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Abstract—Transmission Control Protocol (TCP) with Network
Coding (TCP/NC) was designed to recover the lost packets with-
out TCP retransmission to improve the goodput performance in
lossy networks. However, TCP/NC is too costly to be implemented
in some types of end devices, e.g., with less memory and power. In
addition, TCP/NC across loss-free but thin networks may waste
scarce link bandwidth due to the redundant combination packets
sacrificed for the lossy network. In this paper, we propose the
TCP/NC tunnel to convey end-to-end TCP sessions on a single
TCP/NC flow traversing a lossy network between two special
gateways without per-flow management. We implemented and
validated our proposal in Network Simulator 3, in which each
gateway runs a reinforced version of TCP/NC that we previously
developed. The results show that the proposed TCP/NC tunnel
can mitigate the goodput degradation of end-to-end TCP sessions
traversing a lossy network without any change in TCP on each
end host.

I. INTRODUCTION

The conventional Transmission Control Protocol (TCP)
recognizes all packet losses, even if they are caused by the
lossy network, to be a sign of network congestion and cuts
down the sending rate, hence its performance is considerably
degraded. TCP with Network Coding (TCP/NC) was presented
[1] to cope with this problem. The term Network Coding (NC),
while being used in a broader sense, is mostly referred as a
technique in which multiple original packets are combined into
multiple coded packets to traverse a network and those packets
are decoded to the original packets after traversing the network,
in order to improve the throughput, delay, and/or resilience.
In TCP/NC, the source sends the data as random linear NC
combination packets (referred to as combination packets) to
the sink across a lossy network. When some of combination
packets are lost, the sink is expected to recover all data using
the remaining combination packets without retransmission. It
avoids unnecessary reduction of the sending rate according to
TCP congestion windows (CWND) control. A new NC layer
is added into the protocol stack between the TCP and IP layers
to provide the recovery capability shown in Fig. 1. This layer
operates transparently with upper and lower layer; thus, it can
take the functionality of the original TCP protocol such as a
congestion control and a retransmission mechanism with the
benefit of the NC in recovering the packet loss. In other words,
TCP/NC can recover the lost packets by combining forward
erasure correction (FEC) and automatic repeat-request (ARQ)
schemes.

Although NC in general and TCP/NC in particular are
shown to have certain benefits in lossy networks, TCP/NC is
not easy to be deployed because of several reasons. TCP/NC is
required to be implemented at both ends of connection because
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Fig. 1: NC layer in the TCP/IP model

it is incompatible with the existing TCP protocol. In addition,
TCP/NC is costly to be implemented in some types of end
devices e.g., with less memory and power. Furthermore, when
a lossy network is located in the middle as an intermediate
network (e.g., satellite network, long-distance fixed wireless
backbone, and the lossy internet especially in the developing
regions), performing the TCP/NC at end-hosts may waste
scarce link bandwidth of local networks which are expected to
be a low-loss environment.

To mitigate the performance degradation problem of con-
ventional TCPs traversing lossy networks and/or wireless net-
works without change of end-host TCP, a variety of Perfor-
mance Enhanced Proxy (PEP) approach have been studied in
either split type (e.g., TRL-PEP [2]) or snoop type (e.g., D-
Proxy [3]). While their effectiveness has been shown in some
conditions, they require complicated per-TCP flow manage-
ment on the proxy nodes.

On the other hand, TCP tunnel in general is a kind
of proxy to provide a reliable virtual link that encapsulates
and transparently conveys IP packets over one or more TCP
sessions between two (ingress/egress) entities, e.g., interfaces,
routers, or gateways. TCP tunnel is used for diverse purposes,
including security by encryption, performance improvement
by flow aggregation, flexible manageability by overlay, and so
on. Since the majority of applications rely on end-to-end TCP
sessions, TCP over TCP tunnel is commonly used as well in
various cases, although its performance depends on conditions
due to the complex interaction between upper-layer TCP and
lower-layer TCP [4].

In this paper, a new solution called TCP/NC tunnel system
to mitigate the end-to-end TCP performance degradation in
lossy networks is proposed. TCP/NC tunnel system consists
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Fig. 2: Example of TCP/NC tunnel

of two gateways running TCP/NC protocol called TCP/NC
gateway, which conveys end-to-end TCP sessions on a single
TCP/NC session traversing a lossy network in the middle. A
simple example of TCP/NC tunnel system is shown in Fig. 2
which consists of two local networks (LAN1 and LAN2) and
a lossy network in the middle. All the data transferred between
LAN1 and LAN2 through the lossy network are encoded
and decoded at GW1 and GW2 to mask the packet losses
happening on the lossy network.

