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Computer-Assisted Language Learning (CALL) applications for improving the oral skills of low-proficient learners have to cope 
with non-native speech that is particularly challenging. Since unconstrained non-native ASR is still problematic, a possible solution 
is to elicit constrained responses from the learners. In this paper, we describe experiments aimed at selecting utterances from lists 
of responses. The first experiment on utterance selection indicates that the decoding process can be improved by optimizing the 
language model and the acoustic models, thus reducing the utterance error rate from 29-26% to 10-8%. Since giving feedback 
on incorrectly recognized utterances is confusing, we verify the correctness of the utterance before providing feedback. The results 
of the second experiment on utterance verification indicate that combining duration-related features with a likelihood ratio (LR) 
yield an equal error rate (EER) of 10.3%, which is significantly better than the EER for the other measures in isolation.

1. Introduction
The increasing demand for innovative applications that 
support language learning has led to a growing interest in 
Computer-Assisted Language Learning (CALL) systems that 
make use of ASR technology. Such systems can address oral 
proficiency, one of the most problematic skills in terms 
of time investments and costs, and are seriously being 
considered as a viable alternative to teacher-fronted lessons. 
However, developing ASR-based CALL systems that can 
provide training and feedback for second language (L2) 
speaking is not trivial.

First of all, because non-native speech is atypical in many 
respects and, as such, it poses serious problems to ASR 
systems [1- 4]. Non-native speech may deviate from native 
speech with respect to pronunciation, morphology, syntax, 
and the lexicon. Pronunciation is considered a difficult skill 
to learn in a second language (L2), and even highly proficient 
non-native speakers often maintain a foreign accent [5]. An 
important limiting factor in acquiring the pronunciation 
of an L2 is considered to be interference from the first 
language (L1). As a consequence, the pronunciation of non­
native speakers may deviate in various respects and to

different degrees from that of native speakers. Deviations 
may concern prosodic or segmental aspects of speech or 
both. At the segmental level, the deviations maybe limited to 
phonetic properties without really compromising phonemic 
distinctions, or they may blur phonemic distinctions and 
thus have more serious consequences for intelligibility. For 
instance, non-native speakers may use phonemes from their 
L1 when speaking the target language [5] or they may 
have difficulties in perceiving and/or realizing phonetic 
contrasts that are not distinctive in their mother tongue. 
Illustrations of this phenomenon are provided by Italian 
speakers of English who realize English /p/, /t/, /k/, /b/, 
/d/, and /g/ with voice onset time (VOT) values that differ 
from those employed by native speakers [5]. Such deviations 
might cause misunderstandings in certain cases, but do not 
necessarily hamper communication because the distinction 
between separate phonemes, that is, /p/ versus /b/ in the 
target language is preserved, albeit differently realized. Native 
speakers will probably perceive the difference and consider 
it as foreign accent. More problematic deviations may arise 
when the difficulty in perceiving and realizing phonetic 
features of the target language that are not distinctive in 
the mother tongue leads non-native speakers to blur the
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distinction between phonemes in the target language, thus 
producing one phoneme instead of two distinct ones. This 
is the case with many non-native speakers of English, for 
instance, Germans [6 ], who have difficulty in realizing the 
distinction between the English phonemes /ae/ and /e/ and 
often produce /e/ when /ae/ should be used, or Japanese 
speakers of English who have difficulty in distinguishing 
/l/ and /r/ [7] and may end up producing sounds that are 
neither an English /l/ nor an English /r/. In such cases, 
confusion may arise because distinct words will be realized 
in the same way. This can also happen when speech sounds 
are inappropriately deleted or inserted, which is another 
common phenomenon in non-native speech [8 ].

With respect to morphology and syntax the speech of 
non-natives may also exhibit deviations from that of native 
speakers [9 ]. At the level of morphology, they may find it 
difficult to produce correct forms of verbs, nouns, adjectives, 
articles, and so forth, especially when the morphological 
distinction hinges on subtle phonetic distinctions, such as 
the presence of a plosive or fricative sound in consonant 
clusters or the distinction between two similar vowels 
(lead versus led). Irregular verbs and nouns may also pose 
serious problems, resulting in the production of nonexistent 
regularized forms. Deviations in syntax may concern the 
structure of sentences, the ordering of constituents and their 
omission or insertion. As to vocabulary, non-native speakers 
also tend to have a limited and often deviant lexicon. Finally, 
non-native speech exhibits more disfluencies and hesitation 
phenomena than native speech and is characterized by a 
lower speech rate [10- 14].

All these problems are compounded when dealing with 
speech of non-natives that are still in the process of learning 
the language. In general, the degree of deviation from native 
speech and the incidence of disfluencies will be in inverse 
relation to the degree of proficiency in the target language. 
Considering that ASR-based CALL systems are intended for 
L2 learners, including beginner and intermediate learners, 
it follows that the type of non-native speech that has to be 
handled in this context is, in general, even more atypical and, 
therefore, more challenging, than the non-native speech that 
is usually encountered in other ASR applications that do not 
have such a teaching function, like information systems or 
access interfaces.

To circumvent the ASR problems caused by non-native 
speech, various techniques have been proposed to restrict the 
search space and make the task easier. A major distinction 
can be drawn between strategies that are essentially aimed 
at constraining the output of the learner so that the speech 
becomes more predictable and techniques that are aimed 
at improving the decoding of non-native speech. Such 
strategies are often used in combination.

Within the first category, a possible strategy consists in 
eliciting constrained output from learners by letting them 
read aloud an utterance from a limited set of answers 
presented on the screen or by allowing a limited amount 
of freedom in formulating responses, as in the Subarashii 
[15] and the Let’s Go systems [16]. More freedom in 
user responses is particularly necessary in ASR-based CALL 
systems that are intended for practicing grammar in speaking

proficiency. While for practicing pronunciation it may suffice 
to read sentences aloud, to practice grammar learners need 
to have some freedom in formulating answers in order to 
show whether they are able to produce correct forms. Less 
constrained output is not only problematic because it is 
more difficult to predict but also because, in general, it 
is accompanied by a higher incidence of disfluencies and 
hesitations. In a study on read and spontaneous speech 
produced by non-native speakers of Dutch [12], we found 
that extemporaneous speech contains many more filled 
pauses and disfluencies than read speech. The more freedom 
is allowed to the learner, the more complex the recognition 
task will be. In addition, tasks with more freedom will in 
general be characterized by a higher cognitive load, which, 
in turn, is likely to lead to more disfluencies being produced 
[17], thus making the recognition task even more difficult.

