
Un
pu
bl
ish
ed
wo
rk
in
g
dr
af
t

No
t f
or
di
st
rib
ut
io
n

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Cloud Robotics: SLAM and Autonomous Exploration on PaaS

Giovanni Toffetti, Tobias Lötscher, Saken Kenzhegulov, Josef Spillner, Thomas Michael
Bohnert

InIT, Zurich University of Applied Sciences (ZHAW)
[toff|loeh|kenz|spio|bohe]@zhaw.ch

ABSTRACT

Robots are moving out of factories, service robotics is bringing
them to our homes, work environments, cities, and outdoors.
While the Robot Operating System (ROS) is promising to
open the world of robotics to developers, a proper platform
and ecosystem supporting robotic applications development is
still missing. This work presents an example of cloud robotics
application in which cloud computing is not just complement-
ing limited robot capabilities, but is leveraged to provide a
development and operations environment supporting the com-
plete life-cycle of a robotics-enabled application. We relate
on our experience building cloud robotics applications span-
ning heterogeneous hardware (i.e., robots and cloud servers)
through a use case scenario.

CCS CONCEPTS

� Computer systems organization � Cloud comput-
ing; Robotics;

KEYWORDS

Cloud robotics, PaaS, Kubernetes, micro-services, cloud na-
tive applications, cloud computing

ACM Reference format:
Giovanni Toffetti, Tobias Lötscher, Saken Kenzhegulov, Josef Spill-
ner, Thomas Michael Bohnert. 2017. Cloud Robotics: SLAM and

Autonomous Exploration on PaaS. In Proceedings of UCC ’17:
10th International Conference on Utility and Cloud Computing
Companion, Austin, TX, USA, December 5–8, 2017 (UCC’17

Companion), 7 pages.
https://doi.org/10.1145/3147234.3148100

1 INTRODUCTION

The connection between the physical world and the virtual
world has never been as exciting, accessible, and economically
viable as today. Sensors, actuators, and robots are able to
deliver many physical services in several scenarios, including

Unpublished working draft. Not for distribution
Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

UCC’17 Companion, December 5–8, 2017, Austin, TX, USA

© 2017 Copyright held by the owner/author(s). Publication rights
licensed to Association for Computing Machinery.
ACM ISBN 978-1-4503-5195-9/17/12. . . $15.00
https://doi.org/10.1145/3147234.3148100

industrial production and home automation, elderly care,
assisted living, logistics and cooperative maintenance.

In isolation, computing capabilities of robots are however
limited by embedded CPUs and small on-board storage units.
By connecting robots among each other and to cloud comput-
ing, cloud storage, and other Internet technologies centered
around the benefits of converged infrastructure and shared
services, three main advantages can be exploited. First, com-
putation can be outsourced to cloud services leveraging an
on-demand pay-per-use elastic model. Second, robots can ac-
cess a plethora of services complementing their capabilities
(e.g., speech analysis, object recognition and manipulation,
knowledge sharing), enabling new complex functionalities and
supporting incremental learning. Third and foremost concern-
ing this work, cloud development models and best practices
(e.g., PaaS, CI/CD, CNA, micro-services, containerization)
can be leveraged to simplify and support the entire applica-
tion life-cycle, from design and development all the way to
deployment, operation, and update.

Cloud robotics is a natural extension to the Internet of
Things (IoT). Where IoT devices gather information about an
environment to help make smarter decisions, cloud robotics is
able to use this information and act on it. Although there is
clear recognition that cloud access is required to complement
robotics computation and enable functionalities needed for
some robotic tasks, it is still unclear how to best support
these scenarios.

Together with our partners at Rapyuta Robotics (RR)1,
ZHAW is working within the framework of the Enterprise
Cloud Robotics Platform2 (ECRP) project to build the first
PaaS (Platform as a Service) explicitly designed to target
cloud robotics development. The project’s goal is to enable
robotic applications to take full advantage of cloud comput-
ing services, resources, best practices, and automation by
integrating ROS nodes and robots just as other composable
services in the cloud. Just as cloud computing is based on
abstracting functionality from its implementing resources, we
strive to build a platform that will allow developers to build
robot-enabled applications without necessarily being robotic
experts.

