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Abstract

The considerable uncertainty regarding cancer risks associated with inherited mutations of BRCA2 is due to unknown
factors. To investigate whether common genetic variants modify penetrance for BRCA2 mutation carriers, we undertook a
two-staged genome-wide association study in BRCA2 mutation carriers. In stage 1 using the Affymetrix 6.0 platform, 592,163
filtered SNPs genotyped were available on 899 young (,40 years) affected and 804 unaffected carriers of European
ancestry. Associations were evaluated using a survival-based score test adjusted for familial correlations and stratified by
country of the study and BRCA2*6174delT mutation status. The genomic inflation factor (l) was 1.011. The stage 1
association analysis revealed multiple variants associated with breast cancer risk: 3 SNPs had p-values,1025 and 39 SNPs
had p-values,1024. These variants included several previously associated with sporadic breast cancer risk and two novel
loci on chromosome 20 (rs311499) and chromosome 10 (rs16917302). The chromosome 10 locus was in ZNF365, which
contains another variant that has recently been associated with breast cancer in an independent study of unselected cases.
In stage 2, the top 85 loci from stage 1 were genotyped in 1,264 cases and 1,222 controls. Hazard ratios (HR) and 95%
confidence intervals (CI) for stage 1 and 2 were combined and estimated using a retrospective likelihood approach,
stratified by country of residence and the most common mutation, BRCA2*6174delT. The combined per allele HR of the
minor allele for the novel loci rs16917302 was 0.75 (95% CI 0.66–0.86, p~3:8|10{5) and for rs311499 was 0.72 (95% CI
0.61–0.85, p~6:6|10{5). FGFR2 rs2981575 had the strongest association with breast cancer risk (per allele HR = 1.28, 95%
CI 1.18–1.39, p~1:2|10{8). These results indicate that SNPs that modify BRCA2 penetrance identified by an agnostic
approach thus far are limited to variants that also modify risk of sporadic BRCA2 wild-type breast cancer.
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Introduction

After more than a decade of clinical testing for mutations of

BRCA1 and BRCA2, there remains considerable uncertainty

regarding cancer risks associated with inherited mutations of these

genes. This variable penetrance is most striking for BRCA2 [1–4],

and it affects medical management [5]. Women with the same

BRCA2 mutation may develop breast, ovarian or other cancers at

different ages or not at all [6]. In a segregation analysis of families

identified through breast cancer cases diagnosed before age 55, the

residual familial clustering after accounting for BRCA1 and BRCA2

mutations could be explained by a large number of low penetrance

genes with multiplicative effects on breast cancer risk [7,8]. A

candidate gene approach in BRCA2 mutation carriers led to the

discovery of loci that modify the penetrance of BRCA2 mutations,

such as RAD51 135 G.C [9] and perhaps CASP8 [10,11] and

IGFBP2 [12], if replicated. To investigate whether other common

single nucleotide polymorphisms (SNP), copy number variants

(CNV), or copy number polymorphisms (CNP) modify penetrance

for BRCA2 mutation carriers, we undertook a two-staged genome-

wide association study (GWAS) in BRCA2 mutation carriers from

the international Consortium for Investigators of Modifiers of

BRCA1/2 (CIMBA) and other international studies. We hypoth-

esized that an agnostic search for breast cancer loci in an enriched

population of BRCA2 mutation carriers, the first among this high

risk population, would provide greater power than a sporadic

population of equal number, and would yield associations specific

to BRCA2 carriers and/or the general population.

Results

Stage 1 and Stage 2 Genotyping
In stage 1, genotype data were available for 899 young (,40

years) affected and 804 older (.40 years) unaffected carriers of

European ancestry after quality control filtering and removal of

ethnic outliers (Figure S1). A total of 592,163 filtered SNPs

genotyped using the Affymetrix Genome-Wide Human SNP

Array 6.0 platform passed quality control assessment. In stage 1,

comparison of the observed and expected distributions (quantile-

quantile plot: Figure S2) showed little evidence for an inflation

of the test statistics (genomic inflation factor l= 1.01), there-

by excluding the possibility of significant hidden population

substructure, cryptic relatedness among subjects or differential

genotype calling between BRCA2 affected and BRCA2 unaffected

carriers. Multiple variants were found to be associated with breast

cancer risk (Figure S3): 3 SNPs had p,1025 and 39 SNPs had

p,1024. The most significant association (p~3:6|10{6) was

observed for FGFR2 rs2981582 (Table 1), a variant previously

shown to be associated with increased risk of BRCA2-related breast

cancer [13]. A positive association was also observed with

rs3803662 (Table 1), near TOX3, which has also been associated

with sporadic breast cancer risk [13].

Using the stage 1 data, we also performed a GSEA as

implemented in MAGENTA [14] to evaluate whether a

functionally-related set of genes relevant to BRCA2 function

(Table S1) was enriched for relative risk associations (see

Statistical Methods). The 59 genes selected are related to the

Fanconi anemia pathway [15] as well as other pathways reported

in the literature to regulate or interact with BRCA1/2 [16]. These

showed no enrichment of associations with the breast cancer risk

(p = 0.56). In addition, eight of 125 known cancer susceptibility

alleles identified by previous GWAS of other cancers [17] were

associated with BRCA2 modification in the current study, a

number not greater than expected (Kolmogorv-Smirnov p = 0.60)

by chance alone. Of the 113 most significantly associated SNPs

(p,1023) in our study, three showed significant association

(p,0.05) with BRCA1-associated breast cancer risk in a

complimentary GWAS [18].

