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2009 Homer W. Smith Award: Minerals in Motion:
From New Ion Transporters to New Concepts

René J.M. Bindels

Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands

Calcium (Ca2�) and magnesium (Mg2�)
minerals are essential for many physio-
logic processes.1 Ca2� plays a pathologic
role in osteoporosis, nephrolithiasis, vas-
cular calcification, nephrocalcinosis, and
chronic kidney disease, and disturbances
in Mg2� contribute to muscle cramps,
paraesthesia, convulsions, arrhythmias,
and cardiac arrest. Their overall mineral
balance is regulated by the concerted
actions of kidneys, intestine, and bone.2

The kidneys determine the final excre-
tion of these cations and fulfills, and
therefore, an important step in homeo-
static control. This role was recognized
by Homer Smith, who wrote “…Little is
known concerning Ca2� excretion ex-
cept that the total excretion can be in-
creased or decreased by a variety of cir-
cumstances. Much that has been said
about Ca2� applies to Mg2�. The mech-
anism by which renal excretion of Mg2�

is controlled is unknown…”3

In the last decade, considerable

progress has been made in elucidating
the molecular mechanisms underlying
the reabsorption of these minerals by the
kidney. Instrumental in this respect are
studies of rare monogenic diseases re-
lated to defective renal Mg2� handling
and genetically modified mice with de-
leted Ca2� transport proteins.4,5 These
studies identified new transport proteins
and have led to the development of new
concepts for the renal handling of min-
erals.

IMPORTANCE OF THE DISTAL
PART OF THE NEPHRON

Active reabsorption of Mg2� and Ca2�

takes place in the distal part of the
nephron only. More precisely, this part
of the nephron is comprised of the distal
convoluted tubule (DCT) and the con-
necting tubule (CNT) leading to the col-
lecting duct.6 The former can be further

subdivided into early (DCT1) and late
(DCT2) segments. Based on micropunc-
ture experiments and the conspicuous lo-
calization of transport proteins, active
Mg2� transport is confined to the DCT1
and DCT2 segments, whereas active Ca2�

reabsorption mainly occurs along the
DCT2 and CNT segments (Figure 1).1

Thus, DCT2 functions as a transition area
between Mg2� and Ca2� reabsorption.

Mg2� REABSORPTION IN DCT1
AND DCT2 SEGMENTS

The DCT is famous for the presence of
the thiazide-sensitive NaCl co-trans-
porter (NCC) along the luminal mem-
brane, which is energized by a Na� gra-
dient generated by the basolateral
Na�-K�-ATPase.7,8 Active transcellu-
lar Mg2� transport along the DCT is
envisaged by the following sequential
steps (Figure 2).9 Driven by a favorable
membrane potential, Mg2� enters the
DCT cell through an apical epithelial
Mg2� channel. The chemical driving
force for Mg2� is limited because the
extra- and intracellular Mg2� concen-
trations are in the same millimolar
range. Importantly, Mg2� entry into
the cells seems to be the rate-limiting
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ABSTRACT
The kidneys play a critical role in maintaining the systemic balance of Mg2� and
Ca2� cations. The reabsorptive capacity of these divalent cations adapt to changes
in their plasma concentrations. Active reabsorption of Mg2� and Ca2� takes place
in the distal convoluted and connecting tubules, respectively, and is initiated by
cellular transport through selective transient receptor potential (TRP) channels
located along the luminal membrane and modulated by hormonal stimuli. Recent
characterization of underlying molecular defects in renal Mg2� handling illuminate
complex transport processes in the kidney and their contribution to the overall
mineral balance. Likewise, studies of Ca2� transport proteins in null mice disclose
molecular mechanisms maintaining normal plasma Ca2� levels and the hypercalci-
uria-related adaptations important in the prevention of kidney stones. Current
knowledge of Mg2� and Ca2� transport is summarized here as comprehensive
cellular models of the distal nephron.
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step and thus the site of regulation.
Subsequently, Mg2� diffuses through
the cytosol to be extruded actively

against an electrochemical gradient
across the basolateral membrane. For
the Mg2� extrusion, unidentified can-

didates could be a Na�-dependent ex-
change mechanism or an ATP-depen-
dent Mg2� pump. Some of the salient
features are described below.

