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Theories of the positive symptoms of schizophrenia hypothesize a role for aberrant reinforcement signaling
driven by dysregulated dopamine transmission. Recently, we provided evidence of aberrant reward learning
in symptomatic, but not asymptomatic patients with schizophrenia, using a novel paradigm, the Salience
Attribution Test (SAT). The SAT is a probabilistic reward learning game that employs cues that vary across
task-relevant and task-irrelevant dimensions; it provides behavioral indices of adaptive and aberrant reward
learning. As an initial step prior to future clinical studies, here we used functional magnetic resonance
imaging to examine the neural basis of adaptive and aberrant reward learning during the SAT in healthy
volunteers. As expected, cues associated with high relative to low reward probabilities elicited robust
hemodynamic responses in a network of structures previously implicated in motivational salience; the
midbrain, in the vicinity of the ventral tegmental area, and regions targeted by its dopaminergic projections,
i.e. medial dorsal thalamus, ventral striatum and prefrontal cortex (PFC). Responses in the medial dorsal
thalamus and polar PFC were strongly correlated with the degree of adaptive reward learning across
participants. Finally, and most importantly, differential dorsolateral PFC and middle temporal gyrus (MTG)
responses to cues with identical reward probabilities were very strongly correlated with the degree of
aberrant reward learning. Participants who showed greater aberrant learning exhibited greater dorsolateral
PFC responses, and reduced MTG responses, to cues erroneously inferred to be less strongly associated with
reward. The results are discussed in terms of their implications for different theories of associative learning.

© 2009 Elsevier Inc.

Introduction

It is well established that mesolimbic dopamine transmission
mediates the processes by which: (i) reinforcement learning occurs
(Schultz et al., 1997; Tsai et al., 2009) and (ii) conditioned stimuli
come to drive goal-directed behavior (Berridge and Robinson, 1998).
A number of theorists have suggested that the spurious learning of
contingencies between events that in fact co-occur only coincidentally
might be related to dysregulated dopamine transmission (King et al.,
1984; Gray et al., 1991; Shaner, 1999). This process has been
hypothesized to contribute to the development of abnormal beliefs
in psychotic disorders such as schizophrenia (see Corlett et al., 2007
for a review), which is associated with both dopaminergic abnormal-
ities (Abi-Dargham, 2004) and reinforcement learning deficits (Waltz
et al., 2007; Waltz and Gold, 2007). Integrating such findings with
phenomenological accounts of psychosis, Kapur (2003) proposed the
‘aberrant salience’ hypothesis of psychosis, which explicitly links the

aberrant signaling of motivational salience by dysregulated dopamine
transmission to psychotic symptoms.

We recently provided the first evidence directly supporting the
aberrant salience hypothesis using a novel behavioral paradigm, the
Salience Attribution Test (SAT; Roiser et al., 2009). The SAT is a
probabilistic reward learning task featuring compound cue stimuli
that vary along two dimensions, one task-relevant and one task-
irrelevant. ‘Adaptive’ reward learning refers to differences in ratings
(the explicit measure of learning) and reaction times (the implicit
measure of learning) along the task-relevant cue dimension, i.e. for
high-probability reward cue features relative to low-probability
reward cue features. ‘Aberrant’ reward learning is defined similarly,
but along the task-irrelevant dimension, i.e. differences in ratings or
reaction times between cue features that are both associated with 50%
probability of reward. In our previous behavioral study, we found that
schizophrenia patients with delusions scored significantly higher than
those without delusions on our measures of aberrant learning.

Prior to future neurophysiological studies of patients with
psychotic symptoms employing the SAT, we wished to investigate
the neural mechanisms mediating adaptive and aberrant reward
learning in healthy volunteers, Using functional magnetic resonance
imaging (fMRI) predicted that (i) adaptive reward prediction signals
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(i.e. neural responses to high-probability reward cue features relative
to low-probability reward cue features) would be reflected in
hemodynamic responses in cortico–striatal–thalamic circuitry inner-
vated by dopamine and previously implicated in reward processing;
in particular the medial dorsal (MD) thalamus, ventral striatum and
prefrontal cortex (PFC) (Brown et al., 1979; Alexander et al., 1986;
Voorn et al., 1986; Oades and Halliday, 1987; Schultz et al., 1997;
Knutson et al., 2004; Sanchez-Gonzalez et al., 2005; Garcia-Cabezas
et al., 2007).We further predicted that (ii) aberrant reward prediction
signals (i.e. differential neural responses to two different categories of
cue features associated with identical reward probabilities) would be
reflected in hemodynamic responses in separate but partially over-
lapping circuits, particularly in the dorsolateral PFC (DLPFC), which is
hypothesized to play a central role in the optimization of stimulus–
reward associations and resulting behavior (Montague et al., 2004;
Grace et al., 2007).