In this paper, we relate on our experience developing a
simple proof-of-concept cloud robotics application for au-
tonomous exploration, SLAM (simultaneous localization and

1Rapyuta Robotics is an ETH spinoff whose founding members were
core researchers and developers of the EU-founded RoboEarth project,
one of the first cloud Robotics projects in Europe.
2https://www.zhaw.ch/no cache/de/forschung/
personen-publikationen-projekte/detailansicht-projekt/projekt/
3192/

2017-10-17 20:32 page 1 (pp. 1-7)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZHAW digitalcollection

https://core.ac.uk/display/161704561?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3147234.3148100
https://doi.org/10.1145/3147234.3148100
https://www.zhaw.ch/no_cache/de/forschung/personen-publikationen-projekte/detailansicht-projekt/projekt/3192/
https://www.zhaw.ch/no_cache/de/forschung/personen-publikationen-projekte/detailansicht-projekt/projekt/3192/
https://www.zhaw.ch/no_cache/de/forschung/personen-publikationen-projekte/detailansicht-projekt/projekt/3192/

Un
pu
bl
ish
ed
wo
rk
in
g
dr
af
t

No
t f
or
di
st
rib
ut
io
n

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

UCC’17 Companion, December 5–8, 2017, Austin, TX, USAGiovanni Toffetti, Tobias Lötscher, Saken Kenzhegulov, Josef Spillner, Thomas Michael Bohnert

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

mapping), and navigation. Albeit we built some custom com-
ponents for it, the application functionality is not novel per
se. The contribution of this paper lays instead in the applica-
tion architecture, its orchestration capabilities, its underlying
development model deriving from the adoption of the ECRP,
and our experience and plans in dealing with heterogeneous
robots and servers in the cloud.

Due to the strategic nature of the project results for our
partners, we will not disclose the full ECRP architecture in
detail here. However, our experience and results are general
enough to be relevant for any similar endeavor building robot-
enabled cloud-native applications.

2 STATE OF THE ART AND
PRACTICE

Cloud Robotics

The term ”cloud robotics” is credited to James J. Kuffner in
2010. A current definition of ”cloud robot and automation
systems” refers to them as any ”robot or automation system
that relies on either data or code from a network to support
its operation, i.e., where not all sensing, computation, and
memory is integrated into a single standalone system”[2].

Several research works fall into the broad definition above,
including for instance the recent work on deep learning for
grasping [3], or the RoboEarth3 project results [5, 6]. However,
from our cloud researchers’ viewpoint, the above definition
has more to do with distributed systems than cloud com-
puting per se. As a matter of fact, it does not refer to any
of the essential characteristics, nor service or deployment
models commonly associated with cloud computing [4]. For
the sake of this paper, we will simply define “cloud robotics”
as cloud computing research and practice applied to support
the full life-cycle of robot-enabled applications. We defer a
more thorough definition to future work.

Robotic application development

The commercial domain of robotics is dominated by large
enterprises, many of them multi-national conglomerates with
origins in industry automation. Respectively, hardware plat-
forms and software frameworks are closed and purpose-built
for very specific applications. Despite the long existence of
robotics and an active market of start-ups in recent time,
there is no open and established eco-system anywhere near to
the likes of iOS/Android, the entire Linux domain, Apache
Hadoop ecosystem, OpenStack and other OSS Infrastructure
as a Service stacks.

Recent developments, however, provide evidence for a dis-
ruption in the making. Comparable to the introduction of
Linux or Android, the availability of and steadily matur-
ing Robot Operating System (ROS)4 is set to open-up and
liberate the robotics market towards a truly open and partic-
ipatory ecosystem.

3http://roboearth.ethz.ch/
4http://ros.org

ROS is a flexible framework for writing robot software.
It is a ”collection of tools, libraries, and conventions” with
one top-most aim: to simplify the task of ”creating complex
and robust robot behaviors across the widest possible variety
of robotic platforms”. Why this? Because ”creating truly
robust, general-purpose robot software is hard”. Dealing with
a nearly unlimited heterogeneous and global environment is
extremely challenging, so much that ”no single individual,
laboratory, or institution can hope to do it on their own”5.
As a result, ROS was built from the ground up to encourage
collaborative robotics software development.