In the combined stage 1 and stage 2 results, four independent

SNPs (pairwise r2
[0:80) were associated with increased risk of

breast cancer risk with p-values,1024 (Table 1). Previously

identified breast cancer susceptibility loci [13,19,20] had the most

significant associations among BRCA2 mutation carriers (FGFR2:

per allele p{value~1:2|10{8 and TOX3: per allele

p{value~4:9|10{5). Novel loci, rs16917302 on chromosome

10 and rs311499 on chromosome 20, had HRs in stage 2 that were

in the same direction as those observed for stage 1 (Figure 1,

Table 1), but were smaller in magnitude (HR = 0.67 (95%

CI:0.56–0.80) vs. 0.85 (95% CI: 0.70–1.04) for rs16917302;

HR = 0.60 (95%CI:0.50–0.78) vs. 0.84 (95%CI: 0.67–1.06) for

rs311499) perhaps reflecting a ‘‘winner’s curse’’ effect’’ [21]. The

associations for these SNPs were not statistically significant in stage

2 (Table 1). In the combined stage 1 and stage 2 dataset, the C

allele of rs16917302 was associated with lower risk of breast cancer

(per allele HR = 0.75, 95% CI 0.66–0.86; p~2:7|10{5; Table 1),

and the C allele of rs311499 was associated with a reduced risk

(per allele HR = 0.72, 95% CI 0.61–0.85; p~7:9|10{5; Table 1).

A full list of stage 2 results can be found in Table S2. Using the

combined stage 1 and stage 2 data, there was no evidence that the

HR for SNP rs16917302 changes with age (p = 0.63), but there

was some evidence that the per-allele HR for rs311499 may

increase with age (p = 0.034).

Copy Number Variant Analysis
We also examined the association of both high-frequency CNPs

and low-frequency CNVs to case-control status using the stage 1

data. After performing standard quality control measures

including a minor allele frequency (MAF) threshold of 5%, we

identified 191 polymorphisms with reliable genotypes. No

associations were found between CNVs and the phenotype; there

was no inflation or deflation of the test statistic, and the best p-

value was 4|10{3. We similarly assessed less common CNPs, and

found neither the overall burden of events (or any subclass thereof,

such as large deletions overlapping genes) nor any specific locus

associated with breast cancer risk (Figure S4).

Author Summary

The risk of breast cancer associated with BRCA2 mutations
varies widely. To determine whether common genetic
variants modify the penetrance of BRCA2 mutations, we
conducted the first genome-wide association study of
breast cancer among women with BRCA2 mutations using
a two-stage approach. The major finding of the study is
that only those loci known to be associated with breast
cancer risk in the general population, including FGFR2
(rs2981575), modified BRCA2-associated risk in our high-
risk population. Two novel loci, on chromosomes 10 in
ZNF365 (rs16917302) and chromosome 20 (rs311499), were
shown to modify risk in BRCA2 mutation carriers, although
not at a genome-wide level of significance. However, the
ZNF365 locus has recently independently been associated
with breast cancer risk in sporadic tumors, highlighting the
potential significance of this zinc finger-containing gene in
breast cancer pathogenesis. Our results indicate that it is
unlikely that other common variants have a strong
modifying effect on BRCA2 penetrance.

BRCA2 GWAS
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Excess Sharing in Genetic Isolates and Outbred
Populations Analyzed

Because of the prior evidence of significant LD extent around

the 6174delT (c.5946delT) founder mutation in the Ashkenazi

Jewish population [22], we explored the potential excess sharing of

the genome compared to the BRCA2 region in both Ashkenazi

Jewish and non-Jewish European ancestries. Using GERMLINE

[23], shared segments of greater than 5 cM were computed based

on the imputed genotype dataset. In the BRCA2 region, we

observed a significant excess of sharing amongst both Ashkenazi

(n = 304) and non-Jewish (n = 1331) individuals compared to

samples from an autism study (n = 808) suggesting common

founders for BRCA2 mutations. Examining sites across the genome

every 2.5 cM (excluding telomere and centromere regions), we

observed possible pairs share segments greater than 5 cM that on

average 0.005% (u = 50.17, s.d = 55.5, max = 491) for non-Jewish

individuals and 0.12% (u = 141.11, s.d = 57.32, max = 525) for

Ashkenazi Jewish individuals. Comparing cases and controls, we

did not observe a significant difference in number of pairs of

samples sharing segments greater than 5cM across the genome

excluding chromosome 13. That is, there was no evidence of

overall excess sharing across the genome other than for the BRCA2

locus within the Ashkenazi Jewish and non-Ashkenazi Jewish

populations in the study.

