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CREB Binding Protein Is Required for Both Short-Term and
Long-Term Memory Formation

Guiquan Chen,1 Xiaoyan Zou,1 Hirotaka Watanabe,1 Jan M. van Deursen,2 and Jie Shen1

1Center for Neurologic Diseases, Brigham and Women’s Hospital, Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, and
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CREB binding protein (CBP) is a transcriptional coactivator with histone acetyltransferase activity. Our prior study suggested that CBP
might be a key target of presenilins in the regulation of memory formation and neuronal survival. To elucidate the role of CBP in the adult
brain, we generated conditional knock-out (cKO) mice in which CBP is completely inactivated in excitatory neurons of the postnatal
forebrain. Histological analysis revealed normal neuronal morphology and absence of age-dependent neuronal degeneration in the CBP
cKO cerebral cortex. CBP cKO mice exhibited robust impairment in the formation of spatial, associative, and object-recognition memory.
In addition to impaired long-term memory, CBP cKO mice also displayed deficits in short-term associative and object-recognition
memory. Administration of a histone deacetylase inhibitor, trichostatin A, rescued the reduction of acetylated histones in the CBP cKO
cortex but failed to rescue either short- or long-term memory deficits, suggesting that the memory impairment may not be caused by
general reduction of histone acetyltransferase activity in CBP cKO mice. Further microarray and Western analysis showed decreased
expression of calcium-calmodulin-dependent kinase isoforms and NMDA and AMPA receptor subunits in the cerebral cortex of CBP cKO
mice. Collectively, these findings suggest a crucial role for CBP in the formation of both short- and long-term memory.

Introduction
Mutations in the presenilin genes are the major cause of famil-
ial forms of Alzheimer’s disease. Previous genetic analyses
have demonstrated that presenilins play essential roles in syn-
aptic function, memory, and neuronal survival (Yu et al.,
2001; Beglopoulos et al., 2004; Saura et al., 2004; Zhang et al.,
2009). Expression of CREB (cAMP responsive element bind-
ing protein) target genes and CREB-binding protein (CBP) is
reduced in the absence of presenilins (Saura et al., 2004). Fur-
thermore, the CBP promoter contains a putative RBP-J� (re-
combination signal-binding protein 1 for J-�) binding site,
raising the possibility that presenilins may regulate transcrip-
tion of CBP and CREB target genes through �-secretase-
mediated production of Notch intracellular domains, which
are translocated to the nucleus and relieve transcriptional sup-
pression by RBP-J� (Fortini, 2002).

CBP is a transcriptional coactivator with histone acetyltrans-
ferase (HAT) activity (Goodman and Smolik, 2000) and plays
essential roles during embryonic development (Tanaka et al.,
1997; Oike et al., 1999; Kung et al., 2000). Several lines of CBP

mutant mice with reduced CBP or HAT function have been re-
ported to exhibit defects in long-term memory and synaptic
plasticity, and administration of histone deacetylase (HDAC)
inhibitors rescues these defects (Alarcón et al., 2004; Korzus et al.,
2004; Wood et al., 2005). However, it was unclear whether CBP is
required for neuronal survival in the aging brain. To date, only
partial loss of function CBP mutants, such as CBP�/�, transgenic
(Tg) mice expressing truncated forms of CBP lacking the HAT
domain, or knock-in mice expressing triple mutations in the CBP
KIX domain, have been reported (Alarcón et al., 2004; Korzus et
al., 2004; Wood et al., 2005, 2006).

CBP has been implicated in a number of neurodegenerative
diseases, including Huntington’s disease (Ferrante et al., 2003;
Taylor et al., 2003; Bates et al., 2006; Rouaux et al., 2007; Pallos et
al., 2008) and amyotrophic lateral sclerosis (Rouaux et al., 2003,
2007). For example, deletion of one copy of CBP enhances
polyglutamine-induced neurodegeneration in C. elegans (Bates et
al., 2006), and upregulation of CBP rescues polyglutamine-
induced neurodegeneration in Drosophila (Taylor et al., 2003).
To test whether CBP is involved in presenilin-dependent mem-
ory and neuronal survival in the aging cerebral cortex, we gener-
ated CBP conditional knock-out (cKO) mice using the same Cre
line that was used for the generation of presenilin cKO mice (Yu et
al., 2001; Saura et al., 2004). The advantage of this approach is
that CBP or presenilins are inactivated in similar spatial and tem-
poral patterns in the adult cerebral cortex, permitting accurate
comparison of the phenotypes. CBP cKO mice also provide a
unique genetic model system, compared with the previously re-
ported partial loss-of-function mutants, to uncover the full ef-
fects of complete loss of CBP function in memory formation and
neuronal survival.
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Materials and Methods
Animals. Generation of floxed CBP ( fCBP/fCBP) mice has been de-
scribed previously (Kang-Decker et al., 2004). As recommended by the
Banbury Conference on genetic background in mice (Silva et al., 1997),
our laboratory routinely uses B6/129 hybrid background mice for behav-
ioral experiments, since the performance of this background is better
than that of B6 or 129 (Yu et al., 2001; Saura et al., 2004, 2005; Tabuchi et
al., 2009). To generate CBP cKO mice, we first crossed homozygous
fCBP/fCBP mice with �CaMKII-Cre Tg mice (Yu et al., 2001) to obtain
fCBP/�;CaMKII-Cre mice, which were then bred with fCBP/fCBP mice
to get fCBP/fCBP;CaMKII-Cre animals. The latter were bred with fCBP/
fCBP mice to get littermates for fCBP/fCBP (control) and fCBP/fCBP;
CaMKII-Cre (CBP cKO) mice. The mice used for fear conditioning and
object recognition were 3– 8 months old. Two separate cohorts of mice
(2–3 and 8 –10 months) were tested in water maze. The mice were kept on
7:00 A.M.–7:00 P.M. light cycle under conditions of constant humidity
and temperature (22°C). All the mice were group-housed (2– 4 per house
cage) throughout the experimental period and had ad libitum access to
food and water. Both male and female mice were used. A total of 151 mice
used for the behavioral study were handled twice a day (5 min/time) for
3 consecutive days by the experimenter (G. Chen). All of the behavioral
experiments were conducted during the light phase of the cycle, between
9:00 A.M. and 6:00 P.M. Different cohorts of mice were used for different
behavioral and biochemical purposes. All behavior experiments were
conducted in a genotype-blind manner. The genotype was decoded only
after the completion of the experiments and data analysis.

Northern blotting. Cortices were dissected on ice and placed in TRI-
Reagent (Sigma). Total RNA was then isolated from tissue homogenized
in Tri-reagent. Twenty micrograms of total RNA for each sample was
loaded on an RNA borate/formaldehyde gel and then transferred onto
Hybond-N membrane (GE Healthcare). The membrane was then
probed with a 32P-radiolabeled CBP cDNA fragment, washed, and ex-
posed to XB-1 film (Kodak). The membrane was then reprobed with a
32P-radiolabeled GAPDH cDNA fragment to normalize loading and
transfer.