Yet, ROS was designed with the focal point of an individual
robot device in a local deployment. To truly unfold the
potential of robotics, one has to take up a much wider vision,
with large deployments of very heterogeneous robots, with
very different abilities, in completely different environments.
This adds different challenges for robot system development
than targeting individual robots separately or as a small
set. Furthermore, robots are meant to assist in application
domains and those applications are equally diverse as the
robots, ranging from personal all the way to enterprise and
industrial application domains.

Cloud development

When it comes to the engagement of software developers, the
adoption of Cloud Computing, Infrastructure as a Service
(IaaS) but even more Platform as a Service (PaaS), has
proven to significantly facilitate software-based innovations
in almost any cloud-enabled application domain. Through
cloud computing services, nearly unlimited resources (IaaS)
combined with a nearly unlimited set of functionality (PaaS)
have become available in a native, well-defined and unified,
programmatic way to developers of software applications
simply by software (code) itself, the lingua franca of any
software engineer.

The potential, inherent to IaaS and even more to PaaS, to
accelerate software-based innovations makes no exception of
robotics. Rather, the emergence of a cloud-enabled software
development environment appears overdue. Irrespectively, no
public Platform as a Service (PaaS) for Robot-based Applica-
tions is on the market, and only one proposal has been made
by academia, that is RoboEarth[10]. RoboEarth, however,
is focused on providing compute, storage, and networking
resources in an IaaS-like approach. To this date, all benefits
of the modern software engineering with PaaS are unavailable
to one of the most important and fastest growing markets,
and this despite unquestioned innovation and commercial
potential of PaaS for “connected things”6 (e.g., robots).

3 MOTIVATION

Robotics and its applications domain have been rapidly chang-
ing in the recent years for a number of factors, including ad-
vancements of hardware and software capabilities as well as
decreasing cost of sensors and actuators. The big shift is the

5http://www.ros.org/about-ros/
6http://www.gartner.com/newsroom/id/3241817

2017-10-17 20:32 page 2 (pp. 1-7)

http://roboearth.ethz.ch/
http://ros.org
http://www.ros.org/about-ros/
http://www.gartner.com/newsroom/id/3241817

Un
pu
bl
ish
ed
wo
rk
in
g
dr
af
t

No
t f
or
di
st
rib
ut
io
n

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Cloud Robotics: SLAM and Autonomous Exploration on PaaS UCC’17 Companion, December 5–8, 2017, Austin, TX, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

docked

moving

autonomous
exploration

goal
navigation

docking

explore

docking_station_reached

dock_completed
navigate_map

explore

navigate_map

approach_docking_station

movement

video

off streaming

start_streaming

stop_streaming

Figure 1: Application behavior statechart

change of focus from industrial robots working in constrained
predictable environments (e.g., factories and robot cages)
to small cheaper robots immersed in unknown or changing
environments requiring context identification and adapta-
tion. These situations require more complex processing for
recognition, coordination, and planning (e.g., deep learning,
fleet coordination) while at the same time robot manufac-
turers strive to produce devices which are accessible to the
masses. One big obstacle to this is of course the cost of de-
vices. While decreasing, the costs of sensors, actuators, and
powerful processors are still too high to make most robots a
commodity (notable exceptions are iRobot’s Roombas). Still,
combining cloud computing with cheaper robot processors is
a viable solution towards building robot-enabled applications
that can have mass market penetration yet have access to
powerful computation when needed (i.e., on demand when
a robot is in operation). Moreover, services deployed on the
cloud are designed with reliability and availability targets
that consumer robots cannot guarantee.

What is needed is an ecosystem that embraces the het-
erogeneity of robotic devices, applications, and related com-
mercial imperatives to support robot-enabled applications in
their complete life cycle, from design and implementation,
all the way to operations. Such an ecosystem will enable all
stakeholders to participate in the vision of global availability
of a wide array of robotics services. The Cloud Computing
“Platform as a Service” (PaaS) paradigm is the natural incar-
nation of such an ecosystem from a development perspective.
PaaS provides a development and execution environment: an
execution “platform” that, abstracting from the underlying
system infrastructure (e.g., bare-metal servers, virtual ma-
chines, robots, generic devices), allows developers to focus on
application functionality, building, deploying, and managing
at runtime their applications as compositions of high level
platform components and services. This is the goal of the
ECRP project and of the work in this paper.

