considered topics in two-dimensional conformal field theory 

that have relevance in string theory, in particular concerning the phenomenological 

purposes of describing the low-energy four-dimensional physics as we know it.

This work consists mainly of two parts. The first part deals with mathematical 

aspects of 2d C F T ’s. Although technical, the results obtained here have general 

validity and are applicable to many contexts. In  details, we start from C F T ’s which 

admit permutation symmetries that can be modded out. This happens for example 

when a C FT  is built as a tensor product of smaller C F T ’s with some identical factors. 

Then, we look at all possible extensions and provide the full S  matrix of the full 

resulting C FT . Here the word extension is not just a mere undefined mechanism that 

could in principle be performed in several arbitrary ways, but is instead a very well 

defined and powerful procedure that allows us to generate many new C F T ’s out of a 

single existing one. The crucial ingredient is the existence of particular fields, known 

as simple currents, in the original C FT : the more simple currents there are, the more 

new theories can be generated. Simple current extensions exhibit the full power of 

C F T ’s.

A ll the quantities, in particular characters and modular matrices, of the extended 

theories can be derived in terms of analogous quantities of the original theory. 

However this is not straightforward at all when simple currents leave some fields, 

known as fixed points, unchanged under fusion rules. When this is the case, one has 

to go through a non-trivial formalism which eventually leads to the determination of 

the desired quantities. This problem is known as the fixed point resolution. In  the first
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part of this work we have showed how to accomplish this goal in the case of extensions 

of permutation orbifolds, at least when two factors are identical. This means that we 

have solved the problem for permutations of two factors, or equivalently for the Z 2 

orbifold. Generalizations to any number of factors are much more complicated and a 

full formalism including fixed point resolution is not available at present. The main 

results of this work were obtained in chapter 4, where in particular the fixed point 

resolution matrices for the Z 2 orbifold were given (see formula (4.3)) in full generality, 

for any C FT  A  and simple current J . They are expressed in terms of the weight h j 

of the simple current and the modular S  and T  matrices of the original A . Formula 

(4.3) also includes the results of chapters 2-3 as particular cases.

The second part deals with the physical implications of the mathematical methods. 

Eventually one is interested in computing particle spectra, with maybe N  = 1 space

time supersymmetry in four dimensions. As it is known, in order to have N  = 1 

supersymmetry in space-time, four-dimensional string theories must have an internal 

sector with N  = 2 world-sheet supersymmetry. This is normally achieved by taking 

tensor products of N  = 2 minimal models and adding some extra constraints. It 

can happen that this product shows an explicit permutation symmetry: this is the 

case when some of the factors are identical. Modding out this symmetry is equivalent 

to replacing the block of identical factors by its permutation orbifold. Also in these 

physical applications we have considered again the Z 2 orbifold.

The first thing we have done is to look at permutations of N  = 2 minimal 

models and their possible extensions. In  particular, although the N  = 2 factors 

are by definition supersymmetric, their tensor product is not, since all the fields in a 

supersymmetric theory should have a well-defined periodicity. In  order to make the 

tensor product supersymmetric one has to extend it by a particular simple current. 

Sim ilar considerations apply to the Z 2 orbifold: it is not supersymmetric, but a 

particular simple current extension is enough to make it so. Moreover, a third 

different simple current extension allows us to recover both the standard tensor 

product of N  = 2 minimal models from their standard permutation orbifold and 

the supersymmetric tensor product from their supersymmetric permutation orbifold.

7. Conclusion
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These facts are illustrated by the box diagrams in section 5.4. Many surprises show up 

here, in particular concerning the existence of exceptional simple currents. These were 

a priori not expected to be there: they have a completely different origin from standard 

simple currents and arise as a consequence of the extension procedure. Sometimes 

they also admit fixed points th a t must be resolved.

Because of their tensor product structure, these C FT ’s have in general a very large 

number of simple currents, th a t in tu rn  can be used to generate a huge amount 

of new theories. In this spirit, we have constructed thousands of theories with 

associated particle spectra and studied relevant properties, such as the number of 

families, fractional charges and gauge groups. One can also modify the construction 

in several ways, for example by introducing suitable lifts of one of the factors in the 

tensor product. This in general improves the results about the family number, but 

leaving undesired fractional charges in the m atter content.
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A. Facts on ( 0 , T F )-fusions

To con ce ited  m e n , all o th e r  m e n  are a d m ire rs . 
(A . de S a in t-E x u p é r y , T h e  L it tle  P rin ce )

A .1. T w isted -fie ld s o rb its  o f th e  ( 0 ,1 )-cu rren t

In this appendix we compute the fusion rules of (0,TF}. Before doing tha t however 

we need to prove, as an intermediate result, th a t in any permutation orbifold the 

simple current (0,1) (anti-symmetric representation of the identity) always couples a 

twisted field to its own (un)excited partner, i.e.

where the sum runs over all the fields K  in the orbifold. By Verlinde’s formula [8]:

(A.1)

To prove this, let us compute the fusion coefficients:

(A.2)

N
(0,1)(p,Î)

K

+

S ,_  S S  \
+
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Now use the orbifold S matrix (4.2): the first line automatically vanishes, since S BHS 

vanishes when one entry is a twisted field and the other one is off-diagonal. The other 

two lines give

A . Facts on {0 ,T p)-fusions

The two contributions both vanish if K  is of diagonal type or of off-diagonal type, as 

one can easily verify by using (4.2). On the other hand, if K  is of twisted type, we 

find a non-vanishing answer tha t can be written as

as well as the other way around, being the current (0,1) of order two.

A .2. Fusion rules o f (0, Tp }

In this section we would like to show tha t the fusion coefficients of (0, TF } with itself, 

before and after the (Tf , ^)-extension, do not depend on the sign choice for the 

coefficients A and C  appearing in the S J ansatz (4.3). In particular, the intrinsic 

ambiguity related to the freedom of ordering twisted fields (i.e. which one we label by 

X =  0 and which one by x  =  1) should not make any difference in the calculation of 

the fusion rules. The calculation is straightforward and relatively short before making 

the (Tf , ^ -extension, since it involves only the BHS S matrix: we will describe it in 

detail.

However, after taking the (Tf , ^)-extension, the full extended S matrix must be 

used. This means tha t the BHS S m atrix appears together with the S (Tf matrix; 

moreover, fixed point resolution implies tha t the fixed points of (Tf , ^ ) are split, 

hence there will be twice their number, while non-fixed points form orbits and only 

half of them  will be independent. The calculation in this case is lengthy and more

(A.3)

Here we have used unitarity of the S and P  matrices. In other words,

(0,1) • (p, 0) =  (p, 1), (A.4)
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involved, so we will only point out where the sign ambiguities mentioned above could 

(but will not) play a role.