Immunoblotting. Cortices, including both the neocortex and the hip-
pocampus, were dissected and homogenized together in cold radioim-
munoprecipitation assay lysis buffer [consisting of the following (in
mM): 50 Tris-HCl, pH 7.4, 150 NaCl, 1 EDTA plus 1% NP-40, and 0.5%
Triton X-100] containing protease and phosphatase inhibitors (Sigma)
(Saura et al., 2004, 2005). Lysates were cleared by centrifugation (12,000
rpm for 15 min). Normalized volumes of samples were resolved in 10%
SDS-PAGE, transferred to nitrocellulose membrane, and immunoblot-
ted using infrared (IR) dye-coupled secondary antibodies (goat anti-
rabbit IRdye800, goat anti-rabbit IRdye680, goat anti-mouse IRdye800,
goat anti-mouse IRdye680; Li-Cor). Image acquisition and data quanti-
tation were performed using Odyssey Infrared Imaging System (Li-Cor).
Primary antibodies used were as follows: anti-CBP (A22, 1:200), anti-
p300 (N15, 1:200), anti-histone H3 (1:200), anti-acetylated histone H3
(1:200), anti-histone H2B (1:100), anti-acetylated histone H2B (1:100),
anti-SynGAP (1:1000), anti-Synapsin (1:1000), anti-Rab3A (1:1000),
and anti-rabbit �-actin (1:500) (Cell Signaling Technology); anti-glial
fibrillary acidic protein (anti-GFAP; 1:500; Sigma); anti-CaMKK� (1:200),
anti-CaMKK� (1:200), anti-CaMKI� (1:200), anti-CaMKII� (1:200), anti-
CaMKII� (1:200), anti-CaMKII�, and anti-Valosin-containing protein (1:
200) (1:200) (Santa Cruz Biotechnology); anti-GluN1 (1:100), anti-GluN2A
(1:250), anti-GluA2 (1:1000), and anti-GluA3 (1:500) (Millipore Bioscience
Research Reagents); anti-PSD95 (1:2000; SYSY); anti-SNAP25 (1:1000;
Stressgen); and anti-mouse �-actin (1:30,000; Abcam).

Immunohistochemistry. Paraffin-embedded brain sections (10 �m)
were deparaffinized, alcohol dehydrated, and immunostained with
monoclonal or polyclonal antibodies raised against microtubule associ-
ated protein 2 (MAP2; 1:200) and synaptophysin (1:200), anti-GFAP
(1:500) (Sigma) and CBP (1:200; Santa Cruz Biotechnology). For fluo-
rescence immunostaining on MAP2 and synaptophysin, the brain sec-
tions were incubated with either Alexa Fluor 488 or 594 anti-mouse
secondary antibodies (Invitrogen) and then analyzed with a 510 confocal
laser scanning microscope (Zeiss) and a BX50 microscope (Olympus).

For MAP2 and synaptophysin staining, fields from the cortex and the
hippocampal CA1 area were collected from three sections per mouse.
The iris and gain levels were adjusted to obtain images with a pixel
intensity within a linear range. The images were transferred and analyzed
using ImageJ (NIH). The mean pixel intensity was calculated for each
image. For immunostaining on CBP, brain sections were incubated
with biotinylated secondary antibodies and developed by using the
peroxidase avidin– biotin reagent and the Vectastain Elite ABC kit
(Vector Laboratories).

Nissl staining and stereological neuron counting. Mice were killed by
CO2 and perfused transcardially with PBS. The brain was fixed in 10%
neutral buffered formalin for 2 h. Fixed brain was dehydrated and em-
bedded in paraffin. The left hemibrain was sectioned sagittally using a
sliding vibratome (Leica Microsystems). Serial sections (10 �m) were
baked at 58°C for 1 h. Sections were deparaffinized in histoclear and
rehydrated. Sections were rinsed in PBS for 5 min and soaked in 0.5%
cresyl violet for 12 min. Sections were rehydrated and then dehydrated.
After the sections were cleared in histoclear, they were coverslipped with
Fisher SP Permount (Fisher Scientific).

Cortical neuron counts were performed in six 10 �m cresyl violet-
stained sagittal sections spaced 400 �m apart using optical dissector
technique (Irizarry et al., 1997). The number of neurons in neocortex was
estimated using �12 optical dissectors. Each optical dissector was a 50 �
50 �m sampling box. Using a 100� oil-immersion lens, neurons with a
visible nucleolus were counted if they were not present in the initial plane
of focus, but came into focus as the optical plane moved through the
tissue. The estimation of total neurons was calculated by multiplying the
volume density of the neurons in the layers by the volume of the layers.
Neuron counts were reported for a single hemisphere. The coefficient of
error from the counting technique was �0.10.

The Morris water maze. The water maze was a circular pool, 160 cm in
diameter. During the hidden platform training, the platform (10 cm in
diameter) was kept submerged under water and maintained in the same
position. The mice were given training six trials per day (two trials per
block, �2 h interblock interval) for 5 d. During the 60 s training period,
if the mice were unable to locate the hidden platform, they were guided to
the platform by hand and allowed to remain on it for 30 s. The swimming
of the mice was monitored using an automated tracking system (HVS
Image). Following training d 5, the mice were subjected to a 60 s probe
trial in which the platform was removed and the mice were allowed to
search for it. In the visible platform test, the platform was raised above
water and marked by a black and white golf ball.

Contextual fear conditioning. The mice were placed into the condition-
ing chamber for 3 min before the onset of an unconditioned stimulus
(footshock; 1 s, 1 mA) to allow them to explore the testing chamber and
develop a representation of the context. After the footshock, the mice
were left in the chamber for additional 2 min and then returned to their
home cages. For short-term memory test, the mice were tested 30 or 60
min after a single footshock in the same conditioning chamber. For
long-term memory test, the mice were tested 24 h after a single footshock.
For remote memory test, the mice were tested 4 weeks after a single
footshock. Freezing responses were recorded and scored using the Freez-
eFrame automated system (Coulbourn Instruments).

Novel-object recognition. The novel-object recognition task was con-
ducted in an open-field chamber (42 cm � 42 cm). Mice were habituated
in the empty chamber for 2 d (15 min per day) before testing. The task
consisted of a sample phase and a choice phase. In the sample phase
(Ennaceur and Delacour, 1988; Chen et al., 2000), mice were allowed to
explore two identical objects placed into the chamber at fixed locations
for 10 min. Active exploration, i.e., sniffing and biting of the objects, was
scored. Several different sets of identical objects were used for different
delays. The objects measured �10 –15 cm in height and were washed in
ethanol (75%) after each trial. After the sample phase, the mice and the
objects were removed from the chamber and the mice were returned to
the home cage during the memory delays (1 or 24 h). In the choice phase,
a third copy of the earlier object was placed into the chamber at one
location and a new object at another. The mice were placed in the cham-
ber and allowed to explore for 10 min. Memory of the familiar object was
associated with increased exploration of the new object and a preference
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index (PI) was calculated using the formula
PI � 100 � (new object inspection time/total
inspection time).

Open-field test. VersaMax system from Ac-
cuScan Instruments was used to study locomo-
tor functions of the mice. Two 42 � 42 cm
Plexiglas chambers were set in a quiet labora-
tory room. The open-field chamber was di-
vided by 16 horizontal infrared beams from left
to right and 16 horizontal infrared beams from
front to back on the floor. The area 7 cm from
the walls was defined as marginal area. The area
10 cm away from the wall is defined as the cen-
tral area. The mice were allowed to get habitu-
ated in the experimental room for 30 min
before the test started. During the test, the
mouse was placed in the center of the open-
field chamber and allowed to ambulate in it for
15 min. After each testing trial, the chambers
were thoroughly cleaned to remove any odors
left by animals tested in a previous trial. The
total distance traveled and the time spent in the
marginal area by the animals during the 15 min
testing period was tracked by the VersaMax
system.

Rotarod test. The rotarod test was conducted
in the same experimental room for the open-
field test. The mice were placed in a neutral
position on a stationary 6-cm-diameter accel-
erating rotarod (Economex; Columbus Instru-
ments), which was equipped with individual
timers and allowed for four mice to be tested at
a time. Mice were first trained to stay on the rod
at a constant rotation speed of 5 rpm. Mice
unable to stay on the rod for 2 min were placed
back on the rod until they did not fall from the
rod for 2 min (pretraining). After successful
pretraining, mice were placed back on the rod
at a rotation speed of 5 rpm. The rotating speed was then increased at a
rate of 0.2 rpm/s. The latency to fall was measured. All mice were tested
for three trials in total on the same experimental day.

Prepulse inhibition. The mice were placed in startle chambers where
acoustic stimuli could be produced by a high-frequency speaker. The startle-
eliciting stimulus was a 50 ms noise pulse of 110 dB intensity. The pre-
pulse was a 50 ms of 80 dB intensity, presented 100 ms before the eliciting
stimulus. The standard test procedure consisted of a total of 50 trials
presented in counterbalanced order. Half of the trials were presented
with the eliciting stimulus alone and the other half with the prepulse
preceding the eliciting stimulus. The stimulus-alone trials served as the
baseline startle for the prepulse trials. The prepulse inhibition (PPI) was
obtained as the mean difference in startle amplitude between stimulus-
alone and prepulse trials and expressed as the percentage of the mean
stimulus-alone startle level. Intertrial interval was 30 s.