4 USE CASE

For the purpose of this paper, we concentrate on a simple
use case of a robot patrolling application. We call the use
case “RoboPatrol”. It also covers the common scenario in

domestic service robotics of setting up the robot in a new
environment.

RoboPatrol is a simple patrolling application with a Turtle-
bot7 2. The user is given a Web UI through which she can
drive the robot around on a map and see a live stream from
its camera. One or more maps of the environment can be
constructed by the robot through manual or autonomous
exploration.

From a functional perspective, the application behavior
can be represented with the statechart diagram in Figure
1. The system is composed of two orthogonal (sub) systems
concerning the movement and video functionalities. The latter
only has two states (streaming or not), while the former has
different sub-states that can be triggered either by user or
robot behavior (e.g., “dock completed” event).

RoboPatrol embodies a “proper” cloud robotics application
in the sense that it follows CNA (cloud-native application)
design principles [9] such as, for instance, elasticity, including
provisioning and disposing of its own required components
on demand. This is an important feature in cloud robotics
applications, enabling components to be shut down (hence
reducing operational costs) while robots are not performing
tasks that require them.

5 ARCHITECTURE

The high-level logical architecture of RoboPatrol is depicted
in Figure 2. The application operates on a distributed hetero-
geneous system composed of one robot, containers running
in a cloud infrastructure, and the web browser(s) of the
application user(s).

The main application components running on the robot
are: the “minimal” Turtlebot ROS script (enabling the ROS
master and the moving base of the robot), the MS Kinect
video streaming component, the “move base” ROS node used
for navigation, the “rplidar” node receiving data from the
laser scanner mounted on top of the robot, “amcl” which
is used for positioning of the robot on the map, and the
self-docking functionality. These components will be started
and stopped in the robot depending on the application state
from Figure 1. Apart from application-specific components,
two cloud-robotics platform components on the robot allow it
to communicate with the cloud through a control and a data
plane (respectively called device manager and cloud bridge).

On the cloud we have several application components that
can be enabled or disabled depending on application requests
and behavior. Only two components are always enabled as
they provide application control, these are: the “front-end”
component that provides the endpoint for user access and
authentication through a browser and the “robopatrol-logic”
component which implements the application behavior and
orchestrates the provisioning and disposal of all other applica-
tion components. The idea is always to minimize the number
of active components while the robot is not doing anything
(that is minimize operational costs for the application by
taking advantage of cloud pay-per-use model). Application

7http://wiki.ros.org/Robots/TurtleBot

2017-10-17 20:32 page 3 (pp. 1-7)

http://wiki.ros.org/Robots/TurtleBot

Un
pu
bl
ish
ed
wo
rk
in
g
dr
af
t

No
t f
or
di
st
rib
ut
io
n

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

UCC’17 Companion, December 5–8, 2017, Austin, TX, USAGiovanni Toffetti, Tobias Lötscher, Saken Kenzhegulov, Josef Spillner, Thomas Michael Bohnert

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 2: Logical architecture of the application

State Robot Cloud

docked - -

autonomous

explo-
ration

minimal, move base,

rplidar

cartographer, explo-

ration, ROS bridge

navigation minimal, move base,
amcl, rplidar

map publisher, ROS
bridge

docking minimal, self-
docking

-

Table 1: Active components in each application state

components that are instantiated on demand are instead:
Google Cartographer (used for SLAM functionality while
building maps), a static map publisher used for point to
point navigation, the autonomous exploration logic, and the
video streaming gateway.

Table 1 lists which components are active in each movement
state of the application as depicted in Figure 1. Components
required for video streaming are spawned both on the cloud
and the robot when requested by the user.

Apart from hardware constraints, that is dependency of
a component on a physical device (e.g., rplidar, minimal,
move base, a GPU in some cases), the placement on the
cloud or the robot of the components listed above is arbi-
trary. Theoretically, any configuration on a spectrum ranging
from running everything on the cloud or everything on the
robot would be possible. In practice, typical constraints from
placement and resource allocation research apply, namely in
terms of capacity (i.e., CPU, memory, storage, bandwidth) as
well as performance (e.g., latencies, response times). We relate
on our experience concerning these aspects in the following
section.