The second category of techniques for dealing with non­
native speech, that is, those that are aimed at improving 
decoding, comprises methods for optimizing the acoustic 
models, the lexicon, and the language model in order to com­
pensate for the deviations in pronunciation, morphology, 
and syntax.

All the factors mentioned above make it clear that to 
develop ASR-based CALL systems for oral proficiency it 
is necessary to take measures at different levels. A first 
important measure consists in designing exercises that allow 
some freedom to the learners in producing answers, but that 
are predictable enough to be handled by ASR. How much 
freedom can be allowed is ofcourse dependent on the quality 
of decoding.

These are exactly the problems we face in the DISCO 
project, which is aimed at developing a prototype of an 
ASR-based CALL application for practicing oral skills in 
Dutch as a second language (DL2) and providing intelligent 
feedback on important aspects of speaking performance such 
as pronunciation, morphology, and syntax. The application 
should be able to detect and give feedback on errors that 
are made by learners of DL2 at the A2 level of the Common 
European Framework (CEF). This is achieved by generating 
a predefined list of possible (correct and incorrect) responses 
for each exercise.

In this project we intend to use a two-step procedure in 
which first the content of the utterance is determined (what 
was said), and subsequently the form of the utterance is 
analysed (how it was said). In the first (recognition) step the 
system should tolerate deviations in the way utterances are 
spoken, while in the second (error detection) step, strictness 
is required (see also [18, 19]). In the first step of the two-step 
procedure, two phases can be distinguished, (a) utterance 
selection, and (b) utterance verification (UV). When learners 
are allowed some freedom in formulating their responses, 
there is always the possibility that the learner’s response is not 
present in the predefined list and is recognized incorrectly 
in phase (a) as one of the utterances of the predefined list. 
Also, even if the utterance is present in the list, it can also 
be recognized incorrectly. Giving feedback on the basis of 
an incorrectly recognized utterance is confusing and thus 
should be avoided. Therefore, utterance verification (UV) is 
carried out in phase (b).
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In this paper we present two experiments we carried 
out in order to test both utterance selection and utterance 
verification for our system using state-of-the-art techniques. 
In the utterance selection phase one of the utterances 
from the predefined list is selected, and in the utterance 
verification phase it is determined whether this utterance 
should be passed on to the following stages of the CALL 
system (error detection, feedback, etc.). While in the final 
system both phases should work in tandem, we studied 
(optimized, evaluated, etc.) the two phases in isolation, for 
diagnostic purposes, to acquire a better understanding, and 
thus, finally, to obtain a better functioning system.

In Section 2 we discuss related work on non-native 
speech recognition and utterance verification. In Section 3, 
we introduce our system architecture and relate the choices 
for the experimental settings to previous work. In Sections 
4 and 5, we present two experiments that are aimed at 
optimizing and evaluating utterance selection and utterance 
verification using realistic test material. In Section 6, we 
discuss the results of the two experiments in combination 
and consider the implications for our CALL application.

2. Related Work
In automatic speech recognition (ASR) the recognition result 
is often obtained using the maximum a posteriori (MAP) 
decision rule decoder:

w = argmaxp(w  I x),
w<EW (1)

where p(w  | x) is the posterior probability of a word 
sequence w in a set of word sequences W  given a sequence of 
acoustic observations x and w is the recognition result that 
maximizes the posterior probability.

By using Bayes rule ( 1) can be reformulated as (2), and 
given that x is the same for all word sequences in W , it can 
be rewritten as (3):

p (x  I w)p(w)w = argmax-------- ---------weW p(x)
= argmaxp(x | w)p(w).

w<EW

(2)

(3)
By implementing (3), we can still find the optimal sequence 
of words w in W . However, it is generally not only important 
to find the best sequence of words w relative to the 
other sequences (see (3)) but also quantitatively assess the 
confidence in the recognition result in an absolute sense. 
This number is called the confidence measure (CM) of the 
recognition result and the problem of accepting or rejecting 
a recognition result is called utterance verification (UV).

Both (non-native) speech decoding and utterance verifi­
cation are the key aspects of this research. We will now relate 
our research on both problems to other recent work.

2.1. Non-Native Speech Decoding. In the ASR community, 
it has long been known that the differences between native 
and non-native speech are so pervasive as to degrade 
ASR performance considerably (e.g., [1, 20, 21]). These

differences affect essentially all three components of an 
ASR system. As explained in Section 1, non-natives often 
use different words and word orders (language model), 
produce sounds differently (acoustic models), pronounce 
words differently (lexicon) (see, e.g., [2 ]), and generally have 
a lower speech rate and produce more disfluencies [10- 12]. 
A short overview of research on the three components of the 
ASR is provided in this section.

In attempts aimed at improving ASR performance on 
non-native speech, the acoustic models have received most 
attention. Various kinds of acoustic models can and have 
been used. First of all, it is possible to train acoustic models 
on speech material of the target language (L2). However, 
the recognition performance obtained with such models is 
usually not sufficient or at any rate considerably lower than 
the performance on native speech, because of the various 
deviations in the speech of non-natives [20, 21]. Models 
can also be obtained by training exclusively on non-native 
(L2) speech [22, 23], or on combinations of L1 and L2 
speech. Regarding the latter, two different approaches can 
be adopted: “model merging” and “parallel models.” In 
the “parallel models” approach, acoustic models for both 
languages are stored, and during decoding the recognizer 
determines which models fit the data better [24- 27]. In the 
“model merging” (or model interpolation) approach, acous­
tic models ofboth languages are combined, in order to obtain 
a new set of acoustic models [26]. The obvious disadvantage 
of these L1-L2 approaches is that they can only be applied to 
fixed L1-L2 pairs. An alternative approach that can be applied 
consists in employing adaptation techniques, such as the 
common Maximum Likelihood Linear Regression (MLLR) 
and MAP techniques, which have been shown to improve 
recognition performance [20, 21, 23, 26, 28].