In TCP/NC tunnel system, the TCP/NC gateway receives
an IP packet with TCP segment from an end-host which runs
the original TCP protocol. Then the gateway encapsulates this
packet, and forwards it to the remote TCP/NC gateway through
TCP/NC tunnel with the packet loss recovery capability. Af-
ter recovering the packet if necessary, the remote TCP/NC
gateway forwards it to an end-host as the original IP packet.
TCP/NC gateways do not interfere to the TCP establishment
phase as well as the ACK returning process between TCP end-
hosts. When packet losses happen in local networks (before
or after the tunnel), end-to-end TCP manage the lost packet
recovery by a simple retransmission. TCP/NC tunnel system
has been implemented and validated in Network Simulator 3.
In the proposed system, to eliminate some limitations of the
original TCP/NC, a reinforced version of TCP/NC is used,
which includes a dynamic estimation and change of NC-related
parameters (TCP/NCwLRE [5]) and an efficient retransmission
of unrecoverable lost packets (TCP/NCwER [6]). They were
previously developed by the authors as described later in
Section II-B.

In contrast to PEP approach, the proposed “tunneling”
approach does not require complicated per-flow management
on each gateway. On the other hand, the tunneling approach
must involve encapsulation overhead (e.g., header space and
processing time) in general. In addition, the problem of TCP
over TCP tunnel should be taken into consideration. As shown
in latter sections, by introducing TCP/NC tunnel, the goodput
of original TCP sessions across an intermediate lossy network
between end-hosts without any change can be significantly
improved in a wide range of packet loss rates on the lossy
network.

The remainder of this paper is organized as follows. In
Section II, TCP/NC is briefly described. The details of pro-
posed TCP/NC tunnel is presented in Section III. Simulations
and results are described in Section IV and the conclusions
are discussed in Section V.

II. OVERVIEW OF TCP/NC

A. TCP/NC scheme

TCP/NC protocol was presented in 2008 [1] which suc-
cessfully implemented the NC into the protocol stack with
a minor change by adding the NC layer between the TCP
and IP layer, as shown in Fig. 1. The sender-side NC layer
allows the source to send m combination packets (C) created
from n original packets (p) with m≥n using Eq. (1) where
α is the coefficient on a certain Galois Field. If the number
of the lost combination packets is no more than k=m−n,
the sink-side NC layer is expected to recover all the original
packets using the remaining combination packets without
retransmission. Therefore, TCP layer is unaware of light loss
events occurring and maintains the CWND appropriately to
improve the goodput performance. The processes of creating
m combination packets and regenerating n original packets are
called encoding and decoding, respectively.

C[i] =

n∑
j=1

αijpj ; i = 1, 2, 3, ...,m (1)

Besides executing the encoding/decoding process, NC layer
allows a new interpretation of ACKs by using the degree of
freedom concept and the seen/ unseen definition [7]. The ACK
number in the ACK packet is set to the sequence number of
the oldest “unseen” packet, which will be decoded when the
sink receives the additional combination packets. The example
of the coding process is shown in Fig. 3. The packets p1,
p2, p3 and p4 are encoded to the combination packet C[1],
C[2], C[3], C[4], C[5] and C[6]. When a new packet comes
to NC layer, the combination packets will be created and
transported immediately. Due to the two lost combinations,
the NC layer cannot decode any combination packets until
receiving the combination packet C[6]. For each received
combination packets, NC layer returns an ACK packet whose
ACK number corresponds to the smallest “unseen” packet.
During the process, the TCP layer totally unawares with
any loss events; thus, the CWND keeps increasing and the
performance is stable.

Definition 1 (seeing a packet). A node is said to have seen
a packet p if it has enough information to compute a linear
combination of the form (p+q), where q is itself a linear
combination involving only packets that arrived after p at the
sender.

If the number of lost combination packets exceed the
recovery capability, one or some packets will be “unseen” in
all received combination packets. Then TCP layer will receive
duplicate ACK numbers from NC layer and retransmit the
“unseen” packets to NC layer; NC layer simply forwards them
to the lower layer, i.e., IP layer.