6 CHALLENGES AND EXPERIENCE

6.1 Hardware Heterogeneity

While the application was originally implemented to run
on a Turtlebot 2, whose computing unit is typically based

on a PC architecture (ASUS F200M Celeron 4GB RAM by
default), the ECRP platform is meant to allow composing
applications leveraging heterogeneous robots and machines in
the cloud. To this end, the platform is intended to support the
automated build and packaging in containers of developer-
provided components for multiple architectures using the
Docker manifest concept. Automated build is a common
feature in PaaS cloud computing which we extended for
heterogeneous platforms. When a component needs to be
instantiated, the Docker daemon will pull the appropriate
architecture-specific container to a specific robot. In the
cloud, placement requirements can be expressed through
annotations supported by common container management
solutions (e.g., Kubernetes).

The ECRP platform makes one further assumption con-
cerning robots that have been successfully on-boarded for
development, and that is that the so-called “minimal” ROS
node, which is providing access to the basic hardware func-
tionality, is available and tested for a robot of a specific
class (e.g., a Turtlebot, a DJI drone). The minimal node is
expected to work properly and come with all required device
drivers to correctly operate the robotic hardware.

In order to test our application on different platforms, we
replaced the computing unit of our lab Turtlebot with a
Raspberry Pi3 (the same unit used by default in Turtlebot
3 “Burger” models) which is based on a quad-core ARM
Cortex-A53 processor equipped with 1 GB of RAM. We also
experimented with a Raspberry Pi Zero (single core ARM11
with 512M RAM) and a laptop equipped with and Intel i5
processor and 4GB of RAM.

In both Pi cases, we had to install the Turtlebot and
rplidar ROS packages on the boards and make sure that the
rplidar would get a consistent device identifier when plugged
in. Moreover, we needed to install Docker for the two different
ARM architectures. For the Raspberry Pi3 the official guide
from Docker worked out without any issues. It is the same
procedure as installing it on any other machine, such as the
laptop we used first. On the Raspberry Pi Zero we had issues

2017-10-17 20:32 page 4 (pp. 1-7)

Un
pu
bl
ish
ed
wo
rk
in
g
dr
af
t

No
t f
or
di
st
rib
ut
io
n

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Cloud Robotics: SLAM and Autonomous Exploration on PaaS UCC’17 Companion, December 5–8, 2017, Austin, TX, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Processing unit CPU(%) RAM(%)

ASUS F200M Celeron 4GB RAM 50 17

Raspberry Pi 3 1GB RAM 30 54

Pentium i5 4GB RAM 30 17

Table 2: Average CPU and memory usage running
minimal, move base, rplidar, cloud bridge, and car-
tographer on robot

regarding the cgroup kernel features, which were not working
when we installed the official Docker release. To fix those
issues we found an adapted version created by hypriot8. This
version of Docker is especially adapted for the Raspberry Pi
platform. We followed the first step of the installation guide
9. Using this version we could overcome the problems we
had with the official release. Building architecture-specific
components (and containers) for some of the application
elements (e.g., turtlebot minimal, Google Cartographer) also
required some effort as many of the required libraries had to
be compiled from source on both the Pi3 and Pi Zero.

Table 2 lists the average CPU and RAM usage across the
different processing units we used while running a manual
exploration scenario. The cloud bridge is sending few ROS
topics10 for visualization of the robot navigation in the user
browser. Camera streaming was turned off.

The immediate take away of our simple experiment is that
the Raspberry Pi Zero cannot be used to run Google Cartog-
rapher on board of the device, as it alone requires on average
270MB of RAM and combined with the other components it
exceeds the RAM capacity of the Pi Zero. Hence, placing car-
tographer on the cloud enables using cheaper computational
units on the robots, but this is not the only advantage: by
running mapping components as cloud services, replicated
storage solutions can be used to securely persist maps and
provide them to user clients on request.

Albeit the use case we chose requires limited computational
power, lower-end systems already show considerable resource
utilization in both CPU and RAM compartments. This leaves
little room for other simpler (e.g., video and audio streaming)
or more complex (e.g., object and speech recognition, 3D
mapping, pick and place planning) computational tasks an
application might require justifying the invocation of exter-
nal services or the delegation of computation to the cloud.
Clearly, considerations with respect to code, data, resources
mobility [1] and their different overheads apply.