Discussion

In this GWAS of BRCA2 mutation carriers, the first in this high

risk population, we found previously identified breast cancer

susceptibility loci modified risk of BRCA2-associated breast cancer

with similar magnitude of association. Although FGFR2

(rs2981575) was the only locus to reach genome-wide statistical

significance, novel loci, rs16917302 and rs10509168 were each

associated with breast cancer risk.

rs16917302 is located on chromosome 10, in the zinc finger

protein 365 gene (ZNF365). A recent multistage GWAS of 15,992

sporadic breast cancer cases and 16,891 controls also observed an

inverse association (per allele OR = 0.82, 95% CI 0.82–0.91,

p~5:1|10{15) between breast cancer risk and rs10509168, a

SNP 18kb from rs16917302 (pairwise r2~0:1) and located in

intron 4 of ZNF365 [24]. Of the 3,659 cases and 4,897 controls in

phase 1 of that study, imputation revealed that the locus identified

in our BRCA2 study, rs16917302, was significantly associated with

risk for breast cancer (p = 0.02) (Easton DF, personal communi-

cation). The second novel SNP in the current study, rs311499, is

located on chromosome 20, within a region containing several

possible candidate genes including GMEB2, SRMS, PTK6,

STMN3, and TNFRSF6. The functional significance of both of

these regions with breast carcinogenesis is unknown; further

research is warranted.

There was some evidence that the HR associated with rs311499

may change with age. We also observed that the stage 1 HR for

this SNPs was larger in magnitude compared to the stage 2 HR,

consistent with a winner’s curse effect [21]. Since stage 1 of our

experiment included mostly BRCA2 mutation carriers diagnosed at

a young age, and stage 2 mutation carriers diagnosed an older age,

the ‘‘winner’s curse’’ and age-specific effects are confounded and

may be difficult to distinguish. Fitting the age-dependent HR

model for SNP rs311499 using the stage 2 data yielded no

significant variation in the HR by age (p = 0.47), but the sample

size for this analysis was relatively small. Future larger studies

should aim to clarify this.

Mutations in known genes (BRCA1, BRCA2, TP53, CHEK2,

PTEN, and ATM) explain only 20–25% of the familial clustering of

breast cancer; the residual familial clustering may be explained by

the existence of multiple common, low-penetrance alleles

(‘polygenes’) [25]. Perhaps because the majority of BRCA2-

associated breast tumors are estrogen receptor (ER)-positive, as

are the majority of non-hereditary breast cancers [26], risk alleles

for sporadic breast cancer are more likely to be modifiers of risk of

BRCA2-associated hereditary breast cancer. Of the seven GWAS-

identified breast cancer-associated SNPs examined in a BRCA2

background [13,19,20], SNPS in FGFR2 (rs2981575), TOX3

(rs3803662), MAP3K1 (rs889312), and LSP1 (rs3817198) have

been shown to modify BRCA2 penetrance, in contrast with BRCA1

tumors, in which only two of these same SNPs (based on a 2

degrees of freedom model) modified risk of these largely ER-

negative tumors [26]. As previously noted [13,20], the stage 1 HRs

among BRCA2 mutation carriers, reported here, were nearly

identical to odds ratio estimates observed in sporadic breast cancer

studies, consistent with a simple multiplicative interaction between

the BRCA2 mutant alleles and the common susceptibility SNPs. If

Table 1. Estimates of breast cancer association for loci (two confirmatory loci at FGFR2 and TOX3, and two novel loci with stage 1
and 2 combined of p,1024) among BRCA2 mutation carriers in a two-staged genome-wide association study.

Gene SNP Chr. Stage 1 Stage 2 Stage 1 and 2 Combined

N (Controls/
Cases) p-value2

HR (95%
CI)1

N (Controls/
Cases)

HR (95%
CI)1 p-value2

N (Controls/
Cases) MAF

HR (95%
CI)1 p-value2

FGFR2 rs2981575 10 794/892 6.061026 1.30
(1.16–1.45)

1,222/1,263 1.26
(1.11–1.43)

4.461024 2,016/2,155 0.42 1.28
(1.18–1.39)

1.261028

TOX3 rs3803662 16 804/899 5.861023 1.19
(1.05–1.34)

1,222/1,263 1.22
(1.07–1.39)

2.861023 2,026/2,162 0.29 1.20
(1.10–1.31)

4.961025

ZNF365 rs16917302 10 804/898 1.861025 0.67
(0.56–0.80)

1,222/1,264 0.85
(0.70–1.04)

0.14 2,026/2,162 0.11 0.75
(0.66–0.86)

3.861025

GMEB2,
Etc.3

rs311499 20 792/882 3.561025 0.60
(0.47–0.78)

1,209/1,255 0.84
(0.67–1.06)

0.13 2,001/2,137 0.07 0.72
(0.61–0.85)

6.661025

1p-value was calculated based on the 1-degree of freedom score test statistic stratified by country of study and 6174delT (c.5946delT) mutation status, and modified to
allow for the non-independence among related individuals.