Transient Receptor Potential
Melastatin, Subtype 6
The apical epithelial Mg2� channel is
known as the transient receptor potential
melastatin, subtype 6 (TRPM6). TRPM6
is a cation channel composed of six
transmembrane-spanning domains and
a conserved pore-forming region that as-
sembles in a tetrameric configuration.
Studies of families with autosomal reces-
sive hypomagnesemia with secondary
hypocalcemia identified mutations in
TRPM6.10,11 TRPM6 is one of eight
members of the identified TRPM cation
channel subfamily and is composed of
2022 amino acids encoded by a large
gene containing 39 exons.10 –12 TRPM6
displays a restricted expression pattern
and is predominantly present in reab-
sorbing epithelia.10,11,13 In the kidney,
TRPM6 localizes along the apical mem-
brane of the DCT.13 This channel is a
unique bifunctional protein consisting of
an Mg2� permeable cation channel with
protein kinase activity and is occasionally
referred to as chanzymes.14 Electrophysi-
ologic characterization of TRPM6 shows
that TRPM6-transfected human embry-
onic kidney 293 cells exhibit outwardly rec-
tifying currents. Mg2� itself has a profound
effect on the activity of TRPM6. For in-
stance, intracellular Mg2� levels tightly
regulate TRPM6 activity with an apparent
Ki of 0.5 mM that is comparable to physi-
ologic intracellular Mg2� concentra-
tions.13 Furthermore, extracellular Mg2�

also affects TRPM6, because Mg2� restric-
tion significantly up-regulates levels of
mRNA encoding renal TRPM6.15

Kv1.1
The voltage-gated K� channel, Kv1.1, is
a new protein thought to regulate Mg2�

influx through TRPM6. Recently, there
has been evidence that a mutation in
KCNA1 encoding Kv1.1 causes autoso-
mal dominant hypomagnesemia.16 The
phenotype detectable from infancy con-
sists of recurrent muscle cramps, tetany,
tremor, muscle weakness, cerebellar at-

DCT1 DCT2 CNT

Transepithelial Mg2+

transport
Transepithelial Ca2+

transport

Figure 1. Overview of Mg2� and Ca2� handling in the distal nephron. The active
reabsorption of the minerals Mg2� and Ca2� takes place in the distal part of the
nephron only. More precisely, this part of the nephron is comprised of the DCT and the
CNT to the collecting duct. The former can be further subdivided into an early (DCT1)
and late (DCT2) portion. Active Mg2� transport is confined to the DCT1 and DCT2,
whereas active Ca2� reabsorption mainly occurs in the DCT2 and CNT segments. Thus,
DCT2 functions as a transition area between Mg2� and Ca2� reabsorption.
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Figure 2. Mechanism of active Mg2� reabsorption in DCT1 and DCT2 segments.
Apical membrane TRPM6 channels are located in the apical membrane, which facili-
tates transport of Mg2� from the tubular fluid into the cell. Mg2� reabsorption is
primarily driven by the luminal membrane potential established by the voltage-gated
K� channel, Kv1.1. The Na�-K�-ATPase, situated in the basolateral membrane, pro-
vides a sodium (Na�) gradient that is used by the thiazide-sensitive NCC to facilitate
transport of Na� from the tubular fluid into the cytoplasm and a K� gradient to
generate local membrane potential. K� is supplied to the Na�-K�-ATPase through
recycling through Kir4.1. The �-subunit of the Na�-K�-ATPase regulates the function
of Na� pump. Transcription factor HNF1B (hepatocyte nuclear factor 1 homeobox B)
regulates the expression of the �-subunit of the Na�-K�-ATPase. EGF is the first
magnesiotropic hormone to regulate active Mg2� reabsorption through the TRPM6
channel.
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rophy, and myokymia. The K� channel
co-localizes with TRPM6 along the lumi-
nal membrane of the DCT. The identi-
fied mutation results in a nonfunctional
channel with a dominant-negative effect
on wild-type channel function.17 Thus,
Kv1.1 is a new luminal K� channel in the
DCT that establishes favorable luminal
membrane potential controlling TRPM6-
mediated Mg2� reabsorption.

