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Abstract. Senile plaques and cerebral amyloid angiopathy in Alzheimer’s disease (AD) patients not only consist of the amyloid-β

protein (Aβ), but also contain many different Aβ-associated factors, such as heparan sulfate proteoglycans, apolipoproteins, and
complement factors. These factors may all influence Aβ deposition, aggregation, and clearance and therefore seemimportant in
the development of human Aβ deposits. To study AD pathology and test new therapeutic agents, many different mouse models
have been created. By transgenic expression of the amyloid-β protein precursor, frequently in combination with other transgenes,
these animals develop Aβ deposits that morphologically resemble their human counterparts. Whether this resemblance also
applies to the presence of Aβ-associated factors is largely unclear. In this review, theco-deposition of factors known to associate
with human Aβ deposits is summarized for several different AD mouse models.

Keywords: Acute-phase proteins, Alzheimer’s disease, amyloid-β, apolipoprotein E, complement, heparan sulfate proteoglycans,
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INTRODUCTION

To investigate disease mechanisms and test new ther-
apeutic agents, animal models are necessary tools.
Even though the use of animals is ethically controver-
sial, there are no other models available that are capable
of reproducing the complex nature of human physiolo-
gy. However, mimicking disease is not easy in animal
models, since the biological pathways in animals are
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often not identical to those in humans. Therefore, most
models are created as transgenics, expressing (mutated)
human proteins implicated in human disease. But even
in transgenic models, it remains difficult to accurately
model symptoms and pathology of a human disease.

Alzheimer’s disease (AD) is pathologically charac-
terized by accumulation of the amyloid-β (Aβ) pro-
tein in senile plaques and cerebral amyloid angiopathy
(CAA) [1,2] and by accumulation of hyperphosphory-
lated tau protein [3]. One of the earliest brain regions
affected is the hippocampus, a brain region involved
in memory formation. Indeed, memory impairment is
one of the main symptoms of AD [4,5]. The impor-
tance of Aβ in the pathogenesis of AD, has been em-
phasized by the discovery of multiple causative muta-
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tions in Aβ-related genes (amyloid-β protein precursor
(AβPP) and presenilin genes) in familial AD [6].

Aβ is a cleavage product of AβPP and generally
comprises either 40 (Aβ40) or 42 (Aβ42) amino acids.
AβPP is a transmembrane protein that can be cleaved
by several different secretases to release Aβ and a num-
ber of other cleavage products [7–9]. In the case of
Aβ, AβPP is first cleaved by aγ-secretase [10] and
then by aβ-secretase [11,12]. Many of the mutations
in AβPP that cause the familial forms of AD are found
close to these AβPP cleavage sites [6]. Aβ is nor-
mally cleared from the brain, but when this clearance
process becomes impaired, for example due to aging,
Aβ can start to oligomerize and eventually form fibrils.
This fibrillization can then result in the formation of
Aβ deposits throughout the brain. Besides mutations
in AβPP, pathogenic mutations have also been found
in presenilin-1 (PS1) and, to a lesser extent, presenilin-
2 [6,13]. Both these presenilins are part of theγ-
secretase complex responsible for Aβ cleavage from
AβPP [10,14]. These mutations increase Aβ produc-
tion, in particular of the more fibrillogenic Aβ42 vari-
ant [15].

In more than 99% of AD cases, aging is the most
important risk factor to develop AD, whereas in less
than 1% of cases the disease can be related to gene mu-
tations. However, there are only a few animal species,
including dogs and primates, which naturally develop
AD-like pathology with advanced age [16]. To cre-
ate models for AD with a faster development of Aβ

pathology, transgenic (Tg) mouse models have been
generated based on the introduction of human (mutat-
ed) AβPP, either alone or in combination with (mutat-
ed) presenilin genes [17]. Mice are usually the animals
of choice for creating transgenics, since they are not
only very susceptible to genetic manipulation, but are
also relatively easy and cheap to maintain.

The first AD mouse model that was developed was
the PDAβPP model [18]. In this model, starting at an
age of 6–9 months immunohistochemically detectable
Aβ deposits developed, that become more dense up-
on aging and finally morphologically resemble Aβ de-
posits found in humans. Furthermore, as seen in hu-
mans, the Aβ deposits in the PDAβPP mice are sur-
rounded by activated astrocytes and microglia and ac-
companied by a loss of synaptic density. PDAβPP
mice also develop cognitive deficits including memory
impairment [19], further demonstrating their similarity
to human AD patients.