2Per allele hazard ratios (HR) (i.e., multiplicative model) were estimated on the log scale, assuming independence of age, using the retrospective likelihood. All analyses
were stratified by country of residence and 6174delT (c.5946delT) mutation status, and used calendar-year- and cohort-specific breast cancer incidence rates for BRCA2.
The combined stage 1 and stage 2 analyses were also stratified by stage.

3The region also includes other possible genes including SRMS, PTK6, STMN3, and TNFRSF6 among others.
doi:10.1371/journal.pgen.1001183.t001
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Figure 1. Association signals, genetic structure, and linkage disequilibrium of the novel modifier loci of BRCA2 penetrance in the
regions surrounding rs1691730 on chromosome 10 and rs311499 on chromosome 20. The color of the dots indicates linkage
disequilibrium (LD; based on r2 values) in the CEU population (as per scale). Triangle plots below represent LD from actual data of BRCA2 carries in the
study.
doi:10.1371/journal.pgen.1001183.g001
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replicated, the two additional SNPs identified here would only

explain about 1.7% of the variance in breast cancer risk among

BRCA2 mutation carriers. Taken together, the combined effects of

all the common and putative risk modifiers in this study only

account for ,4% of the variance of BRCA2 mutations, compared

with 1.1% for the single RAD51 135 G.C variant, which is rare

and biologically-linked to BRCA2 function, as shown by candidate

gene studies [9]. Thus, the common alleles that modify risk in

BRCA1 and BRCA2 backgrounds appear to have comparable

associated risks in sporadic ER-positive and ER-negative tumors,

respectively [18]. While individual SNPs are unlikely to be used to

guide radiographic screening and risk-reducing surgical strategies,

the combined effect of these SNPs may ultimately be used for the

tailor management of subsets of BRCA mutation carriers [5].

While we took great efforts to collect all of the possible known

BRCA2 mutation carriers, there were insufficient numbers to

stratify by race and BRCA2 mutations with the exception of

BRCA2*6174delT mutations. Due to the small numbers of women

of non-European ancestry who have participated in the individual

studies represented here, the current analysis was based only on

women who had genetic backgrounds consistent with HapMap

CEU samples. While we expect that SNPs identified among

women of European ancestry might also be applicable to women

of other genetic backgrounds, additional research in these

populations will be needed. Similarly, the observed associations

represented across all types of mutations, and specifically a

weighted average of BRCA2*6174delT and non-delT mutations. It

is possible that the observed associations may only modify the

penetrance of specific BRCA2 mutations due to differential effects

on function or differences in genetic background. Our analysis was

stratified on the basis of the most common BRCA2 mutation,

BRCA2*6174delT, which is prevalent in individuals with an

Ashkenazi Jewish ancestry. Large numbers of mutation carriers

will be necessary to calculate mutation-specific estimates. In

addition, there was a drop-out of SNPs in the two phases of this

study. While we were able to achieve a representative coverage of

the genome, it is also possible that additional studies using denser

arrays may provide further information.

As expected, we observed associations with some of the major

common genetic variants seen in genome-wide scans of breast

cancer in a non-BRCA1/2 mutation background. However, we

found no evidence for loci with stronger effects than FGFR2.

Although we observed an association with a novel locus at ZNF365

that appears also to be a risk factor for sporadic breast cancer,

overall, our results suggest that there are no common variants with

major effects (i.e., OR.2.0) that are specific in BRCA2 carriers.

Similarly, in a recent report of SNPs from sporadic breast cancer

GWAS genotyped in a restricted set of BRCA1/2 carriers [27], loci

in LOC134997 (rs9393597: per allele HR = 1.55, 95% CI 1.25–

1.92, p~6:0|10{5) and FBXL7 (rs12652447: HR = 1.37, 95%

CI 1.16–1.62, p~1:7|10{4) were associated with BRCA2 breast

cancer risk with p-values weaker than FGFR2 reported here (per

allele p{value~1:2|10{8), although the magnitudes of the

associations were slightly stronger than FGFR2 (HR = 1.28).

Although these SNPs were not in our genotyped panel of SNPs

at stage 1, imputation results indicate that SNP rs9393597 has a p-

value of 0.008 and SNP rs12652447 a p-value of 0.04 for

association with breast cancer risk for the BRCA2 mutation carriers

in our stage1. However, there is substantial overlap between our

study and the study of Wang et al. [27].

Replication in larger datasets will be necessary to precisely

estimate the magnitude of the associations of suspected loci

identified from our study, candidate gene analysis [10–12], and

other selection approaches [27]. It is of interest, however, that

when utilizing an agnostic approach in BRCA2 mutation carriers

in this study, the major determinants of risk variation in mutation

carriers are those that also modify risk in subsets of sporadic,

BRCA1/2 wild type, breast cancer. However, it remains possible

that unique variants with smaller effects, or rarer variants (not

evaluated in this experiment), may be specific modifiers of breast

cancer risk in BRCA2 carriers. Their detection would require study

populations much larger than the current analysis, which is

presently the largest such cohort assembled.

Materials and Methods

Study Subjects
Ethics statement. All carriers were recruited to studies

(Table 2) at the host institutions under IRB-approved protocols.

