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Abstract—Group mobility in mobile networks is responsible for
dynamic changes in user accesses to base stations, which even-
tually lead to degradation of network quality of service (QoS).
In particular, the rapid movement of a dense group of users
intensively accessing the network, such as passengers on a train
passing through a densely populated area, significantly affects
the perceived network QoS. For better design and operation of
mobile network facilities and functions in response to this issue,
monitoring group mobility and modeling the access patterns in
group mobility scenarios are essential. In this paper, we focus
on fast and dense group mobility and mobile network signaling
data (control-plane data), which contains information related
to mobility and connectivity. Firstly, we develop a lightweight
method of group mobility detection to extract train passengers
from all users’ signaling data without relying on precise location
information about users, e.g., based on GPS. Secondly, based on
the same signaling data and the results obtained by the detection
method, we build connected/idle duration models for train users
and non-train users. Finally, we leverage these models in mobile
network simulations to assess the effectiveness of a dynamic base
station switching/orientation scheme to mitigate QoS degradation
with low power consumption in a group mobility scenario. The
obtained models reveal that train users consume 3.5 times more
resources than non-train users, which proves that group mobility
has a significant effect on mobile networks. The simulation results
show that the dynamic scheme of base station improves users’
perceived throughput, latency and jitter with small amount of
additional power consumption in case of a moderate number of
train users, but its ineffectiveness with larger number of train
users is also shown. This would suggest that group mobility
detection and the obtained connection/idle duration models based
solely on control-plane data analytics are usable and useful for
the development of mobility-aware functions in base stations.

Index Terms—Mobile network, Mobile data analysis, Group
mobility, Utilization model, Mobile network simulation.

I. INTRODUCTION

Mobile networks are expected to provide an ever-increasing
number of users with satisfactory quality of service (QoS)
even in challenging environments. With meticulous analyses
of growth trends and thorough planning, networks can adapt to
variable and heterogeneous needs. However, as current mobile
networks remain considerably static due to the high cost of
temporary reshaping, they are still enable to adapt well to
changes in demand that are not related to global trends but are
instead dynamically caused.In general, sudden changes in de-
mand are especially difficult to predict and handle efficiently,
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and thus result in either QoS degradation or extra expenditure.
If base stations are designed to handle peak levels of changing
demand, a large proportion of the resources goes unused
during normal demand periods. Otherwise, users perceive
degraded QoS during the peak demand period. A typical and
important example causing sudden changes in demand is the
movement of dense groups of users intensively accessing the
network that requires the reallocation of resources to a large
number of devices at the same time. From the mobile network
operator’s (MNO’s) point of view, a new solution should be
developed for QoS degradation due to group mobility that
emphasizes cost and energy efficiency.

As a solution for the above-mentioned issues, in this paper,
we consider a dynamic base station switching/orientation
scheme. The assessment of such a new scheme involves the
following procedures. Firstly, group user mobility should be
modeled based on monitoring, which includes detecting the
movement of groups of users and analyzing/understanding
the users’ utilization of the network. Then, using the results
of the monitoring and modeling, an initial evaluation of
the scheme should be conducted, which is needed prior to
scheme deployment in the real network and directly affects
the decision on deployment. However, these procedures are
challenging due to the following conditions and regulations:

 Difficulty of collecting accurate locations of users:
Detecting a group of users is straightforward if the
accurate locations of all the users are available in general.
Such information is however both difficult and/or costly
to obtain and not desirable in terms of privacy issues.
Therefore, the detection of moving groups of users should
not require the accurate location of individual users.

 Difficulty of using training-based methods: As
metropolitan areas are in a state of constant evolution
with, e.g., the construction of new buildings and the
modification of urban facilities, MNOs must frequently
adapt their networks by adding base stations and chang-
ing their parameters including the orientation of their
antennas. In addition, since the radio conditions are very
sensitive, the coverage of base stations relies on the
weather. If a group mobility detection method relies on
some training according to the network conditions, it
would need incessant training phases and would not be
practical. Therefore, the method should not require any
form of training.

 Need for frequent updates: How the network is used
basically depends on how customers use their devices.
Thus, network utilization/connectivity patterns are likely
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to change with time as new devices and applications
are released, so any analyses should be updated on a
weekly or daily basis. Therefore, the detection method
and consequent analyses should be lightweight.

 Difficulty of collecting and handling user data: All
IP traffic in LTE networks is separated into user data
and control data. User data contains application data and
control data contains messages for handling connections
for user data. Network utilization/connectivity is often
analyzed based on user data. However, user-data-based
analyses generally require a large amount of processing
power and time. Moreover, user data is not desirable for
privacy reasons. Therefore, the analyses should function
without user data.

 Difficulty of on-field experiments: An on-field experi-
ment with active performance test will require a number
of testers who take trains carrying their own devices.
While the public transportation service covers a variety
of locations with different environmental conditions in a
metropolitan area, such a costly experiment is difficult
to conduct on all locations. Furthermore, the experiments
should be repeated due to frequent changes of the en-
vironmental conditions as noted above. Therefore, the
process should be based on passively collected data in
a lightweight manner instead of actively collected ones
in on-field experiments.

