Li-Ion Cell-to-cell Active Balancing Battery Management System for 2nd Life Applications

M. Räber¹, A. Ramirez¹, A. Heinzelmann¹, M. Zoller² ¹ZHAW, Zurich University of Applied Sciences, Winterthur CH ²Kyburz AG, Freienstein CH

Sch

Zurich University of Applied Science

aw

IEFE Institute of Energy Systems and Fluid Engineering

www.iefe.zhaw.ch

BURZ SWITZERLAND

Overview

The institute of energy systems has developed an active balancing battery management system (BMS) prototype for up to 8 cells in series. It is capable of equalizing charge imbalances in 7SxP (Li-NMC, Li-NCA) or 8SxP (LiFePO₄) battery systems.

A versatile cell-to-cell topology has been implemented, based on a multi-winding transformer which is operated either in buck/boost-mode or flyback-mode (see [1]).

Benefits of active balancing

- Increased battery capacity (5-20% depending on cells)
- Longer usable battery life
- Faster charging time
- Fewer balancing losses (~ 80% less)

Specifications

- 32 Bit ARM Cortex-M3 processor
- 16 Bit ADCs with I²C

Figure 1: BMS Hardware prototype (PCB 150x90 mm)

- Up to 4 A balancing current
- Live-Monitoring / Communication over RS232
- SD-Card data logging
- Solid-State-Relay (SSR) interface
- Protected inputs (Short circuit and overvoltage)

Results

- 12% increase of battery capacity in test system (see Figure 3)
- Charge transfer efficiency of 86-89% (Buck/Boost) and 86-89% (Fly-back) (see Figure 4)
- Charge transfer efficacy of >95% (Buck/Boost) and >87% (Fly-back)

Acknowledgement

Figure 2: PLECS® simulation model and main circuit overview (8 MOSFETs with antiparallel diodes, V_dc: Battery cells, Tr: Multiwinding transformer, Rs and Ls: Parasitic transformer impedances)

Figure 3: Discharge cycle without/with active balancing (2 weak cells are balanced towards the end of the cycle as soon as the cell voltages drift apart → Discharge capacity increases by 12%)

This project was supported by the Swiss Commission for Technology and Innovation CTI. We thank our colleagues from Kyburz AG and the Institute of Mechatronic Systems, ZHAW School of Engineering.

References

[1] Xu, Li, Mi, "SOC Based Battery Cell Balancing with a Novel Topology and Reduced Component Count", Energies 2013

[2]

Figure 4: Charge transfer efficiency as a function of balancing paths and balancing current