�-Subunit of the Na�-K�-ATPase
We also identified FXYD2 as being in-
volved in hypomagnesemia.18 FXYD2
encodes the �-subunit of the basolateral
Na�-K�-ATPase and is mutated in pa-
tients with autosomal dominant renal
hypomagnesemia associated with hy-
pocalciuria. Currently, the exact molec-
ular mechanism by which the �-subunit
controls Mg2� handling in the DCT re-
mains elusive. It is postulated this trans-
membrane protein facilitates the basolat-
eral extrusion of Mg2� in renal epithelial
cells.19 Others suggest the �-subunit regu-
lates additional transport mechanisms that
localize to the basolateral membrane such
as the Na�-K�-ATPase, Kir4.1/5.1, or the
unidentified basolateral Mg2� extrusion
mechanism (Figure 2).1,5

Hepatocyte Nuclear Factor 1B
Further support for an active role of the
�-subunit in Mg2� reabsorption is sug-
gested by the observation that a tran-
scription factor, hepatocyte nuclear fac-
tor 1B (HNF1B), modulates the FXYD2
gene.20 Hypomagnesemia, hypermag-
nesuria, and hypocalciuria are observed
in one half of the HNF1B mutation car-
riers. Analyses of the FXYD2 promoter
region identify two highly conserved
HNF1B recognition sites. Future studies
should confirm the role of HNF1B in the
regulation of FXYD2 and possibly other
components of the molecular machinery
involved in renal Mg2� handling.

Kir4.1
Two independent studies recently de-
scribed a mutation within the KCNJ10
gene as the underlying cause of a hypomag-
nesemia syndrome.21,22 The first study de-
scribed two nonrelated consanguineous
families with a disorder characterized by

epilepsy, ataxia, sensorineurol deafness,
and tubulopathy (also referred to as
SeSAME), whereas the other study de-
scribed four kindreds with similar clinical
findings. The KCNJ10 gene encodes a K�

channel called Kir4.1, expressed in brain,
ear, and kidney, in keeping with the pheno-
type observed in these patients. The renal
phenotype of EAST syndrome (a syn-
drome characterized by epilepsy, ataxia,
sensorineural deafness, and tubulopathy)
is similar to the Gitelman’s syndrome phe-
notype and consists of polyuria, hypokale-
mic metabolic alkalosis, hypomagnesemia,
and hypocalciuria.22 In kidney, Kir4.1 is
expressed along the basolateral membrane
of DCT cells with the Na�-K�-ATPase.
Kir4.1 is thought to recycle K� into the in-
terstitium to allow a sufficient supply of K�

for optimal Na�-K-ATPase activity.

EGF

We identified EGF as the first magne-
siotropic hormone directly stimulating
TRPM6 activity.23 Genetic analyses
showed that a point mutation in the
pro-EGF gene causes a rare inherited
autosomal recessive form of renal hy-
pomagnesemia. EGF acts as an auto-
crine/paracrine magnesiotropic hor-
mone, specifically increasing TRPM6
activity by engagement of its receptor
along the basolateral membrane of
DCT cells. This activation relies on
both the Src family of tyrosine kinases
and the downstream effector, Rac1.
Activation of Rac1 increases the mobil-
ity of TRPM6, assessed by fluorescence
recovery after photobleaching, and a
constitutively active mutant of Rac1
mimics the stimulatory effect of EGF
on TRPM6 mobility and activity. Ulti-
mately, TRPM6 activation results from
increased cell surface abundance.24

These findings provide the first insight
into the molecular regulation of
TRPM6 by extracellular EGF. More-
over, it shows the molecular basis for
the hypomagnesemia after treatment with
cetuximab, an EGF receptor blocking anti-
body used in the treatment of colorectal
cancer, and indicates TRPM6 is a potential
pharmacologic target during cetuximab
therapy.23,25