In this paper, we discuss a general process consisting of the
following three tasks to evaluate a resource allocation scheme
relating to group mobility in mobile networks by taking
into account the above-mentioned challenging requirements.
Firstly, we develop a group mobility detection method using
signaling data in an actual mobile network, which leverages
the spatial and temporal locality dimensions passively moni-
tored in the network. The location accuracy of the method only
relies on the locations of base stations that are naturally figured
out by MNOs. The method is not affected by changes in
environmental conditions or the configuration of base stations.
The method can also be validated by consistency with the
ground truth of actual train timetables and train track loca-
tions. Secondly, we construct connectivity models expressed
by connected/idle durations. The connected/idle durations for
train users and non-train users are extracted from the same
signaling data used in the detection method, and are used
to build and validate the models for this task. We assume
that network accesses are triggered by either human activities
or background applications activities, and then describe the
models with a mixture of two different distributions. The
models are validated in a way similar to the leave-one-out
cross-validation technique. Finally, we leverage the models to
conduct an initial evaluation of newly introduced functions.
We assess the impact and effectiveness of a dynamic base
station switching/orientation scheme in group mobility scenar-
ios by network simulation. The scheme is evaluated in terms
of the user-perceived QoS and additional power consumption.
Since the connectivity models used in the simulation are built
based on the data in a specific area and period of time, we
vary the parameters of the models in order to simulate a range

of group mobility with different conditions. We can obtain a
relative evaluation, e.g., results revealing the sensitivity of the
scheme to the model parameters.

In the above-mentioned process, the first and second tasks
based on our previous conference paper [1] and the third task
are integrated to demonstrate the availability and usefulness of
the detection method and the models for group mobility. The
main contribution of this paper is three-fold in the application
of Big Data analytics:

 We develop and validate a detection method to monitor
group mobility, which achieves decent performance with
a precision of 0.70 and a recall of 0.75.

 We build and validate connected/idle duration models for
both train users and non-train users, which reveal that
train users consume 3.5 times more resources than the
others.

 Through simulation based on the obtained models, we
evaluate a dynamic base station switching/orientation
scheme that dynamically adjusts base stations’ capability
in synchronization with the group mobility of users. The
simulation results suggest that the new scheme is feasible
in real-world commercial environments. It can improve
users’ perceived throughput, latency and jitter, which are
962%, 18% and 32% compared to those without the
additional base stations implementing the scheme, with
small amount of additional power consumption of 2.0%.

The rest of this paper is organized as follows. The position
of this paper is clarified in Section II. The group mobility
detection method is proposed and its performance is evaluated
in Section III. In Section IV, network utilization by train users
and non-train users are modeled and the proposed models
are validated. The availability and usefulness of the models
are demonstrated by being applied to a practical use-case of
the initial evaluation phase of mobile network functions in
Section V. Section VI finally concludes this paper.

II. RELATED WORKS

Our work deals with mobile users communications in a
metropolitan area with trains from MNO’s view point, and
consists of (i) detecting the group mobility of train users;
(ii) building users’ connectivity model using the results of (i);
and (iii) assessing some new base station functions through
simulations driven by the models obtained in (ii). As described
in Section I, they face the five types of difficulties from
practical conditions and regulations. In this section, related
works are reviewed for each technical component, i.e., (i), (ii),
and (iii), to show the appropriateness of our design choices.

A. User mobility extraction

User mobility has been extensively researched originally in
the ad-hoc network field [2], [3]. [2] introduced typical mo-
bility patterns and evaluated their effects on the performance
of routing protocols. [3] proposed a routing-based location
management scheme for wireless mesh networks. They math-
ematically described clients mobility using stochastic Petri net
techniques, then they evaluated their proposed method. Those
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mobility models have been improved and applied to cellular
networks for cell planning [4], and for mobility-aware func-
tions [5], [6]. However, while those characterizations of mo-
bility are useful for creating sufficiently realistic simulations,
they are not necessarily useful for monitoring or detecting the
movement of groups of users in a real network in an efficient
manner and for subsequently constructing connectivity models
of users according to their fashion of locomotion.

Independently of ad-hoc or cellular networks, the nature of
human mobility itself has been studied in [7]. [7] reported
that human mobility displays similar features to Levy-walks,
including heavy-tail flight and pause-time distributions and the
super-diffusion followed by subdiffusion. Roughly speaking,
human mobility is likely to be directed random walk rather
than pure random walk. This report, however, does not include
group mobility, and our objective is to label users with their
way of movement.

Great efforts have been made to characterize and understand
human mobility based on actual call detail records (CDR) or
base station logs [8]–[12]. CDR are data records of commu-
nication i.e., phone call, Internet connection, short messaging
service, etc., which contain subscriber IDs of endpoints of
communication, the start time, the duration of communication,
etc.. Since CDR contain the privacy sensitive information such
as subscriber ID, the data should be carefully treated. Base sta-
tion logs are data records that contain the user device IDs and
the times that they connect to the base station. It sometimes
contains the radio resource control logs. In [8], by monitoring
the distribution of CDR during business hours, they estimated
the mobility of commuters that travel daily across the geo-
graphical gap between users’ residences indicated by billing
ZIP and their places of employment. They further estimated
the carbon emissions and traffic volume as in transportation.
[9] proposed a route classification method and showed the
practical capability of deriving the trajectories using handoff
patterns of CDR: not only identifying the train lines but also
detecting the train tracks matching cellular handoff patterns
to routes. According to their evaluation, the handoff patterns
are robust and distinguishable even if small changes occur in
route, speed, direction, phone model, and weather conditions.
[10] proposed a human travel estimation method to specify
the means of movement and the destination. To finely estimate
the travel using the coarse location information of base station
logs, they made use of supplementary information. An efficient
pattern creation method was proposed in [11]. [11] classified
the ways of movement of train users in relation to train lines,
which requires training in the beginning of the classification.
However, those methods are not easily applied to our analysis.
This is because [8]–[11] require supplementary information
such as map information, etc. In addition, [9] and [11] require
a training phase with considerable overhead in the initial part
of the detection process.