A .2. Fusion rules o f  (0, T p )

A.2.1. Before (TF , ^-extension

The quantity tha t we want to compute is

K
N (0,Tf )<0,Tf ;

K
(0 ,t f ) • (0 ,TF ) =  £  n (0,Tf )(0,Tf )K (K ) , (A.5)

where the sum runs over all the fields K  of the perm utation orbifold. The quantity 

N(o t f ){o t f >K is given by Verlinde’s formula [8]

Ar K S <0’Tf >NS(0,Tf >NS tNK
n (0’Tf ),0’Tf > =  £ ---------- SiOOTN-----------■ (A'6)

Let us start with the case tha t K  is a diagonal field, K  =  (k ,x), and use the BHS 

expression for the orbifold S matrix:

N (kx) =  (S0mSTf ’” +  S0nSTF ,m)2 • (SmfcSnfc) ,
N <0’Tf ><0’Tf > =  ^  SomSo„ +m<n

, (S0jSTf,i)2 • ( 2 Sik ) , 0
+  2 ^ 2 - ^  ( 2 S2 ) + 0 ■

0=0 i ( 2 0i )

The zero in the second line comes from the twisted contribution, since from the BHS

formula S, . ——— =  0. The sum over 6 gives a factor of 2 in the diagonal contribution.(mn)(i—
In the first sum we can use

£  =  2 £  +  £  ■ ( a .7)
m,n m<n m=n

The sum ^ m=n will cancel the diagonal contribution. Eventually we are left only 

with three terms coming from expanding the square in the sum over m and n. The
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two sums are now independent and factorize:

N (k,x) =  1  S* S S"fcSTf ,n ,
N <0,Tf )<0,Tf ) =  2 Z_  ̂SmkS°m ^  S rS0nm n

1 C* C SmfcSTf ,mo /  v Snk S0n /  v ^ “r
2 n m Som

+  £  sm fcSom £  s n fcSon =
m n

=  ¿fc,0NTFTf k +  ^k,TF =

=  ¿k,0 +  ¿k,TF , (A.8)

where we have used the fact tha t Tf  has order two, i.e. NTj?Tj?k =  ¿k,o. Note that 

the answer does not depend on x.

We can now repeat the same steps in the case tha t K  is off-diagonal, K  =  (k2, k2) 

(with k2 < k2). We get:

N (0,Tf ){0,Tf )  ̂ , ) K ^0,ki • 0̂,k2 = 0 , (A.9)

since k2 =  k2.

Similarly, for K  twisted, K  =  (k,x):

N (0,Tf ><0,Tf ) ——) = 0 +  0 +  0 =  0 , (A.10)

where the first and third contributions vanish because S — =  0 in the BHS S(mn)0 —
matrix, while the second one vanishes because 0=o e*n0 =  0.

Putting everything together we have the following fusion rules for (0, Tf  ) with itself 

before the (Tf , ")-extension:

(0,Tf ) • (0,T f ) =  (0,0) +  (0, 1) +  (Tf , 0) +  (Tf , 1) ■ (A.11)

A.2.2. After (Tf , ")-extension

After the extension by (Tf , " ) ,  the off-diagonal field (0, Tf ) becomes a simple current. 

Moreover, since it is fixed by (Tf , " ) ,  as well as (0, " ) ,  it gets split and originates two 

simple currents, (0,Tf )a with a  =  0, 1.

A . Facts on {0 ,T p)-fusions
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In order to compute the fusion rules between (0,TF}a and (0,TF }^, we need to 

know the full S  m atrix of the extension. It is given by [17]

S aab? =  Const • (So5 +  ( - 1 ) “+^S (J F’̂ ). (A.12)

Here, Sab is the BHS S matrix and S'0bF ’̂ ) is the fixed-point resolution matrix S J 

corresponding to the current J  =  (TF , 0). The overall constant is a group-theoretical 

factor such that

{
2 if both a & b are fixed points
1 if either a or b (not both) is fixed point (A.13)

2 if neither a & b are fixed points

As mentioned in chapter 5, S ^ ’̂ ) in the untwisted sector vanishes, because TF does 

not have fixed points.

We want to compute:

(0, T f }a • (0, T f V  =  E  N (0,TfMO’T f>£ (Q) , (A.14)

A .2. Fusion rules o f  (0, T p )

'’Tf )q{0’Tf >£
Q

where

N(0’Tf >a(0’TF>„Q =  E  S<0’TF)aNS?<0’TF>*N S N  . (A.15)' > ' )P n  s (0’0)N

Consider Q to be diagonal, Q =  (q, x). Diagonal fields are never fixed points of 

(Tf , 0), hence if the S (Tf,^ ) has at least one diagonal entry it vanishes. Then we 

have:
S S St (q,x)S (0’Tf>a N s (0’T f)pNs  nr 

~  S (0’0)N

t Q

N(0’Tf )a(0’TF >„ (q’x) =  E  <0’TF ) a N S 0 ^F  N N =  (A.16)

S S St (q,x)S (0’Tf>a{mn)S{0’TF)&{mn>S (mn> +

(mn> 'S(0’0)(m„>

S S St (q,x)+  E  S (0’Tf>a (p,0)S (O’Tf>ff (p,0)S (p,0) +

(p,0) iS(o,o)(P’0)

S S St (q’x)
^  <0’TF >a(P’0)Y <0’TF >0 (P’0)Y (p0}Y

7=0 (P>)Y ‘S(O’O)(P’0)y
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Let us stress a few points here. First, the sum over (m, n} is symbolic: we must 

consider both the situations when (m, n} is a fixed point of (TF , 0) (in which case 

it will carry an extra label (m ,n}Y, with 7  =  0 or 1) and when it is just an orbit 

representative (in which case we should not include its partner (TF • m, TF • n} in the 

sum in order to avoid double counting).

Diagonal fields are always orbit representatives, while twisted fields are always fixed 

points. In principle, the S (Tf,^ ) m atrix can appear in the sums over (m, n} and over 

(p, ^), but in practice it only appear in the latter, since it vanishes for untwisted- 

untwisted entries. So the possible ambiguity might play a role only in the last line. 

Hence let us have a closer look there. For off-diagonal-twisted entries, the BHS S 

matrix is identically zero, so we can replace S  with S (Tf’̂ ), up to  the overall constant. 

Using the ansatz (4.3), the contribution to the fusion rules from the last line is then

2 (_ 1 )a+7ASop • 2 (-1 )^ +YASop • C* 1 e-inxSpq

A . Facts on (0 ,T p )-fu s io n s

2
_ _ _ _ _  fe)
(p, fe) f .p. of (T f , " )  

1 , 2 C 
2 A2 c

1 c *
2 A2 —  ( —1)“+^ £  SopSpq ■

_ _ _ _ _  (fe ^ )
(p ,^) f.p. of (Tf ,0 )

The sum over the twisted fixed points (p, of (Tf , 0) contains the 0  dependence. 

W hat is relevant for our discussion here is the prefactor: there is no ambiguity related 

to different choices for the coefficients A and C, since changing A ^  —A and/or 

C  -> — C would not alter the result.

