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Abstract
In this paper we show how a pronunciation quality measure can 
be improved by making use of information on frequent pronun
ciation errors made by non-native speakers. We propose a new 
measure, called weighted Goodness of Pronunciation (wGOP), 
and compare it to the much used GOP measure. We applied 
this measure to the task of discriminating correctly from incor
rectly realized Dutch vowels produced by non-native speakers 
and observed a substantial increase in performance when suffi
cient training material is available.
Index Terms: pronunciation error detection, computer-assisted 
language learning, confidence measures, weighted GOP

1. Introduction
Adult second language (L2) learners are known to experience 
difficulties in learning to pronounce the sounds of an L2 (see [1] 
for reviews). The majority of L2 learners never acquire native
like performance and many of them have problems even in at
taining a level of comfortably intelligible speech. An important 
limiting factor in acquiring the pronunciation of an L2 is con
sidered to be the phonology of the mother tongue (L1).

Theories that attempt to explain L1-L2 interference in 
speech perception and production are based on the tenet that 
the perceptual salience of phonetic detail becomes tied to the 
distinctions that are relevant in L1 [2] [3]. This form of L1 en
trenchment leads to “deafness” to phonetic distinctions in the 
L2 and causes difficulties in learning to perceive and produce 
L2 speech sounds. However, the positive finding is that new 
distinctions in an L2 can be learned, but this requires intensive 
feedback [4] [5].

Since in general it is not possible to offer intensive feed
back on pronunciation in L2 classrooms, there is growing inter
est for Computer Assisted Pronunciation Training systems that 
make use of automatic speech recognition to provide feedback 
on pronunciation. This is also the aim of our DISCO project
[6]. An important requirement for such systems is that pronun
ciation errors are reliably detected. For this purpose various 
measures of pronunciation quality have been developed [7] [8]. 
Although in general acceptable levels of performance can be 
achieved with these measures, it is our impression that better 
performance could be achieved by using pronunciation quality 
measures that take more account of the specific pronunciation 
errors that are made in the L2. More specifically, the research 
reported on in this paper evaluates a newly developed pronun
ciation quality measure on a set of Dutch vowels spoken by L2 
learners.

In this paper we first provide a brief overview of the most 
used pronunciation quality measures and try to explain how 
such measures could be made more sensitive to error patterns 
(Section 2). We then go on to describe the case of vowel pro
nunciation error detection in Dutch (Section 3). In the following

sections we report on experiments in which the performance of 
our new measure is compared to the much used GOP measure 
introduced in [7].

2. Pronunciation Quality Measures
Most pronunciation quality measures are segmental confidence 
measures. These confidence measures try to estimate the poste
rior probability of a phone:

, , ,

where p is the target phoneme and O the observation ma
trix. If this confidence measure is below a certain predefined 
threshold the phone is flagged as incorrectly realized. One well 
known instantiation of this notion is the Goodness of Pronun
ciation (GOP) algorithm [7] in which conditional probabilities 
are calculated using Hidden Markov Models (HMM) trained on 
native speech material.

In the applications of this algorithm an equal prior distri
bution is often assumed and the denominator P(O) is approx
imated by calculating the likelihood of the most likely phone 
sequence in the specific segment. In addition, transforming to a 
log scale and normalizing by phone duration dur yields [7]:

GOP(p) =  log{P(OIP)} -  maxi log{P(OIPi)} (2) 
dur

The decision of accepting or rejecting the phone as a correct 
pronunciation of the target phoneme is made by simple thresh
olding, which is determined separately for each target phoneme. 
This threshold can be calibrated on real non-native speech ma
terial or native material in which artificial errors have been in
troduced [9].

In [8] the posterior probability is estimated by:

P(p|O) =  NP(O |P)P(P)
) E  N P(OlPi)P(Pi)

(3)

where the summation in the denominator runs over all N  
phonemes. The priors P(p) and P(pi) represent the prior prob
ability of the specific phoneme estimated from native speech 
material. Other approaches to pronunciation verification in
volve discriminative training methods such as Support Vector 
Machines [10] in which the posterior probability is estimated 
directly.

The research presented in this paper is grounded in the gen
erative modeling approaches taken in [7] and [8]. We have 
found that the GOP scoring algorithm has difficulties in detect
ing errors in target phonemes with multiple acoustically close 
“neighbouring” phonemes. This is specifically the case in the 
Dutch vowel system, as explained in more detail in the next 
section. These difficulties are mainly caused by the fact that 
the denominator in Eq. 2 only takes into account the maximum
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likelihood phone sequence, which might be an underestimation 
if there is more than one competing phoneme. In Eq. 3 this 
problem does not arise, but we think that weighting the likeli
hoods of competing phonemes P(O|pi) based on how impor
tant they are for predicting an error in the target phoneme might 
improve this measure.