Many more AD mouse models with Aβ pathology
have been created since this first model [17], all char-

acterized by deposition of plaque-like Aβ and most of
them developing cognitive impairment [17]. Due to
the different gene combinations and mutations used to
create these mice, there are, however, many differences
between models. For example, the age of pathologyon-
set in AD models varies greatly. In some mice, such as
the TgCRND8 model, deposition starts at an age of 3–6
months [20],while in others, such as the Tg2576 model,
it starts at an age of 9–12 months [21]. In general, co-
expression of PS1 lowers the age of onset [22], because
AβPP in these mice is more readily cleaved by theγ-
secretase [23]. Plaque morphology can also vary great-
ly between different models. For example, AβPP23
mice accumulate mostly compact deposits [24], while
parenchymal Aβ deposits in TgSwDI mice are mostly
diffuse [25]. Contrary to AβPP23 mice, which develop
CAA next to parenchymal deposits [26],TgSwDI mice,
but also AβPPDutch mice, accumulate Aβ mainly in
the brain vasculature with limited parenchymal depo-
sition [25,27]. This characteristic makes these latter
models suitable models for familial and sporadic cases
of vascular amyloid pathology. AβPP and AβPP/PS1
models do not develop tau pathology, but tau transgenic
mice have been developed [28,29]. There is also a triple
transgenic mouse model available, overexpressing tau,
AβPP, and PS1 [30].

Even though most AD mouse models demonstrate
Aβ pathology that morphologically resembles human
AD pathology, the Aβ deposited in mice is chemical-
ly different from human Aβ. In humans, Aβ species
undergo posttranslational modifications, such as N-
terminal degradation, cross-linking, and isomerization.
These modifications are either not found in AD mouse
models or differ from the human situation [31–33].
Furthermore, Aβ deposits in mice are usually less com-
pact than in humans, allowing mild extraction buffers
to more easily extract Aβ from mouse brains relative
to human brains. Finally, progressive AD pathology in
humans is characterized by neurodegeneration, a char-
acteristic that is rarely reproduced in AD mouse mod-
els [17]. Only the AβPP23 mouse model has been
shown to have some neuronal loss in the CA1 region of
the hippocampus [34].

In humans, Aβ deposits not only contain the Aβ pro-
tein, but immunohistochemical analyses also demon-
strated many other proteins [35–37]. It is thought that
because of their close association, these co-deposited
molecules contribute to Aβ aggregation and deposition.
Although this has not been proven for all co-depositing
proteins,in vitro studies showed that heparan sulfate
proteoglycans (HSPG), apolipoprotein E (ApoE) and
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α1 chymotrypsin (α1-ACT), can indeed bind to Aβ,
affect its aggregation, stabilize Aβ deposits and protect
deposits against proteolytic degradation [38–40]. Be-
cause of their tight association with Aβ, these (glyco-)
proteins may greatly influence the outcome of thera-
peutic intervention in humans, aimed at reducing Aβ

aggregation and deposition. Since all new potential
AD therapeutics are first tested in mouse models, it is
important to know if these Aβ-associated factors are
present in the various mouse models. In this review, we
aim to examine the validity of AD mouse models with
respect to the presence of the main Aβ co-depositing
factors HSPG, ApoE, complement factors, acute-phase
proteins, intercellular adhesion molecule (ICAM)-1,
cystatin C, and collagenous Alzheimer amyloid plaque
component (CLAC). An overview of the co-deposition
of these factors in transgenic AD models is shown in
Table 1 and discussed below.

Heparan sulfate proteoglycans

More than twenty years ago, close association of
HSPG with Aβ deposits in humans, both parenchy-
mal and vascular, was first described [41]. HSPG
consist of a protein core with several highly sulfat-
ed glycosaminoglycan chains attached. These gly-
cosaminoglycan chains consist of repeating disaccha-
ride units. There are several different HSPG species,
some membrane-associated (glypicans and syndecans)
and some associated with the extracellular matrix
(agrin, collagen XVIII, and perlecan). HSPG are
thought to be involved in numerous (developmental)
processes, including neurogenesis, angiogenesis, and
blood brain barrier permeability [39]. Of the different
HSPG species, agrin, and glypican-1 are the only two
HSPG found in association with all different types of
Aβ deposits [42–44]. The association of perlecan with
Aβ deposits is controversial,as one study described this
HSPG to have the strongest association [41], whereas
we have been unable to detect perlecan in CAA or se-
nile plaques [42,44]. Overall though, HSPG are key
components of human Aβ deposits. Indeed,in vitro
analysis has demonstrated that HSPG can bind Aβ with
high affinity, mainly through their glycosaminoglycan
chains [45]. Through this binding, HSPG can enhance
Aβ deposition [39,43,46], a process that seems to in-
volve HSPG sulfate moieties [47].