The concept of group mobility has been especially high-
lighted since group mobility is likely to cause inefficiency
of resource utilization and bursts of demand [13]–[16]. [13]
introduced a variety of group movement models and evalu-
ated the effect of types of group mobility on connectivity
and throughput of an ad-hoc network. [14] introduced an

aggregation and separation movement model for groups of
people. [15] proposed very microscopic group mobility level
classification and group structure recognition for pedestrians,
using sensors on the pedestrians’ smartphones. [16] took into
account spatial and temporal locality dimensions using sensor
data to quantify the correlation between the mobility of users.
Another viewpoint regards group movement as one of many
group events. Group event detection has much progressed
in the participatory sensing field [17], [18]. [17] proposed a
detection method for the boundaries of concurrent events to
efficiently improve the quality of information and to appro-
priately define the incentive for sensing. The method uses a
combination of coarse- and fine-grained boundary detection
but it requires accurate location information as observed by
devices. [18] proposed the combination of two centralized
event detection algorithms that make use of the Min-cut theory
and SVM pattern matching technique. The intuition of our
approach is similar to that of [18], which is “real-world events
usually exhibit some spatiotemporal patterns.” However, those
methods are not easily applied to our analysis. This is because
the characterizations of group mobility in [13], [14] are useful
for creating simulation, but are not necessarily useful for
monitoring or detecting the group movement of users in real
network. [15]–[18] require accurate and fine-grained location
information of users but it is difficult to collect and use sensor
data observed on user devices. Also, while [18] intended
to deal with general events, we focus specifically on group
movement. In order to eliminate the effects of behavior other
than group movement, we directly make use of characteristics
of group movement.

The core technique of our group movement detection is
clustering. Many clustering algorithms have been developed
specially for data streams where the processing speed and
efficiency should be high [19]–[21]. Data streams are char-
acterized as data that is generated continuously and simulta-
neously by millions of devices, e.g., phone call records, and
the data is usually massive amount. [19] proposed CLARA,
which is based on a partitioning around medoids algorithm. In
the initial part of the process, CLARA randomly chooses data
samples to calculate medoid candidates then repeatedly refines
the accuracy of those medoids. [20] proposed the BIRCH al-
gorithm, which builds a hierarchical data structure (CF-tree) to
compress the amount of data and cluster leaves with a k-means
clustering algorithm. [21] proposed the STREAM algorithm,
which splits the data into chunks then locally clusters the
data in each chunk and extracts the center of each cluster
in a rapid way (LSEARCH). After the local clustering, it
globally clusters all centers using a k-means algorithm. These
algorithms have a great advantage in processing speed but are
not sufficiently flexible for our purpose; the clustering should
provide a corresponding relationship of each resulting cluster
to a way of movement. In addition, they require to estimate an
appropriate number of medoids in advance. However such an
estimation is difficult since we do not know accurate train
movement schedule all the time. It is also too time- and
resource-consuming to introduce the appropriate number of
medoids with an optimization function such as the Silhouette
value [22].
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B. Network connectivity modeling

For users’ behavior analysis, user-plane data is often used.
User-plane data is any data directly generated by user ap-
plication, i.e., audio, video, text and so. Although it can be
used to analyze the traffic volume, the time duration, and the
transferred contents of each user activity, it often requires
a large amount of processing power and time. Moreover,
since user-plane data usually contains privacy sensitive data,
it is necessary to obtain users’ permission for analysis. A
number of studies for user connectivity modeling are found
in literature [23]–[25]. [23] analyzed traffic patterns using
cellular base station trace data. They revealed the traffic
patterns depending on cell-towers, the geographical context
of traffic patterns. Then, they modeled the traffic patterns in
terms of their time domain and frequency domain aspects. [24]
analyzed user data on the commercial 3G network and defined
categories of machine-to-machine devices. They investigated
daily and weekly patterns of the traffic volume, frequency of
data generation, geographical distribution, comparison with
smartphones, application usage, and network performance.
[25] deeply investigated the events which put a temporally
but extremely high demand for communication capacity on
cellular networks with commercial voice and data traces.
They revealed the performance degradation both pre- and
post-connection, then proposed and evaluated an adequate
mitigation method.

On the other hand, a number of studies using control-plane
data are also found in literature [26]–[28]. Control-plane data,
also known as network signaling data, is convenient and useful
for MNOs. This is because it consists of very smaller volume
compared with user-plane data, is easy to retrieve from a
mobile network perspective, and contains information related
to the mobility and the connectivity of all mobile devices.
Compared with user-plane data, analyses based on control-
plane data are expected to be fast and practical. Analyses based
on control-plane data have been studied to investigate the
interactions of control-plane protocols [26], so as to improve
the management of mobility [27] and even to evaluate the
effect of a signaling storm on a mobile network [28].

The approach proposed in this paper is based on monitoring
and analyzing control-plane data. This is firstly because we
cannot analyze user-plane data due to both of computing
resource and privacy issues. Secondly, we just focus on users
mobility and connectivity and are not interested in user content
or very microscopic users’ behavior. Furthermore, we uniquely
focus on the difference of users’ connectivity corresponding to
the users’ way of movement, which requires sufficiently wide
area of data but its analysis should be sufficiently fine-grained.
To the best of our knowledge, this is the first challenge to
investigate user connectivity models based solely on network
signaling data that are captured behind base stations. The
proposed network connectivity models for train and -non-train
users are explained in detail in Section IV.