The full and exact calculation of the fusion rules after the (Tf  , 0)-extension is too 

lengthy to be repeated and we will not do it here. In particular, the cases when 

Q  is off-diagonal or twisted are not very relevant, since then the fusion coefficients 

vanish identically, as one can check numerically. We simply state the outcome of the 

complete calculation:
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• For the (TF , 0)-extension:

(0, T f }a ^(0, T f }a =  (0,1) a  =  0, 1

(0 ,T f}a • (0, T f }p =  (0, 0) a  =  £ ; (A.17)

hence (0,TF }a is of order four, being (0,1) • (0,1) =  (0, 0), so it cannot be a 

supersymmetry current.

• For the (TF , 1)-extension:

(0, Tf }a • (0, Tf }a =  (0, 0) a  =  0, 1

(0, Tf }a -(0 ,T f },a =  (0,1) a  =  £ ; (A.18)

hence (0, TF }a is of order two, as a supersymmetry current should be.

Note tha t in both cases only a particular diagonal field contributes to the fusion rules, 

namely the identity, as one could have expected because of the order two of TF .

A .2. Fusion rules o f  (0, T p )
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B. M IP F ’s and tables

B u t  the  co n ce ited  m a n  d id  n o t  hear h im . 
C o n ceited  people n e v e r  hea r a n y th in g  but p ra ise .

(A . de S a in t-E x u p é r y , T h e  L it tle  P rin ce )

B .1. S im ple c u rre n t invarian ts

Consider a simple current J  or order N , i.e. J N =  1. Define the m onodrom y param eter  

r  as
r (N  — 1)

h j  =  mod Z . (B.1)
J 2N  V ’

Also, define the m onodrom y charge Q J ($) of $  w.r.t. J  as

Q j ($) =  h j  +  h$ — h j^  mod Z . (B.2)

The monodromy charge takes values t / N , with t  G Z. The current J  organizes fields 

into orbits ($, J $ , . . . ,  J d$), where d  (not necessarily equal to N ) is a divisor of N . 

On each orbit the monodromy charge is

t rn
Q j ( J n$ ) =  mod Z . (B.3)

If a simple current J  exists in a (rational) CFT, and if it satisfies the condition 

tha t N  times its conformal weight is an integer,1 then it is known how to associate 

a modular invariant partition function to it. Suppose tha t the current J  has integer 

spin and order N . Then a MIPF is given by

Z f )  =  E  (t)M fci (■J ( t ) . (B .4)
fc, l

^This is sometimes called the “effective center condition” and eliminates for example the odd level simple currents 
of Ai, which have order two, but quarter-integer spins.
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N
MfcK J )  =  ^  <*($*, J p$ 0  • ^ ( Q j ($ fc) +  Q j ($ ,)) (B.5)

p=1

where ^1(x) =  1 for x =  0 mod Z and (j is defined on J  -orbits as

Q J ( J " ^ )  =  ^ ^  mod Z . (B.6)

Morally speaking, Q is half the monodromy charge. Formula (B.5) defines a modular 

invariant partition function, since it commutes with the S and T  modular matrices, as 

shown in [27]. The set of all the simple currents forms an abelian group G under fusion 

multiplication. It is always a product of cyclic factors generated by a (conventionally 

chosen) complete subset of independent simple currents.

The foregoing associates a modular invariant partition function with a single simple 

current. One can construct even more of them by multiplying the matrices M . The 

most general simple current MIPF associated with a given subgroup of G can be 

obtained as follows [39, 42]. Choose a subgroup of G denoted H, such that each 

element satisfies the effective center condition N h J G Z. Its generators are simple 

currents J s, s =  1 , . . . ,  k  for some k. They have relative monodromies Q Js (J t ) =  R st. 

Take any matrix X  tha t satisfies the equation

X  +  X T =  R . (B.7)

The matrix X  (called the to rsion  m atrix) determines the multiplicities M j  according 

to

M j (H, X ) =  nr. of solutions K  to  the conditions : (B.8)

• j  =  K i, K  G H.

• Qm  ( i ) +  X (M , K ) =  0 mod 1 for all M  G H  .

Here X (K , J ) is defined in terms of the generating current J s as

X (K , J ) =  ^  n sm tX s i , (B.9)
s,t

B. M IP F ’s and tables

O n e  w a y  o f  e x p r e s s in g  ( J ) is  [42, 4 4 ] :
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B .l .  S im ple current invariants

with K  =  ( J 1)ni . . .  ( J k )nk and J  =  ( J 1)mi . . .  ( J k)mk.

B.1.1. A small theorem

In this subsection we prove the following theorem.

T h e o re m  B .1 .1 . The fo llow ing  s ta tem en ts  are true.

i) I f  a sim ple curren t J  is local w .r.t. any o ther curren t K , i.e. Q k ( J ) =  0 (m od Z ) ,  

then  M j j ( K ) =  0.

ii)  For a sim ple curren t J ,  which is local w .r.t. any o ther curren t K , M jo (K ) =  

M o j(K ). In  particular, i f  M jo (K ) =  0, then  also M o j(K ) =  0.

Proof. For the proof we use the statem ent (B.8).

Let us start with i) and consider M J J (K ,X ). The first condition in (B.8) has only 

one solution, namely K  =  0. The second condition reads

QM ( J ) +  X  (M, 0) =  0 VM (B.10)

and is always true, because the two terms vanish separately. This proves that 

M j j  (K  ) = 0 .

Point ii) goes as follows. Consider M0Jc(K, X ). There is again only one solution 

to the first condition, namely K  =  J c. The second condition reads

Qm (0) +  X ( M ,J c) = 0  . (B.11)

The first term  vanishes by hypothesis, while the second is either zero (in which case 

M0Jc (K, X ) =  0) or non-zero (in which case M 0Jc (K, X ) =  0).

Similarly, look at M J0(K, X ). There is again only one solution to the first condition, 

namely K  =  J c. The second condition reads

Qm (0) +  X ( M ,J c) = 0  . (B.12)

The first term  vanishes by hypothesis, while the second is either zero or non-zero. 

In any case, the same condition holds for both M0Jc(K, X ) and M J0(K, X ). This 

implies tha t M J0(K, X ) =  M0Jc(K, X ) (note tha t these matrix elements can only be
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0 or 1). By closure of the algebra, and because J c is always a power of J , we may 

replace J c by J  in this relation. □

B. M IP F ’s and tables

Consider now the permutation orbifold. This theorem applies in particular to the 

un-orbifold current J  =  (0,1) when coupled to any other current K , which is either 

a standard (diagonal) or an exceptional (off-diagonal) one. In fact, using the same 

procedure as we did in chapter 2 to compute the simple current and fixed point 

structure of the perm utation orbifold, one can show that

n  (p'>q'> =  n  p' N q' +  N q' N p'N (J»(p,q> =  N Jp N Jq +  N Jp N Jq ,

N(J,^)(ijX)(i' ’X' ) =  2 N j / ( J  +  ein(^+x -x ' )) .