Selection of affected individuals and controls. A total of

6,272 BRCA2 carriers from 39 studies (Table 2) and 14 countries

contributed DNA samples for this project. With the exception of

NICC, all studies are members of the Consortium of Investigators

of Modifiers of BRCA1/2 (CIMBA) [28]. Recruitment of carriers

were conducted predominantly through cancer genetics clinics,

and enrolled through national or regional efforts. Other studies

were recruited through population-based or community-based

ascertainments. All subjects provided written informed consent.

Eligible female carriers were aged 18 years or older, were self-

reported ‘white’, and had mutations in BRCA2. Data were

available on age at study recruitment, age at cancer diagnosis,

age of bilateral prophylactic mastectomy, BRCA1/2 mutation

description, and self-reported ethnicity. Only a limited number of

cases had detailed information on tumor characteristics (e.g.,

estrogen and progesterone receptor status); therefore, subtype

analyses were not performed at this stage.

Genotyping and Quality Control
Stage 1 Affymetrix genotyping. All eligible DNA samples

provided by participating centers were subjected to a rigorous

quality control assessment, including measures of overall DNA

quality and quantity. A total of 1,156 young (#50 years) affected

women and 1,038 unaffected women with high quality DNA

samples were selected (Table 2). For time efficiency, stage 1

genotyping occurred in two phases: phase 1 included 421 cases

and 404 controls and phase 2 included 735 cases and 634 controls.

Prior to the genome-wide scan, we genotyped five SNPs

previously genotyped by the CIMBA study centers as a pre-filter

for sample identification. Thirty-one samples (Figure S1) were

discordant in the two genotyping rounds and were excluded from

further analysis.

The genotyping for the stage 1 GWAS was performed on 2,163

eligible carriers using the Affymetrix 6.0 GeneChip array that

included 906,622 SNPs (Figure S1). To further monitor the identity

of the DNA samples, a fingerprinting panel of 14 SNPs with a minor

allele frequency .10% in HapMap European individuals were

genotyped on all samples, using Sequenom iPLEX, before and after

Affymetrix genotyping. The AMG gender assay was used for gender

assessment. As an additional quality control measure, cases and

controls were interleafed on each plate to eliminate technical bias.

Each plate also included one HapMap CEU DNA sample.

The DNA samples and genotyping calls for both phases of stage

1 were filtered through a series of data quality control parameters

using the Birdseed module of the Birdsuite software developed at

Broad Institute [29]. Among the 2,163 samples genotyped in the

stage 1 GWAS, 253 failed to hybridize to the chip due to poor

DNA quality and were excluded (Figure S1). Fifty-five samples

were dropped with call rates ,95%. Three samples were

BRCA2 GWAS
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Table 2. Description of affected and unaffected carriers selected for BRCA2 GWAS Stage 1 and 2.

Stage 1 Stage 2

Affected (n = 1,156)
Unaffected
(n = 1,038) Affected (n = 1,524) Unaffected (n = 1,508)