C. Network simulation and assessment for network functions

To quantitatively analyze and assess a complicated system
in a specific circumstance, simulation-based evaluation is es-

sential in many cases where in-lab experiments are not at scale
and real-world experiments are too costly. In particular, it is of
practical importance to initially assess some system functions
with parameter tuning by simulation before development and
deployment of the functions. In general, there are two types of
simulation; model-driven simulation that uses simulation-input
data generated from models built and tuned for the targeted
environment [5], [6], and trace-driven simulation that uses
simulation-input data generated from actual data obtained from
real experiments [4], [25]. Model-driven simulation can be
easily applied to any form of simulation but its adequateness
depends on how well the model reflects the reality. While it
possibly includes a gap between simulation and real world
so that it usually requires on-field experiments afterwards,
model-driven simulation is suitable for the initial evaluation
with synthetic simulation. [5] evaluated the effects of adaptive
virtual network function on the changes of latency with varied
speed of user devices. [6] evaluated the accuracy of mobility
estimation using linear dynamic system model of mobility.

On the other hand, trace-driven simulation is capable of real-
istic simulation by conducting the actual users’ behavior but is
not likely to be flexible to apply to general simulations. Thus,
it is difficult to verify the generality of simulation results.
[4] computed pseudo-user mobility in order to evaluate cell
planning efficiency using a census data for user movement in
specific but relatively large area. [25] evaluated the congestion
mitigation schemes using the actual radio resource control logs
and TCP header in data traffic, which are observed in the
specific events, i.e., football games, and public demonstrations.

In this paper, we evaluate the mitigation methods for QoS
degradation caused by user mobility through simulation based
on train and non-train users connectivity models. To inves-
tigate how the mitigation methods generally impact on the
fundamental network performance, we conduct a synthetic
simulation. Therefore, we cannot directly apply the actual
trace-data to simulation and, instead, we apply the connectivity
model based on actual signaling data. In order to mitigate QoS
degradation caused by mobility or group mobility, a variety
of adaptive functions have been proposed [5], [6], [29]–[31].
To enhance the conventional base stations that are designed
to have sufficient resources for peak demand periods and are
always on even in normal demand periods, [29] proposed a
smart scheme to switch on/off the base stations depending on
the traffic load in order to reduce extra power consumption.
The scheme could reduce the power consumption by 60%
on weekdays and by 80% on weekend. [30] introduced the
fundamental idea of moving antenna to steer the orientation of
antenna targeting a moving user device. [31] further developed
the idea of dynamic orientation focusing on a high speed
train scenario. It discovered a new type of spatial-temporal
correlation between the base station and moving antenna on
the roof-top of train. We define dynamic base station functions
essentially based on the ideas discussed in [29] and [30] as
we call dynamic base station switching/orientation scheme
hereafter. We evaluate the fundamental performance metrics
with two dynamic base station functions: dynamic switch on
when trains come close and switching off when they go,
dynamic orientation of directional antenna tracing the group
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Fig. 1. Simplified LTE network architecture.

movement in Section V.

III. SIGNALING-BASED GROUP MOBILITY DETECTION

We propose a group mobility detection method consisting of
three steps: signaling data analysis, handover clustering, and
moving group extraction. The core idea of our group mobility
detection lies in the fact that users moving together will often
change the associated base station at the same time and around
the same location. The first step in this method is to detect
changes of base station by users, called handover events. The
second step aims to identify groups of users by clustering these
handover events by location and time. The locations here do
not correspond to users’ locations but to the locations of base
stations. Finally, by taking advantages of the time dimension to
filter and gather the clusters, we can retrieve the users moving
together over time with a high-level of confidence.

A. Signaling data analysis

When devices move or access the network, control-plane
signals are triggered aiming at the management of mobility
and connectivity. By capturing and analyzing these signals,
we can obtain access information about the mobile network
and its devices without interfering with the network entities
themselves. Our analysis focuses on the control signals carried
over the S1-MME interface of the LTE architecture, described
in Fig. 1. Located between the evolved NodeBs (eNBs), i.e.,
the base stations of LTE networks, and the mobility manage-
ment entity (MME), this interface uses the S1 Application
Protocol (S1AP) [32] to carry signals related to connectivity
and mobility.

Each time an idle device tries to access the network, a
sequence of three messages described in Fig. 2(a) is exchanged
between its serving eNB and the MME. When a connected
device causes use of the network, it returns to an idle state
after the exchange of a sequence of three other messages,
described in Fig. 2(b). Analyzing these two sequences of
messages allows us to detect when a device goes connected or
idle, and thus to determine the connectivity state of the device.

In order to improve the strength of the radio signals, a
connected device can change the serving eNB by performing a
handover. These phenomena frequently occur when users are
moving and can be split into two categories according to the
way in which the process is executed: X2-handovers, in which
the process is performed almost entirely between the two
eNBs, and S1-handovers, in which the process is performed
by the MME. The mobility of connected devices can thus be

(a) (b)

(c)

(d)

(e)

Fig. 2. S1AP signals related to connectivity and mobility. Signals related to
connectivity are described in (a) and (b). S1-handover signals, X2-handover
signals, and TAU signals are respectively detailed in (c), (d) and (e).

determined by detecting the handovers. Besides, in order for
the mobile network to be able to redirect mobile-terminated
calls and packet transfers using paging, the evolved packet core
(EPC) must remember the tracking area (TA), i.e., the group of
eNBs, containing the eNB last contacted by the device. When
a device changes TA, a signaling procedure called a tracking
area update (TAU) is emitted on the S1-MME interface to
notify the EPC, even when the device is idle. The messages
related to handovers and TAUs that we analyze in our method
are detailed in Figs. 2(c), 2(d), and 2(e).