There are only a few studies describing co-deposition
of HSPG with Aβ deposits in mouse models. In
a characterization study of AβPP23 mice, it is very
briefly mentioned that HSPG co-localize with Aβ de-

posits [48]. A more elaborate study was done using
20-month-old Tg2576 mice [49]. It was demonstrat-
ed that antibodies against heparan sulfate stained more
than 95% of the “doughnut”-shaped Aβ deposits visi-
ble in this model. Whereas in the AβPP23 mice no dis-
tinction was made between individual HSPG species,
in the Tg2576 mice it was discovered that glypican-1
and syndecan-3, but not agrin, perlecan, syndecan-1
and -2, were found in the Aβ deposits. Therefore, in
this mouse model the extensive co-deposition of HSPG
seen in humans could only partly be reproduced. For
example, agrin, a HSPG that is abundantly present in
AD senile plaques, was absent from Aβ deposits in
mice, demonstrating that the association of individu-
al HSPG species with Aβ pathology may not always
match the human situation.

We recently studied deposition of several HSPG
species in the AβPPswe/PS1dE9 mouse model [50].
In this model, in general HSPG were associated with
approximately 30% of Aβ deposits. Furthermore,
co-localization of the different HSPG species (agrin,
glypican-1, and perlecan) occurred in less than 10% of
Aβ deposits for each of the species. Therefore, HSPG
co-deposition was much less pronounced in this model
than in the Tg2576 model or in humans. Due to a low
number of detectable vascular deposits, co-deposition
of HSPG with CAA vessels could not be determined
in this model, nor was it investigated in the Tg2576
model.

Overall, the mouse models seem to differ from hu-
man AD pathology in either the type of HSPG species
that co-deposit or the number of plaques in which
HSPG co-deposition is observed. As previously hy-
pothesized [51], it may be that the lack of glycopro-
teins, like HSPG, in Aβ deposits in mice is the reason
that these deposits are generally less compact and more
easily dissolved. It is important to note that HSPGs are
an invariant component of all known human amyloi-
doses, both cerebral and in peripheral organs, pointing
to a very important role in amyloidosis in general [52],
a property that is apparently partly lacking in Tg mouse
models for AD. As far as we know, co-deposition of
HSPG has not been studied in mouse models for other
types of amyloidosis.

Apolipoprotein E

ApoE is the most prominent apolipoprotein in the
central nervous system and mainly produced by astro-
cytes [53], although other cell types such as pericytes
and smooth muscle cells also contribute to cerebral lev-
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els [54,55]. ApoE binds to lipoproteins and mediates
their interaction with lipoprotein receptors and endo-
cytosis and in this manner regulates cholesterol home-
ostasis [56]. There are three isoforms of ApoE (ApoE2,
3, and 4), and the ApoE4 isoform is a well-known risk
factor for AD [57], whereas the ApoE2 isoform seems
to be protective for the development of AD. The ex-
act role of ApoE in AD, however, is still elusive [58].
In vitro studies have demonstrated a direct interaction
between Aβ and ApoE [57] and it is suggested that
through this interaction ApoE can influence Aβ aggre-
gation and mediate Aβ clearance [38,40,58].

The fact that ApoE can bind Aβ in vitro, suggests
an interaction of these two proteinsin vivo. Indeed,
clear co-deposition of ApoE with human Aβ deposits
has been shown. ApoE immunoreactivity is observed
in all senile plaques in AD brains, including in diffuse
plaques and in the core of amyloid plaques [35,59–
61], although some authors described the co-deposition
with diffuse deposits to be minor [62]. In these stud-
ies, ApoE was also found in CAA vessels [35] and in
dystrophic neurites surrounding plaques.

Co-deposition of ApoE with Aβ deposits in mouse
models has been well studied and in several mod-
els ApoE was found co-localized with Aβ. Immuno-
histochemical analysis of deposits in Tg2576 [63,
64], AβPP23 [48,65], PS/AβPP [66], and AβPP-
YAC mice [67] revealed staining for ApoE mostly in
(Thioflavin-S positive) fibrillar deposits, with staining
of some diffuse deposits. Furthermore, ApoE colocal-
ized with astrocyte markers [64], demonstrating that in
mice, as in humans, astrocytes are likely responsible
for ApoE production. In the TgSwDI mouse model,
that specifically deposits Aβ in the brain vasculature,
ApoE is found in close association with these vascular
deposits [33]. All these findings in mice are therefore
in concurrence with the ApoE co-deposition found in
humans.