Materials and methods

Participants

Twenty-three right-handed healthy volunteers, nineteen of whom
were included in the final analysis (average age 27 years (SD 6.5
years); average IQ 102 (SD 8.8)) were recruited by advertisement.
Exclusion criteria were: known psychiatric or neurological disorder;
medical disorder likely to lead to cognitive impairment; IQb70;
recent illicit substance use and first-degree relatives diagnosed with a
psychotic illness. The absence of Axis-I psychopathology and alcohol-
or substance-abuse/dependence was confirmed with the Mini
International Neuropsychiatric Inventory (MINI: Sheehan et al.,
1998). IQ was estimated using four sub-tests of the Wechsler Adult
Intelligence Scale-Revised (Blyler et al., 2000).

Ethical approval was obtained from the Ealing & West London
Mental Health Trust and National Hospital for Neurology and
Neurosurgery & Institute of Neurology Research Ethics Committees.
All participants provided written informed consent, were compen-
sated £40 for their participation and could win up to another £20 on
the SAT.

Salience Attribution Test

Task structure
The SAT, which included a standardized tutorial performed outside

the scanner to familiarize participants with the game, has been
described previously (Roiser et al., 2009; Fig. 1). On each trial,
participants had to make a speeded response to the onset of a probe
(a white square) in order to earn money, with more money earned
for quicker responses. Prior to the main game, participants
performed a practice session in the scanner, with no rewards and
no cues, on which they were simply required to respond as quickly as
possible to the onset of the probe. From this practice session each
participant's mean reaction time (RT) and standard deviation of the
ten fastest trials (SDF) was calculated in order to calibrate task
difficulty on a participant-by-participant basis (see below) (Fig. 1;
Roiser et al., 2009).

On themain game, monetary rewardwas available on 50% of trials,
and on these trials participants won between 5 and 100 pence
depending on the speed of their response, with feedback provided at
the end of each trial. On rewarded trials where participants either
made no response or responded after the probe had disappeared, the
message “Missed: 5 pence” was displayed. If participants responded
prematurely (b100ms after the onset of the probe), the message
displayed was “Too early: 5 pence”. On rewarded trials where
participants responded before the probe disappeared, but slower
than their mean RT, themessage “Hit—good: 10 pence”was displayed.
When participants responded more quickly than their mean RT, the
message “Quick—very good: Xpence”was displayed (for responses up
to 1.5 SDFs faster than their mean RT) and “Very quick—excellent: X
pence” (for responses faster than their mean RT by at least 1.5 SDFs).
The reward was scaled according to X=10+90×(practice mean
RT− trial RT)/(3×SDF), up to amaximumof 100 pence. For example,
a response 1 SDF faster than the mean was rewarded with 40 pence, a
response 2 SDFs faster was rewarded with 70 pence, and any
responses 3 SDFs or faster than the mean were rewarded with 100
pence. On the 50% of trials that were not rewarded, the message
“Sorry—no money available” was displayed, regardless of the speed
of response.

The likelihood of reward on a given trial was signaled by one of
four categories of cues that appeared on-screen before the onset of the
probe. The cues varied on two different visual dimensions: color (blue
or red) and shape (animal or household object). Therefore, there were
four different types of cue: blue animals; red animals; blue household
objects and red household objects. Each cue set consisted of 16
different pictures, each of which was presented once per block. One of
the cue dimensions (e.g. ‘color’) was task-relevant, so that one level of
the dimension was rewarded on 28/32 of the trials (e.g. reward on
14/16 ‘blue animal’ and 14/16 ‘blue household object’ trials,
corresponding to 87.5% of all ‘blue’ trials), while only 4/32 trials of
the other level were rewarded (e.g. red on 2/16 ‘red animal’ and 2/16
‘red household object’ trials, corresponding to 12.5% of all ‘red’ trials).
The other dimension (in this example ‘shape’) was task-irrelevant, so
that reward occurred on 16/32 trials of both levels of the dimension
(in this example corresponding to 50% of all ‘animal’ and 50% of all
‘household object’ trials). Participants were not informed of these
contingencies. Three blocks of 64 trials were performed, with identical
reward contingencies on each block of the game. The task-relevant
and task-irrelevant dimensions were counterbalanced across subjects
(see below).

Trial structure
At the beginning of each trial a fixation-cross appeared. After 1 s,

while the fixation-cross remained on-screen, one of the four cues was
displayed at the left and right of the screen and remained on-screen
until the end of the trial. After a period of time that varied randomly
across trials (between 3.5 and 4.5 s) the probe appeared, replacing the
fixation-cross, and participants attempted to respond before it
disappeared using the index finger of their right hand on an MRI
compatible button-box. The onset of the probe was therefore
unpredictable, ensuring that participants were unable to anticipate
its appearance. The duration of the probe also varied randomly across

Fig. 1. Salience Attribution Test. Participants were required to respond to the square as quickly as possible. On 50% of trials, participants wonmore money for quicker responses, with
the probability of reward signaled by the cue appearing immediately prior to the probe.
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trials, and was calibrated for each participant separately from their
own practice session data, with limits 2 SDFs either side of the practice
mean RT. After 2.25 s feedback was presented for 1.5 s as described
above. On rewarded trials, a tone with frequency proportional to the
amount of money won on that trial sounded at feedback. After
feedback, a blank screen of variable duration was inserted to result in
a constant inter-trial interval of 9.25 s (Fig. 1).