Although enormous, the volume of signaling data is rela-
tively small compared with user-plane data. Our implementa-
tion in C/C++ shows that it is possible to finish analyzing
the numbers of S1AP packets faster than the rate of data
acquisition. We output events related to the connectivity of the
devices to queue Cq and events related to mobility to queue
Mq . As all mobility events represent a change of base station
from source base station sa to destination base station da,
all mobility events will now be called handover events. Each
handover event will be denoted by h � psa, daq.

B. Handover clustering

The second step of the detection method is responsible for
revealing the movement of groups of users by clustering the
previously computed handover events by location and time. We
define pλ, ϕq as the location of handover h � psa, daq as the
middle point of sa and da, where λ and ϕ respectively refer to
the longitude and latitude of h. pλ, ϕq is a rough approximation
of the location of the device initiating the handover.

At each time t � k∆t pk P Nq, with ∆t being a constant
interval in seconds, we remove and retrieve all the handovers
currently present in Mq and cluster their locations using a
regular grid of interval γ bounded by minimum and maximum
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(a) (b)

Fig. 3. Handover clustering. The clustering realized at one specific time is
illustrated in (a), and (b) represents the sliding window storing the clusters of
several times.

longitudes and latitudes λmin, λmax, ϕmin, and ϕmax. Let
r � rpϕmax � ϕmin{γs, and c � rpλmax � λminq{γs be the
number of rows and columns of the grid and n � rc the num-
ber of clusters, respectively. Clusters Cptq � pC0, . . . , Cn�1q
computed at time t are defined in Eq. (1).

Ci �
"
h PMq

����
Z
λ� λmin

γ

^
r �

Z
ϕ� ϕmin

γ

^
� i

*
. (1)

This clustering method is primitive. However, since the
locations of handovers are particularly rough, our method can
be useful without more sophisticated clustering. It also has the
advantage of being linear in the number of handovers, which
preserves the processing speed of the method. Figure 3(a)
illustrates the clustering realized at time t. A sliding window
W � pCpt�i∆tqq�P i¤0 of size P P N is shown in Fig. 3(b).
The values of ∆t and γ have a direct impact on the size of the
clusters and the frequency at which they are computed, which
will be discussed in more detail in Section III-D.

C. Moving group extraction

Let us define the following relation between devices: two
devices u and v are clustered together at time t if and only if
they initiate handovers that are located in the same cluster
at t. Due to the roughness of the handover locations and
the irregular accesses to the network by different devices,
two devices actually moving together may not always initiate
handovers at the same time and same location and thus may
not always be clustered together. Besides, two devices crossing
paths may at some point initiate handovers at the same location
and same time and thus may be wrongly clustered together. In
the last step of the detection method, we use sliding window
W to filter and merge clusters in order to only retrieve groups
of devices truly moving together.

We define Gptq � pG1, G2, . . . q as the list of groups
of devices truly moving together at time t. We decide that
two devices are actually moving together if and only if they
are clustered together at least N times out of P , where
N P t1, . . . , P u is a constant parameter. At time t and for
each pair of devices tu, vu, we retrieve from W the lists of
clusters Cu � pCu,t�i∆tq and Cv � pCv,t�i∆tq that u and v
have been clustered in for �P   i ¤ 0. We then compute
Ncom � |Cu X Cv|, the number of clusters that are common
in Cu and Cv . Let tfirst ¤ t and tlast ¤ t be the times of the

Fig. 4. Group extraction with P � 3 and N � 2. For instance, device  is in
the same clusters as device ⋆ Ncom � 2 times and Ncom ¥ N ; therefore,
they are considered to be moving together at t� 2∆t, t�∆t, and t.

first and last common clusters, if they exist. If Ncom ¥ N ,
we consider that u and v were truly moving together during
interval rtfirst, tlasts and thus we put them in the same group
of devices for each time tg P rtfirst, tlasts. This implies that
groups Gptfirstq are modified at time t ¥ tfirst: groups of
previous times can be modified as new clusters are computed.
This choice is correctly made to gather devices that have just
started to move together and cannot otherwise be considered
to be moving together. Figure 4 illustrates this step with
P � 3 and N � 2: each geometrical symbol represents the
handovers initiated by one device, each large square represents
one cluster, and the dashed ellipses show which devices are
truly moving together. As  and ▲ are in the same clusters as
⋆, ■, and ▼ at times t� 2∆t, and t, we have Ncom � 2 and
as Ncom ¥ N � 2, they are considered to be moving together
at t�2∆t, t�∆t, and t. By repeating the same procedure for
all devices, groups of devices moving together are extracted
and the result is depicted on the right-hand side of Fig. 4.

The groups of devices extracted at time t � P∆t can be
modified until t and thus can only be fully determined at t.
This induces a delay of d � P∆t, which is the theoretical
limitation of our approach. This delay is irrelevant to our
current objective but could be important in other applications.
At time t, we add the list of groups of devices Gpt�P∆tq to
queue Gq . At the end of this final step, Gq contains for each
time t � k∆t pk P Nq list Gptq of groups of devices moving
together at t.