Trichostatin A treatment. Trichostatin A (TSA), purchased from Bi-
omol, was solubilized in dimethylsulfoxide (DMSO). CBP cKO mice
(TSA, n � 7; DMSO, n � 9) and control mice (DMSO, n � 9) were
treated with intraperitoneal injections of either TSA [2 �g/g body weight
(BW), a dose that was identical to what was previously used in Korzus et
al. (2004)] or DMSO once a day for 3 consecutive days. The contextual
fear conditioning test started on d 3. After the behavioral test was com-
pleted on d 4, the mice were killed and brain lysates were prepared for anal-
ysis of acetylated histone levels (�26 h after the footshock). A subgroup of
CBP cKO mice (n � 3) were treated with intraperitoneal injections of TSA (2
�g/g BW; 3 injections) and were killed �2 h after the last injection. The
experimenter (G. Chen) was blind to the genotype of mice and to the drug
status, which were coded by a third party (H. Zhao).

Microarray analysis. Total RNA was purified from the hippocampus of
CBP cKO and control mice using the TRI reagent (Sigma). RNA concen-
tration was determined by a spectrophotometer (ND-1000; NanoDrop).

RNA integrity was determined by 260/280 � 1.85–2.01 using the ND-
1000. Isolated RNAs were kept at �80°C until needed for analysis. Gene
expression profiling was performed with the GeneChip Mouse Genome
430 2.0 array (Affymetrix). RNAs (5 �g) were used for each array hybrid-
ization. Preparation of biotinylated cRNA, GeneChip hybridization,
staining, and scanning of the arrays were performed according to recom-
mended Affymetrix protocols by the Harvard Medical School, Partners
Healthcare Center for Personalized Genetic Medicine (Cambridge, MA;
http://www.hpcgg.org/Microarrays/overview.jsp).

Data analysis. Statistical analyses were performed using ANOVA to
measure effects on genotype, trial, day, and age, or any interaction effects.
Unless otherwise specified, two-tailed Student’s t test was conducted for
the pairwise comparisons in the behavioral and biochemical results. A
p � 0.05 is considered significant. All the data were reported as mean �
SE throughout.

Results
Generation of postnatal forebrain-specific CBP cKO mice
To generate postnatal forebrain-specific CBP cKO mice, we
crossed floxed CBP (fCBP/fCBP) mice (Kang-Decker et al., 2004)
with Cre Tg mice, in which Cre-recombinase is expressed under
the control of the �-calcium-calmodulin-dependent kinase II
(�CaMKII) promoter in excitatory neurons of the postnatal fore-
brain (Yu et al., 2001). To examine levels of CBP mRNAs in the
cortex of CBP cKO mice, we first conducted Northern analysis of
total RNA derived from the cortex of mutant and control mice
aged 2 months. We observed a dramatic reduction of CBP tran-
scripts in the cerebral cortex of CBP cKO mice ( p � 0.05) (Fig.
1A). In contrast, we did not find any significant change in CBP
mRNA levels in the cerebellum ( p � 0.3) (Fig. 1A), suggesting

Figure 1. Molecular characterization of forebrain-specific CBP cKO mice. A, Northern analysis of CBP transcripts. There is a
dramatic reduction on CBP mRNA levels in the cerebral cortex of CBP cKO mice (n � 3 per group, p � 0.05). There is no significant
change in CBP mRNA levels in the cerebellum ( p � 0.3). GAPDH serves as the internal control (C). B, Immunoblotting of CBP using
cortical lysates of CBP cKO and control mice at 2 months of age. CBP protein levels are significantly reduced in CBP cKO mice (n �
5 per group, p � 0.05). Valosin-containing protein (VCP) serves as loading controls. C, Immunoblotting of p300 using cortical
lysates of CBP cKO and control mice at 2 months of age. Protein levels of p300 are not significantly affected (n � 5 per group, p �
0.2). Valosin-containing protein serves as loading controls. D, Immunostaining of CBP using brain sections of control and CBP cKO
mice at 2 months of age (2� magnification). A cortical inset and a hippocampal inset are enlarged in E and F. E, Immunostaining
of CBP in the neocortex at 60�magnification. F, Immunostaining of CBP in the hippocampal CA1 area at 60�magnification. Scale
bar, 100 �m.
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that CBP is selectively inactivated in the cerebral cortex. We then
used an antibody raised against the N terminus of CBP for im-
munoblotting and found markedly decreased protein levels of
CBP in cortical lysates, which were prepared from both the neo-
cortex and the hippocampus (control, 100% � 14.7%; cKO,
52.8 � 10.1%; p � 0.05) (Fig. 1B). The residue amount of CBP in
cortical lysates is likely due to normal expression of CBP in inter-
neurons and/or glia, in which Cre is not expressed (Yu et al., 2001;
Saura et al., 2004; Tabuchi et al., 2009). To examine whether
inactivation of CBP has any effects on p300, a homolog of CBP

(Goodman and Smolik, 2000), we per-
formed Western analysis of p300 and
found normal levels of p300 in the cere-
bral cortex of CBP cKO mice (control,
100% � 7.5%; cKO, 97.9 � 7.7%; p � 0.2)
(Fig. 1C), suggesting that there is no com-
pensatory upregulation of p300 in the ab-
sence of CBP.

To determine the spatial inactivation
pattern of CBP in the brain of CBP cKO
mice, we performed immunohistochemi-
cal analysis at 2 months of age. Under a
low magnification (2�), it was already
clearly visible that pyramidal neurons in
the hippocampus and the neocortex of
control mice show strong CBP immuno-
reactivity, but this immunoreactivity is
lacking in pyramidal neurons of the CBP
cKO cortex (Fig. 1D). Under a higher
magnification (60�), abundant CBP-
positive staining was clearly seen in cell
bodies of pyramidal neurons in the neo-
cortex of control mice, whereas little
staining was detected in those of CBP cKO
mice (Fig. 1E). Similarly, in the hip-
pocampus, only cell bodies of pyramidal
neurons of control mice showed intense
CBP immunoreactivity (Fig. 1F). In con-
trast, there was no detectable change in
CBP-positive staining in the cerebellum
of CBP cKO mice (data not shown). Col-
lectively, these data indicate that the CBP
gene was successfully inactivated in exci-
tatory neurons of the cortex in CBP cKO
mice.

No age-related cortical
neurodegeneration in CBP cKO mice
Previous studies showed that CBP�/�

mice display growth retardation (Oike et
al., 1999). To determine whether condi-
tional inactivation of CBP in the postnatal
forebrain affects general physical growth,
we examined body weight and did not
find any significant changes in CBP cKO
mice at 2– 8 months, indicating that re-
striction of CBP inactivation to the post-
natal forebrain does not cause growth
retardation. To determine whether condi-
tional loss of CBP in the cerebral cortex
affects neuronal morphology, we con-
ducted histological analysis at 2 months of
age. Nissl staining revealed no abnormal
morphology in the cerebral cortex of CBP

cKO mice at this age (Fig. 2A). We used an unbiased stereological
neuron counting method to determine cortex volume and total
cortical neuron number in 2- to 3-months-old CBP cKO mice
and found no significant changes in cortex volume (n � 3– 6 per
group, p � 0.2) (Fig. 2B) and total cortical neuron number (n �
3– 6 per group, p � 0.2) (Fig. 2E) in CBP cKO mice.

To examine whether loss of CBP function affects neuronal and
synaptic morphology, we used markers for dendrites and presyn-
aptic terminals and performed immunohistochemical analysis.