COMPREHENSIVE MODEL OF
TRANSCELLULAR Mg2�

REABSORPTION ALONG THE DCT

The recent knowledge concerning the
molecular nature of Mg2� transporting
proteins offers for the first time a com-
prehensive cellular model for transepi-
thelial Mg2� reabsorption (Figure 2).
The epithelial Mg2� channel TRPM6 fa-
cilitates Mg2� entry from tubular fluid
through an energized local electrochem-
ical gradient. Importantly, the DCT cell
lacks a substantial chemical gradient for
Mg2�. The luminal membrane potential
in the DCT favoring luminal Mg2� in-
flux is approximately �70 mV and likely
established by the luminal Kv1.1. chan-
nel. The basolateral extrusion mecha-
nism for Mg2� remains elusive and is a
subject for further study. The Na�-K�-
ATPase in the basolateral membrane
generates opposing K� and Na� gradi-
ents. Importantly, Kir4.1 enables the ba-
solateral recirculation of K�, thereby
supplying sufficient K� during high
transport rates of the Na�-K�-ATPase;
the basolateral �-subunit in all likelihood
supports the Na� pump. Apparently,
these special features are necessary to en-
able the substantial transport of NaCl by
NCC and Mg2� by TRPM6 in the DCT
cell. Finally, EGF stimulates transcellular
transport of Mg2�. Activation of the ba-
solateral EGF receptor promotes the in-
sertion of TRPM6 channels into the lu-
minal membrane to stimulate this Mg2�

reabsorption. Thus, in the last two de-
cades, many Mg2� transport proteins
have been identified and characterized
by several research groups; the next step
will be to develop specific therapeutics to
treat the corresponding forms of hypo-
magnesemia.

Ca2� REABSORPTION IN DCT2
AND CNT SEGMENTS

In DCT2 and CNT segments, Ca2� reab-
sorption takes place against its chemical
gradient, indicating that the transport is
active.26 In addition to the ubiquitously
expressed Na�-K�-ATPase, the Na�/
Ca2� exchanger (NCX1) and the plasma
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membrane ATPase type 1b (PMCA1b)
are also found along the basolateral site
of the DCT2 and CNT segments.2 DCT2
shares similarities with the CNT seg-
ment, because both segments express the
transient receptor potential vanilloid
subtype 5 (TRPV5) channel and the
Ca2�-binding protein, calbindin-D28K.
Transepithelial transport of Ca2� is a
three-step procedure and is outlined in
more detail below (Figure 3).

Ca2� influx across the apical mem-
brane is mediated by TRPV5. Subse-
quently, the specialized intracellular car-
rier protein, calbindin-D28K, sequesters
Ca2� entering the cell, and this complex
diffuses toward the basolateral mem-
brane. Finally, transporter proteins, such
as NCX1 and PMCA1b, extrude Ca2�

from the epithelial cell back into the cir-
culation.2

Apical Entry of Ca2� by TRPV5
To identify the apical Ca2� influx chan-
nel involved in transcellular Ca2� reab-
sorption, we performed functional ex-
pression cloning using a cDNA library
from rabbit primary CNT and the corti-
cal collecting duct.27 Injection of total
mRNA from this isolation into Xenopus
laevis oocytes induces a 45Ca2� uptake
two to three times above background.
Subsequently, the entire cDNA library
was screened for 45Ca2� uptake, and a
single transcript was isolated that en-
codes for a novel epithelial Ca2� channel
called eCaC1 and later renamed TRPV5,
as a member of the TRP channel super-
family.27,28 This channel comprises in-
tracellular amino and carboxyl-terminal
tails flanking six transmembrane do-
mains and an additional hydrophobic
stretch between domains 5 and 6, pre-
dicted to be the pore-forming region.
Furthermore, the first extracellular loop
between transmembrane domains 1 and
2 contains an evolutionary conserved as-
paragine (N358) crucial for its complex-
glycosylation, and in turn, for regulating
channel activity.29 –31 The carboxyl and
amino-terminal tails contain several reg-
ulatory sites including protein kinase C
and A sites, which suggests an important
role for phosphorylation in the regula-
tion of channel activity. Moreover, in

cultured mammalian cells, as well as in
oocytes, TRPV5 assembles into ho-
motetramers to acquire an active confor-
mational state.29,32