Based on studies using brain material of Down syn-
drome patients, it was suggested that ApoE contributes
to plaque maturation [68]. In these patients, Aβ42

was the first Aβ species to accumulate and ApoE co-
localization could be detected in these deposits before
Aβ40 accumulates. In the Tg2576 model [64], Aβ42

also seems to be the initial Aβ species that deposits,
with Aβ40 only visible in more mature deposits. Using
the Tg2576 model, it was found that all Aβ deposits
positive for ApoE contained Aβ42, with only some con-
taining Aβ40. Therefore, since ApoE co-deposition in
mice resembles that in humans, this suggests that ApoE
has a similar role in plaque maturation in mice as it

has in humans. The function of ApoE in Aβ deposi-
tion has also been investigated using ApoE knockout
mouse models. By crossing these knockout mice with
AD mouse models [69,70], it was discovered that ApoE
expression is key in developing Aβ deposition.

Recently, an increased risk for AD was linked to
another apolipoprotein, ApoJ [71,72]. Indeed, this
apolipoprotein, but also ApoD, is known to co-deposit
with Aβ [60,73] and furthermore ApoJ could decrease
Aβ aggregationin vitro [74] and in vivo [75]. Co-
deposition of ApoD has not been studied in AD mouse
models. In contrast, in the AβPP-YAC mouse mod-
el [67] co-deposition of ApoJ with Aβ has been de-
scribed. Therefore, in general, it appears that co-
deposition of apolipoproteins with Aβ is well replicat-
ed in Tg mouse models for AD.

Complement factors

The complement system consists of a cascade of fac-
tors that can become activated as part of the innate im-
mune response of the body. Although the liver is the
main source of complement, brain glial cells can al-
so produce complement factors [76]. The cascade is
triggered when either factor C1q (classical pathway),
C3 (alternative pathway), or lectins become activated.
Ultimately, a membrane attack complex (MAC), con-
sisting of factor C5b-9, is formed that lyses cells by
forming a membrane pore. Besides foreign intruders,
the Aβ protein is also known to trigger the comple-
ment system by binding to C1q or C3 [77,78]. Indeed,
in AD brain, expression of the complement system is
upregulated [79] and recently a complement compo-
nent receptor (CR1) was identified as a risk factor for
AD [72]. Furthermore, several components of the com-
plement system, including C1q, C3, and C5b-9, can be
found clearly associated with Aβ deposits [80] and then
mostly with fibrillar plaques [81]. Activation of the
complement system in turn can stimulate Aβ aggrega-
tion [82]. Although the activated complement system
can accelerate (Aβ-induced) neurodegeneration [83],
there is also evidence that it can protect the brain from
Aβ-induced damage [84].

Co-deposition of complement factors in mouse mod-
els has been well-studied. In two studies, C1q, C3, and
C4 co-deposition in the Tg2576 model was investigat-
ed [85,86]. Strong co-deposition of these three com-
plement factors was found with (Thioflavin-S positive)
Aβ deposits. C1q was also strongly expressed in Aβ

deposits of PS/AβPP mice [87] and with the vascular
deposits of TgSwDI mice [88]. In AβPP23 mice, not
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only was co-deposition of C1q studied, but also that
of many more complement factors (C3, C3d, C4, C4d,
C7, C9) [65,89]. With the exception of C1q, C3, and
C3d, co-deposition of these factors was weak, with co-
deposition of complement factors further down in the
cascade (C7, C9) being almost absent.

In summary, it appears that, unlike in human Aβ de-
posits, only the early components of the complement
cascade (C1q, C3) can be detected in Aβ deposits of
Tg mouse models. Although these early complement
factors co-deposit with Aβ in mice, functionally they
differ from their human equivalents. For example, it
is known that mouse C1q does not bind human Aβ as
efficiently as human C1q does [90] and that mouse C4
cannot activate C5 convertase [91]. Consequently, sub-
sequent activation of the complement system in mice
is also less efficient. Since complement can induce
neurodegeneration [83], the less efficient activation of
this system may explain the relatively low degree of
neurodegeneration seen in mouse models [17]. Fur-
thermore, the difference in complement co-deposition
and activation between humans and mice may also pro-
vide some explanation for the different results that have
been found in immunization studies in humans and
mice aimed at finding new therapeutic agents [92,93].
Despite the incomplete activation of the complement
pathway in mice, it may still play a critical role in Aβ
pathology in mouse models as was demonstrated by a
reduction of inflammation and neurodegeneration in an
AD mouse model crossed with complement knockout
mice [85].