Figure 2. Normal brain morphology and no age-related neurodegeneration in CBP cKO mice. A, Nissl staining from paraffin-embedded
brain sections of control and CBP cKO mice. Representative images for the cortex and the hippocampus are shown for control and CBP cKO
mice. Scale bar, 50 �m. B, Cortical volumes for control and CBP cKO mice. Stereological neuron counting was used to measure the cortex
volumeat2–3and9 –10monthsofage.TherewasnosignificantdifferenceonthecortexvolumebetweenCBPcKOandcontrolmiceat2–3
or 9 –10 months of age ( p�0.1). NS, Not significant. C, MAP2 staining for the neocortex and the hippocampus from control and CBP cKO
mice. There was no significant difference between control and CBP cKO mice. Scale bars, 50 �m. D, Synaptophysin staining for the
neocortex and the hippocampus from control and CBP cKO mice. There was no significant difference between control and CBP cKO mice.
Scale bars, 50 �m. E, Total cortical neuron number for control and CBP cKO mice. There was no significant difference between control and
CBP cKO mice either at 2–3 or 9 –10 months ( p � 0.5). F, Western analysis of GFAP in CBP cKO and control (C) mice at 2–3 and 9 –10
months of age. Top, Immunoblotting of GFAP and �-actin. Protein levels of GFAP were normalized to �-actin. There was no significant
difference between the two genotypes at either age ( p � 0.1).
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Using an antibody against MAP2, a dendritic marker, we exam-
ined dendritic structure in the neocortex and the hippocampus.
CBP cKO mice showed no changes on MAP2 staining in the
neocortex or the hippocampus (Fig. 2C). Quantitative analysis
showed no difference in optical density ( p � 0.1) in the neocor-
tex or the hippocampal CA1 area between the two genotypic
groups. We then used an antibody against synaptophysin, a pre-
synaptic marker, and performed fluorescence immunostaining.
We did not find any significant changes on synaptophysin immu-
nostaining in the neocortex or the hippocampus ( p � 0.2) (Fig.
2D). Quantitative analysis further indicated no significant differ-
ence in optical density ( p � 0.2) in the neocortex or hippocampal
CA1 area between the two genotypic groups. These results indi-
cate normal brain cytoarchitecture, neuronal number, and mor-
phology in CBP cKO mice at this age.

To investigate whether loss of CBP function in the forebrain
affects neuron survival in older mice, we performed stereological
analysis on Nissl-stained brain sections at 9 –10 months. We
found no significant changes in the cortex volume (n � 6 per
group) (Fig. 2B) or the total cortical neuron number (Fig. 2E) in
CBP cKO mice, indicating no significant age-related cortical neu-
ronal loss. We further examined signs of gliosis, which is often
accompanied by neuronal loss (Beglopoulos et al., 2004; Saura et
al., 2004; Tabuchi et al., 2009). We performed Western analysis
on levels of GFAP, a marker for reactive astrocytes. Our results
showed no significant changes on GFAP levels in CBP cKO mice
at either 2–3 (control, 100 � 2.5%; cKO, 95.0 � 2.1%; p � 0.15)
(Fig. 2F), 9 –10 (control, 100 � 5.1%; cKO, 96.1 � 4.3%; p �
0.5), or 15 (control, 100 � 4.8%; cKO, 93.9 � 5.7%; p � 0.5)
months of age. We also performed immunohistochemical analy-
sis on GFAP using brain sections of CBP cKO mice at 2, 10, and 15
months of age (n � 3– 6 per group). There were no significant
increases in GFAP immunoreactivity in the cortex of CBP cKO
mice at any of these ages (data not shown), confirming the ab-
sence of gliosis in CBP cKO brains. In contrast, striking cortical
atrophy, astrocytosis, and neuronal loss were found in the cere-
bral cortex of conditional KO mice lacking presenilins (Beglo-
poulos et al., 2004; Saura et al., 2004) or nicastrin (Tabuchi et al.,
2009) at 6 months of age. These results indicate that conditional
inactivation of CBP in the adult cerebral cortex does not cause
age-related neurodegeneration, suggesting that CBP is not a key
mediator for neuronal survival promoted by presenilin or its
�-secretase activity.

Impaired spatial learning and memory in CBP cKO mice
To examine whether a complete loss of CBP in excitatory neurons
affects spatial learning and memory, we tested two different co-
horts of CBP cKO mice using the Morris water maze task, one at
2–3 and the other at 8 –10 months. The mice were trained to learn
the location of a hidden platform in the water maze for 5 consec-
utive days. First, we performed an ANOVA to evaluate overall
effects for all mice. The ANOVA revealed no significant age effect
(F � 1) or age � genotype interaction effect (F � 1). Therefore,
we pooled the data for the two different ages together for each
genotype (Figs. 3A, acquisition curve). The ANOVA showed a
highly significant within-subject effect on training days (F �
53.2, df 4/180, p � 0.0001), suggesting effective learning during
training. Interestingly, the overall ANOVA also revealed a highly
significant main genotype effect (F � 15.0, df1/45, p � 0.0005),
suggesting impaired spatial learning in CBP cKO mice.

After training, the mice were subjected to a probe trial, in
which the hidden platform was removed from the water maze. To
compare the time spent in the target quadrant and the other three

quadrants (Fig. 3B), we conducted an overall ANOVA for all
mice. We found a significant quadrant effect (F � 14.5, df3/135,
p � 0.001), suggesting a searching preference for the target quad-
rant after the training. We then compared the time spent in the
target quadrant between the control and cKO mice. We found a
significant genotype effect (F � 4.2, df1/47, p � 0.05), suggesting
impaired spatial memory in CBP cKO mice. We further com-
pared the number of platform crossings during the probe trial
between the control and cKO mice. Again, we found a significant
genotype effect (F � 4.1, df1/47, p � 0.05) (Fig. 3C), confirming
impaired spatial memory in CBP cKO mice.

Impaired short- and long-term associative and
object-recognition memory in CBP cKO mice
Previous studies using partial loss-of-function mutants suggest
that CBP is not required for short-term memory formation (Oike
et al., 1999; Bourtchouladze et al., 2003; Alarcón et al., 2004;
Korzus et al., 2004; Wood et al., 2005). However, it was unknown
whether a complete loss of CBP in the cerebral cortex affects
short-term memory. Since memory is acquired during several
days of training, it is difficult to use the water maze protocol to
differentiate short- and long-term memory. To distinguish the
role of CBP in short- and long-term memory formation, we used
contextual fear conditioning and novel-object-recognition tasks,
both of which allow assessment of these two types of memory.

In contextual fear conditioning (CFC), a well estab-
lished behavioral task known to be dependent on intact amyg-
dala and hippocampus (Phillips and LeDoux, 1992), robust
hippocampus-dependent associative memory can be acquired in
a single trial; thus, both short- and long-term memory can be
assessed. To examine long-term fear memory, we trained a total

Figure 3. Impaired spatial learning and memory in CBP cKO mice. A, Escape latency for CBP
cKO and control mice (acquisition curves). The animals were trained using a hidden platform
task in the Morris water maze for 5 consecutive days. CBP cKO mice show significantly longer
latency in finding the hidden platform than control animals. B, Quadrant occupancy of the
water maze during a probe trial in CBP cKO and control mice. A probe trial was conducted 2 h
after the training. The animals were allowed to spend 60 s searching for the location of the
hidden platform. CBP cKO mice spent significantly less time in the target quadrant than control
animals. AL, Adjacent left quadrant; T, target quadrant; OP, opposite quadrant; AR, adjacent right
quadrant. C, Platform crossings in different quadrants of the water maze during a probe trial in CBP
cKO and control mice. CBP cKO mice show significantly fewer number of crossings for the location of
the platform in the target quadrant than control animals (*p � 0.05, ***p � 0.005).
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of 18 adult naive mice in the conditioning chamber at a 24 h
retention interval. Control and cKO mice exhibited no difference
in responses to the shock, as all the mice showed comparable
levels of vocalization and running immediately after the shock.
CBP cKO mice did not show different freezing levels during the
training session ( p � 0.1) (Fig. 4A). However, cKO mice dis-
played significantly less freezing than littermate controls during
the testing session (control, 59.3 � 12.2%; cKO, 24.0 � 7.4%;
p � 0.025) (Fig. 4 A), suggesting impaired long-term memory.
We further tested whether loss of CBP affects remote memory by
examining a different cohort of cKO mice. One single footshock
was applied to a total of 16 naive mice and remote memory was
examined 4 weeks later. Although CBP cKO mice did not differ
from the controls in freezing responses during the training ses-
sion ( p � 0.15) (Fig. 4B), they exhibited markedly less freezing
during the testing session compared with control mice (control,
51.9 � 8.2%; cKO, 4.8 � 1.9%; p � 0.0001) (Fig. 4B).