6.2 Cloud service and billing model

We have previously discussed how the RoboPatrol application
is self-managing in terms of controlling the life-cycle of a
number of its own components in the cloud and on robots.
While turning off components on robots might arguably only
reduce electrical consumption for unneeded computation (i.e.,
at robots charging locations), shutting down components

8http://blog.hypriot.com
9https://github.com/alexellis/docker-arm/blob/master/ZERO.md
10i.e., map, laserscan, tf, odom

in the cloud can have a much more relevant cost reduction
impact. In order to quantify it, one has to take into account
the cloud service models and associated billing involved.

Containerization, cloud-native design principles, larger de-
velopment teams and continuous delivery practices have had
a serious impact on current cloud development practices.
Most new cloud-based services are implemented using micro-
services architectures [8], Robopatrol is no exception in this
trend as it consists of micro-services built on a container
management solution (Kubernetes) and a service catalog.

Current large IaaS providers still do not support per-
container billing (they charge per container management
cluster virtual machines (VM) usage), while smaller PaaS
providers do offer container-based billing at a price that is
currently much higher with respect to running your own
container management cluster on IaaS.

Our experimental clusters run on AWS and GKE services
both based in Frankfurt (Germany), and billing per VM.
Hence, while shutting down unused containers would reflect
in immediate cost saving in a proper container-based billing
scenario, our cost reduction strategy would not work without
being coupled with a cluster auto-scaling policy that reduces
the cluster size in terms of VMs when “load is low”. The
drawbacks of such a strategy are common IaaS pitfalls: from
defining correct triggers values for threshold based auto-
scaling rules, to managing stateful components on scale-ins,
to suffering VM startup times (i.e., in the order of minutes)
when requiring scale outs.

While shutting down VMs is notoriously fast, and proper
management of stateful application components becomes sim-
pler with a container management solution and replication,
VM startup times become a real hindrance when your robotic
application behavior depends on new resources being timely
added to a cluster. Apart from trivial VM over-provisioning
policies, or applying sophisticated proactive solutions from
the IaaS auto-scaling research literature which rely on accu-
rate prediction expectations, there are no silver bullets to
VM provisioning times problems. However, our prediction is
that VM clusters for container management solutions will
be used for running multiple concurrent applications, hence
their management will have to rely on spare capacity and
VM starting delay effects would be mitigated by application
component churn.

Novel service models such as “Function as a Service” (FaaS) [7]
are emerging especially for dealing with IoT devices. While
many cloud applications have a number of components which
are amenable of being re-implemented as pure “Function
as a Service” elements, we feel this is not the case for the
moment for RoboPatrol. The reason for this lays in the fact
that the ROS components involved in the application rely
on publish/subscribe messages being exchanged in order and
with bounded latency, something that current FaaS imple-
mentation, with their on-request provisioning of functionality,
cannot at the moment achieve with minimal (i.e., in the order
of few milliseconds) latency.

2017-10-17 20:32 page 5 (pp. 1-7)

http://blog.hypriot.com
 https://github.com/alexellis/docker-arm/blob/master/ZERO.md

Un
pu
bl
ish
ed
wo
rk
in
g
dr
af
t

No
t f
or
di
st
rib
ut
io
n

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

UCC’17 Companion, December 5–8, 2017, Austin, TX, USAGiovanni Toffetti, Tobias Lötscher, Saken Kenzhegulov, Josef Spillner, Thomas Michael Bohnert

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

6.3 Placement constraints for service
components

Before discussing placement, a short disclaimer concerning
safety-critical / real-time components is due. Components
that require real-time (or near real time) behavior (e.g., for
safety, or stability control purposes on a drone) are typically
run on real-time operating systems and on dedicated boards
which are separated from the main computational unit run-
ning ROS nodes. Their placement is fixed on the robots. In
this section we are instead discussing of the placement of all
components that can be run both on robots and the cloud
with an acceptable latency bound.

As mentioned on the previous section, the ECRP platform
encourages the use of micro-services and the composition and
reuse of components for the development of robot-enabled
applications. The platform provides a set of basic building
blocks that can be instantiated and combined to build basic
functionality (e.g., device management, component execution,
bridging cloud and robot messages), however the long term
goal is to provide a complete ecosystem for developers to
publish their components and monetize on their adoption in
the same way as in cloud service marketplaces (e.g., in AWS
or Openshift).