Acute-phase proteins

In AD brains, several acute-phase proteins co-
deposit with Aβ, such as serum amyloid P (SAP),α2-
macroglobulin (α2M), andα1-ACT [35,94]. Acute-
phase proteins are proteins that become acutely upreg-
ulated in plasma in response to inflammation.

SAP is a glycoprotein that is closely associated with
all Aβ deposits in humans [35,95]. The proposed role
for SAP in senile plaques is to protect Aβ fibrils from
proteolysis [96]. Besides, SAP may activate the com-
plement system by binding C1q [97]. Only two studies
on SAP co-deposition in mouse models have been per-
formed. In one AD mouse model (C57B6/SJL overex-
pressing AβPP), SAP did not co-localize with amyloid
deposits [98,99]. It was postulated that SAP, with a
molecular weight of∼250 kDa, failed to readily pass
the blood brain barrier (BBB). Only when SAP was ad-
ministered intranasally to transgenic AβPP mice, could

SAP be detected in association with Aβ deposits [99].
Since in humans, SAP can be detected in the AD brain
and its production is exclusive to the liver, it was sug-
gested that the integrity of the human BBB must be
disturbed. In the AβPP23 model [65], SAP was also
not detected in Aβ deposits, although staining in the
periphery of deposits was visible. Therefore, function-
al disturbance of vessels of AβPP23 mice was appar-
ently also not severe enough to allow BBB crossing
of SAP into the brain [100]. The reduced transport of
complement activator SAP into the brain may in turn
contribute to the relative lack of complement activation
in AD mouse models [65].

α2M, a protease inhibitor, co-localized with senile
plaques in humans [101] and is thought to prevent ac-
cumulation of Aβ [102]. In a study aimed at investigat-
ing the role ofα2M in AD, the co-localization of this
protein in the PS/AβPP mouse model was character-
ized [103]. Starting from 3 months of age, these mice
demonstrated Aβ deposition, with some deposits pos-
itive for α2M. The number ofα2M -positive plaques
then increased with age, withα2M mainly depositing
in Thioflavin-S positive fibrillar senile plaques. This
demonstrates thatα2M co-deposition resembles the hu-
man situation.

Finally, the acute-phase proteinα1-ACT is a serine
protease inhibitor that co-deposits with human Aβ de-
posits [94]. Whereas some describeα1-ACT to en-
hance Aβ aggregation [104], others demonstrated an
inhibition of fibril formation [38], possibly reflecting
different effects ofα1-ACT depending on the molar
ratio betweenα1-ACT and Aβ [105]. However, as
mice do not possess anα1-ACT homologue [106], co-
deposition of this acute-phase protein in AD mouse
models is not to be expected. Only by creating double
transgenic mice for both humanα1-ACT and AβPP, it
was possible to study thein vivo role of α1-ACT on
Aβ aggregation [106]. Thus, it was demonstrated that
α1-ACT increased Aβ levels and plaque load in these
mice.

Thus, co-deposition of acute-phase proteins has been
studied in a few mouse models only and in these models
co-deposition with Aβ was restricted toα2M.

ICAM-1, cystatin C, and CLAC

Besides the above mentioned factors, there are sev-
eral more proteins that co-deposit with human Aβ, in-
cluding ICAM-1, the cysteine protease inhibitor cys-
tatin C, and CLAC. ICAM-1 is closely associated with
Aβ deposits in human AD brains, where it can be found
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Table 1
Association of proteins that co-deposit with senile plaques in AD with Aβ deposits in different mouse models for AD

Co-depositing factor AD mouse models Reference

Tg2576 PS/AβPP AβPP23a TgSwDIb AβPPswe/PS1dE9 AβPP-YAC

Heparan sulfate
proteoglycans
HS GAG
Perlecanc

Glypican-1
Agrin
Syndecans

+

−

+

−

±

+

±

±

±

[48–50]

ApoE
ApoJ

+ + + + +

+

[33,63–67]

Complement
C1q
C3

C3d
C4

C4d
C7

C9

+

+

+

+ ±/+

±/+

±/+

−

−

−

−/±

+

+

+

[65,85–89]