To compare the performance of the
mice at the two long-term retention inter-
vals in the CFC, we performed an overall
ANOVA. The overall ANOVA revealed
not only a highly significant genotype ef-
fect (F � 23.3, df 1/30, p � 0.0001) but
also a significant interval effect (F � 4.3,
df 1/30, p � 0.05). Separate ANOVAs for
each genotype showed a significant inter-
val effect only in the cKO groups (F � 5.2,
df1/16, p � 0.05), suggesting an interval-
dependent decline of memory (data not
shown for the control groups). The ability of
CBP cKO mice to retain memory declines
with time, as CBP cKO mice exhibit basal
levels of freezing responses after 4 weeks.

We also performed a novel-object-
recognition task (Ennaceur and Delacour,
1988). CBP cKO mice and littermate con-
trols were allowed to explore objects for
10 min during the sample and choice
phases. Twenty-four hours after the train-
ing (sample phase), we found that CBP
cKO mice showed significantly reduced
level of PI to the novel object during the
choice phase (control, 76.7 � 2.3%; cKO,
58.9 � 3.4%; p � 0.001) (Fig. 4C). There
was no significant difference during the
sample phase (control, 49.9 � 1.3%; cKO,
51.1 � 0.9%) (Fig. 4C). These data further
suggest impairment of long-term recogni-
tion memory in CBP cKO mice.

To determine whether CBP is required
for short-term memory, we tested CBP
cKO and control mice in both the CFC
and novel-object-recognition tasks. We
used two different retention intervals (30
and 60 min) in the CFC. First, we applied
a single footshock and examined freezing
responses 30 min after the shock. A total
of 16 naive adult mice were tested. Inter-
estingly, we found that CBP cKO mice
spent significantly less time freezing than
control mice during the testing session
(control, 57.9 � 7.3%; cKO, 23.1 � 6.0%;
p � 0.005) (Fig. 5A). Second, we applied a

single footshock to another cohort of naive mice and measured
freezing responses 60 min later. Again, the cKO group froze sig-
nificantly less than the control (control, 54.3 � 5.8%; cKO,
30.7 � 4.1%; p � 0.005) (Fig. 5B). Together, these results dem-
onstrate that short-term associative memory is impaired in CBP
cKO mice.

In the object-recognition task, we further performed a 1 h
retention delay experiment. We found that CBP cKO mice exhib-
ited significantly reduced levels of preference to the novel object
during the testing phase (control, 73.3 � 1.2%; cKO, 61.9 �
2.8%; p � 0.005) (Fig. 5C), but showed unchanged preference
during the training phase (control, 49.9 � 1.0%; cKO, 49.8 �
0.7%; not significant) (Fig. 5C). These results suggest that
short-term memory for object recognition is also impaired in
CBP cKO mice. These results together provided the first ex-
perimental support for an essential role of CBP in short-term
memory formation.

Figure 4. Impaired long-term memory in CBP cKO mice. A, Percentage of time spent freezing for CBP cKO and control mice. The
animals received one single footshock at 1 mA intensity for 1 s during the training session. There is no significant difference in the
percentage of time freezing between the two genotypic groups ( p � 0.1). The mice were returned to the conditioning chamber
24 h after the footshock. CBP cKO mice showed significantly less time freezing than the control during the testing session. *p �
0.05. B, Percentage of time spent freezing for CBP cKO and control mice. There is no significant difference in percentage of time
freezing between the two genotypic groups during the training session ( p � 0.1). CBP cKO mice displayed significantly less time
freezing than the control during the testing session. ****p � 0.0001. C, PI for CBP cKO and control mice at a 24 h retention delay
using a novel-object-recognition task. The animals spent equal amounts of time exploring objects during the sample phase.
However, CBP cKO mice spent significantly less time inspecting the novel objects than the control did during the choice phase at
24 h posttraining. ****p � 0.001. PI � (time spent on novel object/total inspection time for objects) � 100. NS, Not significant.

Figure 5. Impaired short-term memory in CBP cKO mice. A, Percentage of time spent freezing at 30 min delay. The
animals received one single footshock at 1 mA intensity for 1 s during the training session. There was no significant
difference in the percentage of time freezing between the two genotypic groups ( p � 0.1). CBP cKO mice exhibit
significantly less time freezing than the control during the testing session 30 min after the footshock. ***p � 0.005. B,
Percentage of time spent freezing after a 60 min delay. There was no significant difference in the percentage of time
freezing between the two genotypic groups during the training session ( p � 0.1). CBP cKO mice showed significantly less
time freezing than the control mice did during the testing session. ***p � 0.005. C, Preference index for CBP cKO and
control mice at a 1 h retention delay using object-recognition task. The animals spent an equal amount of time exploring
objects during the sample phase. However, CBP cKO mice spent significantly less time inspecting the novel objects than the
control mice did during the choice phase at 1 h posttraining. ***p � 0.005.
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Unimpaired sensorimotor functions in CBP cKO mice
As abnormal sensorimotor functions, including hyperactivity,
high level of anxiety, and impaired vision acuity, may signifi-
cantly affect performance in the contextual fear conditioning
(Ikegami et al., 2000) and the water maze (Chen et al., 2007), we
further tested whether memory deficits in CBP cKO mice could
be secondary to sensorimotor or locomotor abnormalities.
Therefore, we examined locomotion, anxiety level, sensorimotor
functions, and motor coordination in these mice.

To examine locomotor ability, we conducted an open-field
task using mice 2–3 and 8 –10 months old. We examined total
distance traveled and thigmotaxis (time spent in the marginal
area proximal to the walls) during the 15 min testing period. An
overall ANOVA revealed no significant effects on genotype (F �
2.2, df 3/49, p � 0.1) or genotype � age interaction (F � 2.3, df
1/49, p � 0.1). Both genotypic groups traveled equivalent dis-
tance in the open field (control, 14.8 � 1.2 m; cKO, 13.4 � 1.5 m;
p � 0.5), suggesting unimpaired locomotor ability. We also ana-
lyzed thigmotaxis and the overall ANOVA showed no significant
effects on genotype (F � 1) and genotype � age interaction (F �
1) (control, 72.9 � 3.5%; cKO, 73.2 � 4.5%; p � 0.5), suggesting
unimpaired level of anxiety in the open field in CBP cKO mice.

To examine sensorimotor functions in the water maze, we
first analyzed thigmotaxis (time spent in the area 10 cm within
the walls) during the hidden platform training (Fig. 6A). We
observed a highly significant within-subject effect on training
days (F � 53.5, p � 0.001), confirming improvement of learning
across days. However, we did not find any significant effects on
genotype (F � 1) or genotype � age interaction (F � 1), suggest-
ing that CBP cKO mice showed normal anxiety level in the water
maze. Second, we conducted a visible cue task in the water maze
to assess sensorimotor functions and basic learning. After the
hidden platform training was complete, a subset of the animals
was trained for a total of four trials in the cue task. Although we
observed a highly significant within-subject effect on trials (F �
6.0, df 3/87, p � 0.001) (Fig. 6B), we did not find any significant
effects on genotype (F � 2.3, df 1/29, p � 0.1), age (F � 2.3, df
1/29, p � 0.1), or genotype � age interaction (F � 1), suggesting
normal vision acuity and unimpaired basic leaning ability in CBP
cKO mice.