The additional challenge with respect to “pure cloud com-
puting” services and components is that ECRP services are
generally compositions of interconnected components run-
ning across cloud servers and (possibly heterogeneous) robots.
Two kind of considerations have to be made: 1) notwithstand-
ing ROS abstractions, functionality requiring specific sensors
or actuators cannot be deployed on robots lacking them,
and 2) due to latencies and resource constraints on robots,
placement of components have a significant effect on overall
application performance.

In order to tackle the first issue, upon definition of a new
robotic service (i.e., a service class in the service catalog),
the ECRP platform allows developers to attach hardware
requirements to any service component. These requirements
act as filters that match robotic features defined through a
RDL (robot definition language). Hence, when a developer
wants to provision an instance of a service from the catalog,
the service orchestration logic checks whether all hardware
requirements needed for deploying a service using one or
more specific robots are met. If they are not, the provisioning
request is not allowed.

Concerning placement of components across robots and
the cloud, most ROS nodes require timely updates of the
relative positions of the multiple coordinate frames of the
robot sensors and components (i.e., its position with respect
to a map, the position of its sensors with respect to the robot
itself: think of a camera mounted on an arm) through the
ROS /tf topic to make correct use of sensor data and plan
control actions. For instance, the cartographer node receives
readings from the laser scanner at a rate of roughly 5 hertz on
the /scan topic, and the relative positions of the laser scanner
with respect to the other coordinate frames on the separate
/tf topic. When these topics are not properly synchronized

or delivered, warnings are thrown as the SLAM algorithm
cannot make sense of the sensor data.

The latency we measured using public cloud infrastructure
based in Frankfurt (average ping time from Zurich is around
8ms) was low enough to allow us to place latency-sensible
components such as cartographer off the robot and in the
cloud without experiencing errors nor warnings. However,
proper placement feasibility for a component would in general
depend on its tolerance to delays as well as input data size,
frequency of updates, available bandwidth and latency of
the connection. We are currently investigating the possibility
of using an automated mechanism for adaptive dynamic
placement of ROS components across cloud and robots that
is able to identify the optimal placement of a component
based on several contextual conditions (e.g., robot position
and availability of different communication technologies /
QoS while moving around).

6.4 Configuration dependencies

While ROS is very effective in abstracting some functionality
from low-level robotic details through higher level interfaces
(e.g., navigation with move base), robotic algorithms typi-
cally have to be tuned through a plethora of configuration
parameters that stem from physical details of a robot and
its sensors. Some configuration dependencies are static and
obvious: for instance, move base planning algorithms clearly
need to know the size of a robot to properly plan naviga-
tion through a narrow passage. Also, navigation planning is
currently executed in our application for a single robot.

However, our assumption of reusable services deployable on
demand for common tasks partially clashes with the reality
of these configuration parameter dependencies. To provide
an example, we mentioned how we are able to run the car-
tographer component in the cloud; still, in order to properly
function, it will need to be configured (at startup!) to know
details about devices on the robot (e.g., the laser scanner
in use with its range in centimeters). These static depen-
dencies hinder the more dynamic scenarios we foresee the
ECRP should support where robots can, while performing a
task, replace one another at runtime depending on contextual
conditions (e.g., low battery, malfunction, position).

7 FUTURE WORK

Through our work on a first reference application which
combines recent cloud computing technologies with state-of-
the-art open robotics frameworks, we have identified the need
for a developer-centric cloud robotics platform. Our work
has furthermore extracted necessary requirements for such a
platform, one of which is the ability to quickly provision and
dispose of containers and container clusters.

In the continuation of this work, we intend to work on
applying additional principles from cloud-native application
design to the reference application prototype in order to
derive design guidelines for future cloud-robotics applications.
As a part of this work, we will consider a coherent replication
strategy for all involved components such as containers and

2017-10-17 20:32 page 6 (pp. 1-7)

Un
pu
bl
ish
ed
wo
rk
in
g
dr
af
t

No
t f
or
di
st
rib
ut
io
n

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Cloud Robotics: SLAM and Autonomous Exploration on PaaS UCC’17 Companion, December 5–8, 2017, Austin, TX, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

ROS nodes. Our preliminary experiments have shown issues
with replicated ROS nodes which suggests that this will
be a non-trivial problem to solve. Furthermore, as cloud-
native applications differentiate strictly between stateless and
stateful services, we will look into persistent storage options:
on the device, in the cloud, or hybrid. Finally, our next steps
include larger-scale field tests with fleets of multiple robots
with heterogeneous hardware and capabilities.