The TRPV5-null (TRPV�/�) mouse
provides compelling evidence for the phys-
iologic function of this channel. Active
Ca2� reabsorption in DCT2 and CNT seg-
ments is severely impaired in these null an-
imals, because TRPV5�/� mice excrete
�10-fold more Ca2� than their wild-type
littermates, in line with a postulated gate-
keeper function for TRPV5 in active Ca2�

reabsorption.33 Electrophysiologic studies
showed constitutive activity of TRPV5 at
low intracellular Ca2� concentrations and
physiologic membrane potentials.34 The
current–voltage relationship of TRPV5
shows strong inward rectification.2,34 An-
other important functional feature is that
TRPV5 is the most Ca2�-selective member
of the TRP superfamily.34 The single chan-
nel conductance, Po, and the number of
channels at the plasma membrane deter-
mines cellular TRPV5 activity. This activity
is under the control of various factors like
hormones, intracellular Ca2�, and other
intracellular messengers.

Vitamin D
Ample evidence of a direct role for vita-
min D in the positive regulation of

TRPV5 comes from several animal stud-
ies, particularly those involving 25-hy-
droxyvitamin D3-1�-hydroxylase– and
vitamin D receptor–null mice.35,36 A di-
rect relationship between 1,25(OH)2D3-
induced expression of Ca2� transport
proteins and transcellular Ca2� trans-
port is known from studies of cultured
cells from DCT and CNT cells.37,38 To-
gether these studies suggest a consistent
1,25(OH)2D3 sensitivity of TRPV5 and the
calbindins, and, to a lesser extent, the baso-
lateral extrusion systems involving NCX1,
a Na�/Ca2�exchanger, and PMCA1b, a
plasma membrane Ca2�-ATPase.

Thiazide Diuretics
Thiazide diuretics, in contrast to loop di-
uretics, have the unique characteristic of
decreasing Na� reabsorption while in-
creasing Ca2� reabsorption. In addition,
mutations in the NCC gene encoding the
NaCl co-transporter cause Gitelman’s syn-
drome. Patients with Gitelman’s syn-
drome exhibit hypovolemia, hypokalemic
alkalosis, hypomagnesemia, and hypocal-
ciuria.39 Intriguingly, the molecular mech-
anisms responsible for the hypocalciuria
and hypomagnesemia with thiazide ad-
ministration or in Gitelman’s syndrome
remain elusive. Two hypotheses exist with
respect to the Ca2�-sparing effect of thia-

DCT2/CNT

Apical Basolateral

DCT2/CNT

PTH

PTHR

PMCA1b

NCX1

TRPV5
Ca2+

Ca2+

Ca2+

CaBP

ATP

ADP

1, 25(OH)2D3

Figure 3. Mechanism of active Ca2� reabsorption in DCT2 and CNT. A three-step
process facilitates active and transcellular Ca2� transport. The first step is entry of
luminal Ca2� at the apical side of the cell through the TRPV5 channel. Subsequently,
calbindin (CaBP) buffers Ca2�, and the Ca2� diffuses to the basolateral membrane. At
the basolateral membrane, Ca2� is extruded by PMCA1b and NCX1. This process is
controlled by calciotropic hormones including parathyroid hormone and 1,25(OH)2D3.
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zides.40,41 First, renal salt and water loss
caused by thiazide treatment results in
contraction of the extracellular volume
(ECV), which triggers a compensatory in-
crease of proximal Na� reabsorption. This
in turn enhances the electrochemical gra-
dient driving passive Ca2� transport in
proximal tubular segments.6,39,42 Second,
thiazide treatment stimulates Ca2� reab-
sorption in DCT, possibly through the
TRPV5 channel, that could explain the
Ca2�-sparing effect.40 We showed in rats
that hydrochlorothiazide-induced hy-
pocalciuria is accompanied by a significant
decrease in body weight compared with
controls, confirming ECV contraction.43,44