To examine whether a complete loss of CBP function in exci-
tatory neurons affects motor coordination, we conducted a ro-
tarod task. We found that CBP cKO mice stayed on the rotating
rod for as long as control mice did (F � 1) (Fig. 6C), suggesting
unimpaired motor coordination. We then performed a startle
reflex task to measure PPI using CBP cKO mice at 2–3 and 8 –10
months of age. We did not observe any significant effects of PPI
on genotype (F � 2.4, p � 0.1; data not shown) or genotype � age
interaction (F � 1). In summary, these data suggest that CBP
cKO mice display normal locomotor functions in the open field
and unimpaired sensorimotor functions in the water maze, ro-
tarod, and startle reflex.

Effects of a HDAC inhibitor, TSA, on memory impairment in
CBP cKO mice
Recent studies have shown that use of HDAC inhibitors was able
to reverse the long-term memory impairment in CBP�/� mice
and CBP Tg mice expressing truncated CBP lacking the HAT
domain (Alarcón et al., 2004; Korzus et al., 2004; Wood et al.,
2005), suggesting that the memory impairment is caused by the
reduced HAT activity in these mice. To test whether the short-
and long-term memory impairment observed in CBP cKO mice
is also due to reduced HAT activity, we treated CBP cKO mice

with a HDAC inhibitor, TSA (Korzus et al., 2004). TSA was daily
administered into CBP cKO mice for 3 d and the mice were
subjected to the contextual fear conditioning test. On the third
day, a footshock was given to the mice �1 h after the last TSA
injection. Short- and long-term memory was assessed 1 and 24 h
after the footshock (Fig. 7A). No significant differences in freez-
ing responses were observed between the TSA- and vehicle (veh)-
treated groups either 1 h (cKO-veh, 29.7 � 7.2%; cKO-TSA,
19.8 � 5.7%; not significant) (Fig. 7B) or 24 h (cKO-veh, 29.8 �
4.4%; cKO-TSA, 36.5 � 7.8%; not significant) (Fig. 7B) after the
training session. Compared with control mice, CBP cKO mice,
including TSA- and vehicle-treated, showed significantly re-
duced percentages of time spent in freezing 1 (control, 52.1 �
5.1%; cKO, 25.4 � 7.2%; p � 0.005) (Fig. 7C) and 24 h (control:
65.5 � 4.8%; cKO, 32.7 � 6.3%; p � 0.00001) (Fig. 7C) following
the training session. These results indicate that TSA treatment did
not improve short- or long-term memory impairment in CBP
cKO mice.

Figure 6. Unimpaired locomotor and sensorimotor functions in CBP cKO mice. A, Thig-
motaxis (percentage time spent in the area 10 cm within the walls) during the hidden
platform training. The mice were tested at 2–3 and 8 –10 months of age. There were no
significant differences in genotype (control, n � 24; CBP cKO, n � 25; F � 1), age (F �
3.6, p � 0.05), or genotype � age interaction (F � 1) between CBP cKO and control mice.
The data for two ages were pooled together for each genotype. B, Performance on a cued
task in the water maze. A subset of CBP cKO and control mice were examined for four trials
using a visible platform. There were no significant differences in genotype (control, n �
16; CBP cKO, n � 17; F � 1.3, p � 0.2), age (F � 2.4, p � 0.1), or genotype � age
interaction (F � 1) between CBP cKO and control mice. C, Rotarod performance in CBP cKO
and control mice. The ANOVA showed a significant effect in training trials (F � 8.8, p �
0.001), suggesting effective motor learning across trials. However, there was no signifi-
cant difference between the two genotypic groups (control, n � 25; CBP cKO, n � 28) on
latency to fall from the rotarod (F � 1).
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To determine the effect of TSA treatment on histone acetyla-
tion levels, we measured levels of acetylated histones and total
histones using cortical lysates obtained from vehicle- and TSA-
treated mice. Western analysis showed that relative levels of
acetylated histone H3 (AcH3) and acetylated histone H2B
(AcH2B) to total histones in the cortex of CBP cKO mice are
significantly lower compared with control mice ( p � 0.05) (Fig.
7D). Following the TSA treatment, relative levels of AcH3 and
AcH2B to total histones were much higher ( p � 0.0001) (Fig.
7D). No significant differences of total histones H3 and H2B were
found among the groups. These results demonstrate that TSA
treatment fully rescued and dramatically improved the reduction
of histone acetylation in CBP cKO mice.

Decreased expression levels of calcium-calmodulin-dependent
kinases and glutamate receptors in CBP cKO mice
To further explore how CBP is involved in the regulation of
memory formation, we conducted gene-chip microarray analysis
using mRNAs isolated from the hippocampus of CBP cKO and
control mice. Consistent with the reported roles of CBP in tumor
suppression, cell differentiation, and cell cycle regulation (Goodman
and Smolik, 2000), we found that expression of many transcrip-
tion factors for genes involved in these processes is reduced in the
absence of CBP, suggesting that CBP regulates expression of these
transcription factors (Table 1).

Interestingly, expression of a number of calcium-calmodulin-
dependent kinases (CaMKs) and excitatory glutamate receptors,
which are well known to play critical roles in learning and mem-
ory (Mayford et al., 1996; Tsien et al., 1996; Mayford and Kandel,
1999; Martin et al., 2000), is also reduced in the hippocampus of
CBP cKO mice. Specifically, levels of mRNAs for many CaMKs,
including CaMK1�, CaMKII�, CaMKII�, and CaMKII� (Table
2), NMDA receptors, and AMPA receptors (Table 3), are re-
duced. Levels of postsynaptic density protein (PSD), such as
PSD93 and PSD95, and glutamate receptor interacting proteins,
including Grid1, Grik5, Grip1, and Grid2ip, are also reduced
(Table 3). To validate these findings, we performed immunoblot-
ting to compare protein levels. We found significantly reduced
protein levels for CaMK1� (control, 100% � 5.2%; cKO, 71.7 �
4.9%; p � 0.005) (Fig. 8), CaMKII� (control, 100% � 1.6%;
cKO, 77.6 � 2.0%; p � 0.00001), CaMKII� (control, 100% �
4.6%; cKO, 75.1 � 2.9%; p � 0.001), and CaMKII� (control,
100% � 8.3%; cKO, 74.3 � 1.7%; p � 0.005). We also found a
significant reduction on CaMKK� levels (control, 100% � 3.9%,
cKO; 66.2 � 3.7%; p � 0.0001) (Fig. 8) and a small decrease on
CaMKK� levels (control, 100% � 2.9%; cKO, 91.0 � 2.9%; p �
0.05) in CBP cKO mice.

We further detected significantly reduced protein levels on
NMDA1 (GluN1) receptor (control, 100% � 15.4%; cKO,
66.5 � 6.3%; p � 0.05) (Fig. 9), NMDA2A (GluN2A) receptor
(control, 100% � 10.3%; cKO, 73.6 � 5.6%; p � 0.01), AMPA2
(GluA2) receptor (control, 100% � 4.9%; cKO, 77.0 � 3.9%; p �
0.01), and AMPA3 (GluA3) receptor (control, 100% � 4.0%;
cKO, 79.6 � 3.7%; p � 0.005). We found that PSD95 (control,
100% � 4.1%; cKO, 70.5 � 3.3%; p � 0.001) (Fig. 9) and Syn-
GAP (control, 100% � 6.5%; cKO, 57.2 � 4.6%; p � 0.00001)
protein levels were also significantly reduced. However, we did
not find significant changes on many presynaptic proteins, such
as SNAP25, Snapsin, or Rab3A in CBP cKO mice (data not
shown).