D. Evaluation and discussion

As our objective is to detect dense moving groups of
users for network performance evaluation, we incorporate our
method into an actual LTE network and evaluate its perfor-
mance by applying it to the detection of train movements. The
location of a detected group of devices can be approximated by
the average location of the handovers it contains. Comparing
the locations of the detected groups with real train locations
allows us to evaluate the method. Using train timetables and
train track locations, we estimate the locations of real trains
at each time t. Let Aptq be the set of real trains present in the
considered area at time t and let pat,1, . . . , at,|Aptq|q be their
actual locations. We filter Gptq to only keep large groups of
devices, whose locations are denoted by pdt,1, . . . , dt,|Gptq|q.
We match pat,1, . . . , at,|Aptq|q and pdt,1, . . . , dt,|Gptq|q using
the Hungarian algorithm [33] to minimize the squared distance
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Fig. 5. Precision and recall according to the time of day.

between each matched location. Matched locations represent
detected groups that are located near real trains, i.e., true
positives, and unmatched locations represent either detected
groups located far from any real train, i.e., false positives, or
real trains that have not been detected, i.e., false negatives.
Let Mptq be the set of matched locations; we can compute
the precision, the recall, and F-measure F1 of the method for
each time t as shown in Eqs. (2) and (3).

precisionptq � |Mptq|
|Gptq| , recallptq � |Mptq|

|Aptq| , (2)

F1ptq � 2
precisionptq � recallptq
precisionptq � recallptq . (3)

This evaluation is realized on the actual anonymized
control-plane data corresponding to a period of four weeks
in a large metropolitan urban area in Japan. A total of 25
billion packets are analyzed, trains are detected, and their
locations are evaluated. The data used were captured at a
specific area and period of time but the area and period are
sufficiently typical in terms of human activities. Figure 5
shows the average performance of our method according to
the time of day with the parameters described in (4). These
values were chosen as they gave the best results amongst a
wide range of parameters. Except in the early morning, the
results show that our method achieves decent performance
with a precision of 0.70 and a recall of 0.75. Considering
the roughness of the handover locations, this performance
is satisfactory and sufficient for further statistical analyses.
The drop in recall between 5 a.m. and 7 a.m. is due to the
small number of people during that period of the day: fewer
people leads to fewer devices clustered together and thus fewer
detected groups. The recall increases progressively between
5 a.m. and 7 a.m. as more and more people are present in
the area. This issue is irrelevant to our objective as we focus
on challenging situations for mobile networks and are only
interested in the busiest periods of the day (between 7 a.m.
and midnight).

∆t � 30s, γ � 0.003�, P � 8, N � 4. (4)

To determine the best parameters for the method, we choose
the F-measure as a balanced metric, i.e., the performance, to

(a) F-measure versus ∆t (s). (b) F-measure versus γ (�).

(c) F-measure versus N{P .

Fig. 6. Influence of the parameters on the performance.

evaluate both the precision and the recall according to the
parameters. Figures 6(a), (b), and (c) respectively illustrate the
influence on the performance of ∆t, γ and the performance of
ratio N{P representing the proportion of time that two devices
must be clustered together to be considered to be actually
moving together. When ∆t is small, devices have less time
to move between two clustering steps and they thus trigger
fewer handovers, which reduces their chance of being clustered
with other devices and leads to a drop in performance. A
high value increases the number of handovers and thus the
performance but also increases the delay d � P∆t of the
method. γ directly affects the size of the clusters: too small a
value will result in extremely small clusters and fewer devices
will be clustered together, whereas too high a value will result
in disproportionate clusters including devices that do not move
together. Finally, N{P represents the minimum similarity
of the movements of two devices moving together. A good
balance must be chosen as a low similarity will incorrectly mix
together devices moving differently, while a high similarity
will only group together devices that always trigger handovers
at the same time, leading to great precision but low recall
and thus low performance. With these considerations in mind,
we evaluated our method for a wide range of parameters and
selected the best set of parameters introduced in (4).

As our method relies solely on the base stations contacted by
the users, it does not require the accurate locations of the users
and it can be generalized to any type of mobile network. Fur-
thermore, it does not necessitate any training phase depending
on the base stations and thus works even if the topology of the
network is modified. The processing delay d � P∆t � 4 min
induced by the method is insignificant because the following
analyses described in Section IV are expected to be updated on
a weekly or daily basis. Moreover, the volume of data is large
enough to include diverse information and to allow reliable
analyses based on the data. Therefore, the proposed detection
method fulfills the conditions and regulations described in
Section I, and is applicable to the following analyses.

IV. SIGNALING-BASED USERS’ CONNECTED/IDLE
DURATION MODELS

We propose users’ connected/idle duration models based on
signaling data to estimate user-level network utilization by the
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Fig. 7. Relation between observed durations and actual durations.

detected moving groups of users. We call users detected by
our detection method train users and all the other non-train
users. We then model the time spent using the network by
each user.

A. Users’ connected/idle duration models

Network utilization time can be estimated by the durations
of connected and idle states of each user. We retrieve the
connectivity events stored in queue Cq defined in III-A and
compute the list of connected/idle durations of each device.
Using our group mobility detection method, all users are
divided into train users and non-train users. Four different
durations are recorded in lists DCT , DCNT , DIT , and DINT

containing respectively the durations of connected train users
(CT), connected non-train users (CNT), idle train users (IT),
and idle non-train users (INT). As mobile networks use a
timeout to detect the inactivity of users, a device does not
actually use the network for the duration of this timeout and
network utilization is thus better approximated by subtracting
the value of the timeout from the observed connected duration.
In addition, a device does not actually use the network while
it is establishing a connection. We estimate the connected/idle
durations in our model from the observed durations as illus-
trated in Fig. 7.