Improving ASR performance on non-native speech can 
also be carried out at the level of the lexicon. An obvious way 
to model pronunciation variation at the level of the lexicon 
is by adding pronunciation variants to the lexicon [29, 30]. 
In the case of non-native speech these variants should reflect 
possible L1-induced mispronunciations of words L2 learners 
may produce [18, 31, 32]. These variants can be generated 
by means of rules obtained from studying non-native speech 
[18, 32]. Another possibility to generate non-native variants 
for an L2 lexicon is to apply an L1 phoneme recognizer to L2 
speech [31]. The advantage of the latter approach is that no 
learner data are needed, but a disadvantage is that phoneme 
recognizers for all source languages (L1s) are needed. The 
work in [31] also carried out speaker adaptation, and the 
improvements they obtained with speaker adaptation were 
much larger than those obtained with lexicon adaptation.

The choices regarding the language model depend to a 
large extent on the design of the CALL system, the type 
of items present in the CALL system. In spoken CALL 
systems, use could be made of closed or open items. For 
instance, the learner could be asked to repeat an utterance 
that is spoken by the system, or read an utterance presented 
on the screen. In these cases, the required responses are 
known, which in turn makes it possible to derive specific 
language models for every item. Alternatively, in some cases, 
a language model might not be used at all, depending on
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the approach that is chosen. For more open items in a 
CALL system (e.g., a question, or a turn in the dialogue), a 
possibility is to try to elicit constrained responses. This makes 
it possible to activate a specific language model for every 
item containing only those utterances that are expected in 
that given context. In these cases, a “stricter” language model 
can be used [33- 35]. In this way, recognition performance 
can again be maximized without affecting the face validity 
of the application. This is done, for instance, in the Auralog 
programs [36]. In spite of the constraints that are introduced 
to improve ASR performance, the students can still have the 
feeling that they are interacting with the system and that they 
have control over the conversation [36].

2.2. Utterance Verification. In the literature roughly three 
approaches for tackling the UV problem can be distin­
guished: (1) posterior probability estimation, (2) statistical 
hypothesis testing, and (3) confidence predictors. We will 
now give a short overview of these approaches (see [37] for a 
more detailed overview).

(1) One approach to CM is to directly estimate the 
posterior probability of the recognition result w given the 
acoustic observations x:

p(w  I x) p(x | w)p(w)
p(x) , (4)

and reject the recognition result w when it is below a given 
threshold 9. The greatest challenge with respect to this 
approach is accurately estimating the denominator p(x). One 
solution is to estimate it from a word lattice [38], and this 
generally provides a good result when the lattice contains 
enough word hypotheses. The lattice-based approach can 
be viewed as approximating the posterior probability where 
p(x) is written as X ;p(x  | w;)p(w;) and i ranges over all 
sequences of words in a pruned search space.

Another approach to estimating X ;p(x | w;)p(w ;) is 
using a free phone recognizer (FPR) [39, 40] and approxi­
mate:

p(x) ~ p (x  | Mfpr)p(mfpr), (5)
where uFPR is the optimal phone string found using a free 
phone recognizer.

(2) Another popular method to UV is statistical hypoth­
esis testing, in which the null hypothesis Ho states that the 
recognition result is a correct representation of the speech 
signal and the alternative hypothesis Ha states that the 
recognition result is not a correct representation. Then the 
criterion of accepting the null hypothesis becomes:

p(x | w ) 
p(x | —  ) >6 (6)

in which the numerator equals the acoustic likelihood 
of w, the denominator equals the acoustic likelihood of 
all sequences of words other than w (usually called the 
antimodel), and 9 a predefined threshold. The main difficulty 
with this approach is defining and training the antimodel.

(3) Apart from estimating the posterior probability or 
statistical hypothesis testing, another method to UV is using 
predictors such as:

(1) acoustic stability,
(2) hypothesis density,
(3) duration information,

and combining these using a machine learning model. Some 
machine learning techniques that have been used in the 
past are artifical neural networks (ANN), linear discriminant 
analysis (LDA) classifiers, and binary decision trees.

Acoustic stability [38] refers to stability of the recognition 
result given different weightings of the acoustic model and 
language model scores. When the recognition result remains 
stable given fluctuations in these weightings, it means that 
we can be more confident that it is correctly recognized. 
Hypothesis density [41] refers to the average density of the 
word lattice generated during decoding. When there are a lot 
of competing hypotheses in a pruned search space at each 
point in time this means that we can be less confident that 
the recognition result is correct. Duration modelling for UV 
usually comes down to capturing the amount of deviation of 
the phoneme durations in the recognition result from normal 
phone durations [42]. Deviating durations in the recognition 
result decreases the confidence that it is recognized correctly.

3. Experimental System
In Figure 1, the architecture of our CALL system is shown. 
The input of the system is the learner’s speech and a list 
of predicted responses in the form of transcriptions of 
sequences of words. Utterance selection is then performed 
to choose the best fitting (1-Best) response from this list. 
In the next phase the 1-Best response is verified. If the 
response is accepted, error detection on this response is 
carried out. Errors are detected on multiple levels, that is, 
syntax, morphology, and pronunciation. If the response is 
not accepted, the user is prompted to try again.

It is difficult for general Hidden Markov modelling meth­
ods to discriminate between utterances that are acoustically 
very similar [43]. Therefore, in the final CALL system we 
will probably use the following procedure: the output of the 
first step is a cluster of similar responses (e.g., according to 
a phonetically-based distance measure), and a more detailed 
analysis is carried out in the second (error detection) step 
to determine what was actually uttered and where to give 
feedback on.