Discussion
CBP is a transcription coactivator (Goodman and Smolik, 2000).
CBP is implicated in cell death in neurodegenerative diseases
(Ferrante et al., 2003; Taylor et al., 2003; Bates et al., 2006;
Rouaux et al., 2007; Pallos et al., 2008) and in mental retardation
in Rubinstein-Taybi syndrome (Petrif et al., 1995; Oike et al.,
1999). However, it remains unknown whether CBP is required
for protection of mature neurons and formation of different
types of memory. Because germline deletion of the CBP gene
causes embryonic lethality (Tanaka et al., 1997; Yao et al., 1998;
Oike et al., 1999), we used the Cre-loxP system to generate viable
CBP cKO mice. Unlike partial loss-of-function CBP�/� (Oike et
al., 1999; Alarcón et al., 2004) and dominant-negative CBP
transgenic mice (Korzus et al., 2004; Wood et al., 2005), CBP
inactivation is complete and restricted to excitatory neurons

Figure 7. Effects of TSA treatment on memory and histone acetylation in CBP cKO mice. A,
Experimental design. The mice were treated with either TSA or DMSO for 3 d. On d 3, a footshock
was given to the mice during training session of the CFC task. The mice were tested 1 (to assess
short-term memory) and 24 h (to assess long-term memory) after the shock. B, Percentage of
time spent freezing for TSA- and vehicle-treated CBP cKO mice. There were no significant dif-
ferences in the percentage time of freezing between the two treatment groups during the
training session, 1 and 24 h after the shock ( p�0.5). C, Percentage of time freezing for CBP cKO
and control mice. The data for the two CBP cKO groups were pooled together. There were
significant differences in the percentage of time freezing between the control and cKO groups 1
and 24 h testing sessions. ***p � 0.005. D, Western analysis for protein levels of acetylated
histones AcH3 and AcH2B. Top, Immunoblotting of AcH3 and AcH2B. Protein levels were nor-
malized to �-actin. Significant reductions in levels of AcH3 (control, 100 � 12.6%; cKO-veh,
56.3 � 8.9%; p � 0.025; n � 8 per group) and AcH2B (control, 100 � 8.2%; cKO-veh, 53.0 �
4.3%; p � 0.005) are seen in vehicle-treated CBP cKO mice. By contrast, treatment of TSA
significantly enhances levels of AcH3 (cKO-TSA, 220.9 � 12.9%; p � 0.0001) and AcH2B
(cKO-TSA, 153.7 � 21.7%; p � 0.0001) in TSA-treated CBP cKO mice. *p � 0.05; ***p �
0.005; ******p � 0.0001.
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of the adult cerebral cortex in CBP cKO mice (Fig. 1). We
found that loss of CBP function in the adult cortex does not
cause age-dependent neurodegeneration up to 15 months of
age (Fig. 2 for 2–10 months; data not shown for 15 months).
However, CBP cKO mice exhibit robust impairment in short-
and long-term memory in multiple hippocampus-dependent
memory paradigms (Figs. 3–5). Restoration of the reduced
level of histone acetylation by HDAC inhibitors failed to res-

cue impaired short- and long-term memory (Fig. 7). Our fur-
ther microarray followed by Western analysis showed that
expression of CaMK isoforms and glutamate receptor sub-
units was decreased (Figs. 8, 9; Tables 2, 3). Collectively, our
study demonstrated that CBP is required for both short- and
long-term memory, and that CBP likely promotes memory
formation through its transcriptional activation of genes im-
portant for learning and memory.

Table 1. Downregulated gene expression on transcription factors in CBP cKO mice

Classification Gene description Relative level GenBank access number

Tumor suppressor Cyclin D binding myb-like transcription factor 1 10.6% BB248138
Oct2.4 transcription factor 22.1% X57939.1
Transcription factor AP-2, gamma (Tcfap2c) 32.2% NM_009335.1
Transcription factor 7, T-cell specific (Tcf7) 39.4% NM_009331.1
Transcription factor P45 NF-E2 (Nfe2) exons 1 through 3 43.7% L09600.1
Thyroid transcription factor 1 (Titf1) 55.3% NM_009385.1
Transcription factor Oct-1 isoform 7 (Pou2f1) 55.3% AF095460.1
Transcription factor AP-2, alpha (Tcfap2a) 63.3% AI507504
NK-3 transcription factor, locus 1 (Nkx3-1) 66.6% NM_010921.1
Oct2.3 transcription factor 66.9% X57938.1

Cell differentiation E74-like factor 4 (ets domain transcription factor) 27.3% BF578163
Homeobox transcription factor NKX2-3 (Nkx2-3) 33.8% AF202036.1
GATA binding protein 5 (Gata5) 35.9% NM_008093.1
HMG-box transcription factor TCF4B (Tcf4) 36.4% AF107298.1
NK2 transcription factor related, locus 3 42.2% Y11117.1
Transcription factor Genesis (Foxd3) 58.9% U41047.1
Transcription factor AP-2delta 63.3% AF421891.1
Trans-acting transcription factor 6 66.7% BF464465
NK2 transcription factor related, locus 5 (Nkx2-5) 68.3% NM_008700.1
Transcription factor AP-2 beta 72.2% AV334599
Nuclear transcription factor-Y alpha 73.5% D78642.1
Myelin transcription factor 1 (Myt1) 74.0% NM_008665.1
POU domain, class 3, transcription factor 4 (Pou3f4) 75.4% NM_008901.1
GATA binding protein 4 (Gata4)
Met-mesencephalon-olfactory transcription factor 1 (Ebf2)

77.5%
77.7%

NM_008092.1
U71189.1

Transcription factor NF 1 mRNA (Nfic) 77.7% AF358459.1
Insulin expression ISL1 transcription factor, LIMhomeodomain, (Islet-1) 39.5% BQ176915

LIM homeobox transcription factor 1 alpha (Lmx1a) 54.7% NM_033652.1
ISL1 transcription factor, LIMhomeodomain (Isl1) 58.7% NM_021459.1

Others pituitary specific transcription factor 1 (Pit1) 30.6% NM_008849.1
Transcription factor kA1 (A7) 35.0% D29919.1
Transcription factor NFAT1-D
Helix-loop-helix transcription factor (Hxt)

38.2%
43.8%

AF289078.1
U43714.1

Transcription factor GATA-4
Prostate specific ets transcription factor (Pse-pending)

48.7%
50.2%

AB075549.1
NM_013891.1

Spalt transcription factor 55.8% X97581.1
Basic transcription factor 3 57.4% AW556975
POU domain, class 3, transcription factor 2 (Pou3f2) 58.6% NM_008899.1
Pre B-cell leukemia transcription factor 2 (Pbx2) 63.5% NM_017463.1
Homeodomain transcription factor (Nkx6-1)
Activating transcription factor 4

65.7%
66.9%

AF357883.1
AV026735

General transcription factor II A, 1-like factor (Gtf2a1lf)
Transcription factor Sox6

68.9%
79.0%

NM_023630.1
AJ010605.1

Forkheadwinged-helix transcription factor 2 (Foxp2) 79.2% AY079003.1

Table 2. Downregulated gene expression on Calm, CaMK, and CaMKK

Classification Gene description Relative level GenBank access number

Calm Calmodulin 4 (Calm4) 54.7% NM_020036.1
CaMK Calcium/calmodulin-dependent protein kinase I gamma (CaMK1�) 55.1% AF428262.1

Calcium/calmodulin-dependent protein kinase II beta (CaMKII�) 92.5% NM_007595.1
Calcium/calmodulin-dependent protein kinase II delta (CaMKII�) 74.3% BM239047
Calcium/calmodulin-dependent protein kinase II gamma (CaMKII�) 84.2% BC025597.1

CaMKK Calcium/calmodulin-dependent protein kinase kinase alpha (CaMKK�) 62.5% NM_018883.1
Calcium/calmodulin-dependent protein kinase kinase beta (CaMKK�) 63.5% BC023103.1
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CBP is not required for neuronal survival in the adult
cerebral cortex
We previously found that conditional inactivation of presenilins
in the adult cerebral cortex causes memory impairment and
aged-related neurodegeneration (Beglopoulos et al., 2004; Saura
et al., 2004). One consistent molecular change we observed in the
cerebral cortex of presenilin double cKO (PS cDKO) mice at
multiple ages was the reduced expression of CBP and several
CREB target genes, including c-fos, BDNF, NF-1, and egr-1 (Saura
et al., 2004). The presence of the putative RBP-J� binding site in
the CBP promoter suggested a possibility that presenilin may
regulate transcription of CBP and CREB target genes through
�-secretase-dependent production of the Notch intracellular do-
main, which relieves transcriptional suppression by RBP-J�
(Saura et al., 2004). We therefore tested whether CBP is required

for neuronal survival and memory formation using a complete
loss-of-function conditional CBP mutant mouse.