Therefore, we propose to combine multiple likelihood ra
tios from the target phoneme with all competitor phonemes in 
a logistic regression model. This regression model is trained on 
manually annotated non-native speech material. The measure, 
which we call weighted GOP (wGOP) is explained in more de
tail in Section 5.2.

3. Dutch Vowel System
The Dutch vowel inventory is relatively complex: it contains 
thirteen monophthongs, three diphthongs, and some additional 
vowels found mainly in loan words [11] [12] (see Fig. 1 for 
a vowel chart, SAMPA [13] is used in the current paper). In 
addition, there are relatively many vowels in the mid-to-high, 
front-central area of the vowel space:

• /I/ (as in /bIt/,“bid”; “pray”)
• /Y/ (as in /pYt/, “put”; “well”)
• /y/ (as in /byr/, “buur”; “neighbour”)
• /2:/ (as in /l2:k/, “leuk”; “nice”)
• /e:/ (as in /be:t/, “beet”; “bite”)

Research has shown that in the case of Dutch, vowels pose 
particular problems to L2 learners [14]. The difficulties expe
rienced by Dutch L2 learners in perceiving Dutch vowels do 
indeed appear to be connected to the relationship between the 
Dutch vowel system and that of their mother tongue [5], in the 
sense that L2 learners find it difficult to distinguish vowels that 
differ along dimensions that are not relevant in their mother 
tongue. New distinctions can however be learned if intensive 
feedback is provided [5].

With respect to production there is a compounding problem, 
because acoustic similarity is not the only influencing factor, 
orthography also plays a role in the sense that the orthography 
of the mother tongue is going to interfere with the way Dutch 
vowels are pronounced [14]. Moreover, in Dutch orthography 
the same grapheme is sometimes used to indicate two different 
phonemes, which might cause extra confusions.

Automatic classification of Dutch vowels produced by non
natives turned out be less successful than classification of vow
els produced by native speakers [15]. Because of its characteris
tics — relatively many vowels with concentrations in a specific 
area of the vowel space — the Dutch vowel system is partic
ularly suited to test the effectiveness of our newly developed 
pronunciation quality measure.

4. Material
The non-native speech material for the present experiments was 
taken from the JASMIN speech corpus [16].This material was 
recorded from speakers of many different mother tongues with 
relatively low proficiency levels, namely A1, A2 and B1 of the 
Common European Framework (CEF). For the experiments re
ported on in this paper we used the read speech material.

The material is obtained from 45 speakers reading the same 
set of phonetically rich sentences. In total there are 3669 chunks 
with a duration ranging from 5 to 15 seconds. Orthographic 
transcriptions were manually created and include fluency phe
nomena such as filled pauses, restarts and repetitions. From

Figure 1: Dutch vowel chart

k intra Ti 0.975
k intra T2 0.948
k inter T1 — T2 0.913

Table 1: Transcription correction statistics

these orthographic transcriptions, phonetic transcriptions were 
automatically generated using a pronunciation lexicon with na
tive and non-native pronunciation variants. Phonetic transcrip
tions for words which contain disfluencies were manually cre
ated.

Because the automatically generated phonetic transcription 
can contain errors, we had two transcribers manually correct the 
phonetic transcriptions on the word level. They were instructed 
to change the phonetic transcription whenever they thought that 
an error had been made. For this correction, only the SAMPA 
symbols for Dutch were used.

Chunks were presented in a random order. 10% of the 
material was corrected by both transcribers and another 10% 
was transcribed twice by the same transcriber in order to cal
culate the inter and intra transcriber agreement, respectively. 
These agreement scores are shown in Table 1. Both transcribers 
changed less than 10% of the segments, and there is quite some 
overlap in the segments they changed, which explains the high 
agreement levels.

5. Method
5.1. Phonetic Time Alignment

Firstly, an alignment between a canonical phonetic transcription 
using the CGN pronunciation lexicon [17] and the speech sig
nal was created. This canonical transcription represents how the 
words should have been pronounced in Standard Dutch. Sec
ondly, an alignment between the manually corrected phonetic 
transcription and the speech signal was created. The manually 
corrected transcription represents how the words have been re
alized.

The alignments were created by doing a Viterbi alignment 
with acoustic models trained using the SPRAAK package [18]. 
47 3-state monophone Gaussian Mixture Models (GMM) were 
trained with native read speech material from the CGN speech 
database. For preprocessing purposes the input speech, sam
pled at 16kHz, is first divided into overlapping 32ms Hamming 
windows with a 10ms shift and pre-emphasis factor of 0.95. 12 
Mel-frequency cepstral coefficients (MFCCs) plus C0, and their 
first and second order derivatives were calculated and cepstral 
mean subtraction (CMS) was applied.