We will now explain the main choices we made for 
our system regarding utterance selection and utterance 
verification procedures.
3.1. Utterance Selection. In the literature many approaches 
have already been proposed to improve the performance 
of speech recognition for non-natives. A large deal of the 
research concerned one or a small number of fixed (L1- 
L2) language pairs. In these approaches material of the 
source language (L1) or material for specific L1-L2 pairs was 
employed to enhance ASR for these language pairs. However,
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F i g u r e  1: System architecture.

since our system is intended for learners of Dutch with 
different mother tongues, approaches that require material 
of L1 or specific L1-L2 pairs are not feasible in our case for 
either of the three components of an ASR system (acoustic 
models, lexicon, and language model). Consequently, we 
made the following choices.

For the acoustic models we decided to start with training 
the acoustic models on Dutch native speech. Next, we used 
read speech of language learners (DL2 speech) to retrain 
the acoustic models (see Section 4.1.4). Such retraining of 
the acoustic models is also possible in a realistic CALL 
application, albeit not online, after a so-called enrolment 
phase, as used in dictation systems. Especially if the system 
has to be used extensively by a learner, it is possible to 
make it as suitable as possible for that specific learner. 
At the level of the lexicon we could not make use of 
L1 phoneme recognizers, as was done by [31], and thus 
we added pronunciation variants to the lexicon that were 
generated by means of data-derived rules (for further details, 
see Section 4.1.5). Finally, we decided to use specific language 
models for every item in the CALL system that are based 
on a list of predicted (correct and incorrect) responses (see 
Section 4.1.3).
3.2. Utterance Verification. In Section 2.2, we have given 
a short overview of the three key approaches to UV, 
that is, (1) posterior probability estimation, (2) statistical 
hypothesis testing, and (3) predictor combination. Most of 
these approaches are aimed at UV in large vocabulary tasks, 
that is, posterior probability estimation using word lattices 
and predictor features like acoustic stability and hypoth­
esis density. Furthermore, training explicit antimodels for 
statistical hypothesis testing is conceptually and practically 
difficult for speakers with a large variety of L1 backgrounds 
[44]. For these reasons, we have chosen a form of predictor 
combination in which a likelihood ratio similar to (6) 
in statistical hypothesis testing is combined with phone 
durations. The rationale behind this choice is explained in 
detail in Section 5.1.2.

4. Experiment 1: Utterance Selection
To goal of this experiment is to develop a procedure 
for selecting utterances from a list of predicted responses 
and to evaluate the effects of different language models, 
pronunciation lexicons, and acoustic models.

4.1. Method
4.1.1. Material. The speech material for the present experi­
ments was taken from the JASMIN speech corpus [45], which 
contains speech of children, non-natives, and elderly people. 
Since the non-native component of the JASMIN corpus was 
collected for the aim of facilitating the development of ASR- 
based language learning applications, it is particularly suited 
for our purpose. Speech from speakers with different mother 
tongues was collected, because this realistically reflects the 
situation in Dutch L2 classes. These speakers have relatively 
low proficiency levels, namely, A1, A2, and B1 of the 
Common European Framework (CEF), because it is for these 
levels that ASR-based CALL applications appear to be most 
needed.

The JASMIN corpus contains speech collected in two 
different modalities: read speech and human-machine dia­
logues. The latter were used for our experiments because 
they more closely resemble the situation we will encounter in 
our CALL application. The JASMIN dialogues were collected 
through a Wizard-of-Oz-based platform and were designed 
such that the wizard was in control of the dialogue and could 
intervene when necessary. In addition, recognition errors 
were simulated and difficult questions were asked to elicit 
some typical phenomena ofhuman-machine interaction that 
are known to be problematic in the development of spoken 
dialogue systems, such as hyperarticulation, restarts, filled 
pauses, self-talk, and repetitions.

The material we used for the present experiments consists 
of speech from 45 speakers, 40% male and 60% female, 
with 25 different L1 backgrounds. Ages range from 19 to 
55, with a mean of 33. The speakers each give answers to 39
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questions about a journey. We first deleted the utterances that 
contain crosstalk, background noise, and whispering from 
the corpus. After deletion of these utterances the material 
consists of 1325 utterances. The mean signal-to-noise-ratio 
(SNR) ofthe material is 24.9 with a standard deviation of5.1.

Considering all these characteristics, we can state that the 
JASMIN non-native dialogues are similar to the speech we 
will encounter in our CALL application for various reasons:
(1) they contain answers to relatively constrained questions,
(2) they contain semispontaneous speech, (3) of non­
natives with different L1s, (4) which features spontaneous 
phenomena such as filled pauses and disfluencies. However, 
since hesitation phenomena were purposefully induced in 
the JASMIN dialogues, their incidence is probably higher 
than in typical non-native dialogues.

4.1.2. Speech Recognizer. The speech recognizer we used 
in this research is SPRAAK [46], an open source hidden 
markov model (HMM)-based ASR package. The input 
speech, sampled at 16 kHz, is divided into overlapping 32 
milliseconds Hamming windows with a 10 milliseconds shift 
and preemphasis factor of 0.95. However, 12 Mel-frequency 
cepstral coefficients (MFCC) plus C0, and their first and 
second order derivatives were calculated and cepstral mean 
subtraction (CMS) was applied. The constrained language 
models and pronunciation lexicons are implemented as finite 
state machines (FSM).

To simulate the ASR task in our CALL application, we 
generated lists of the answers given by each speaker to 
each of the 39 questions. These lists mimic the predicted 
responses in our CALL application task because they contain 
(a) responses to relatively closed questions and (b) morpho­
logically and syntactically correct and incorrect responses.

4.1.3. Language Modelling. Our approach is to use a con­
strained language model (LM) to restrict the search space. 
In total 39 LMs were generated based on the responses to 
each of the 39 questions. These responses were manually 
transcribed at the orthographic level. Filled pauses, restarts, 
and repetitions were also annotated.

Filled pauses are common in everyday spontaneous 
speech and generally do not hamper communication. It 
seems therefore that students using a CALL application 
should be allowed to produce a limited amount of filled 
pauses. In our material 46% of the utterances contain one 
or more filled pauses and almost 13% of all transcribed units 
are filled pauses.