B. TCP/NCwLRE and TCP/NCwER

The following two problems hinder the potential of the
original TCP/NC. The first one is about how to appropriately
choose the NC-related parameters and how to change them
in an online fashion. Two basic parameters affecting the
efficiency of TCP/NC are the redundancy factor (R=m

n ) and
the recovery capacity (k), which should be chosen based on
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TABLE I: Protocol terminology

Term Definition
TCP NewReno The basic TCP protocol
The original TCP/NC The original TCP/NC based on [1]
TCP/NCwLRE TCP/NC with Loss Rate Estimation [5]
TCP/NCwER TCP/NC with Enhanced Retransmission [6]
TCP/NC or reinforced TCP/NC Combine TCP/NCwLRE and TCP/NCwER

the link loss rate of the channel. In addition, those parameters
should be able to change at any time if required. As the original
TCP/NC does not provide any means for them, TCP/NCwLRE
[5] was developed which includes mechanisms to estimate the
link loss rate, choose an appropriate redundancy factor R based
on the estimated link loss rate, and apply it without any adverse
impact on the current encode/transmission/decode process.
More specifically, after TCP/NCwLRE estimates the link loss
rate r, it calculates the success probability of transmission in
one coding window in case of random loss channels (its size
is equal to n), S(n, k), by using Eq. (2) with n and k as
variable. In this study for TCP/NC tunnel, only the random
loss channel is considered; thus, k=3 and the maximum value
of n is chosen to satisfy S(n, 3)≥0.9.

S(n, k) =

k∑
j=0

(
n+k
j

)
rj(1− r)n+k−j (2)

The second problem is about retransmission of the un-
recoverable lost packets. In general, TCP/NC relies on the
TCP layer for the packet retransmission that are not recovered
by redundant combination packets in NC layer. However,
the original TCP/NC cannot simply accommodate an efficient
retransmission of TCP layer such as Selective-ACK (SACK),
and the lost packets are retransmitted one by one in each
round trip time. In response to this problem, TCP/NCwER [6]
was developed in which NC layer helps retransmission in an
efficient way and the retransmitted packets are also encoded.

In the TCP/NC tunnel system, therefore, the reinforced
version of TCP/NC is used instead of the original TCP/NC.
The terminologies of the protocols are shown in Table I.

III. TCP/NC TUNNEL

As discussed in Section 1, although TCP performance on
lossy networks is expected to be improved by introducing

Fig. 4: Tunnel handler

TCP/NC, the deployment of TCP/NC is a challenging task
with several difficulties. To avoid those difficulties and utilize
the potential of TCP/NC, a simple but effective solution
called TCP/NC tunnel is proposed. This proposal only re-
quires the special TCP/NC gateways at the border of each
networks which run the specific application called tunnel
handler. They communicate together through lossy network
using the TCP/NC protocol. In this paper, to make validation
and evaluation simple, only one direction data transfer and only
packet losses on this direction are considered; the returning
ACK process between the sinks and the sources is transparent
with the tunnel handler. In this condition, the TCP/NC gateway
aggregates and transfers end-to-end TCP sessions between
end-hosts into a single TCP/NC connection. Moreover, we
focus on the application of transfering a large file in this paper;
hence, only goodput performance is evaluated.

A. The operation of the TCP/NC gateway

The TCP/NC gateway equips two interface types, an inter-
nal interface and an external interface to distinguish the packets
which receive in the local network or external network. The
internal interface is connected to the local network and the
external interface is connected to the external network. The
protocol stack and structure of TCP/NC tunneling is illustrated
in Fig. 4 and the packet processing at the TCP/NC gateway is
shown in Fig. 5. When the IP packets from the end-hosts arrive
at internal interfaces, they are moved to the tunnel handler to
become the transferred data and forwarded to TCP layer and
to NC layer. At NC layer, all the segments are encoded to
the combinations on a TCP/NC session and sent to the remote
gateway. When the combinations arrive at external interface
of the remote gateway, the decoding process is performed by
NC layer to recover the lost combinations if needed. A new
decoded packet is forwarded to TCP layer for reordering. The
data of the packet in the correct sequence in terms of tunnel
TCP session is pushed to the tunnel handler. The tunnel handler
converts the received data to an original TCP segment to be
sent to the sink based on the IP address of the data. Finally, the
sink receives the packet and returns an ACK packet without
data to the source, which is transparently forwarded through
the TCP/NC tunnel because only the single directional data
transfer is considered. In case of the bi-directional data transfer,
the system needs to handle an ACK packet with data on an
opposite directional TCP/NC tunnel. However in any case, the
system can maintain the end-to-end TCP ACK semantics for
the retransmission process by end-hosts responsible to packet
losses that happen outside the tunnel.