The quality of these segmentations was checked semi- 
automatically. We observed that word-internal disfluencies
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caused problems in the segmentation. These chunks could be 
detected relatively easily by spotting extremely long segments 
at the end of a chunk that were labelled as silence and that had 
low average acoustic likelihoods. We cleaned up the material 
by removing the 948 chunks that met these criteria.

In order to determine whether a certain vowel in the canon
ical transcription was correctly realized we checked whether 
more than 50% of the segment duration, as established in the 
canonical segmentation, contained the same vowel in the seg
mentation created from the manually corrected transcription. If 
this was not the case, then the vowel was flagged as incorrectly 
pronounced. Note that in this way, problems in the segmenta
tion could lead to virtual pronunciation errors, which was the 
main reason to delete problematic chunks.

5.2. Likelihood Ratio Calculation

For the calculation of likelihood ratios for all vowel segments 
in the canonical transcription, we used the same monophone 
acoustic models with which we performed the Viterbi align
ment. We calculated these likelihood ratios as:

Vv € V : L L R t =  l0g{P(O |V t)}- log{P(O|v)} (4)
dur

where O is the observation matrix, vt the target vowel 
sound and V the set of Dutch vowel phonemes. We will call 
these likelihood ratios LLRVt vowel scores. The likelihoods of 
“competing” vowel sounds P(O|v) are simplified by following 
the same state level segmentation as the Viterbi path that was 
calculated for the target phone. That is, the competing vowels v 
switch states at the same times as the target vowel vt .

Following Eq. 2, we also calculated the GOP measure, 
which we will denote with LLRmtax. To calculate the likeli
hood of the optimal phone sequence in the segment we used an 
unconstrained free phone recognizer.

5.3. Model Training and Evaluation

Our baseline pronunciation verification system utilizes only the 
GOP score L L R ^ax. Our new measure, wGOP, combines the 
idividual vowel scores in a logistic regression model:

wGOP  (vt) =  — -----  1 r Pvm  (5)1 +  e x p { -(ßo +  ¿Jv ßvLLRv )}

These models are trained for each vowel phoneme sepa
rately. In these models, the dichotomous dependent variable, 
which represents whether the target phone was correctly or in
correctly pronounced, is predicted by the variables denoted as 
L L R V , i.e. the vowel scores. To train a specific vowel model, 
we first extracted the segments for which this vowel appeared 
in the canonical transcription as a target phone. The number 
of segments per phoneme is shown in Table 2, together with 
the percentage of pronunciation errors. We also investigated 
whether adding the GOP score in the regression model as a pre
dictor increased performance.

We trained and tested the models using leave-one-speaker- 
out cross-validation within the WEKA package [19]. That is, 
the ßv coefficients are first optimized using all segments of the 
first 44 speakers and afterwards tested on the segments of the re
maining speaker. This is repeated until all segments are tested. 
The coefficients indicate to what extent the likelihood of a cer
tain competing vowel is important in predicting whether the re
alized phone was correctly or incorrectly pronounced.

We evaluated the GOP score, the wGOP score and their 
combination using the equal error rate (EER), which is the point

phoneme #inst %errors GOP wGOP Comb
2: 235 44.68 32.34 24.69 + 25.55 +
9y 397 43.83 19.92 15.61 + 14.58 +
Ei 1204 40.78 26.42 22.60 + 22.18 +
Y 738 35.10 24.38 20.86 + 20.16 +
o: 1619 34.03 41.66 32.03 + 31.57 +
e: 1757 31.30 23.62 23.14 + 20.59 +
y 361 29.36 26.35 24.61 + 24.42 +
I 1715 29.16 29.13 24.42 + 21.40 +
A 2730 27.77 31.16 28.55 + 28.02 +
E 1695 17.05 25.57 24.45 + 22.91 +
i: 1637 16.56 23.70 24.29 - 23.26 +
a: 2131 10.00 29.65 22.35 + 22.58 +
Au 404 7.67 32.35 45.10 - 44.97 -
u 563 6.75 23.56 44.84 - 42.29 -
O 1426 4.98 33.13 44.53 - 34.10 -

Table 2: Overall results of the GOP measure and the weighted 
GOP score. Column descriptions: (1) Target phone, (2) Num
ber of instances, (3) Percentage of incorrectly realized phones, 
(4) EER using GOP, (5) EER using wGOP, (6) Sign of EER dif
ference between GOP and wGOP (7) EER using the combiation 
of GOP and wGOP (8) Sign of EER difference between GOP 
and the combination of GOP and wGOP.

on the error curve where the false acceptance rate is equal to the 
false rejection rate.