However, 11% of the utterances contain one or more 
other disfluencies such as restarts, repairs and repetitions. 
While these also occur in normal speech, albeit less fre­
quently, we think that in a CALL application for training oral 
proficiency students should be stimulated to produce fluent 
speech. On these grounds, we decided not to tolerate restarts, 
repetitions and repairs and to ask the students to try again 
when one of these phenomena is produced. Therefore, in our 
research we did not focus on restarts, repairs, and repetitions, 
we only included their orthographic transcriptions in the LM 
and their manual phonetic transcriptions in the lexicon.

The LMs are implemented as FSMs with parallel paths 
of orthographic transcriptions of every unique answer to the 
question. A priori each path is equally likely. An example of 
such a question is “Hoe wilt u naar deze stad reizen?” (How 
do you want to travel to this city?) and a small part of the 
responses is

(1) /ikgaat met devliegtuig/ (/I am going by plane/*),
(2) /ik ga met de trein/ (/I am going by train/),
(3) /met devliegtuig/ (/by plane/*),
(4) /met het vliegtuig/ (/by plane/).
The baseline LM that is generated from this list is 

depicted in Figure 2. Each of the parallel paths with words 
on the arcs represents a unique answer to a question. Silence 
is possible before and after each word (not shown).

To be able to decode possible filled pauses between words, 
we generated another LM with self-loops added in every 
node. Filled pauses are represented in the pronunciation 
lexicon as /@/ or /@m/, phonetic representations of the 
two most common filled pauses in Dutch. The filled pause 
loop penalty was empirically optimized. An example of this 
language model is depicted in Figure 3.

To examine whether filled pause loops are an adequate 
way of modelling filled pauses, we also experimented with 
an oracle LM. This is an LM containing the reference 
orthographic transcriptions, which include the manually 
annotated filled pauses without filled pause loops.

4.1.4. Acoustic Modelling. We trained three-state tied Gaus­
sian Mixture Models (GMM). Baseline triphone models were 
trained on 42 hours of native read speech from the CGN 
corpus [47]. In total 11 660 triphones were created, using 
32 738 Gaussians.

As discussed in Section 2.1, it has been observed in 
several studies that by adapting or retraining native 
acoustic models (AM) with non-native speech, decoding 
performance can be increased. To investigate whether this is 
also the case in a constrained task as described in this paper, 
we retrained the baseline acoustic models with non-native 
speech.

New AMs were obtained by doing a one-pass Viterbi 
training based on the native AMs with 6 hours ofnon-native 
read speech from the JASMIN corpus. These utterances were 
spoken by the same speakers as those in our test material 
(comparable to an enrollment phase).

Triphone AMs are the de facto choice for most 
researchers in speech technology. However, the expected 
performance gain from modelling context dependency by 
using triphones over monophones might be minimal in a 
constrained task. Therefore, we also experimented with non­
native monophone AMs trained on the same non-native read 
speech.

4.1.5. Lexical Modelling. The baseline pronunciation lexicon 
contains canonical phonemic representations extracted from 
the CGN lexicon. The distribution of sizes of the 39 lexicons 
is depicted in Figure 4.
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F i g u r e  4: Distribution of lexicon sizes.

As explained in Section 2.1 non-native pronunciation 
generally deviates from native pronunciation, both at the 
phonetic and the phonemic level. To model pronunciation 
variation at the phonemic level, we added pronunciation 
variants to the lexicon.

To derive pronunciation variants, we extracted context- 
dependent rewrite rules from an alignment of canonical 
and realized phonemic representations of non-native speech 
from the JASMIN corpus (the test material was excluded).

Prior probabilities of these rules were estimated by taking the 
relative frequency of rule applications in their context.

We generated pronunciation variants by successively 
applying the derived rewrite rules to the canonical rep­
resentations in the baseline lexicon. Variant probabilities 
were calculated by multiplying the applied rule probabilities. 
Canonical representations have a standard probabilityofone. 
Afterwards, probabilities of pronunciation variants per word 
were normalized so that these probabilities sum to one.

By introducing a cutoff probability, pronunciation lexi­
cons were created that contain only variants above this cutoff. 
In this way lexicons with on average 2, 3, 4, and 5 variants per 
word were created.

4.1.6. Evaluation. We evaluated the speech decoding setups 
using the utterance error rate (UER), which is the percentage 
of utterances where the 1-Best decoding result deviates from 
the transcription. Filled pauses are not taken into account 
during evaluation. That is, decoding results and reference 
transcriptions were compared after deletion of filled pauses. 
For each UER the 95% confidence interval was calculated to 
evaluate whether UERs between conditions were significantly 
different.

As explained in the introduction, we do not expect 
our method to carry out a detailed phonetic analysis in 
the first phase. Since it is not necessary to discriminate 
between phonetically close responses at this stage, a decoding 
result can be classified as correct when its phonetic distance 
to the corresponding transcription is below a threshold. 
The phonetic distance was calculated through an alignment

0
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T a b l e  1: This table shows the UERs for the different language 
models: without FP loops, with FP loops and with FP positions, 
and different acoustic models: trained on native speech (triphone) 
and retrained on non-native speech (triphone and monophone). All 
setups used the baseline canonical lexicon. The columns 0, 5, 10, 15 
indicate at what phonetic distance to the reference transcription the 
decoding result is classified as correct.
AM LM 0 5 10 15
Native (tri) without loops 28.9 28.4 26.1 24.6
Native (tri) with loops 14.9 14.6 12.6 11.0
Native (tri) with positions 14.7 14.4 13.1 12.0
Non-native(tri) without loops 22.4 22.0 19.9 18.4
Non-native(tri) with loops 10.0 9.7 7.9 6.9
Non-native(tri) with positions 9.4 9.1 7.8 7.1
Non-native(mono) with loops 11.9 11.5 9.3 8.1

T a b l e  2: Phonetic distances between the example responses: (1) “ik 
gaat met de vliegtuig”, (2) “ik ga met de trein”, (3) “met de vliegtuig”, 
(4) “met het vliegtuig”.
Response 1 2 3 4
1 0.0 — — —
2 20.5 0.0 — —
3 15.0 23.5 0.0 —
4 23.5 30.0 10.0 0.0

program that uses a dynamic programming algorithm to 
align transcriptions on the basis of distance measures 
between phonemes represented as combinations of phonetic 
features [48]. These phonemic transcriptions were made 
using the canonical pronunciation variants from the words 
in the orthographic transcriptions.
4.2. Results. In Table 1, the UERs for the different language 
models and acoustic models can be observed. In all cases, 
the LM with filled pause loops performed significantly better 
than the LM without loops. Furthermore, the oracle LM with 
manually annotated filled pauses (with positions) did not 
perform significantly better than the LM with loops.