Factor N % N % N % N %

Age at Censoring

,40 763 66.7 11 1.1 368 23.7 1007 66.0

40–44 308 26.9 230 22.2 225 14.5 119 7.8

45–49 72 6.3 232 22.4 334 21.5 131 8.6

50–54 1 0.1 176 17.0 286 18.4 90 5.9

55–59 0 0.0 138 13.3 164 10.5 73 4.8

60+ 0 0.0 248 24.0 178 11.4 105 6.9

Self-reported Ethnicity

Unknown 125 10.9 80 7.7 329 21.2 293 19.2

Caucasian 873 76.3 723 69.9 1037 66.7 1036 67.9

Ashkenazi Jewish 146 12.8 232 22.4 189 12.2 196 12.9

DelT Mutation

Carrier 161 14.1 271 26.2 233 15.0 239 15.7

Non-carrier 983 85.9 764 73.8 1322 85.0 1286 84.3

Country of Study

Australia 109 9.5 82 7.9 149 9.6 180 11.8

Canada 98 8.6 172 16.6 55 3.5 82 5.4

Denmark 0 0.0 0 0.0 43 2.8 32 2.1

France 52 4.5 25 2.4 172 11.1 50 3.3

Finland 27 2.4 27 2.6 32 2.1 27 1.8

Germany 68 5.9 31 3.0 116 7.5 54 3.5

Iceland 25 2.2 9 0.9 81 5.2 6 0.4

Israel 49 4.3 87 8.4 77 5.0 86 5.6

Italy 110 9.6 44 4.3 98 6.3 62 4.1

Spain 107 9.4 71 6.9 99 6.4 136 8.9

Sweden 13 1.1 13 1.3 11 0.7 15 1.0

The Netherlands 15 1.3 26 2.5 117 7.5 201 13.2

United Kingdom 181 15.8 179 17.3 125 8.0 168 11.0

USA 290 25.4 290 28.0 380 24.3 426 27.9

Study

BCFR-Australia 19 1.7 5 0.5 12 0.8 10 0.7

BCFR-NCCC 12 1.0 1 0.1 5 0.3 2 0.1

BCFR-Ontario 29 2.5 28 2.7 16 1.0 17 1.1

BCFR-UT 18 1.6 18 1.7 11 0.7 47 3.1

BCFR-FCCC 2 0.2 1 0.1 14 0.9 10 0.7

BCFR-NY 4 0.3 5 0.5 26 1.7 16 1.0

BIDMC 10 0.9 20 1.9 7 0.5 12 0.8

CBCS 0 0.0 0 0.0 43 2.8 32 2.1

CGB_NCI 7 0.6 15 1.4 14 0.9 43 2.8

CNIO 49 4.3 33 3.2 40 2.5 56 3.7

COH 30 2.6 13 1.3 21 1.4 16 1.0

DFCI 14 1.2 22 2.1 10 0.6 24 1.6

DKFZ 7 0.6 5 0.5 8 0.5 7 0.5

EMBRACE 178 15.6 173 16.7 123 7.9 161 10.6

FCCC 14 1.2 10 1.0 12 0.8 9 0.6

GC-HBOC 61 5.3 26 2.5 108 6.9 47 3.1
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contaminated, 43 were identified by genotyping to be duplicates,

and 4 were male; all were dropped from analyses.

SNPs were also filtered using Birdseed and were removed if

monomorphic or .10% missing (n = 38,962), genotype call rates

,95% (n = 50,810), minor allele frequencies ,1% (n = 104,792),

departures from Hardy-Weinberg Equilibrium (p,1026;

n = 1,090), differential missingness with respect to phenotype

(p,1023; n = 275), and differential missingness with respect to

nearby SNPs (p,10210; n = 22,065). A total of 6,212 SNPs had

different missingness patterns in phase 1 compared to phase 2, and

were excluded. Since we found that significant missingness

correlated to SNPs mapping to longer fragments of Affymetrix

6.0 digestion products, we also removed the SNPs on fragments

longer than 1000bp (n = 85,990).

With the remaining 1,805 carriers and 596,426 SNPs, an

iterative process proceeded to drop all individuals with low call

rates (,95%), high autosomal heterozygosity rates (false discovery

rate ,0.1%), and high identity by descent scores ($0.95) and to

drop all SNPs with minor allele frequencies ,1% and SNP call

rates ,95% until the final run contained individuals above the

individual and SNP filter thresholds (n = 1,747 samples and

592,566 SNPs). A more stringent HWE filter (p,1027) was then

applied and 403 additional SNPs were dropped. Nine individuals

with missing mutation descriptions were removed.

Finally, principal components analysis was used to identify the

ethnic outliers (Figure S5). A total of 1,743 BRCA2 mutation

carriers and the HapMap3 data for 210 individuals of European

(CEU), Han Chinese (CHB), and Yoruba (YRI) African descent

were available for multidimensional scaling using the genomic

kinship matrix estimated using a set of 53,641 autosomal and

uncorrelated SNPs. A cut-off of .11% was used to exclude

samples with non-CEU ancestry (n = 35). Genotype-phenotype

association analyses were based on 1,703 (899 young affected and

804 unaffected) BRCA2 mutation carriers and 592,163 SNPs,

covering 85% of the common HapMap 3 SNPs (imputed with

r2
]0:8 (see below), including 64% of the markers that were

removed in the QC process).

Where directly genotyped data were not available, probabilities

were imputed with Beagle.3.0.2 (using the default parameters)

using CEU+TSI samples on HapMap3 release2 B36 as the

reference panel (410 chromosomes, 1.4 M SNPs).

Stage 2 Sequenom iPLEX genotyping. The primary SNP

selection strategy was based on the results of the kinship-adjusted

score test of 592,163 GWAS genotyped SNPs. From stage 1, a

total of 79 top independent regions (pƒ1:5|10{4) with pairwise

r2 values,0.80 were selected for genotyping in stage 2 (Figure S6).

For the top 10 SNPs if available, an additional correlated SNP

(pairwise r2values]0:8; n = 5) was selected to serve as genotyping

Stage 1 Stage 2

Affected (n = 1,156)
Unaffected
(n = 1,038) Affected (n = 1,524) Unaffected (n = 1,508)