Four different versions of the SAT were used, counterbalanced
across participants, each with a different stimulus feature (blue, red,
animal or household object) rewarded with high probability. Each
participant was administered the same version for each block of the
SAT. At the end of each block, participants indicated, using 100 mm
visual analogue scales (VAS), their estimate of the reward probabil-
ities for each of the four different cues, ranging from 0% (never
associated with money) to 100% (always associated with money),
such that 1 mm corresponded to 1%.

Outcome variables
Measures of reward learning were calculated for each block

according to VAS ratings and RTs. Adaptive reward learning was
defined as the increase in probability rating (the explicit measure of
adaptive reward learning), or speeding of responses (the implicit
measure of adaptive reward learning), for high-probability reward
trials relative to low-probability reward trials (e.g. ‘blue’ relative to
‘red’ in the above example). Aberrant reward learning was defined as
the absolute difference in VAS rating (the explicit measure of aberrant
reward learning) or RT (the implicit measure of aberrant reward
learning) between the two levels of the task-irrelevant stimulus
dimension (e.g. the unsigned difference between ‘animal’ and
‘household object’ in the above example). The number of premature
responses and omissions was also recorded for each stimulus type on
each block.

MRI image acquisition

Blood-oxygen-level-dependent (BOLD) responses were measured
while participants performed the SAT using a 3 T head scanner
(Magnetom Allegra, Siemens Medical, Erlangen, Germany) operated
with its standard head transmit-receive coil. We acquired gradient-
echo T2⁎-weighted echo-planar images (EPI) utilizing a single-shot
gradient-echo sequence optimized to reduce signal dropout in the
orbitofrontal cortex (Weiskopf et al., 2006). Forty-two oblique
transverse slices of 2 mm thickness and a 1 mm gap between slices
were acquired with 3 mm in-plane resolution; repetition time (TR)=
2.73 s; echo time (TE)=30 ms; bandwidth (BW)=3551 Hz/pixel;
bandwidth in phase encoding direction (BWPE)=47.3 Hz/pixel;
phase encoding direction=anterior–posterior; field of view (FOV)=
192×192 mm2; matrix size 64×64 with fat suppression. BOLD
sensitivity losses in the orbitofrontal cortex due to susceptibility
artifacts were minimized by applying a z-shim gradient moment of
−2 mT/m lasting 1 ms, with a slice tilt of −30° to the anterior
commissure–posterior commissure line and a positive PE gradient
polarity (Weiskopf et al., 2006). EPI magnitude images were recon-
structed from the complex k-space raw data using a generalized
reconstructionmethod based on themeasured EPI k-space trajectory to
minimize ghosting. EPI data acquisition was monitored online using a
real-time reconstruction and quality assurance system (Weiskopf et al.,
2007). The first five images in each series were discarded to allow for T1
saturation. T1-weighted structural scans were also acquired for each
participant,with resolution 1mm3; TR=7.92ms; TE=2.4ms; TI=910
ms; BW=195 Hz/Px; α=15°.

fMRI analysis

EPI data were analyzed using an event-related design with
Statistical Parametric Mapping (SPM5—www.fil.ion.ucl.ac.uk/spm).

Briefly, after discarding the first five images of each session to allow
for T1 saturation, the remaining images were unwarped and realigned
to the sixth image in the series, spatially normalized to the Montreal
Neurological Institute (MNI) template and smoothed with a Gaussian
kernel at 8 mm full half-width maximum (FWHM). Maximum
likelihood parameter estimates were calculated at each voxel using
the general linear model and an AR(1) model of serial correlations. In
this model, four ‘cue’ regressors, representing the different cue types,
an ‘outcome’ regressor representing the outcome of each trial and its
parametric modulation according to reinforcement magnitude (0–
100 pence), were created by convolving the onset of each event
(duration 2 s for cue regressors, 1.5 s for outcome regressors) with a
set of temporal basis functions (see below). Cues on which
participants failed to respond entirely were excluded from the
analysis, due to the possibility that participants were not attending
during the trial. However, the outcomes on these trials were modeled,
since the pitch of the tone played during feedback would alert
participants to the magnitude of the reward, even if their eyes were
closed. Trials onwhich participants responded extremely prematurely
(b1250ms) were also excluded, so as to avoid contaminating the
measurement of cue-associated responses withmovement-associated
responses, though outcomes on these trials were modeled. Reaction
times were modeled implicitly via parametric modulation by
reinforcement magnitude (see above); since reward magnitude was
dependent on reaction time, an additional regressor of reaction times
would have resulted in very highly correlated regressors, drastically
reducing statistical efficiency. To account for inter-regional and inter-
subject variability in the shape of the hemodynamic response function
(HRF), we used a set of temporal basis functions that included a
canonical HRF as well as its temporal and dispersion derivatives. The
model additionally included drift terms up to 1/128 Hz to remove
low-frequency components, and global confounds were removed
using global normalization.