Decoding setups with AMs retrained on non-native 
speech performed significantly better than those with AMs 
trained on native speech. The performance difference 
between monophone and triphone AMs was not significant.

As expected, error rates are lower when evaluating 
using clusters of phonetically similar responses. To better 
appreciate the results in Table 1 it is important to get an 
idea ofthe meaning ofthese distances. The distances between 
the example responses in Section 4.1.3 are shown in Table 2. 
The density of the phonetic distances between all response 
pairs to all questions is depicted in Figure 5. Since there are 
only few responses with a phonetic distance smaller than 
5, differences between 0 and 5 are marginal. Performance 
differences between 0 (equal to transcription) and 10 (one of 
the answers with a phonetic distance of 10 or smaller to the 
1-Best equals the transcription) and between 5 and 15 were 
significant.

0.015 -,

0.01 -

0.005

0 ÎtîTÎTÎTTTTr>^
I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I— I0 20 40 60 80 100 120 140 160 180 200

Phonetic distance
F i g u r e  5: The distribution of phonetic distances between all 
response pairs to all questions.

T a b l e  3: UERs for different lexicons: canonical, 2-5 variants with 
and without priors. These rates are obtained by using non-native 
triphone acoustic models and language models with filled pause 
loops.
Lex Priors 0 5 10 15
canonical — 10.0 9.7 7.9 6.9
2 var No 10.0 9.9 8.2 6.7
2 var Yes 10.0 9.7 8.3 7.0
3 var No 11.2 10.9 8.5 7.1
3 var Yes 10.6 10.1 8.7 7.2
4 var No 11.5 11.3 8.9 7.5
4 var Yes 10.4 10.9 9.7 7.2
5 var No 11.5 11.3 8.9 7.5
5 var Yes 10.4 10.0 8.7 7.2

As can be seen in Table 3, performance decreased using 
lexicons with pronunciation variants generated using data- 
driven methods. The more variants are added, the worse the 
performance. Furthermore, there is no significant difference 
between using equal priors or estimated priors.

4.3. Discussion. The results presented in the previous section 
indicate that large and significant improvements could be 
obtained by optimizing the language model and the acoustic 
models. On the other hand, pronunciation modelling at the 
level of the lexicon did not produce significant improve­
ments. On the contrary, adding variants to the lexicon 
caused a decrease in performance. Adding estimated prior 
probabilities to the variants improved the results somewhat, 
but still the error rates remain higher than those for 
the canonical lexicon. These results might be surprising 
because, in general, adding a limited number of carefully 
selected pronunciation variants to the lexicon helps improve 
performance to a certain extent [29, 30]. However, in the case 
of non-native speech this strategy is not always successful
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[31]. Possible explanations might be sought in the nature 
of the variation that characterizes non-native speech. Non­
native speakers are likely to replace target language phonemes 
by phonemes from their mother tongue [3, 5]. When the 
non-native speech is heterogeneous in the sense that it is 
produced by speakers with different mother tongues, as in 
our case, it may be extremely difficult to capture the rather 
diffuse pattern of variation by including variants in the 
lexicon (see also [4]).

The findings that better results are obtained with non­
native acoustic models and with a language model with filled 
pause loops are not surprising, after all the utterances are 
spoken by non-natives, recorded in the same environment 
and contain a lot of filled pauses. In fact, these results do not 
differ significantly from the results obtained with an oracle 
language model, in which the exact position of the filled 
pauses is copied from the manual transcriptions. This is an 
important result because non-natives are known to produce 
numerous filled pauses in unprepared, extemporaneous 
speech [12]. From these results we can conclude that external 
filled pause detection, for which better results were found for 
a large vocabulary task [49], is not necessary in this case.

Another reassuring result is that performance improved 
using non-native acoustic models. These were obtained 
by retraining native models on a relatively small amount 
(around 8 minutes per speaker) of non-native read speech 
material. It appears that this was sufficient to obtain signif­
icantly better results. In the final application we might then 
use a relatively short enrolment phase and do acoustic model 
retraining (and/or online speaker adaptation), to obtain 
better recognition results.

While in this experiment the correct transcription of the 
response was always in the language model, our system must 
also be able to reject utterances when they are not present in 
the language model, while still accepting correctly recognized 
utterances. This is the topic of the experiment presented in 
the following section.

5. Experiment 2: Utterance Verification
The goal of this experiment is to develop a procedure for 
utterance verication. Our approach consists of combining 
an acoustic likelihood ratio with duration-related predictors 
into one confidence measure.

5.1. Method
5.1.1. Material. We used the same material as in the first 
experiment, but to simulate the case in which the spoken 
utterance is not present in the list, we also generated language 
models in which the correct utterance is left out. In this 
way, each of the 1325 utterances in our dataset is decoded 
two times: one time when its representation is present in the 
language model and one time when it is not present.