Factor N % N % N % N %

GEMO 52 4.5 25 2.4 172 11.0 50 3.3

GOG 64 5.6 51 4.9 57 3.7 91 6.0

HCSC 27 2.4 20 1.9 34 2.2 35 2.3

HEBON 10 0.9 17 1.6 103 6.6 172 11.3

HEBCS 27 2.4 27 2.6 32 2.1 27 1.8

ICO 31 2.7 18 1.7 25 1.6 45 3.0

ILUH 26 2.3 9 0.9 81 5.2 6 0.4

IOVHBOCS 19 1.7 7 0.7 44 2.8 20 1.3

kConFab 88 7.6 77 7.3 137 8.7 168 11.0

LUMC 5 0.4 9 0.9 14 0.9 29 1.9

MAGIC-UC 2 0.2 2 0.2 0 0.0 3 0.2

MAGIC-UCI 6 0.5 9 0.9 21 1.4 22 1.4

MAYO 5 0.4 14 1.4 51 3.3 24 1.6

MBCSG 91 8.0 37 3.6 54 3.5 42 2.8

MSKCC 51 4.5 61 5.9 52 3.3 47 3.1

NICC 28 2.4 60 5.8 46 3.0 67 4.4

OCGN 62 5.4 60 5.8 35 2.2 36 2.4

OSU CCG 11 1.0 8 0.8 9 0.6 8 0.5

SMC 21 1.8 27 2.6 31 2.0 19 1.2

SWE-BRCA 13 1.1 13 1.3 11 0.7 15 1.0

UCSF 10 0.9 6 0.6 12 0.8 8 0.5

UKGRFOCR 2 0.2 6 0.6 2 0.1 7 0.5

UPENN 33 2.9 13 1.3 58 3.7 46 3.0

WCRI 6 0.5 84 8.1 4 0.3 29 1.9

doi:10.1371/journal.pgen.1001183.t002

Table 2. Cont.
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backup. The remaining SNPs for stage 2 were selected based on

two alternate strategies. First, we added the 14 (as well as FGFR2

counted in the top 10 SNPs above) confirmed breast cancer SNPs

from prior independent GWAS of sporadic breast cancer. Second,

we also selected the 15 top independent regions (pairwise

r2
[0:50) based on the ranking of the p-values from a logistic

regression analysis of 1.5 million imputed SNPs. In total for stage 2

replication phase, we selected 113 SNPs and 1,524 breast cancer

carriers and 1,508 control carriers (Table 2) for genotyping using

the Sequenom iPLEX platform.

Samples were excluded for call rates #95% (n = 476),

duplication in stage 2 (identity by state (IBS),1.0; n = 43),

duplication in stage 1 and 2 (IBS; n = 25), lack of complete

phenotype data (n = 1), and insufficient country-specific numbers

(n = 1; Figure S6). A total of 100 SNPs were successfully

multiplexed into three pools; the remaining 13 SNPs were not

genotyped. Genotyping QC filters excluded 15 SNPs due to call

rates #90% (n = 14) and MAF,1% (n = 1). In summary, the final

association analyses in stage 2 were based on 2,486 carriers (1,264

affected and 1,222 unaffected carriers) and 85 SNPs.

Statistical Methods
Defining time at risk. Carriers were censored at the first

breast or ovarian cancer or bilateral prophylactic mastectomy,

whichever occurred first. Carriers who developed any cancer were

censored at time of bilateral prophylactic mastectomy if it

occurred more than a year prior to the cancer diagnosis (to

avoid censoring at bilateral mastectomies related to diagnosis in

which rounded ages were used). The remaining carriers were

censored at the age of last observation. This was defined either by

the age/date at interview or age at follow-up depending on the

information provided by the participating center. Carriers

censored at diagnosis of breast cancer were considered cases in

the analysis. Mutation carriers censored at ovarian cancer

diagnosis were considered unaffected. Carriers with a censoring/

last follow-up age older than age 80 were censored at age 80

because there are no reliable cancer incidence rates for BRCA1/2

carriers beyond age 80.

Genotype–phenotype associations. Analyses, based on

1,703 BRCA2 mutation carriers and 592,163 SNPs, were

performed within a survival analysis framework. Since the

mutation carriers were not selected at random with respect to

their disease status, standard methods of survival (e.g., Cox

regression) may lead to biased estimates of relative risk [30].

Therefore, analyses were conducted by modeling the retrospective

likelihood of the observed genotypes conditional on the disease

phenotypes. The associations between genotype and breast cancer

risk at both stages were assessed using the 1-degree of freedom

score test statistic based on this retrospective likelihood, as

previously described [9,18]. All models were stratified by

country of study and 6174delT (c.5946delT) mutation status, the

most common BRCA2 mutation in this study and a marker of the

Ashkenazi Jewish population among Ashkenazi Jewish women

[31–33]. Since the linkage disequilibrium structure among

Ashkenazi Jewish people may differ from other mutation carriers

[34], stratifying by the *6174delT provides additional control for

population stratification. To allow for the non-independence

among related individuals, an adjusted version of the score test was

used in which the variance of the score was derived by taking into

account the correlation between the genotypes [35,36]. Analyses

were performed in R using the GenABEL libraries [37] and

custom written software.

To estimate the magnitude of the associations, the effect of each

SNP was modelled either as a per allele hazard ratio (HR) (i.e.,

multiplicative model) or as separate HRs for heterozygotes and

homozygotes, and these were estimated on the log scale. The HRs

were assumed to be independent of age (i.e. we used a Cox

proportional-hazards model). For the most significant novel

associations this assumption was verified by adding a genotype-

by-age interaction term to the model to fit models in which the

HR changed with age. The retrospective likelihood was imple-

mented in the pedigree-analysis software MENDEL [38] as

previously described [9]. All analyses were stratified by country of

residence and 6174delT (c.5946delT) mutation status, and used

calendar-year- and cohort-specific breast cancer incidence rates

for BRCA2 [25]. The combined stage 1 and stage 2 analyses were

also stratified by stage. Parameter estimates were obtained by

maximising the retrospective likelihood. To allow for the non-

independence among related mutation carriers, we used a robust

variance estimation approach in order to obtain standard errors

for the parameters [39,40]. Related individuals were identified

through a unique family identifier.