8 CONCLUSION

This work has presented the motivations and main concepts
of a PaaS for cloud robotics development through an example
use case prototype. We reported our experience and learn-
ings from implementing the application and running it on
distributed heterogeneous computing resources leveraging
cloud-native application principles and solutions.

ACKNOWLEDGEMENTS

This work has been partially funded by grant nr. 18235.2PFES-
ES of the Swiss Commission for Technology and Innovation
(KTI).

It has also been supported by an AWS Cloud Credits for
Research grant, and a Google Cloud Platform Education
grant which helped us run our experiments on public clouds.

We wish to thank the guys at Rapyuta Robotics for all the
discussions and exchange of ideas, in particular: Gajamohan
Mohanarajah, Dominique Hunziker, Dhananjay Sathe, Vivek
Bagade, Bharat Khatri, and Alankrita Pathak.

REFERENCES
[1] Antonio Carzaniga, Gian Pietro Picco, and Giovanni Vigna. 1997.

Designing Distributed Applications with Mobile Code Paradigms.
In Proceedings of the 19th International Conference on Software
Engineering (ICSE ’97). ACM, New York, NY, USA, 22–32.
https://doi.org/10.1145/253228.253236

[2] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg. 2015. A Survey of
Research on Cloud Robotics and Automation. IEEE Transactions
on Automation Science and Engineering 12, 2 (April 2015), 398–
409. https://doi.org/10.1109/TASE.2014.2376492

[3] Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey,
Richard Doan, Xinyu Liu, Juan Aparicio Ojea, and Ken Goldberg.
2017. Dex-Net 2.0: Deep Learning to Plan Robust Grasps with
Synthetic Point Clouds and Analytic Grasp Metrics. (2017).

[4] Peter Mell, Tim Grance, et al. 2011. The NIST definition of cloud
computing. (2011).

[5] Gajamohan Mohanarajah, Dominique Hunziker, Raffaello
D’Andrea, and Markus Waibel. 2015. Rapyuta: A cloud robot-
ics platform. IEEE Transactions on Automation Science and
Engineering 12, 2 (2015), 481–493.

[6] Gajamohan Mohanarajah, Vladyslav Usenko, Mayank Singh, Raf-
faello D’Andrea, and Markus Waibel. 2015. Cloud-based collab-
orative 3D mapping in real-time with low-cost robots. IEEE
Transactions on Automation Science and Engineering 12, 2
(2015), 423–431.

[7] Josef Spillner and Serhii Dorodko. 2017. Java Code Analysis and
Transformation into AWS Lambda Functions. arXiv preprint
arXiv:1702.05510 (2017).

[8] Giovanni Toffetti, Sandro Brunner, Martin Blöchlinger, Florian
Dudouet, and Andrew Edmonds. 2015. An architecture for self-
managing microservices. In Proceedings of the 1st International
Workshop on Automated Incident Management in Cloud. ACM,
19–24.

[9] Giovanni Toffetti, Sandro Brunner, Martin Blöchlinger, Josef
Spillner, and Thomas Michael Bohnert. 2017. Self-managing
cloud-native applications: Design, implementation, and experience.
Future Generation Computer Systems 72 (2017), 165–179.

[10] Markus Waibel, Michael Beetz, Javier Civera, Raffaello d’Andrea,
Jos Elfring, Dorian Galvez-Lopez, Kai Häussermann, Rob Janssen,
JMM Montiel, Alexander Perzylo, et al. 2011. Roboearth. IEEE
Robotics & Automation Magazine 18, 2 (2011), 69–82.

2017-10-17 20:32 page 7 (pp. 1-7)

https://doi.org/10.1145/253228.253236
https://doi.org/10.1109/TASE.2014.2376492

	Abstract
	1 Introduction
	2 State of the art and practice
	3 Motivation
	4 Use Case
	5 Architecture
	6 Challenges and Experience
	6.1 Hardware Heterogeneity
	6.2 Cloud service and billing model
	6.3 Placement constraints for service components
	6.4 Configuration dependencies

	7 Future Work
	8 Conclusion
	References