Fig. 5: Processing at TCP/NC gateway

B. The congestion control

The TCP/NC tunnel system includes three different buffers
in which some kind of congestion may happen. The first one
is the TCP sending buffer of the gateway GW1 (in Fig. 6)
that accumulates all packets from end-to-end TCP sources and
keeps on-the-fly packets for TCP retransmission. Even if the
total incoming throughput at GW1 and the actual throughput
from GW1 to GW2 are less than the intermediate bandwidth,
the congestion can still occur, e.g., when GW1 cannot release
the non-ACKed packets from the TCP sending buffer due to
packet loss. The second one is the link buffer of external
interface of GW1. The incoming packets may be amplified by
encoding process to the combinations for redundancy when
being forwarded into the TCP/NC tunnel. If the amplified data
exceeds the bandwidth of the intermediate link, the congestion
will happen. The last one is the link buffer of the internal
interfaces of GW2. A number of lost packets belonging to the
same end-to-end TCP session might be burstly recovered and
forwarded, which may cause congestion.

The first case in which frequent congestion will impact
the performance should be managed. The TCP sending buffer
size is set to 64 KB plus the link buffer size of the external
interface. Note that, the actual congestion window size is
limited up to 64 KB because the TCP window scaling option
is not used. In the preliminary comparison, a very large size of
the TCP sending buffer decreased the goodput of end-to-end
TCP sessions.

Another issue to be considered is the TCP retransmission
timeout (RTO). In a heavily lossy network or network con-
gestion, a retransmission timeout is unavoidable. If the RTO
timer of an end-to-end session is smaller than that of the
TCP/NC session, the end-to-end retransmission of a packet
happens before the TCP/NC tunnel will recover the packet by
in-tunnel retransmission. In such cases, the same packets may
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Fig. 6: Network topology

be stored in the TCP sending buffer multiple times. Therefore,
the minimum RTO timer value of the TCP/NC tunnel session
is set to a value (400 ms) less than a normal value (1000 ms)
that is used for the end-to-end TCP session.

IV. SIMULATION AND RESULT

The implementation of TCP/NC tunnel was accomplished
using Network Simulator 3 (ns-3) [8]. The topology of the
simulation is a tandem network with two routers/gateways
connect to at most five sources and five sinks, as shown in
Fig. 6. Each edge link connects an end-host and a router has
a bandwidth of 1 Mbps and a propagation delay of 1 ms. The
intermediate link connecting two routers has a bandwidth of 4
Mbps and a propagation delay of 7 ms. The link buffer size is
set to 100 packets, and the packet size is 1000 bytes. The size
of TCP sending buffer in TCP/NC gateway is 164 packets. The
transferred data size is 100 Mbytes. The TCP type is NewReno.
The intermediate link is considered as lossy channel of random
loss channel with a link loss rate ranging from 0.0 to 0.3. These
losses happen only in the direction of transferred data. In all
scenarios, each simulation was performed at least 20 times to
obtain the average value.

The simulation is run in four cases, which has one, two,
three and five active sessions. The sessions are started at the
same time with the same data size and run the same protocol.
There are three protocols which are used to compare. In the
first case, all the sources and the sinks run TCP (E2E-TCP
case). In the second case, all the sources and the sinks run
TCP/NC (E2E-TCP/NC case). In the last case, all the sources
and the sinks run TCP but over TCP/NC tunnel by configuring
two TCP/NC gateways (TCP/NC tunnel case). The simulation
result is shown in Fig. 7, the goodput performance is calculated
by the average of the goodput of all sessions.

With packet loss recovery capacity, the goodput of E2E-
TCP/NC and TCP/NC tunnel is always better than that of E2E-
TCP over the lossy networks. If the number of sessions is
less than four, the goodput of E2E-TCP/NC does not change
because the bandwidth of intermediate link (4 Mbps) is always
larger than the total throughput of three sessions (3 Mbps).

In E2E-TCP/NC case, as the link loss rate increases, the
number of packet losses likely exceeds the recovery capacity of
NC layer. Thus, the TCP layer needs to retransmit the “unseen”
packets. The CWND is decreased and the goodput performance
is also decreased.

By comparing E2E-TCP/NC and TCP/NC tunnel in good-
put performance, two situations are seen. In cases of one or
two end-to-end sessions, the performance of TCP/NC tunnel
is clearly better than that of E2E-TCP/NC. However, in cases
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Fig. 7: Goodput comparison

of three or five end-to-end sessions, the performance of E2E-
TCP/NC is slightly better than that of TCP/NC tunnel.

In the case of one session, the bandwidth of intermediate
link (4 Mbps) is sufficient to convey one end-to-end session’s
throughput amplified by NC up to the loss rate of 0.3. In the
TCP/NC tunnel, therefore, no congestion happens in the TCP
sending buffer at TCP/NC gateway. All the lost packets are
successfully recovered and received in the end-to-end TCP sink
before the end-to-end TCP source retransmits the packet by
TCP timeout; thus, the source does not know the loss event
and keeps a high CWND to get a high goodput performance.