5.1.2. Confidence Predictors. As mentioned in Section 4.2, 
posterior probability estimation using rich word lattices 
is often used in large vocabulary applications, where it

usually provides accurate confidence measures, although it 
is computationally expensive. Since in our case the search 
space only contains a limited set of sequences of words, the 
decoding lattice is not rich enough to estimate p (x) (see
(4)). Estimating p(x) on the basis of a free phone recognizer 
(FPR) is a more simple and faster approach, generally giving 
reasonably good results. For these reasons, we have used the 
ratio:

p(x | w )p(w ) 
p(x I Mfpr)p(mfpr) (7)

as our baseline confidence measure. However, because we 
have equal prior probabilities for all language model paths 
and we do not use a language model during free phone 
recognition the priors p(w ) and p(uFPR) can be discarded 
and (7) boils down to:

LR p(x | w)
p(x | Mfpr) ' (8)

This ratio bears a close relation to (6) used in the 
statistical hypothesis testing approach to UV. The main 
difference is that in the denominator in (8) all paths are 
used, while in (6) only the alternative paths are used to 
compare with the recognition result to be verified. Modelling 
the alternative paths in an antimodel is especially difficult 
in our task because it is very difficult to determine what 
exactly it should represent if the utterance is produced by 
language learners with generally low levels of proficiency and 
very diverse L1 backgrounds (see also [44]). Furthermore, 
training such an antimodel requires a large amount of non­
native speech data that is not available for Dutch.

We hypothesize that combining our baseline CM (LR) 
with other predictors that contain additional information 
about the quality of the recognition result will give better 
results than using LR alone. However, using the average 
hypothesis density in the word lattice as a predictor is 
probably not informative because in our task the word lattice 
is very small and contains very few competing hypotheses. 
Furthermore, a predictor like acoustic stability is difficult to 
define because different weightings of the language model 
have no effect on the combination score (because a priori 
each sequence of words in the language model is equally 
likely).

We expect that phone durations might contain addi­
tional information, because the phone segmentation of an 
incorrectly decoded sequence of words will generally be 
characterized by deviations in phone durations and this 
is not directly coded in the acoustic likelihoods in LR. 
Therefore, we want to add information about these phone 
duration deviations.

When the input speech representation is not present in 
the list and the utterance is recognized as another sequence 
of words that is present in the LM, the phone segmentation 
of this sequence of words will generally be characterized 
by deviations in phone durations. A straightforward way to 
capture this is to count the phones in the segmentation with 
durations that deviate substantially from the mean phone 
duration. We have implemented this by using predictors 
similar to those introduced in [42].
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Phone duration distributions were derived from man­
ually verified phonemic transcriptions of 42 hours of read 
native speech from the CGN corpus [47]. For each of the 
46 phonemes the 1st, 5th, 95th, and 99th percentile duration 
was calculated from these distributions. The predictors that 
were extracted from the segmentation are the number of 
phonemes in the decoded utterance that are shorter than 
the 1st (nrshorter-1) and 5th (nrshorter_5) percentile and 
the number of phonemes that are longer than the 95th 
(nrJonger-95) and 99th (nrJongerJ99) percentile durations. 
These predictors were normalized by the total number of 
phonemes in the recognized utterance.

5.1.3. Predictor Combination. To combine the five predic­
tors, that is, LR, nrshorter-1, nrshorter_5, nrJonger_95, 
nrJonger_99, into one confidence measure we have used a 
logistic regression model. Logistic regression modelling is a 
straightforward and fast method known to produce accurate 
predictions when a binary variable is a linear function of 
several explanatory variables [50]. It fits the logit of the 
probability (logarithm of the odds) of a binary event as a 
linear function of the set of explanatory variables:

logi t (p (y  I p)) = 1 p p ) = 0̂ + (9)
where p(y  | p) is the probability of a correctly or incorrectly 
decoded utterance y  given the confidence predicting vari­
ables p. The optimal weights 3  are chosen through Maximum 
Likelihood Estimation (MLE) in WEKA [51]. We trained 
and tested the model by using Leave- One-Speaker-Out 
crossvalidation where the model is trained on all speakers 
except one and then tested on the utterances of the speaker 
that were left out during training. This is repeated until all 
speakers are tested.

5.1.4. Evaluation. We evaluated the discriminative ability of 
our utterance verifier using Receiver Operator Characteristic 
(ROC) curves, in which the two types of error rates, that 
is, the false-positive and false-negative rates, are plotted for 
different thresholds. Using the point on the ROC curve 
where the error rates of both types are equal, the equal 
error rate (EER), the different confidence indicators and their 
combinations are evaluated. 95% confidence intervals were 
calculated to investigate whether differences between EERs 
were significantly different.

5.2. Results. The utterance error rate (UER) of our speech 
decoder on the set ofdecoding results where the correct tran­
scription was present in the LM was 10.0% (see Section 4.2). 
In this case errors consist of substitutions with competing 
language model paths. The UER on the set without the 
correct transcriptions in the LM was of course 100.0%, so 
on average 55.0% of all the cases was incorrectly recognized.

The task for the UV was to discriminate the correctly and 
incorrectly recognized cases. In Table 4, this ability is shown 
in terms of EER for the individual predictors and several 
predictor combinations. ROC curves of the best performing 
predictor and two combinations are shown in Figure 6.

False positive rate
...... duration_comb
---- LR
----  all

F i g u r e  6: ROC curves for the feature LR and the combinations 
duration.comb and all.

T a b l e  4: Equal error rates (EER) for the individual features LR, 
nrshorterA , nr_shorter_5, nrjonger.95, nrJongerS9  and the com­
binations duration^comb (nr shorter A , nrshorter.5, nrdonger-95, 
nr longer 9 9 )  and all features, all.
Features EER
LR 14.4%
nr_shorter_1 27.3%
nrshorterS 27.4%
nrJongerS5 35.8%
nrdonger-99 38.5%
duration _comb 25.3%
all 10.3%

Within the individual predictors LR performs best 
(14.4%) and all the duration-related predictors perform 
much worse. The best result for a single duration predictor 
is 27.3% for nrshorter_1. When we combined all duration- 
related predictors, duration_comb, the EER relative to the best 
performing duration-related predictor dropped significantly 
from 27.3% (with a confidence interval ±1.7) to 25.3%. 
Finally, by combining the LR with duration-comb, the EER 
relative to LR decreased significantly by 4.1% from 14.4% to 
10.3%.