At the first (within-subject) level, three contrast images were
generated per participant, representing:

• Parametrically modulated reward delivery
• Adaptive reward prediction responses (high-probability reward cue
features minus low-probability reward cue features across the task-
relevant dimension—e.g. ‘blue’ cues minus ‘red’ cues)

• Aberrant reward prediction responses (subjective ‘high-probability’
reward cue features minus subjective ‘low-probability’ reward cue
features across the task-irrelevant dimension—e.g. ‘animal’ cues
minus ‘household object’ cues)

To calculate the aberrant reward prediction contrast images,
subjective ‘high-probability’ and ‘low-probability’ cue types were
defined for each block separately on the basis of each participant's
VAS ratings (i.e. the direction of the explicit measure of aberrant
reward learning). So if in the above example a subject had rated the
animal cues as having a higher reward probability than household
object cues in a particular block, all animal stimuli were defined as
‘high’ probability for that block in the aberrant reward prediction
contrast.

Following first-level analysis, the contrast images of each parti-
cipant were checked manually to ensure accurate normalization to
the MNI template, and to exclude participants with corrupted images
or artifacts resulting from excessive head-movement. This led to the
exclusion of 4 participants from the group-level analyses. The contrast
images from the remaining 19 participants were subjected to analysis
at the group level using the summary statistics approach to random-
effects analyses.

Three random-effects group-level analyses were performed, each
entailing a one-sample t-test on the contrast images from the
contrasts listed above. To examine the effects of inter-individual
differences in reward learning we included the explicit measures of
adaptive and aberrant reward learning, assessed by VAS ratings and
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averaged over all three blocks, as explanatory variables in the (second
and third) t-tests of the corresponding hemodynamic responses.
These maps were thresholded at an uncorrected level of p=0.001.

We were particularly interested in exploring responses in the
ventral striatum and MD thalamus, since these regions have
previously been implicated in reward processing (Knutson et al.,
2004; Pessiglione et al., 2006) and are innervated by dopamine
(Brown et al., 1979; Knutson et al., 2004; Sanchez-Gonzalez et al.,
2005; Garcia-Cabezas et al., 2007). For analysis of responses in the
ventral striatum for the adaptive and aberrant reward prediction
contrasts, we defined spheres of radius 8 mm as volumes of interest
(VOIs) centered on the peak voxels identified by the orthogonal
analysis of parametric modulation of reward outcome (right: [x=15;
y=18; z=−6]; left: [x=−9; y=12; z=−3]). For analysis of
responses in the MD thalamus for the covariate analyses, we defined a
sphere of radius 8 mm as a VOI centered on the peak voxel identified
in the analysis of adaptive reward prediction (right: [x=3; y=−9;
z=9]; left: [x=−3; y=−9; z=9]). Note that in both cases the
contrast used to define the VOI was orthogonal to the contrast of
interest.

We discuss all effects surviving either voxel-level or cluster-level
family-wise error (FWE) correction for whole-brain multiple compar-
isons (WBC), or small-volume corrected (SVC) voxel-level FWE
correction for multiple comparisons across the VOIs defined above.
For completeness we list all clusters comprising 10 contiguous voxels
at a t-threshold of pb0.001 (uncorrected) in Tables S1–S3. Anatomical
localization was performed with reference to the atlas of Mai et al
(2003), after transformingMNI coordinates to the stereotaxic space of
Talairach and Tournoux (http://imaging.mrc-cbu.cam.ac.uk/imag-
ing/MniTalairach). Sub-regions of the ventral PFC were identified as
described by Ongur et al (2003).

Behavioral data were analyzed using the Statistical Package for the
Social Sciences (SPSS 16, SPSS Inc., Chicago). Acquisition of reward
contingencies was assessed using a one-sample t-test against zero on
the adaptive reward learningmeasures. Effects of blockon adaptive and
aberrant reward learning, omission errors, premature responses and
earnings were assessed using repeated-measures analysis of variance,
with block (one, two or three) and probability (high or low) as the
within-subjects factor where appropriate; the Huynh-Feldt correction
was employed where significant non-sphericity was detected.