Acute phase
proteinsd

Serum amyloid P
α2-macroglobulin +

−

[65,103]

ICAM-1 + [109]
Cystatin-c + [110]
CLAC +e [116]

(− no co-deposition;± weak co-deposition;+ strong codeposition).
aonly compact Aβ deposits visible;bco-deposition with vascular Aβ; cexpression in senile plaques in AD is controversial;dmice do not possess
anα1-antichymotrypsin homologue [106];eco-deposition with Aβ40- and Thioflavin S-negative plaques.

in both classic and diffuse senile plaques in the cere-
brum [107] and, specifically, in classic deposits in the
cerebellum [108]. Similarly, co-deposition of ICAM-
1 has been described in Tg2576 mice [109], although
its expression is restricted to Thioflavin-S positive de-
posits.

Cystatin C has been found in both vascular and
parenchymal Aβ deposits in AD [110]. On its own, cys-
tatin C can form vascular amyloid deposits, as demon-
strated in Icelandic patients suffering from heredi-
tary cerebral hemorrhage with amyloidosis (HCH-
WA) [111]. Immunohistochemical analysis of 2-year
old Tg2576 mice revealed that, similar to the human
situation, cystatin C was detected in Aβ deposits of this
model [110]. Other AD mouse models have not yet
been investigated for the expression of cystatin C, but
the role of cystatin C in Aβ deposition has been studied
by creating AD mouse models that overexpress human
cystatin C. In these double transgenic mice, cystatin C
reduced Aβ deposition [112,113]. However, a reduc-
tion was also found when cystatin C was ablated [114].

By raising antibodies against extracted amyloid de-
posits, the co-deposition of CLAC with Aβ was discov-
ered [115]. A subsequentin vitro study demonstrated
that CLAC can bind Aβ, but only when Aβ is aggregat-

ed [115], making CLAC seemingly more selective in
its binding than co-depositing proteins such as HSPG
and ApoE. In brain material of AD patients CLAC was
found co-deposited with Aβ42-positive, but not with
Aβ40- and Thioflavin S-positive plaques [116]. In the
same study, a similar co-depositionof CLAC was found
in PS/AβPP mice and it was suggested that CLAC co-
deposited with Aβ in more AD mouse models (unpub-
lished data).

CONCLUSION

Some proteins known to co-deposit with human Aβ

also strongly associate with Aβ in mice, with ApoE be-
ing the most prominent. However, there are also many
factors that only partly co-deposit with Aβ in mice or
that do not co-deposit at all, in contrast to the situation
in AD brains (Table 1). For example, HSPG can be
detected in Aβ deposits in mice, but their expression
in Tg mouse brains is much more restricted than in hu-
mans. Since HSPG are known to stimulate Aβ aggre-
gation and stabilize Aβ deposits, it seems likely that
their limited association with Aβ deposits in mice is
one of the reasons that these deposits are less compact
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and easier to dissolve than their human equivalents. Of
the complement factors, only the early factors of the
cascade co-deposit with Aβ in mice, resulting in a less
efficient activation of the complement system and the
lack of formation of the MAC. The absence of a robust
complement activation, in turn, may explain the rela-
tive absence of neurodegeneration in mouse models for
AD. In conclusion, although several transgenic mouse
models are far from extensively studied for the associa-
tion of Aβ-associated proteins with plaques, it appears
that the composition of Aβ deposits in transgenic mice
is markedly different from human Aβ deposits.

The less pronounced association of the above-
mentioned factors may be a consequence of the rapid
development of AD pathology in mouse models as
compared to human AD patients. Indeed in transgenic
mice individual plaques can form within weeks [117]
or even within 24 h [118], therefore, there is prob-
ably simply not enough time to allow co-deposition
of these Aβ-associated proteins in the relatively con-
strained time period it takes for Aβ to accumulate in
mice. The incomplete replication of the expression of
Aβ-associated factors in mice and thus, the molecu-
lar composition of Aβ deposits in mice, may in turn
imply that the results of Aβ-targeted therapeutics will
likely be different in mice than in men. Indeed, there
are many discrepancies in the outcomes of therapeutic
interventions in mice and humans, with many human
trials demonstrating side-effects not seen in mice [92].
Therefore, when using AD mouse models to study Aβ

deposition or the effects of therapeutic agents on Aβde-
posits, it is necessary to consider the differences in Aβ

deposit composition between mice and humans when
translating findings in mouse models to the human sit-
uation.
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