Hence, for the current (J, 0) =  (0,1), we have

N (p'>q'> =  xp' xq' i xq'xp' =  xp' xq'N (0,1)(p,q> =  °p °q +  °p °q =  °p °q ,

namely (p, q) must be fixed by (0,1) in order for this to be non-zero (recall tha t p < q 

and p ' < q'), and
N (i'.x ') =  1 rf' (« ' _  ein(x- x '))
N (0,i)(i,x) =  2 °i (°i e )

which is non-zero only if i =  i ' and x  =  x ' (recall tha t we can think of x  as defined

mod 2). Equivalently, in the fusion language:

(0,1) • (p, q) =  (p, q) , (0,1) • (i, x) =  (i, X +  1) . (B.13)

This implies tha t (0, 1) has zero monodromy charge w.r.t. any other current, since

Q (p,q> ((0, 1^  h {p,q> +  h(0,1) h {p,q> 0 mod Z ,

Q (i,x)((0, =  h(i,x) +  h(0,1) — h(i,X+1) = 0 mod Z .

Now, the un-orbifold current (0,1) has order two, hence J c =  J  and M j0(K, X ) =  

M0J(K, X ). This also implies tha t its existence on left-moving sector is guaranteed 

by its existence on the right-moving sector (and vice-versa).
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Here we present four tables summarizing the results on the number of families for 

the standard, heterotic weight lifted, B-L lifted (lift A) and B-L lifted (lift B) cases. 

These tables contain information about spectra in which the un-orbifold current is not 

allowed in the chiral algebra. This means th a t these are genuine permutation orbifold 

spectra. By inspection, we do indeed find th a t these spectra are usually different than 

those obtained in the unpermuted case. In the columns we specify respectively the 

tensor combination, the greatest common divisor A of the number of families for all 

M IPF’s of the tensor product and the maximal net number of families encountered. 

In the next column we indicate which of the seven S0(10) subgroups occur, with the 

labelling

• 0: SM, Q = 1/6

• 1: SM, Q =1/3

• 2: SM, Q =1/2

• 3: LR, Q =1/6

• 4: S U (5) x U (1)

• 5: LR, Q =1/3

• 6: Pati-Salam.

Since S0(10) can always occur there is no need to indicate it. In [39] a simple criterion 

was derived to determine which subgroups can occur in each standard Gepner model. 

The allowed subgroups for permutation orbifolds of Gepner models are a subset of 

these. In some cases, such as ((5, 5), 5,12), some of the subgroups cannot be realized. 

In the column labelled “Exotics” we indicate if, for a given tensor product, spectra 

with chiral exotics occur. Note tha t in most cases the absence of such spectra is a 

consequence of the fact tha t only GUT gauge groups occur. In the next columns 

we list the number of distinct three family and in column 6 the number of distinct

B .l .  S im ple current invariants

B.1.2. Summary of results
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N -family (N  > 0) spectra. In these tables only cases with A > 0 are shown. If a 

permutation orbifold seems to be missing, than either it is a permutation for k > 10, 

or it is a purely odd tensor product for which all permutations are trivial, or it has 

only non-chiral spectra and hence A =  0 and there are no chiral exotics. In column 1 

of the second table, (A, A) denotes the permutation orbifold of CFT A, a hat indicates 

the lifted CFT, and a tilde indicates the second lift of a CFT. It turns out that in the 

only permutation orbifold with two distinct lifts of the same factor, (5, (5, 5), 12) and 

(5, (5, 5), 12), A =  0 in both cases, which is why a tilde never occurs in the tables. 

The last column indicates which percentage of the spectra has no mirror. Since mirror 

symmetry is exact in the full set, this gives an indication of how close our random 

scan is to a full enumeration.

B. M IP F ’s and tables

Table B.1.: Results for standard Gepner models
model A Max. Groups Exotics 3 family N  fam. Missing

(1 ,1 ,1 ,1 ,1 , (4,4)) 6 84 3,5,6 Yes 0 342 6.14%
(1,1 ,1 ,1 , (10,10)) 6 48 3,5,6 Yes 0 124 4.84%
(1,1,1,1, (2 , 2), 4) 6 48 3,5,6 Yes 0 75 6.67%
(1,1,1, (4,4), 4) 6 84 3,5,6 Yes 0 2717 22.89%
(1,1, 2, 2, (4, 4)) 6 24 3,5,6 Yes 0 106 0.00%

(1,1, (2, 2), 2,10) 6 48 3,5,6 Yes 0 662 7.70%
(1,1, 4, (10,10)) 6 72 3,5,6 Yes 0 493 7.10%
(1,1, (6, 6), 10) 12 24 3,5,6 Yes 0 63 0.00%
(1,1, (2, 2), 4, 4) 6 48 3,5,6 Yes 0 226 6.19%

(1,1, (2, 2), (4, 4)) 12 24 3,5,6 Yes 0 73 6.85%
(1, 2, 2, (10,10)) 6 60 3,5,6 Yes 0 191 4.71%
(1, (2, 2), 2, 2, 4) 12 60 3,5,6 Yes 0 363 3.31%
(1, 2,4, (6, 6)) 12 48 3,5,6 Yes 0 57 3.51%

(1, 2, (4,4), 10) 6 60 3,5,6 Yes 0 1605 14.08%
(1, 2, (3, 3), 58) 6 24 0,1,2,3,4,5,6 Yes 0 102 0.00%
(1, (4,4), 4,4) 6 84 3,5,6 Yes 0 5605 6.57%

(1, (2, 2), 10,10) 6 84 3,5,6 Yes 0 989 6.47%
(1, (3, 3), 4, 8) 6 36 0,1,2,3,4,5,6 Yes 0 37 0.00%

(1, (2, 2), 6, 22) 6 60 3,5,6 Yes 0 985 3.25%
(1, (2, 2), 7,16) 12 48 3,5,6 Yes 0 41 0.00%

(1, (2, 2), (2, 2), 4) 12 60 3,5,6 Yes 0 165 0.61%
((2, 2), 2, 2, 2, 2) 6 90 6 Yes 0 1849 5.19%
(2, 2, 2, (6, 6)) 12 72 6 Yes 0 245 0.00%

Continued on next page
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Table B.1 -  c o n t in u e d  f ro m  p r e v io u s  p a g e
model A Max. Groups Exotics 3 family N  fam. Missing

(2, 2, (4, 4), 4) 6 48 3,5,6 Yes 0 250 0.00%
(2, 2, (3, 3), 8) 6 36 2,4,6 Yes 0 55 0.00%

(2, 2, (2, 2), (2, 2)) 6 90 6 Yes 0 1580 1.58%
(2, (10,10), 10) 6 102 3,5,6 Yes 0 328 0.00%

(2, (8, 8), 18) 6 72 2,4,6 Yes 0 316 0.00%
((2, 2), 2, 3,18) 6 60 2,4,6 Yes 0 780 4.36%

(2, (7, 7), 34) 12 48 3,5,6 Yes 0 9 0.00%
((2, 2), 2,4,10) 6 66 3,5,6 Yes 0 1550 3.81%
((2, 2), 2, 6, 6) 6 84 6 Yes 0 1735 3.80%

(2, (2, 2), (6, 6)) 12 72 S0(10) only No 0 219 0.00%
(3, (6, 6), 18) 4 56 2,4,6 No 0 232 0.00%
(3, (5, 5), 68) 24 24 4 No 0 18 0.00%
(3, (8, 8), 8) 6 96 2,4,6 Yes 0 1909 1.41%