Interestingly, we found no significant loss of cortical neuron
in CBP cKO mice by 9 –15 months of age (Fig. 2 for 2–10 months;
data not shown for 15 months). In contrast, PS cDKO mice ex-
hibit progressive loss of cortical neurons and cortical volume
(e.g., �9% and �18 –24% reduction of cortical neurons at 4 and
6 –9 months, respectively) (Saura et al., 2004; Wines-Samuelson
et al., 2010). Furthermore, we did not observe any significant
increases in GFAP levels in CBP cKO mice by the age of 15
months, indicating the lack of neurodegeneration-related astro-
gliosis. In contrast, PS cDKO mice display an approximately ten-
fold increase in GFAP levels at the age of 6 months (Beglopoulos
et al., 2004; Saura et al., 2004). Together, these data suggest that
CBP alone is not required for neuronal survival in the aging ce-
rebral cortex. However, we cannot rule out a possibility that the

Table 3. Downregulated gene expression on glutamate receptors and interacting proteins

Classification Gene description Relative level GenBank access number

NMDA receptors Glutamate receptor, ionotropic, NMDA1 (Grin1) 78.5% NM_008169
Glutamate receptor, ionotropic, NMDA2A (Grin2a) 79.9% NM_008170
Glutamate receptor, ionotropic, NMDA2C (Grin2c) 40.7% NM_010350
Glutamate receptor, ionotropic, NMDA2D (Grin2d) 87.9% NM_008172

AMPA receptors Glutamate receptor, ionotropic, NMDA3B (Grin3b) 77.2% BB325206
Glutamate receptor, ionotropic, AMPA2 (Gria2) 77.3% AK014389
Glutamate receptor, ionotropic, AMPA3 (Gria3) 83.8% NM_016886
Glutamate receptor, metabotropic, type 1 (Grm1) 88.8% AF320126

Postsynaptic density PSD-93 85.0% NM_011807
PSD-95 83.2% BC014807

Interacting proteins Glutamate receptor, ionotropic, delta 1 (Grid1) 85.0% NM_008166
Glutamate receptor, ionotropic, kainate 5 (Grik5) 54.8% NM_008168
Glutamate receptor interacting protein 1 (Grip1) 70.6% NM_130891
Glutamate receptor Grid2 interacting protein 1 (Grid2ip) 49.4% NM_133355

Figure 8. Reduced protein levels of CaM kinases proteins in CBP cKO mice. Cortical lysates
were used to conduct immunoblotting to determine protein levels. Protein levels were normal-
ized to �-actin. There are significant reductions on protein levels for CaMK1�, CaMKII�,
CaMKII�, CaMKII�, CaMKK�, and CaMKK� in CBP cKO mice (*p � 0.05; ***p � 0.005;
****p � 0.001; control, n � 5–9; cKO, n � 8 –9).

Figure 9. Reduced protein levels of glutamate receptors and postsynaptic density proteins
in CBP cKO mice. There were significant reductions in protein levels for NMDAR1 (GluN1),
NMDAR2A (GluN2A), AMPAR2 (GluA2), AMPAR3 (GluA3), PSD95, and SynGAP in CBP cKO mice
(*p � 0.05; **p � 0.01; ****p � 0.001; control, n � 5–9; cKO, n � 8 –9).
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normal expression of the CBP functional homolog, p300, in the
cortex of CBP cKO mice may be sufficient to protect cortical
neurons from age-related neurodegeneration (Fig. 1). Thus, CBP
is unlikely to serve as a key downstream target of PS in mediation
of neuronal protection. Consistent with this notion, our most
recent studies have indicated that, PS may regulate the CREB
pathway indirectly (Watanabe et al., 2009) and exert its function
on neuronal protection through a �-secretase-dependent mech-
anism (Tabuchi et al., 2009).

CBP is required for both short- and long-term memory
Our behavioral analysis demonstrated that CBP cKO mice ex-
hibit impairment in three types of hippocampus-dependent
long-term memory, spatial learning and memory, fear-
associative memory, and object-recognition memory (Figs. 3, 4).
Consistent with previous observations from partial loss-of-
function mutants, CBP�/�, and dominant-negative transgenic
mice (Oike et al., 1999; Bourtchouladze et al., 2003; Alarcón et al.,
2004; Korzus et al., 2004; Wood et al., 2005), long-term memory
impairment is more severe in CBP cKO mice. For example,
CBP�/� mice exhibited normal spatial learning and memory in
the water maze task (Alarcón et al., 2004). Our analysis of CBP
cKO mice further showed impairment of short-term associative
and object-recognition memory in the absence of CBP (Fig. 5), in
contrast to normal short-term associative memory in CBP�/�

and dominant-negative transgenic mice, in which CBP is only
partially inactivated (Alarcón et al., 2004; Korzus et al., 2004;
Wood et al., 2005). Thus, our analysis of a CBP complete loss-of-
function mutant revealed a previously unappreciated role of CBP
in short-term memory. Together, these findings indicate a critical
role of CBP in both short- and long-term memory.

Mechanisms by which CBP controls memory formation
The role of histone acetylation in memory consolidation has been
widely studied (Alarcón et al., 2004; Korzus et al., 2004; Levenson
et al., 2004; Wood et al., 2006; Vecsey et al., 2007). To explore
molecular mechanisms involved in CBP-dependent short- and
long-term memory, we first assessed histone acetylation levels in
CBP cKO mice. We compared levels of histone acetylation be-
tween CBP cKO (this study) and other CBP partial loss-of-
function mutant mice (Alarcón et al., 2004; Korzus et al., 2004;
Wood et al., 2005). The reduction in levels of acetylated histone
H2B (�47%) and acetylated histone H3 (�45%) in the cortex of
CBP cKO mice (Fig. 7D) is more dramatic compared with
CBP�/� mice, in which levels of only acetylated histone H2B
(�29%) are reduced (Alarcón et al., 2004, their Fig. 6). Since
histone acetylation was not reported in the original reports (Korzus
et al., 2004; Wood et al., 2005), it remains unclear whether his-
tone acetylation is affected in the cortex of CBP dominant-
negative transgenic mice.

To determine whether decreased HAT activities of CBP ac-
count for short- and long-term memory deficits in the cKO mice,
we conducted a rescue experiment. Administration of HDAC
inhibitors fully rescued acetylated histone levels in CBP cKO
mice, but failed to improve short- or long-term memory (Fig. 7).
Although reduced HAT activity might indeed not underlie the
memory deficits observed in CBP cKO mice, it remained possible
that HDAC inhibitors did not rescue histone acetylation at pro-
moters of specific genes involved in memory formation in these
mice. Prior studies showed that HDAC inhibitors improved
memory in either CBP�/� (Alarcón et al., 2004) or dominant-
negative transgenic mice (Korzus et al., 2004), raising the possibility
that remaining CBP’s HAT activity in these partial loss-of-

function mutant mice may be required for the rescue of the mem-
ory deficits by HDAC inhibitors. Interestingly, CBP has recently
been reported to bind to neuronal activity-regulated enhancers
and recruit RNA polymerase II to these sites for transcribing
enhancer RNAs (Kim et al., 2010). Our molecular analysis
showed reduced expression levels of multiple CaMK isoforms
and glutamate receptor subunits in CBP cKO mice (Figs. 8, 9;
Tables 2, 3). The importance of CaMKs, NMDA receptors,
AMPA receptors, and PSDs in learning and memory has been
established by a large number of prior studies (Migaud et al.,
1998; Zamanillo et al., 1999; Malinow and Malenka, 2002; Reisel
et al., 2002; Lee et al., 2003; Shimshek et al., 2006). Thus, de-
creased expression of these proteins important for learning and
memory may contribute to the short- and long-term memory
deficits in CBP cKO mice.
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