In Tables 5(a) and 5(b), percentages are shown using 
the EER threshold and using all predictors for the two 
different sets of decoding results, with and without the 
correct transcription in the LM, respectively. For example, in 
the set of results with the correct transcription in the LM, 
80.8% is classified as correct when it indeed was correctly 
decoded and 9.2% was classified as incorrect (false reject). In 
the set without the correct transcription in the LM 91.7% was
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T a b l e  5: Percentages of correctly and incorrectly classified decoding 
results of the two different subsets and the total set using the global 
EER threshold and all predictors. (a) Percentages of decoding result 
classification on the set where the correct transcription was in the 
language model. (b) Percentages of decoding result classification 
on the set where the correct transcription was not present in the 
language model. (c) Percentages of decoding result classification on 
the whole dataset.

(a)
Actual

Correct Incorrect
Predicted Correct

Incorrect
80.8%
9.2%

3.0%
7.0%

(b)
Actual

Correct Incorrect
Predicted Correct

Incorrect
— 8.3%

91.7%
(c)

Actual
Correct Incorrect

Predicted Correct
Incorrect

40.4%
4.6%

5.6%
49.4%

classified as incorrect when it was incorrectly decoded, and 
8.3% was classified as correct (false accept). The performance 
on the whole dataset is shown in Table 5(c).
5.3. Discussion. The duration-related predictors have a weak 
performance individually, but they still contain additional 
information relative to the likelihood ratio LR. The duration- 
related predictor distributions of correctly and incorrectly 
decoded utterances overlap severely. This was still the case 
when we normalized these predictors for the speaking rate 
within the utterance or when we used the probability of 
the phoneme durations in the utterance as a predictor. The 
latter we calculated through a kernel density estimation of 
the duration probability density per phoneme trained on the 
CGN native read speech data. Using these more complex 
predictors the model was not able to make substantially 
better predictions.

By introducing a UV procedure and using the EER 
threshold, we are able to filter out 91.7% of the utterances 
that are not in the predicted list ofresponses. This comes with 
the cost of also rejecting utterances that are correctly decoded 
and accepting utterances that are incorrectly decoded. The 
ratio between these error rates depends on the threshold 
setting. We will discuss threshold calibration in the following 
section.

6. General Discussion
We carried out two experiments in order to evaluate methods 
for utterance selection and utterance verification which are

going to be used in a CALL application for low-proficient 
L2 learners of Dutch. For utterance selection with the 
transcription of the response in the language model, our best 
error rates were between 10.0% and 6.9% after optimizing 
acoustic and language models. In 90% of the cases, the 
decoding result was equal to the corresponding transcription 
of the response (phonetic distance of 0) and in 93.1% of the 
cases, the decoder was able to select a cluster of transcriptions 
with a phonetic distance of 15 or smaller to the 1-Best in 
which the corresponding transcription was present.

Using an utterance verifier that combined acoustic 
likelihoods and duration information of the decoding result, 
89.8% of the correctly decoded responses is accepted and 
70% of the incorrectly decoded utterances could be rejected 
when the transcription of the response was present in the 
language model. In addition, 91.7% of the utterances with 
no representation in the language model could correctly be 
rejected.

These results apply when we only perform error detec­
tion to the 1-Best decoding result, but as explained in 
Section 3 error detection will probably be performed on the 
cluster of responses that have a small phonetic distance to 
the 1-Best decoding result. For example, if it is not clear 
whether a segment or a (short) word was pronounced or 
not, this can be ascertained in the second step through a 
more detailed analysis [19]. At the moment, we think that 
in the second step we can handle utterances with a phonetic 
distance smaller than 5, which usually corresponds to a 
difference of 1 or 2 segments, or possibly even utterances 
with a phonetic distance smaller than 10, which often boils 
down to a deviation by a short word. For the latter category, 
the best result obtained is an error rate of around 8%. This is 
encouraging, especially if we keep in mind that in a language 
learning application we can be conservative, in the sense that 
if we are not sufficiently confident about the recognition 
result we can always ask the language learner to try again.

Until now we have evaluated the performance of UV 
using the EER threshold, but this might not be the optimal 
threshold setting in the actual application. In our application 
the recognized utterance will be probably shown to the user 
so that he/she knows whether the utterance was correctly 
recognized, and where the feedback is based on. If the system 
makes an error in recognizing the utterance, this will then 
be clear for the user. The system can make two types of 
errors: (a) a false rejection, in which case a correctly decoded 
utterance is classified as incorrect by the UV or (b) a false 
acceptance, in which case an incorrectly decoded utterance 
is classified as correct. To determine which of these errors 
is more detrimental at this stage of the application, it is 
necessary to consider how such errors can be handled in the 
application and what their possible consequences are. In the 
case of a rejection, and therefore also of a false rejection, 
it is possible to ask the user to repeat the utterance. In 
concrete terms then, a false rejection implies that the user 
is unnecessarily asked to repeat the utterance. In the case of 
a false acceptance an utterance will be shown to the user that 
(s)he actually did not produce. This type of error would seem 
to be more detrimental because it can affect the credibility of 
the system.
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However, the degree of seriousness will depend on the 
degree of discrepancy between the utterance that was actually 
produced and the one that was recognized and shown by 
the system: the larger the deviation the more serious the 
error. On the other hand, large deviations are less likely than 
small deviations. On the basis of such considerations we 
can indicate the seriousness of the two types of errors and 
therefore the costs that should be assigned to false rejections 
and false acceptances.

There are now three different factors that are important 
in choosing an application-dependent threshold, namely (1) 
the prior probability of a correct decoding pcorrect, (2) the cost 
of a false rejection CFR, and (3) the cost of a false acceptance 
CFA. To formalize the idea of taking into account different 
error costs and different prior distributions in the process 
of choosing a threshold, we can estimate the total cost of a 
specific threshold setting with a cost function:

Ctotal = pFRCFRpcorrect + p FACFA ( 1 ~ pcorrect) , (10)
where p FR and p FA are the probabilities of false rejection 
and false acceptance, respectively. This kind of cost function 
is also used in the NIST evaluation of speaker recognition 
systems [52]. Minimizing Ctotal on a development set will 
provide us with the optimal threshold setting given the 
application-dependent parameters CFR, CFA, and pcorrect. 
Using the UV with this application-dependent threshold 
calibration procedure could make an excellent research 
vehicle for future experiments with different error costs.
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