(3, (3, 3), (3, 3)) 2 56 4 No 0 126 0.00%
(4,4, (10,10)) 6 90 5 Yes 0 188 0.00%
(4, (6, 6), 10) 12 48 5 Yes 0 70 0.00%
(4, (5, 5), 19) 12 24 5 Yes 0 6 0.00%
(4, (7, 7), 7) 12 60 5 Yes 0 11 0.00%

((5, 5), 5,12) 6 78 S0(10) only No 0 44 0.00%
((6, 6), 6, 6) 2 104 6 Yes 0 1230 0.00%

((4,4), 10,10) 6 96 3,5,6 Yes 0 693 0.72%
((3, 3), 10, 58) 6 60 0,1,2,3,4,5,6 Yes 0 97 0.00%
((3, 3), 12, 33) 2 20 4 No 0 30 0.00%
((3, 3), 13, 28) 6 84 1,4,5 Yes 0 587 0.00%
((3, 3), 18,18) 2 116 2,4,6 Yes 0 681 0.00%
((2, 2), 3, 3, 8) 6 48 2,4,6 Yes 0 332 3.61%
((2, 2), 4, 4,4) 6 54 5 Yes 0 75 0.00%
((4, 4), 5,40) 6 48 3,5,6 Yes 0 98 0.00%
((4, 4), 6, 22) 6 60 3,5,6 Yes 0 440 0.00%
((4, 4), 7,16) 6 72 3,5,6 Yes 0 271 0.00%
((4, 4), 8,13) 6 48 0,1,2,3,4,5,6 Yes 0 180 0.00%

((3, 3), 9,108) 2 28 4 No 0 30 0.00%
((6, 6), (6, 6)) 4 80 S0(10) only No 0 152 0.00%

((2, 2), (4, 4), 4) 6 48 5 Yes 0 103 0.00%
((2, 2), (3, 3), 8) 6 36 4 No 0 37 0.00%

((2, 2), (2, 2), (2, 2)) 6 90 S0(10) only No 0 224 1.34%
(1, (2, 2), (10,10)) 12 60 3,5,6 Yes 0 155 0.00%
((4,4), (10,10)) 6 72 5 Yes 0 142 0.00%
(1, (4,4), (4,4)) 6 84 3,5,6 Yes 0 848 0.83%
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B. M IP F ’s and tables

T a b le  B .2 .:  R e s u l t s  fo r  l i f t e d  G e p n e r  m o d e ls
model A Max. Groups Exotics 3 family N  fam. Missing

(1 ,1 ,1 ,1 ,1 , (4,4)) 3 33 3,5,6 Yes 45 205 16.10%
(Î, 1,1,1, (10,10)) 3 24 3,5,6 Yes 0 39 2.56%
(Î, 1,1,1, (2, 2), 4) 3 18 3,5,6 Yes 16 50 14.00%
(1,1,1, (4, 4), 4) 3 33 3,5,6 Yes 549 1016 28.54%
(1,1, 2, 2, (4, 4)) 3 12 3,5,6 Yes 17 60 0.00%

(1,1, (2, 2), 2,10) 3 24 3,5,6 Yes 123 283 7.42%
(1,1, 4, (10,10)) 3 24 3,5,6 Yes 33 206 7.77%
(1,1, (6, 6), 10) 6 6 3,5,6 Yes 0 15 0.00%

(1,1, (2, 2), 4, 4) 3 24 3,5,6 Yes 34 237 4.64%
(1,1, (2, 2), (4, 4)) 6 12 3,5,6 Yes 0 38 0.00%
(1, 2, 2, (10,10)) 12 24 3,5,6 Yes 0 18 0.00%
(1, (2, 2), 2, 2, 4) 6 24 3,5,6 Yes 0 71 7.04%
(1, 2, (3, 3), 58) 1 8 0,1,2,3,4,5,6 Yes 2 40 0.00%

(1, (2, 2), 10,10) 6 24 3,5,6 Yes 0 105 5.71%
(1, (3, 3), 4, 8) 2 8 0,1,2,3,4,5,6 Yes 0 23 0.00%

(1, (2, 2), 6, 22) 3 24 3,5,6 Yes 58 281 5.69%
(1, (2, 2), 7,16) 6 12 3,5,6 Yes 0 13 0.00%

(Î , (2, 2), 2, 2, 2) 1 36 6 Yes 587 10481 6.91%
(Î , 2, 2, (6, 6)) 2 36 6 Yes 0 595 0.17%
(Î , 2, (3, 3), 8) 1 10 2,4,6 Yes 3 51 0.00%

(Î , 2, (2, 2), (2, 2)) 2 24 6 Yes 0 807 1.73%
(2, (10,10), 10) 4 8 3,5,6 Yes 0 24 0.00%

(2, (8, 8), 18) 1 12 2,4,6 Yes 6 85 0.00%
(2, (2, 2), 3,18) 1 24 2,4,6 Yes 26 225 4.00%
(2, (2, 2), 4,10) 2 24 3,5,6 Yes 0 89 3.37%
(2, (2, 2), 6, 6) 1 24 6 Yes 9 305 1.97%
(3, (6, 6), 18) 2 20 2,4,6 No 0 85 0.00%
(3, (5, 5), 68) 12 12 4 No 0 4 0.00%
(3, (8, 8), 8) 1 48 2,4,6 Yes 146 1709 0.06%

(3, (3, 3), (3, 3)) 1 28 4 No 11 80 0.00%
(4,4, (10,10)) 2 16 5 Yes 0 47 0.00%

(4, (7, 7), 7) 1 3 5 Yes 2 6 0.00%
(6, (6, 6), 6) 1 8 6 Yes 7 85 0.00%

((3, 3), 10, 58) 1 6 0,1,2,3,4,5,6 Yes 2 11 0.00%
((3, 3), 12, 33) 2 6 4 No 0 5 0.00%
((3 , 3), 13, 28) 1 30 1,4,5 Yes 29 170 0.00%

Continued on next page
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Table B.2 -  c o n t in u e d  f ro m  p r e v io u s  p a g e
model A Max. Groups Exotics 3 family N  fam. Missing

((2, 2), 3, 3, 8) 1 24 2,4,6 Yes 14 479 4.38%
((2, 2), 4 ,4,4) 2 24 5 Yes 0 111 0.90%
((4, 4), 6, 22) 8 8 3,5,6 Yes 0 5 0.00%
((4, 4), 8,13) 4 16 0,1,2,3,4,5,6 Yes 0 17 0.00%

((3, 3), 9,108) 2 6 4 No 0 6 0.00%
(4, (2, 2), (4,4)) 4 20 5 Yes 0 53 0.00%
((2, 2), (3, 3), 8) 2 6 4 No 0 11 0.00%
(1,1 ,1 ,4 , (4, 4)) 1 24 3,5,6 Yes 78 859 20.84%
(1 ,1 ,Î , 2, (4, 4)) 1 6 3,5,6 Yes 0 75 4.00%