Results

Behavior on the SAT

Probability rating data acquired at the end of each block suggested
that participants were able to acquire the stimulus–reward associa-
tions effectively, though not perfectly. Probability ratings were
significantly higher for high-probability reward cues relative to low-
probability reward cues (t(18)=6.7, pb0.000001; mean explicit
measure of adaptive reward learning: 31.2 mm (SD 20.2 mm)). The
explicit measure of adaptive reward learning progressed significantly
over the course of the task (probability×block interaction: F(1.6,
28.4)=9.7, pb0.005, ɛ=0.79). Themean explicit measure of aberrant
reward learning (i.e. the absolute difference in probability rating
between the two levels of the irrelevant stimulus dimension) was
11.2 mm (SD 9.1 mm), but the explicit measure of aberrant reward
learning did not change significantly over the course of the task (main
effect of block: F(2, 36)=1.6, pN0.1).

RT data acquired during the task confirmed that participants were
able to use the reward associations to guide their responding
adaptively, as reported previously (Roiser et al., 2009). Following
the exclusion of an outlier who scored 3.5 SDs lower than the rest of
the group on the implicit adaptive reward learning measure,
participants responded significantly more quickly on high- relative
to low-probability trials (t(17)=2.2, p=0.046; mean implicit

measure of adaptive reward learning: 6.5 ms (SD 12.7 ms)), though
the implicit measure of adaptive reward learning did not change
significantly over the course of the task (probability×block interac-
tion: Fb1). Mean implicit aberrant reward learning (i.e. the absolute
difference in RT between the two levels of the irrelevant stimulus
dimension) was 15.7 ms (SD 8.5 ms), and also did not change signi-
ficantly over the course of the task (main effect of block: F(2, 36)=
1.8, pN0.1). Participants responded with similar speed on trial-types
subsequently rated as ‘high-probability' reward on the task-irrelevant
dimension (mean 292.8 ms (SD 24.6 ms)) relative to those
subsequently rated as ‘low-probability' reward (mean 293.6 ms (SD
21.0 ms)) (t(18)b1).

The explicit measure of adaptive reward learning correlated
significantly with the implicit measure of adaptive reward learning
(r=0.58, p=0.010), though the implicit and explicit aberrant reward
learning measures were uncorrelated (r=−0.145, p=0.55). Adap-
tive and aberrant reward learning measures were uncorrelated, both
for the implicit (r=−0.130, p=0.61) and explicit (r=0.333,
p=0.18) measures.

The amount of money won per rewarded trial was significantly
higher on high-probability reward trials (N=28 per block, mean
£0.22 (SD £0.05) per reward) relative to low-probability reward trials
(N=4 per block, mean £0.18 (SD £0.07) per reward) (t(18)=2.2,
p=0.042), again suggesting that the cue–reward associations
influenced participants' responding. However, participants won
similar amounts of money per trial on trial-types subsequently
rated as ‘high-probability' reward on the task-irrelevant stimulus
dimension (N=16 per block, mean £0.22 (SD £0.06) per reward)
relative to those subsequently rated as ‘low-probability' reward
(N=16 per block, mean £0.21 (SD £0.05) per reward) (t(18)=1.1,
p=0.3). Overall, participants won an average of £6.76 (SD £0.36)
per block, withmoremoneywon on later blocks (main effect of block:
F(2,36)=11.2, pb0.001), again suggestive of learning over the course
of the task. Notably, participants' average response time did not vary
significantly over blocks (F(2,36)=2.2, p=0.13), suggesting that this
increase in earnings was not simply related to an overall speeding of
responses on later blocks. Across participants, the explicit measure of
adaptive reward learning showed a trend toward correlating with the
total amount money won (r=0.41, p=0.08). However, neither IQ
not digit span correlated significantly with any measure of reward
learning (either implicit or explicit measures: rb0.3, pN0.25 in all
cases).

Participants made an average of 2.7 (SD 2.0) premature responses
per block and 4.5 (SD 5.2) omissions per block, with no difference
between high- and low-probability rewarded trials and nomain effect
of block (pN0.1 for all).

fMRI data

Parametric modulation of reinforcement outcome
As expected, parametric modulation of reward outcome yielded

robust hemodynamic responses in the ventral striatum, which
survived whole-brain FWE correction at both the voxel-level
(p=0.0001 (WBC)) and the cluster-level (p=5×10−16 (WBC)),
suggesting that increasingmonetary gain robustly engaged the brain's
reward system in a parametric fashion. Parametric modulation of
reward outcome also yielded responses in a number of ventral PFC
structures, including pre-genual cingulate, lateral PFC and lateral
orbitofrontal cortex, as well as bilateral inferior temporal gyrus, left
precentral gyrus and right supra-marginal gyrus, all of which survived
whole-brain FWE correction at the cluster-level (see Table S1 for full
list of coordinates).

Adaptive reward prediction
Contrasting the effect of presenting cue features associated with a

high relative to low probability of reward revealed a network of
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structures, all of which survived whole-brain FWE correction at the
cluster-level, including a large cluster in the midbrain (the peak voxel
of which corresponded to the ventral tegmental area: VTA) extending
to bilateral MD thalamus (p=0.0004 (WBC)), bilateral superior
temporal gyrus (right: p=0.00003 (WBC); left: p=0.000001
(WBC)), posterior insula (p=0.021 (WBC)) and cerebellum
(p=0.025 (WBC)), as well as bilateral ventral striatum, which
survived SVC FWE correction at the voxel-level (right: [x=12,
y=12, z=−3], p=0.023 (SVC); left [x=−12, y=9, z=−3],
p=0.045 (SVC)) (Fig. 2A; see Table S2 for a full list of coordinates).

