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Abstract. Technology Enhanced Learning (TEL) largely focuses on the
retrieval and reuse of educational resources from Web platforms like
Coursera. Unfortunately, Coursera does not provide educational meta-
data of its content. To overcome this limitation, this study proposes a
data mining approach for discovering Teaching Contexts (TC) where re-
sources have been delivered in. Such TCs can facilitate the retrieval of
resources for the teaching preferences and requirements of teachers.
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1 Introduction

Many contributions in TEL propose Information Retrieval (IR) systems of edu-
cational web resources [4, 5] and most of these works are focused on students; only
some recent contributions address the role of instructors [2–4]. The web hosts
many e-learning platforms that help instructors in delivering their resources
or courses. Particularly attractive is the idea of Massive Open Online Courses
(MOOCs) where courses are delivered and publicly available worldwide. Cours-
era is an on-line platform with plenty of reliable MOOCs delivered by prestigious
universities: a very attractive source of educational data. However, it does not
offer educational meta-data of its content, so this paper suggests a clustering
technique for deducing some representative TCs useful for IR systems in TEL.
In this contribution, a TC consists of i) the teaching preferences of an instructor,
ii) course information and iii) lesson information.

2 Clustering Coursera data

This study suggests to apply Hierarchical Clustering (HC) on DAJEE [1], which
is a TEL dataset built from Coursera data. The TCs are deduced from the
analysis of the three main educational entities or hierarchies in the dataset: in-
structors, courses and lessons where the resources have been delivered in. The
features obtained after the pre-processing of data are the following: average dura-
tion of resources, average number of resources per concept and average duration
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of concepts for instructors, duration and semantic density3 for both courses and
lessons. To identify distinctive educational models at each level, it is suggested
to cluster data in an hierarchical manner.

1. Instructors: for clustering instructors instances, both K-Means (with K from 2 to
242) and Expectation-Maximization (EM) have been run. The best configuration
indicated by the Calinski-Harabasz (CH) index [6] is K-Means with K=2.

2. Courses: each cluster of instructors is further divided considering courses models
taught by instructors in a same cluster. It is harder to suggest a value of K for K-
Means that is appropriate for any change introduced by the first level of clustering.
Moreover, the CH index is sensible to the data [6], so CH cannot be used for finding
K once-for-all. Therefore, we suggest EM for this level, so that the most appropriate
mixture models are defined for any partition of data derived by the upper level.

3. Lessons: each course cluster is split using the models of lessons; this is the same
situation of the upper level, so EM is suggested.

Finally, the resources used for lessons in a same lesson cluster are grouped together.
A total of 27 clusters indicate the most representative TCs in Coursera.

3 Conclusions

With the proposed HC method, 27 TCs have been discovered from data in Coursera.
These contexts can be used for retrieving resources from MOOCs appropriate for the
specific teaching situation of an instructor. In the near future, this assumption has to
be proved with a large experimentation of an IR system based on our method.
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