(1,1 ,Î , (2, 2), 10) 1 24 3,5,6 Yes 20 323 8.05%
(1,1, 4, (10,10)) 2 16 3,5,6 Yes 0 191 4.71%
(1,1, (2, 2), 4, 4) 2 32 3,5,6 Yes 0 297 5.05%
(1,Î ,  2, (10,10)) 1 16 3,5,6 Yes 28 262 0.00%
(1, (2, 2), 2, 2 ,Î ) 4 32 3,5,6 Yes 0 118 8.47%

(1,Î , 4, (6, 6)) 2 24 3,5,6 Yes 0 77 0.00%
(1,Î , (4, 4), 10) 1 16 3,5,6 Yes 147 1160 8.71%
(1,Î , (3, 3), 58) 1 8 0,1,2,3,4,5,6 Yes 3 56 0.00%
(1,Î , (4, 4), 4) 1 24 3,5,6 Yes 425 3219 6.28%
(1, (3, 3 ),Î , 8) 2 10 0,1,2,3,4,5,6 Yes 0 27 0.00%

(1, (2, 2 ),Î , 22) 1 48 3,5,6 Yes 46 645 3.41%
(2, 2 ,Î , (4,4)) 4 20 3,5,6 Yes 0 93 0.00%
(2, 2, (3, 3 ),Î ) 2 8 2,4,6 Yes 0 29 0.00%

((2, 2), 2 ,Î , 18) 2 30 2,4,6 Yes 0 380 2.63%
((2, 2), 2 ,Î , 10) 4 24 3,5,6 Yes 0 107 0.93%
((2, 2), 2, 6, 6) 2 48 6 Yes 0 477 2.73%

(3, 8, (8, 8)) 1 32 2,4,6 Yes 24 480 0.00%
((5, 5), 5,12) 1 6 S0(10) only No 2 8 0.00%
((2, 2), 3, 3 ,Î ) 1 18 2,4,6 Yes 6 116 0.00%
((4, 4), 8,13) 2 14 0,1,2,3,4,5,6 Yes 0 20 0.00%

(1,Î , (2, 2), 2, 4) 2 24 3,5,6 Yes 0 1092 4.85%
(1, 2, (3, 3), 58) 2 12 0,1,2,3,4,5,6 Yes 0 11 0.00%
(1, (3, 3), 4 ,Î ) 2 6 0,1,2,3,4,5,6 Yes 0 10 0.00%

185



B. M IP F ’s and tables

T a b le  B .3 .:  R e s u l t s  fo r  B -L  l i f t e d  ( l if t  A )  G e p n e r  m o d e ls
model A Max. Groups Exotics 3 family N  fam. Missing

(1, 2, (3, 3), 58) 1 6 0,1,2,3,4,5,6 Yes 4 33 0.00%
(1, (3, 3), 4, 8) 2 6 0,1,2,3,4,5,6 Yes 0 12 0.00%
(2, 2, (3, 3), 8) 2 8 2,4,6 Yes 0 25 0.00%
(2, (8, 8), 18) 1 12 2,4,6 Yes 14 90 0.00%

((2, 2), 2, 3,18) 2 18 2,4,6 Yes 0 364 3.85%
(3, (6, 6), 18) 2 14 2,4,6 No 0 84 0.00%
(3, (5, 5), 68) 6 6 4 No 0 12 0.00%
(3, (8, 8), 8) 1 30 2,4,6 Yes 238 1799 0.11%

(3, (3, 3), (3, 3)) 1 18 4 No 15 84 0.00%
((3, 3), 10, 58) 1 10 0,1,2,3,4,5,6 Yes 1 19 0.00%
((3, 3), 12, 33) 2 4 4 No 0 6 0.00%
((3, 3), 13, 28) 1 9 1,4,5 Yes 57 346 0.00%
((3, 3), 18,18) 1 14 2,4,6 Yes 30 200 0.00%
((2, 2), 3, 3, 8) 1 12 2,4,6 Yes 30 246 0.00%
((4, 4), 8,13) 2 8 0,1,2,3,4,5,6 Yes 0 49 0.00%

((3, 3), 9,108) 2 4 4 No 0 6 0.00%
((2, 2), (3, 3), 8) 2 6 4 No 0 12 0.00%

Table B.4.: Results for B-L lifted (lift B) Gepner models
model A Max. Groups Exotics 3 family N  fam. Missing

(1, 2, (3, 3), 58) 2 10 0,1,2,3,4,5,6 Yes 0 32 0.00%
(1, (3, 3), 4, 8) 2 10 0,1,2,3,4,5,6 Yes 0 10 0.00%
(2, 2, (3, 3), 8) 2 14 2,4,6 Yes 0 34 0.00%
(2, (8, 8), 18) 2 16 2,4,6 Yes 0 108 0.00%

((2, 2), 2, 3,18) 2 36 2,4,6 Yes 0 476 3.99%
(3, (6, 6), 18) 4 28 2,4,6 No 0 82 0.00%
(3, (5, 5), 68) 8 16 4 No 0 12 0.00%
(3, (8, 8), 8) 2 56 2,4,6 Yes 0 1781 0.00%

(3, (3, 3), (3, 3)) 2 32 4 No 0 81 0.00%
((3, 3), 10, 58) 2 18 0,1,2,3,4,5,6 Yes 0 18 0.00%
((3, 3), 12, 33) 2 8 4 No 0 6 0.00%
((3, 3), 13, 28) 2 18 1,4,5 Yes 0 322 0.00%
((3, 3), 18,18) 2 26 2,4,6 Yes 0 191 0.00%
((2, 2), 3, 3, 8) 2 24 2,4,6 Yes 0 226 0.00%
((4, 4), 8,13) 4 16 0,1,2,3,4,5,6 Yes 0 45 0.00%

((3, 3), 9,108) 2 10 4 No 0 6 0.00%
((2, 2), (3, 3), 8) 2 10 4 No 0 10 0.00%
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Summary

H ad  the  ro u tin e  o f o u r  life  at th is  
place been k n o w n  to  the  w o rld , 

w e sh o u ld  have been regarded as m a d m e n  
- a lth o u g h , p e rh a p s , as m a d m e n  o f  a h a rm le ss  n a tu re .

(E . A . P o e , T h e  M u rd e rs  In  T h e  R u e  M orgue)

Q u a n tu m  Field T h eo ry  an d  th e  S ta n d a rd  M odel

The general lesson in Physics to  be learned from the XX century is tha t the world 

at extremely large distances as well as at extremely short distances is not described 

anymore by the Galilean physics tha t we are used to since the XVI-XVII centuries. 

In these regimes, in fact, other effects become relevant, either of geometrical or of 

probabilistic origin.

Large distance physics is captured by Einstein’s theory of gravity. W ithin this 

framework, the gravitational constant is still G, but a few unifications occur: space 

and time are unified into a single entity, the space-time; mass and energy become 

equivalent; the speed of light c becomes a universal constant, with the same value in 

any reference frame. Einstein’s theory also tells us how m atter propagates in curved 

space-times and at the same time how space-time is curved by m atter. It is also used 

to study the motion of planets, various kinds of black holes and the universe itself.