The probability density functions (PDFs) of the durations
contained in each list are estimated using a kernel density es-
timation (KDE) [34] with Gaussian kernel K � exp

��x2{2�
and bandwidth h � 0.1s. If pd1, . . . , dnq are n durations,
the empirical PDF f̃ of the distribution of their durations is
computed as in Eq. (5). Figure 8 illustrates the empirical PDF
of the CNT distribution.

f̃pxq � 1

nh

ņ

i�1

K

�
x� di

h



. (5)

Some network accesses are caused by the diverse com-
munication activities of users, generally with relatively long
durations. Some other network accesses are triggered by back-
ground applications causing an exchange of small amounts of
data in a short duration, e.g., to retrieve the latest news, to
check for emails, or to receive notifications from a server.
Therefore, we model the CT and CNT distributions using a
mixture of one log-normal distribution representing human
activity and one Weibull distribution representing background
applications.

Idle durations are directly linked with the inactivity of users
but are also affected by the activity of other users. Indeed, if

Fig. 8. CNT model: empirical PDF f̃CNT , the two components of the model,
and the model PDF fCNT according to the connected duration (in seconds).
The PP-plot and QQ-plot evaluating the model are also depicted.

two users A and B are texting each other and user A sends
a message to user B before going to idle, user B’s answer
will activate user A and the idle duration of user A will be
closed in a short time. This phenomenon is intensified by the
inactivity timeout we previously mentioned: if the inactivity
timeout equals 5s and user B takes 6s to reply, user A will stay
in idle for 1s only. Therefore, we also model the IT and INT
distributions using a mixture of one log-normal distribution
for human inactivity and one Weibull distribution for idle
durations closed by other user activities and applications.

We choose the log-normal distribution that is often used in
the description of natural phenomena with a relatively long
tail. The Weibull distribution is chosen as it fits peaks well.

Let fCT , fCNT , fIT , and fINT be the PDFs of these
models. The common equation for them is described in Eq. (6),
where σ and µ are the log-normal parameters, k and λ are the
Weibull parameters, and α is a weighting factor between the
two components.

fpxq � α
1

xσ
?
2π

exp

�
�plnpxq � µq2

2σ2




� p1� αqk
λ

�x
λ

	k�1

exp

�
�
�x
λ

	k

.

(6)

Let F be the cumulative distribution function (CDF) of f
and F̃ be the CDF of empirical PDF f̃ . The five parameters
of each model are determined by maximizing the objective
function described in Eq. (7), where X � pσ, µ, k, λ, αq is
the vector of the parameters, and S is a dataset of samples
of the duration. RP

2, RC
2, and RQ

2 are the coefficients of
determination respectively indicating: how well PDF f fits
PDF f̃ , how well CDF F fits CDF F̃ (PP-plot), and how well
the quantiles of f correspond to the quantiles of f̃ (QQ-plot).
This process is chosen for the model PDF with parameters X
to fit the shape of the empirical PDF derived from samples
S well, quantified by the coefficient of determination RP

2

of two PDFs, while conserving the same statistical properties
as the data, quantified by RC

2 and RQ
2. As the PP-plot

(quantified by the coefficient of determination RC
2 of two

CDFs) magnifies errors in the center of the distribution and the
QQ-plot (quantified by the coefficient of determination RQ

2
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Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri

Sat 0.995 0.995 0.995 0.996 0.996 0.996 0.995 0.995 0.995 0.996 0.995 0.995 0.995 0.995 Sat 0.978 0.974 0.971 0.971 0.972 0.970 0.968 0.978 0.977 0.970 0.968 0.968 0.966 0.968 Sat 0.742 0.722 0.758 0.768 0.776 0.767 0.762 0.740 0.723 0.746 0.773 0.757 0.773 0.764

Sun 0.995 0.995 0.995 0.995 0.996 0.996 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 Sun 0.974 0.977 0.956 0.956 0.958 0.954 0.951 0.973 0.976 0.954 0.952 0.951 0.947 0.950 Sun 0.738 0.718 0.754 0.764 0.772 0.763 0.758 0.736 0.719 0.742 0.769 0.754 0.769 0.760

Mon 0.995 0.995 0.996 0.995 0.996 0.996 0.995 0.994 0.993 0.995 0.995 0.994 0.995 0.995 Mon 0.970 0.959 0.979 0.979 0.979 0.979 0.979 0.971 0.963 0.979 0.979 0.979 0.978 0.979 Mon 0.756 0.736 0.772 0.781 0.790 0.780 0.776 0.754 0.736 0.760 0.786 0.770 0.787 0.778

Tue 0.995 0.995 0.995 0.996 0.996 0.996 0.996 0.995 0.994 0.996 0.995 0.995 0.995 0.995 Tue 0.970 0.959 0.979 0.979 0.979 0.979 0.979 0.970 0.963 0.979 0.979 0.979 0.979 0.979 Tue 0.747 0.727 0.763 0.772 0.781 0.771 0.767 0.745 0.727 0.751 0.777 0.762 0.778 0.769

Wed 0.995 0.995 0.995 0.996 0.996 0.996 0.995 0.995 0.995 0.996 0.995 0.995 0.995 0.995 Wed 0.969 0.959 0.978 0.978 0.978 0.978 0.977 0.972 0.965 0.978 0.978 0.977 0.977 0.977 Wed 0.746 0.726 0.762 0.771 0.780 0.770 0.766 0.744 0.726 0.750 0.776 0.761 0.776 0.768

Thu 0.995 0.995 0.995 0.996 0.996 0.996 0.995 0.995 0.994 0.995 0.995 0.995 0.995 0.995 Thu 0.969 0.958 0.979 0.979 0.979 0.979 0.979 0.970 0.962 0.979 0.979 0.979 0.979 0.979 Thu 0.747 0.728 0.763 0.773 0.781 0.772 0.768 0.746 0.728 0.752 0.778 0.763 0.778 0.770