In the case of two sessions, congestion at the TCP/NC
tunnel can happen. When the link loss rate is less than 0.15,
all losses can be recovered before the TCP sending buffer
is overflow. However, when the link loss rate is greater than
0.15, the number of retransmissions is increased, resulting in
the shrinking CWND of TCP/NC session on the tunnel while
the CWND of each end-to-end TCP session keeps increasing.
This issue makes the TCP sending buffer be increased when
the packet loss happens. There are two problems when this
buffer increases. First, due to an overflow of this buffer,
the newly incoming packets will be dropped. Since these
packets cannot be recovered by TCP/NC tunnel, the end-to-
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Fig. 8: End-to-end CWND evolution of one of two coexisting
E2E-TCP/NC sessions

end TCP source should recognize these lost packets by TCP
timeout to retransmit them. The CWND at the end-to-end TCP
source decreases to one, resulting in the goodput performance
degradation. Second, due to a long waiting time in this buffer,
the number of dead packets increases. The dead packet is the
packet which is still stored in the TCP sending buffer but is
expired by TCP timeout. The CWND at the end-to-end source
decreases to one again and “unnecessary” retransitions happen.
Fig. 8 and Fig. 9 show the end-to-end CWND of one of
two sources in E2E-TCP/NC case with two sessions and in
TCP/NC tunnel case with two sessions, respectively, at link
loss rate of 0.1, 0.15 and 0.2. The CWND of the sources in
TCP/NC tunnel case is increased in the link loss rate 0.1 and
0.15 but it is decreased at some times in the link loss rate of 0.2
while the CWND of the sources in E2E-TCP/NC is decreased
many times in all cases of link loss rate. Fig. 10 shows the
TCP sending buffer evolution of the TCP/NC gateway. At the
high link loss rate (0.2), the queue length of the TCP sending
buffer of TCP/NC gateway is almost always longer than the
upper limit of its actual TCP congestion window size (around
64 packets). This suggests many packets (i.e., dead packets)
are stored in the TCP sending buffer and retransmitted by the
source due to end-to-end TCP timeout.

In the case of three sessions, the congestion on the TCP/NC
tunnel happens more often. It decreases the goodput perfor-
mance of TCP/NC tunnel to nearly the same level of E2E-
TCP/NC. More precisely, an encapsulation overhead (4%) of
TCP/NC tunnel makes its goodput slightly lower compared
with E2E-TCP/NC.

In case of five sessions, the congestion always happens
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Fig. 9: End-to-end CWND evolution of one of two coexisting
TCP sessions on the TCP/NC tunnel

even with non-lossy links. Both of E2E-TCP/NC and TCP/NC
tunnel exhibit a similar goodput degradation.

V. CONCLUSIONS

In this paper, the TCP/NC tunnel system, consisting of two
TCP/NC gateways that run TCP/NC protocol, has been pro-
posed. The TCP/NC tunnel conveys end-to-end TCP sessions
on a single TCP/NC session between the gateways traversing a
lossy network in the middle. TCP end-hosts can use this tunnel
to take advantage of the recovery capacity of NC without
running TCP/NC on each end-host.

The simulation results on ns-3 show that the proposed
TCP/NC tunnel achieves a better performance in goodput
compared to the E2E-TCP and a comparable performance to
the E2E-TCP/NC when traversing a lossy network. In addition,
if the TCP sending buffer in the TCP/NC gateway is not
congested, the TCP/NC tunnel gets a higher goodput than E2E-
TCP/NC. Only if the bandwidth of intermediate link (i.e., the
lossy network) is insufficient, the tunneling overhead causes a
lightly smaller goodput compared to E2E-TCP/NC case.

We simply assume TCP/NC gateways are deployed at the
edges of the targeted lossy network and work collaboratively
for greedy end-to-end TCP sessions. Although the proposed
system and the performance evaluation are preliminary and
with limited assumptions, the results suggest the potential of
the TCP/NC tunnel that can provide a goodput performance of
end-to-end TCP sessions comparable to E2E-TCP/NC with no
change at the end-hosts as well as no per-flow management
at the gateways. Since TCP/NC tunnel may not necessarily
be good for all types of applications on end-to-end TCP
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Fig. 10: TCP sending buffer evolution at TCP/NC gateway in
the case of 2 sessions

sessions, discriminating session types and selecting tunneling
types (TCP/NC tunnel or other ones) should be one of our
future work.
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