The reverse contrast revealed a network of PFC structures, all of
which survived whole-brain FWE correction at the cluster-level,
including DLPFC (p=0.006 (WBC)) and lateral frontal pole bilaterally
(right: p=0.00005 (WBC); left: p=0.001 (WBC)) (Fig. 3; see Table
S2 for a full list of coordinates).

Including the explicit adaptive reward learning measure as a
covariate in this analysis allowed the identification of regions
where inter-individual differences in hemodynamic responses
associated with adaptive reward prediction were correlated with

inter-individual variation in explicit adaptive reward learning mea-
sures. In other words, we could identify regions whose differential
activation to high- relative to low-probability cue features correlated
with our explicit measure of adaptive reward learning across
participants. This analysis revealed correlations surviving whole-
brain FWE correction at the cluster-level in the dorsal anterior
cingulate (p=0.0002 (WBC)) and precentral gyrus (p=0.027
(WBC)), as well as bilateral MD thalamus, which survived SVC FWE
correction at the voxel-level (right: [x=−3, y=−12, z=15],
p=0.021 (SVC); left [x=−3, y=−9, z=12], p=0.026 (SVC))
(Figs. 2B and C; see Table S2 for a full list of coordinates). Including
the implicit adaptive reward learning measure as a covariate also
revealed a correlation in the rightMD thalamus that survived SVC FWE
correction at the voxel-level ([x=3, y=−15, z=6], p=0.044 (SVC);
see Table S2 for a full list of coordinates).

The reverse contrast, i.e. testing for negative correlations between
hemodynamic responses associated with adaptive reward prediction
and explicit measures of adaptive reward learning across partici-
pants, revealed correlations surviving whole-brain FWE correction at
the cluster-level in the occipital cortex (p=0.004 (WBC)) and left
lateral frontal pole (overlapping with the frontopolar main effect
identified above: p=0.00009 (WBC)), as well a correlation that
showed a trend toward whole-brain FWE corrected significance in
the right frontal pole (p=0.097 (WBC)) (Fig. 3B; see Table S2 for a
full list of coordinates). Including the implicit adaptive reward
learning measure as a covariate also revealed a correlation in the left
lateral frontal pole that survived SVC FWE at the voxel-level (SVC
based on a mask of the orthogonal reverse main effect at pb0.001
(uncorrected): [x=−24, y=54, z=18], p=0.004 (SVC); see Table
S2 for a full list of coordinates).

Fig. 2. Hemodynamic responses associated with high- relative to low-probability
reward cues. Presenting cues associated with a high relative to low probability of
reinforcement elicited responses bilaterally in the ventral striatum (peak coordinates:
right [x=12, y=12, z=−3]; left [x=−12, y=9, z=−3]) (A) and medial dorsal
thalamus (peak coordinates: right [x=3, y=−9, z=9]; left [x=−3, y=−9, z=9])
(B). Responses in the thalamus were strongly correlated with the degree of explicit
adaptive reward learning across participants (peak coordinates: right [x=6, y=−12,
z=15]; left [x=−3, y=−12, z=15], r=0.71 (plotted in scatterplot)) (C).

Fig. 3. Hemodynamic responses associated with low- relative to high-probability
reward cues. (A) Presenting cues associated with a low relative to high probability of
reinforcement elicited responses in the lateral frontal pole bilaterally (peak coordi-
nates: right [x=24, y=54, z=6]; left [x=−21, y=63, z=12])), which were strongly
correlated with the degree of explicit adaptive reward learning across participants
(peak coordinates: right [x=9, y=69, z=6]; left [x=−27, y=48, z=18], r=−0.80
(plotted in scatterplot)) (B).
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Aberrant reward prediction
The contrast between subjective ‘high’- relative to subjective ‘low-

probability' cue features (defined according to the direction of each
participant's block-specific explicit measure of aberrant reward
learning across the task-irrelevant stimulus dimension—see Materials
and methods) did not reveal any effects that survived whole-brain
FWE correction, either at the cluster-level or the voxel-level.