Short distance physics on the other hand is governed by quantum  mechanics. 

The unity of action is ft and another unification occurs: particles are described as 

waves. Consequently, strange and classically-impossible phenomena can happen. For 

example, particles cannot be localized anymore at a given position, instead they only 

have a probability of being around tha t position and are in principle spread out 

through large domains with some probability distribution; similarly, one cannot give 

them  a specific momentum, since also momenta follow probability distributions; they
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can tunnel through walls and move from one side to the other side of the barrier 

with some probability; they can also interfere and produce a fringe pattern  for their 

probability densities. A generic state is then characterized by a superposition of pure 

states each coming with a given probability. Determinism is lost and replaced by 

probabilism, and classical results are obtained as expectation values.

When very many (ideally, infinitely many) particles start interacting at microscopic 

scales, quantum mechanics is upgraded to  Quantum Field Theory. In this framework, 

fields are the fundamental objects and particles are excitations of fields. For example, 

in this way, one thinks of photons as excitations of the electro-magnetic field. 

Interactions are described perturbatively in terms of higher order corrections, that 

can also be visualized pictorially via Feynman diagrams, where forces are carried by 

intermediate bosonic particles, and it is possible to compute scattering amplitudes and 

probabilities for particular processes involving in principle any number of particles at 

a given order in perturbation theory.

When computing amplitudes, consistent cancellations of infinities appear order by 

order, yielding a finite answer for the event probabilities. However, this is completely 

true if and only if gravity is not included in the picture. Hence, quantum theories of 

electro-magnetism, weak and strong interactions all make perfect sense. In accelerator 

physics this is just what is needed. When gravity is taken into account, the infinities 

do not cancel anymore, instead divergent amplitudes appear and new counter-terms 

must be added at any order of the perturbation expansion. Hence a quantum  theory 

of gravity based purely on quantum  field theory does not make sense.

Luckily most of the times gravity can indeed be reasonably neglected. In fact, at 

microscopic scales its strength is so small compared to the other forces tha t it can 

be safely ignored. However, this is still quite unsatisfactory for several reasons. First 

of all, as a m atter of principle, two theories, namely Einstein’s gravity and quantum 

mechanics, which work perfectly well in their own regimes, respectively large and short 

distances, seem to be incompatible with each other. Secondly, there exist instances 

where in order to fully understand physics, both theories together must be used. 

One example is a black hole, where gravity is strong and the m atter is localized in
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a very small region around the singularity; another example is the universe in its 

first moments, when it was an extremely dense plasma of m atter and radiation with 

dominant quantum effects.

We will come back to this problem later, but for the moment let us ignore gravity 

and discuss the current theory of particle physics tested everyday in accelerators 

(energy ~  TeV). It is known as the Standard Model of particle physics (figure2 B.1).
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Figure B.1.: Standard Model of particle physics.

Fields arise as representations of particular Lie (gauge) groups. The Standard 

Model (gauge) group is S U (3) x S U (2) x U (1), where the S U (3) factor refers to the 

strong interactions and the S U (2) x U (1) to the unified electro-weak interactions. 

M atter fields are fermions (quarks and leptons), while the force-mediating fields are 

(gauge) bosons (gluons, photon, Z 0, W ±). Quarks interact strongly, leptons weakly, 

but both of them  appear in three generations (families). Still missing in the picture
^Figure taken from the website http : //en.wikipedia.org/wiki/Standard_Model.
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is an additional particle, the Higgs boson, which is needed to explain the origin of 

mass for all the other elementary particles.

The Standard Model is a very good theory in describing elementary particle physics. 

However, it still presents some obvious problem. First of all, gravity is not included. 

Secondly, all the couplings in the theory are free and can in principle have any value. 

Hence, one would like to have a quantum theory tha t at the same time can describe 

gravity and justify the value of the Standard Model coupling constants, maybe as 

vacuum expectation value of more fundamental fields. A candidate for such a theory 

exists and it is String Theory.

S trin g  T heory  an d  C onform al Field T heory

The idea behind the theory is very simple: elementary particles are not point-like, 

instead they are small oscillating one-dimensional strings which look zero-dimensional 

when observed from a distance. The theory was born initially as an attem pt to 

describe phenomena such as flux tubes in strong interactions. It was then abandoned, 

due to the appearance in the spectrum of a spin-two particle which had been never 

observed and the simultaneous advent of the S U (3) gauge theory (QCD) which 

was very successful since the very beginning in describing strong interactions. The 

renaissance of the theory arrived in the eighties, after reinterpreting the spin-two 

particle as the graviton. In this way String Theory became a theory of gravity. In the 

nineties, more ingredients were added to the framework, in particular branes, higher 

dimensional surfaces inside a ten-dimensional space-time.

Strings come in two types: open and closed. Open strings are characterized by 

the fact tha t they have endpoints. However, the endpoints are not free to move in 

space, but must be attached to branes. The reason for this is charge conservation: 

strings carry charges and the charge cannot simply disappear when it reaches the 

endpoints. The quantization of a string implies the existence of a set of creation and 

annihilation operators tha t are used to construct the Hilbert space of states out of 

the vacuum. Each excited state corresponds to  a particle with given mass, charge 

and spin. Generically, among these states, one finds the gauge bosons. Closed strings
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have no endpoints and are free to move inside the whole ten-dimensional space. The 

quantization implies the existence of two sets of creation and annihilation operators, 

since both left-movers and right-movers can propagate through the loop. Generically, 

among the exited states, one finds the spin-two particle tha t is interpreted as the 

graviton.

A string moving in space-time sweeps out a two-dimensional surface, the world- 

sheet. The field theory defined on the world-sheet is conformal, namely admits 

additional symmetries. Conformal Field Theories in two dimensions are very special, 

since the symmetry group is infinite dimensional and makes it possible to exactly 

solve them. The main ingredients of a Conformal Field Theory are the conformal 

fields, called primary fields. Theories with a finite number of primaries are called 

rational. By acting with the symmetry generators on the primaries, one builds the 

whole Hilbert space corresponding to a given representation. All the information 

about a given Hilbert space is summarized into character functions, which are then 

used to  write down modular invariant partition functions and hence generate particle 

spectra. A partition function tells us how left-movers are coupled to right-movers.

Conformal Field Theories are used in String Theory in many places. The use that 

we have focused on here is the construction of four-dimensional string theories and 

corresponding particle spectra. The standard way of constructing such theories is 

to start with a four-dimensional theory and add an internal sector tha t takes care 

of the extra dimensions. The internal sector must have very special properties, that 

are guaranteed by carefully choosing the building blocks and by imposing specific 

projections.

The full power of a Conformal Field Theory shows itself in the production of a 

huge numbers of partition functions. Each of them  correspond to a particle spectrum 

with features tha t vary from one to another: generically, they will all have different 

predictions about the number of families and gauge groups, and furthermore they will 

admit fractionally-charged particles. The abundance of spectra makes it impossible to 

pick the right one: there is no reason and no selection principle why we would have to 

live in a Standard-Model-like world as we observe it. In particular, from the study of
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the family-number distributions th a t one gets with these methods it appears tha t the 

number three is more disfavored than other small numbers, for example two or four. 