6. Results
The EERs for each vowel are shown in Table 2. This list is or
dered by the percentage of pronunciation errors per vowel. For 
the vowels for which the EER of wGOP measure is lower than 
the EER of the GOP measure, the improvement is 4.26% on 
average. This is not the case for /Au/, /u/, /O/ and /i:/, target 
vowels with very low percentages of pronunciation errors. Be
cause the number of pronunciation errors for these phonemes is 
low, apparently no reliable regression models could be trained 
and the resulting EERs are therefore higher than those obtained 
using only the GOP measure. For vowels with many pronun
ciation errors and sufficient training material, our new method 
yields a substantial increase in performance. Combining the 
two methods is only beneficial for some vowels, most notably 
/e:/ and /I/.

To gain insight into these overall results, we investigated 
whether the phones that have been incorrectly realized were cor
rectly rejected by the GOP and wGOP methods (Table 3). We 
did this for the three vowels with the highest percentage of pro
nunciation errors, /2:/, /9y/ and /Ei/, and for their three largest 
confusions. Here we see that the phones which are most of
ten confused with the three targets — /y/ with /2:/, /Au/ with 
/9y/ and /a:/ with /Ei/ — benefit most from our new measure. 
Presumably this is caused by the weighting of the vowel scores 
based on frequent confusion patterns.

7. Discussion and Conclusions
From the results of the experiments we carried out we can con
clude that tuning the wGOP measure with enough real non
native speech data considerably improves its discriminative 
ability compared to the GOP measure. An important concern 
in using this tuning data is the issue of generalizability to other 
speakers and tasks.

We trained the models speaker-independently, and the 
speakers in our material have widely varying L1s such as Turk
ish, Arabic, Spanish, Chinese, Persian, Hebrew, English etc.
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target realized %of errors GOP wGOP
2: y 32.38 18.10 23.81
2: @ 20.00 13.33 13.33
2: Y 18.10 8.57 10.48
9y Au 69.54 59.77 65.52
9y a: 7.47 3.45 2.87
9y A 5.75 4.02 4.59
Ei a: 58.05 44.60 50.30
Ei j 18.53 11.61 12.63
Ei e: 8.35 5.91 3.87

Table 3: Distribution of realized phones in the correct rejects for 
the target phonemes /2:/, /9y/ and /Ei/. Column descriptions: (1) 
Target phoneme, (2) Realized phoneme, (3) Percentage of the 
total number of incorrectly pronounced phones for the target 
phoneme, (4) %correct rejects (%CR) at EER using GOP, (5) 
%CR at EER using wGOP.

Although these languages have a different phonology, appar
ently there is some systematicity in the error patterns of these 
speakers, at least enough for our measure to profit from it. This 
means that some phonemic confusions are quite stable across 
speakers. This was also observed in [14], where a number of 
phonemic confusions were identified that were common to L2 
learners with varying L1s. On the other hand, we think that our 
measure could be further improved by using data from specific 
L1s or clusters of typologically similar L1s. With enough data 
available, our measure could be fine-tuned to the specific con
fusions that occur within a (type of) L1-L2 pair.

Another important aspect is the kind of task the speakers 
have to perform. We used read speech data, where the users 
had to read sentences from a computer screen. As stated in 
Section 2, there are some obvious phonemic confusions due to 
interference with the orthography in this task, which are not 
likely to occur when speakers are not reading but have to repeat 
spoken utterances. As this might lead to different error patterns, 
it follows that the tuning data has to be appropriate for the task 
it is employed for.

In our experiments we have treated all pronunciation errors 
on equal par, which might not be a valid assumption in all cases. 
Consider for example the pronunciation errors of /2:/ as /@/ and 
/Y/ (Table 3), which might be considered as less serious than the 
error of pronouncing /2:/ as /y/. In such cases one could argue 
about how “false” the false accepts of the system are and how 
this differs between the different pronunciation errors. Whether 
or not we have to treat these and other error patterns differently 
is in essence a matter of pedagogy, but ideally the technology 
should be able to deal with these requirements.

One way to approach the latter problem would be in the cal
ibration of the threshold. In this paper we have used the EER as 
a measure of discriminative ability, but pedagogically the EER 
threshold might not be the optimal threshold. We could however 
optimize the threshold in such a way that it minimizes the total 
cost of erroneous decisions. This total cost can be calculated by 
weighting the different types of errors in a pedagogically sound 
way. It is not straightforward how these costs should be quanti
fied and more research on this topic is needed to investigate this 
issue.

In the future we plan to investigate in which ways our 
method could be improved. For some vowel sounds discussed 
in this paper, this would involve handling their context depen
dence. Others aspects that could lead to improvement might be 
the initial segmentation, on which all local confidence scoring 
heavily depends, and speaker adaptation of the HMM models. 
Also we would like to investigate how our method generalizes

to other sounds, such as consonants.
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