However, our statistical model also included the explicit measure
of aberrant reward learning measure as a covariate; this allowed the
identification of regions where inter-individual differences in hemo-
dynamic responses associated with aberrant reward prediction were
correlated with inter-individual variation in the explicit measure of
aberrant reward learning. In other words, we could identify regions
whose differential activation to cue features at the two levels of the
irrelevant stimulus dimension, both associated with 50% probability
of reward, correlated with our explicit measure of aberrant reward
learning. This analysis revealed two regions that survivedwhole-brain
FWE correction at the cluster-level, one in the right middle temporal
gyrus (MTG) where responses were positively correlated with
aberrant reward learning (p=0.002 (WBC)), the other in the left
DLPFC where responses were negatively correlated with aberrant
reward learning (p=0.043 (WBC)) (Fig. 4; see Table S3 for a full list of
coordinates). There were no regions where hemodynamic responses
associated with aberrant reward prediction were significantly
correlated with inter-individual variation in implicit aberrant reward
learning measures, even at an uncorrected threshold of pb0.001, 10
contiguous voxels.

Discussion

Amajor finding of this study was that variation across participants
in aberrant reward learning pertaining to cues associated with
identical rewardprobabilitieswas strongly associatedwith differential
DLPFC and MTG responses to those stimuli. We also found, consistent
with previous studies (Knutson et al., 2001), that presenting cues with

a strong reward association elicited hemodynamic responses in the
VTA, MD thalamus and ventral striatum, and that responses in the MD
thalamus correlated with inter-individual variability in the explicit
measure of adaptive reward learning. Finally, we demonstrate that
simply presenting cues with a low relative to high probability of
reward elicited robust hemodynamic responses in the lateral frontal
pole and DLPFC, and that responses in the lateral frontal pole
correlated negatively with inter-individual differences in the extent
of explicit adaptive reward learning.

Presenting cues associated with a high probability of reward
relative to those with a low probability of reward elicited hemody-
namic responses in the midbrain (corresponding to the VTA), MD
thalamus and ventral striatum (Fig. 2A). Furthermore, the magnitude
of hemodynamic responses in the MD thalamus was strongly
correlated with the degree to which participants learned to
distinguish the reward probabilities of the high- and low-probability
cues (Figs. 2B and C). Since we did not record arterial pulsation during
the scan we cannot exclude the possibility that the hemodynamic
signal change in the midbrain may have been confounded by
pulsation of brain stem arteries. Nevertheless, the location of the
peak voxel identified in the midbrain corresponded to the anatomical
location of the VTA (Mai et al., 2003), and the increased BOLD signal
in the ventral striatum and MD thalamus, both innervated by
dopamine, is consistent with an explanation in terms of increased
input from the VTA.

The MD thalamus, which receives afferent inputs from the ventral
striatum both directly and indirectly via the ventral pallidum, sends
efferent projections to the ventral part of the prefrontal cortex
(Alexander et al., 1986; Lawrence et al., 1998). The ventral prefrontal
cortex itself projects back to the ventral striatum, thus closing a circuit
involved in the automatic processing of emotionally relevant
environmental stimuli, the ‘affective’ cortico–striatal–thalamic loop
(Ongur and Price, 2000). Therefore, we suggest that the responses we
identified reflect the arousing and invigorating effect of stimuli
associated with reward, probably mediated by dopamine release in
the ventral striatum (Berridge and Robinson, 1998). We further
speculate that the MD region of the thalamus plays a role in orienting
attention toward motivationally salient stimuli, as demonstrated in
previous studies (Small et al., 2005), in a similar fashion to that
demonstrated for the pulvinar nucleus of the thalamus in mediating
attention toward visually salient stimuli (Robinson and Petersen,
1992; Morris et al., 1997).

Presenting cues with a low probability of reward relative to those
with a high probability of reward elicited strong responses in the
lateral frontal pole (Fig. 3A) and DLPFC. Furthermore, the magnitude
of hemodynamic response in the lateral frontal pole was strongly
correlated with the degree to which participants learned to
distinguish the reward associations of the high-probability and low-
probability cues (Fig. 3B). The involvement of DLPFC is consistent with
previous findings implicating this region in associative learning
(Corlett et al., 2004). Responses in the more ventral lateral frontal
pole area have been reported during the processing of internal
representations as opposed to external stimuli, or ‘mind-wandering’
(Christoff et al., 2004; Burgess et al., 2007). Furthermore, as we also
found, such responses tend to occur under conditions where
participants respond more slowly to stimuli (see Gilbert et al., 2006
for a meta-analysis). Responses in this region have also been reported
during instrumental reinforcement learningwhenparticipants chose a
low-probability reward stimulus over a high-probability reward
stimulus (the ‘exploratory choice’ condition in Daw et al., 2006).
However, in the present study, simply presenting low-probability
reward cueswas sufficient to elicit responses in the lateral frontal pole.