Because sodium depletion results in a sim-
ilar hypocalciuria, it is likely that the ECV
contraction by itself is responsible for the
thiazide-induced hypocalciuria. Further
evidence supporting this notion is the find-
ing that sodium repletion during thiazide
treatment, thereby preventing the ECV
contraction, normalizes the calciuresis. A
direct role for TRPV5 in the thiazide-in-
duced hypocalciuria seems unlikely, be-
cause thiazides also have a hypocalciuric ef-
fect in TRPV5�/� mice, and the overlap in
the expression of NCC and TRPV5 in the
distal part of the nephron is restricted to
DCT2.44 Taken together, enhanced proxi-
mal tubular Na� transport as a conse-
quence of ECV contraction stimulates
paracellular Ca2� transport and best ex-
plains the tubular mechanism for thiazide-
induced hypocalciuria.

Activation of the Ca2�-Sensing
Receptor Prevents Nephrolithiasis
TRPV5�/� mice display hypercalciuria
from impaired active Ca2� reabsorption
but also hyperphosphaturia, polyuria,
and increased urinary acidification.33

The latter two adaptations seem highly
beneficial because there are no renal cal-
cium precipitates. Polyuria also dimin-
ishes the risk of renal stone formation by
reducing urinary Ca2� concentration. In
mice, calciuresis linearly correlates with
urinary volume because an increase in
Ca2� excretion leads to an enhanced uri-
nary volume. The consistent polyuria in
hypercalciuric TRPV5�/� mice, noted by
a substantial decrease in urinary osmola-
lity, is caused by downregulation of renal

AQP2 water channels, possibly a result of
activating the Ca2�-sensing receptor
along the luminal membrane of the col-
lecting duct.45 Furthermore, gene abla-
tion of the collecting duct-specific B1
subunit of H�-ATPase in TRPV5�/�

mice abolishes enhanced urinary acidifi-
cation, which resulted in severe tubular
precipitations of Ca2�-phosphate in the
renal medulla.45 Thus, in TRPV5�/�

mice, activation of the renal Ca2�-sens-
ing receptor promotes H�-ATPase–me-
diated H� excretion and downregulation
of AQP2, leading to urinary acidification
and polyuria, respectively (Figure 4).

FUTURE PERSPECTIVES ON
RENAL Ca2� HANDLING

Ca2� reabsorption in the kidney, and
particularly in the distal DCT2 and
CNT segments, is crucial for the main-
tenance of the Ca2� balance. The iden-
tification and characterization of the

proteins mediating this active Ca2�

transport provides novel insight and
means to study molecular relation-
ships. In these segments, TRPV5 facil-
itates the gatekeeper function of Ca2�

entry, and therefore, a tight control of
its activity enables the organism to ad-
just Ca2� reabsorption according to
the demands of Ca2� load. The molec-
ular mechanism of Ca2� shuttling be-
tween calbindin-D28K on one site and
NCX1 and PMCA1b on the other site is
not clear. Another interesting and un-
addressed question is the regulation of
NCX1 and PMCA1b in DCT2 and CNT
cells. Whether there is a crosstalk be-
tween apical Ca2� entry and basolat-
eral Ca2� extrusion regulatory systems
is not known. The next step is to inves-
tigate how these Ca2� transport pro-
teins communicate with each other to
facilitate optimal and regulated Ca2�

reabsorption under conditions of dis-
turbed Ca2� homeostasis. Finally, the
role of TRPV5 in Ca2�-related disor-
ders needs further study.

Polyuria Acidification

Low
Ca2+

High
Ca2+

CaSR

H+

ATPase

AQP2

+ +

Figure 4. Molecular mechanism of Ca2�-induced polyuria and urinary acidification.
The Ca2�-sensing receptor (CaSR) is localized at the apical site of principal and
intercalated cells of the collecting duct. AQP2 proteins are responsible for water
reabsorption, whereas H�-ATPases pump H� into the tubular fluid. During hypercal-
ciuria, increased urinary Ca2� levels activate the CaSR. CaSR activation leads to AQP2
downregulation and polyuria. Furthermore, the CaSR triggers urinary acidification by
increasing the H�-ATPase activity. Both polyuria and increased urinary acidification
prevent the precipitation of renal Ca2�-phosphate.
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