One could then ask why do we not observe two or four families, instead of three; or 

maybe our tools are still too primitive to produce three-family models in abundance. 

Probably the landscape of possible four-dimensional vacua of String Theory is too 

big, it will never be fully explored and we will never know; or maybe in the long term 

it will be possible to  find all the solutions and get a complete understanding of the 

m atter, but when, and if, this will happen, we will not be around to taste the end.
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Samenvatting

A n d  I  f in d  i t  k in d  o f  fu n n y ,  I  f in d  i t  k in d  o f sad, 
the  dream s in  w h ich  I ’m  d y in g  are th e  best I ’ve  eve r  had.

(R . O rzabal, M a d  W o rld .)

S n aarth e o rie  o n tm o e t de  e c h te  w ereld

Onze huidige kennis van de wereld op zijn fundamentele niveau dateert van de jaren 

zeventig toen het S tandaard  M odel van  de deeltjesfysica  werd gebouwd, met behulp 

van quantum  velden theorie, als een fusie tussen de twee belangrijkste ontdekkingen 

van de vorige eeuw, namelijk kwantummechanica en de relativiteitstheorie. Het 

Standaard Model is de best werkende theorie van de deeltjesfysica die we op dit 

moment hebben. Niet alleen omvat het elementaire deeltjes, zoals elektronen, en de 

fundamentele krachten, zoals de elektro-magnetische kracht, in een uiterst elegante 

wiskundige formulering, maar het voldoet ook aan de experimenten op een ongelooflijk 

hoog niveau van precisie. Daarom heeft het een zeer sterke voorspellende kracht.

Het Standaard Model beschrijft echter n ie t de zwaartekracht. De pogingen van de 

afgelopen jaren om het Standaard Model uit te breiden door ook de zwaartekracht 

op te nemen zijn allemaal jammerlijk mislukt. Een compleet nieuwe en meer 

fundamentele theorie is nodig, die zow el het Standaard Model als limiet moet bevatten 

en  het moet veralgemeniseren om de zwaartekracht op te nemen. Een kandidaat 

bestaat en heet Snaartheorie.

Snaartheorie werd in de jaren zeventig geboren. Het idee erachter is dat elementaire 

deeltjes niet puntvormig zijn, maar snaarvormig: het zijn heel kleine filamenten, die 

in de ruimte bewegen en trillen. Tijdens het verplaatsen bestrijken ze een twee

dimensionaal oppervlak in ruimte en tijd, het zogenaamde wereldoppervlak.

In haar eerste formulering bleek Snaartheorie te veel problemen te hebben, waarbij
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de lastigste van allemaal de voorspelling van extra dimensies is: precies zes meer dan 

we in het dagelijks leven observeren. De uitdaging was vervolgens uit te leggen waarom 

we een wereld met vier dimensies (drie ruimtelijke dimensies plus tijd) ervaren, terwijl 

de theorie tien voorspelt. Het antwoord op deze vraag staat bekend als com pactificatie.

Door middel van een oud mechanisme uit het begin van de vorige eeuw kon dit 

probleem worden aangepakt: de reden waarom we de zes extra dimensies niet zien is 

omdat ze zo “klein” zijn dat het onmogelijk is om ze met versnellers waar te nemen. 

Hun wiskundige structuur is onderhevig aan verschillende technische beperkingen en 

is in het algemeen zeer gecompliceerd. Er zijn er veel mogelijke keuzes, en elk van 

hen geeft een totaal andere vier-dimensionale fysica.

Naast alle mogelijke constructies waarin de zes dimensies een direct meetkundige 

interpretatie hebben, zijn er andere wiskundige manieren om een hoger-dimensionale 

theorie to t vier dimensies te compactificeren. Helaas staan deze methodes niet 

altijd een geometrische interpretatie toe als compactificatieruimte en zijn er zeer 

abstracte concepten mee gemoeid. In ons onderzoek gebruiken we juist deze concepten 

die nauwelijks kunnen worden gevisualiseerd, maar zorgen voor zeer krachtige 

gereedschappen om vier-dimensionale modellen van de echte wereld vanuit een tien- 

dimensionale Snaartheorie te bouwen.

De bouw van deze vier-dimensionale modellen gaat als volgt. Men begint met een 

vier-dimensionale Snaartheorie en, omwille van de consistentie, voegt men er een 

in te rn e  sector met specifieke eigenschappen aan toe. In de interne sector zal rekening 

moeten worden gehouden met de vrijheidsgraden uit de zes extra dimensies die men 

in het begin verwaarloosd heeft.

De interne theorie is verantwoordelijk voor de fysica die we in vier dimensies 

observeren. Ondanks haar ingewikkeldheid is zij onder goede controle, met name 

dankzij haar symmetrieën. Manipulaties van de bouwstenen staan ons toe om een 

groot aantal fenomenologisch aantrekkelijke modellen te produceren. Sommigen van 

hen hebben eigenschappen die heel dicht bij het Standaard Model van de deeltjesfysica 

liggen. Met ons onderzoek bouwen we dergelijke modellen. De meerderheid van hen 

is echter heel verschillend van wat we ervaren: er worden extra deeltjes verwacht
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en nieuwe symmetrieën van de natuur voorspeld. Dit roept onmiddellijk een andere 

vraag op: als Snaartheorie correct is, waarom leven we in deze bijzondere wereld met 

zijn eigenaardige deeltjes en symmetrieën, terwijl er vele andere werelden mogelijk 

zijn in dit landschap? Het doel van ons onderzoek is ook om deze vraag te proberen 

te beantwoorden. Het woord landschap hier wordt vaak gebruikt in de literatuur om 

naar een dergelijk groot aantal mogelijkheden te verwijzen.

Het hoofdthema van dit proefschrift is het besturen van permutatiesymmetrieën van 

de bouwstenen in de interne theorie te bestuderen. Dit project heeft een wiskundig en 

een natuurkundig aspect. De wiskundige kant omvat de definitie van het probleem en 

de oplossing voor zeer technische (en niet-triviale) kwesties. We konden met succes 

een cruciale formule ontdekken die geldig is in veel belangrijke situaties. Deze wees 

de weg naar de meest generieke oplossing. Vanuit fysisch oogpunt hebben we de 

bovengenoemde formule toegepast op de bouwstenen van de interne theorie. Daarna 

hebben wij deze resultaten toegepast op snaarfenomenologie om vier-dimensionale 

modellen te bouwen.

Snaartheorie is een spannend gebied en het is nu het juiste moment voor 

conceptuele doorbraken, die nodig zijn om het hele gebied vooruit te brengen en 

misschien voorspellingen te geven. Precies nu zal de LHC in Geneve, de grootste 

deeltjesversneller ooit, de eerste resultaten produceren en inzicht geven in fysica 

voorbij het Standaard Model. We zullen misschien binnenkort erachter komen of 

nieuwe symmetrieën, deeltjes en extra dimensies werkelijk bestaan.
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