By contrast, the presentation of cue features associated with
identical reward probabilities (i.e. comparing the two levels of the
task-irrelevant stimulus dimension) did not elicit consistent diffe-
rential responses across participants. This is perhaps unsurprising, as

Fig. 4. Hemodynamic responses associated with explicit aberrant reward learning.
Differential response to two cues associated with equal (50%) probability of reward in
the dorsolateral prefrontal cortex (peak coordinates: [x=−18, y=45, z=36]) (A)
was strongly correlated with the degree of explicit aberrant reward learning pertaining
to those stimuli across participants (r=−0.82) (B).
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on average participants exhibited very little aberrant reward learning.
However, our covariate analysis revealed robust relationships
between the degree of aberrant reward learning across participants
and differential responses to irrelevant cue features in the DLPFC and
MTG. Irrelevant cue features that were erroneously inferred to be
associated with a higher probability of reward elicited smaller DLPFC
responses and greater MTG responses, and these differential regional
responses were expressed more strongly the higher participants
scored on the explicit aberrant reward learning measure. One
possibility is that the responses in these regions simply reflect the
erroneous prediction of lower vs higher reward, given that the same
DLPFC region was evident in the adaptive reward learning contrast
(see above). However, this cannot be the complete explanation
because there was a spatial dissociation between fictitious (aberrant)
and veridical (adaptive) reward-related responses. Aberrant reward
prediction signals were not evident in sub-cortical regions such as
striatum, thalamus and midbrain, which were apparent in adaptive
reward learning analysis, whereas the converse was true for the MTG.
This suggests that the processing of fictitious and veridical value is
qualitatively different and engages distinct (if overlapping) systems.
We now consider the nature of this difference.

Our results speak to an ongoing discussion in the literature
regarding which aspects of stimuli drive associative learning. On the
one hand, Mackintosh (1975) suggested that the associability of a
stimulus is determined by how reliably it predicts an outcome. Thus
highly predictive (i.e. low uncertainty) cues should be most associ-
able, and over time non-predictive cues are learned to be ignored; this
type of mechanism would encourage adaptive reward learning on the
SAT. On the other hand, Pearce and Hall (1980) proposed that cues
with uncertain consequences are most associable, more strongly
capturing attention; such a mechanism could possibly contribute to
aberrant reward learning on the SAT.

One way to express uncertainty about possible outcomes is the
information theoretic concept of entropy, which represents the
average surprise over all possible outcomes, in our case either
presence or absence of reward (e.g. see Strange et al., 2005). On the
SAT, the uncertainty about the outcome is equal for both ends of the
task-relevant stimulus dimension: reward can be either present with
87.5% probability and absent with 12.5%, or vice versa, both
corresponding to an entropy of 0.377. Contrasting these cue features
revealed robust responses in a well-characterized circuit innervated
by dopaminergic projections as described above, suggesting an
important role for the affective cortico-striatal loop in associative
learning from predictable cues (Mackintosh, 1975).

On the other hand, the two ends of the task-irrelevant stimulus
dimension on the SAT are both associated with a highly uncertain
indication of reward outcome (50% probability, corresponding to a
maximal entropy of 0.693). According to the Pearce and Hall (1980)
model, these cue features should be highly associable. When probing
aberrant reward learning by comparing the two levels of the task-
irrelevant stimulus dimension, we did not find any significant
responses across the group as a whole; however, we did observe
significant correlations between the degree of aberrant reward
learning and responses to irrelevant cues in DLPFC and MTG. These
regions have both previously been reported to be sensitive to changes
in uncertainty (represented by entropy: Bischoff-Grethe et al., 2000).
Therefore, the correlations we observed across participants between
responses in these regions and the degree of aberrant reward learning
might reflect individual preferences in how uncertain cues are
evaluated (see also Huettel et al., 2006; Chew et al., 2008).

It should be noted that this somewhat speculative interpretation
also implies that the responses we observed in the adaptive reward
prediction contrast should reflect associative learning under low
uncertainty. Some of these regions, however, were previously
reported to correlate positively with the uncertainty of reward
outcome (Fiorillo et al., 2003; Preuschoff et al., 2006). This apparent

contradiction may be related to the fact that these previous studies
assessed responses during a delay period immediately preceding
reward delivery, while we modeled responses to the cue stimulus
itself. Perhaps even more importantly, in these previous studies the
probability distribution of outcomes was known to the subjects (due
to overtraining or instruction, respectively) whereas in our study it
was not (c.f. the distinction between “risk” and “ambiguity” in the
economics literature: Camerer andWeber, 1992; Huettel et al., 2006).

In summary, we demonstrate that the extent of aberrant reward
learning across individuals is strongly associated with the magnitude
of differential MTG and DLPFC responses to cues erroneously inferred
to differ in terms of reward association. By contrast, adaptive reward
prediction responses were identified in a network of structures
including regions of the thalamus, striatum and prefrontal cortex
comprising the ‘affective’ cortico-striatal loop. Following this initial
study in healthy volunteers, it will be important in future work to
assess the neural mechanisms underpinning aberrant reward proces-
sing in patients with psychosis, since maladaptive reinforcement
signaling has been posited as a central mechanism underlying
psychotic symptoms (Kapur, 2003; Jensen et al., 2008; Murray et al.,
2008). In particular, it will be of interest to test whether DLPFC and
MTG responses to irrelevant cues during aberrant reward learning
correlate with the severity of psychotic symptoms.
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