Copy number variant analysis. We also examined the

association of both high-frequency and low-frequency copy

number variants (CNV) to the age of diagnosis of breast cancer

as a dichotomous trait using the stage 1 data [29]. We called

known, common variants (copy number polymorphisms, CNPs)

with Canary [29]. CNP alleles lower than 1% in frequency were

removed, to maximize the number of the CNPs that were bi-allelic

instead of multi-alleleic. CNPs were removed that had for call rate

,95%, differential missingness by genotype (p,1023), or

departure from Hardy-Weinberg proportions (p,1023). Post-

QC, we had 191 high-quality genotyped polymorphisms. We used

PLINK to assess association using logistic regression and the same

ancestry covariates of no interest as with SNPs. We similarly

assessed less common CNVs discovered by Birdseye [29] for

association with age at diagnosis using PLINK [41]. Finally, we

also looked specifically at CNVs overlapping the BRCA2 gene itself

using LOD scores and Birdseye.

Haplotype sharing analysis. We looked for evidence of

excess sharing across the genome and the BRCA2 region. Using

GERMLINE [23], shared segments of greater than 5 cM were

computed based on the imputed genotype dataset among both

Ashkenazi (n = 304) and non-Jewish (n = 1,331) samples compared

to samples from an autism study (n = 808) (Figure S3). Examining

sites across the genome every 2.5 cM (excluding telomere and

centromere regions), we computed the mean of the proportion,

standard deviation, and the maximum values for non-Jewish and

Ashkenazi women, respectively.

Gene Set Enrichment Analysis. We tested whether 59

genes known to regulate or interact with BRCA2 [16] (Table S1)

were enriched for associations with age of onset of breast cancer in

BRCA2 mutation carriers, using a new implementation of Gene

Set Enrichment Analysis (GSEA) called Meta-Analysis Gene-Set

Enrichment of variaNT Associations (MAGENTA) [14]. The 59

genes were compiled using a Pubmed abstract mining software,

Chilibot [42], and were selected if they were related to the Fanconi

anemia pathway [15] as well as others reported from literature to

regulate or interact with BRCA1/2 [43]. An association p-value

was calculated for each gene in the genome, defined as the most-

significant association p-value of all genotyped SNPs that lie within

110 kb upstream and 40 kb downstream to the gene’s most

extreme transcript boundaries, followed by correction for gene

score confounders (gene size, number of SNPs per gene and

linkage disequilibrium related properties). SNP association p-

values were taken from the stage 1 GWAS. To compute a GSEA

p-value for the BRCA gene set, the fraction of genes with an

association p-value more significant than the 95 percentile of all

BRCA2 GWAS
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gene p-values in the genome was compared to a null distribution,

generated by randomly sampling gene-sets of identical size from

the genome 10,000 times. Of the 59 BRCA interactors, two genes

were assigned the same most significant SNP due to physical

proximity in the genome. To prevent potential over-estimation of

gene set enrichment due to physical clustering of genes in a gene

set, we retained only one gene of each subset of genes assigned the

same best SNP (the gene with the most significant gene p-value) for

the analysis of both the real and permuted gene sets.

Supporting Information

Figure S1 Data filtering of stage 1 BRCA2 GWAS.

Found at: doi:10.1371/journal.pgen.1001183.s001 (0.57 MB

TIF)

Figure S2 Quantile-quantile plot comparing expected distribu-

tion of chi-square values and observed chi-square values from a

genome-wide scan of breast cancer cases and unaffected BRCA2

carriers.

Found at: doi:10.1371/journal.pgen.1001183.s002 (0.31 MB

TIF)

Figure S3 Manhattan plot of p-values by chromosomal position

from a genome-wide scan of breast cancer cases and unaffected

BRCA2 carriers [Visualized using SVS7 (Goldenhelix)].

Found at: doi:10.1371/journal.pgen.1001183.s003 (0.51 MB

TIF)

Figure S4 Quantile-quantile plot comparing expected distribu-

tion of p-values and observed p-values of association of common

copy number polymorphisms (CNPs) from a genome-wide scan of

breast cancer cases and unaffected BRCA2 carriers.

Found at: doi:10.1371/journal.pgen.1001183.s004 (0.32 MB TIF)

Figure S5 Principal components analysis, including all eligible

(after filtering) BRCA2 stage 1 samples and HapMap samples.

Found at: doi:10.1371/journal.pgen.1001183.s005 (2.39 MB

TIF)

Figure S6 Data filtering of stage 2 BRCA2 GWAS.

Found at: doi:10.1371/journal.pgen.1001183.s006 (0.35 MB

TIF)

Table S1 List of 59 BRCA interactors or regulators and their

gene association p-values to breast cancer age of onset in BRCA2

mutation carriers.

Found at: doi:10.1371/journal.pgen.1001183.s007 (0.13 MB

DOC)

Table S2 Ranked results for the 85 SNPs successfully genotyped

in stage 2, BRCA2 GWAS.

Found at: doi:10.1371/journal.pgen.1001183.s008 (0.13 MB

DOC)
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