Fri 0.995 0.995 0.995 0.996 0.996 0.996 0.996 0.995 0.994 0.996 0.995 0.995 0.995 0.995 Fri 0.968 0.957 0.979 0.979 0.979 0.979 0.979 0.969 0.961 0.979 0.979 0.979 0.979 0.979 Fri 0.748 0.728 0.764 0.773 0.782 0.772 0.768 0.746 0.728 0.752 0.778 0.763 0.779 0.770

Sat 0.995 0.995 0.994 0.995 0.996 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 Sat 0.977 0.971 0.972 0.972 0.973 0.971 0.969 0.978 0.976 0.971 0.969 0.969 0.966 0.968 Sat 0.737 0.717 0.753 0.763 0.771 0.762 0.757 0.736 0.718 0.742 0.768 0.753 0.768 0.759

Sun 0.995 0.995 0.993 0.994 0.995 0.995 0.994 0.995 0.995 0.994 0.995 0.995 0.994 0.994 Sun 0.977 0.974 0.963 0.962 0.964 0.960 0.958 0.976 0.977 0.961 0.958 0.958 0.954 0.957 Sun 0.727 0.708 0.744 0.755 0.762 0.753 0.748 0.727 0.710 0.733 0.760 0.745 0.759 0.750

Mon 0.995 0.995 0.995 0.996 0.996 0.996 0.996 0.995 0.994 0.996 0.996 0.995 0.995 0.995 Mon 0.969 0.958 0.979 0.979 0.979 0.979 0.979 0.969 0.961 0.979 0.979 0.979 0.979 0.979 Mon 0.744 0.724 0.760 0.769 0.778 0.768 0.764 0.742 0.724 0.748 0.774 0.759 0.775 0.766

Tue 0.995 0.995 0.995 0.995 0.996 0.995 0.995 0.995 0.995 0.995 0.996 0.996 0.996 0.995 Tue 0.968 0.957 0.979 0.979 0.979 0.979 0.979 0.969 0.960 0.979 0.979 0.979 0.979 0.979 Tue 0.733 0.713 0.750 0.760 0.768 0.758 0.754 0.732 0.714 0.738 0.765 0.749 0.765 0.756

Wed 0.995 0.995 0.994 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.996 0.996 0.995 0.994 Wed 0.968 0.956 0.978 0.979 0.978 0.979 0.979 0.968 0.959 0.979 0.979 0.979 0.979 0.979 Wed 0.728 0.708 0.745 0.755 0.763 0.753 0.749 0.727 0.709 0.733 0.760 0.744 0.760 0.751

Thu 0.995 0.995 0.995 0.995 0.996 0.995 0.995 0.995 0.994 0.995 0.996 0.996 0.996 0.995 Thu 0.967 0.954 0.978 0.978 0.978 0.979 0.979 0.967 0.958 0.979 0.979 0.979 0.979 0.979 Thu 0.736 0.716 0.752 0.762 0.771 0.761 0.757 0.734 0.717 0.741 0.767 0.752 0.768 0.759

Fri 0.995 0.995 0.995 0.996 0.996 0.996 0.996 0.995 0.994 0.996 0.995 0.995 0.995 0.995 Fri 0.968 0.956 0.979 0.979 0.978 0.979 0.979 0.968 0.960 0.979 0.979 0.979 0.979 0.979 Fri 0.748 0.728 0.764 0.773 0.782 0.772 0.768 0.746 0.729 0.752 0.779 0.763 0.779 0.770

Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri

Sat 0.991 0.991 0.987 0.987 0.987 0.987 0.986 0.991 0.991 0.987 0.987 0.986 0.988 0.989 Sat 0.982 0.982 0.981 0.981 0.981 0.981 0.980 0.982 0.982 0.981 0.980 0.980 0.980 0.981 Sat 0.568 0.559 0.587 0.592 0.590 0.592 0.592 0.575 0.565 0.589 0.594 0.595 0.593 0.590

Sun 0.991 0.991 0.987 0.987 0.987 0.987 0.986 0.991 0.991 0.987 0.987 0.986 0.988 0.989 Sun 0.982 0.982 0.980 0.980 0.979 0.979 0.979 0.981 0.982 0.979 0.978 0.978 0.979 0.979 Sun 0.562 0.553 0.582 0.587 0.585 0.587 0.587 0.569 0.559 0.583 0.588 0.589 0.588 0.585

Mon 0.989 0.989 0.989 0.989 0.989 0.989 0.988 0.989 0.989 0.988 0.988 0.988 0.989 0.988 Mon 0.979 0.978 0.983 0.983 0.983 0.983 0.982 0.980 0.978 0.982 0.982 0.982 0.982 0.982 Mon 0.568 0.560 0.590 0.596 0.593 0.595 0.595 0.576 0.565 0.591 0.597 0.597 0.596 0.592

Tue 0.989 0.989 0.989 0.989 0.989 0.989 0.988 0.989 0.989 0.988 0.988 0.988 0.989 0.988 Tue 0.986 0.984 0.989 0.989 0.989 0.989 0.989 0.988 0.985 0.989 0.989 0.989 0.989 0.988 Tue 0.565 0.557 0.588 0.594 0.591 0.593 0.592 0.573 0.562 0.589 0.594 0.595 0.593 0.590

Wed 0.989 0.989 0.989 0.989 0.989 0.989 0.988 0.989 0.989 0.989 0.989 0.988 0.989 0.988 Wed 0.980 0.977 0.984 0.984 0.983 0.983 0.983 0.980 0.978 0.983 0.983 0.983 0.983 0.983 Wed 0.563 0.554 0.586 0.591 0.589 0.590 0.590 0.570 0.560 0.587 0.592 0.593 0.591 0.588

Thu 0.989 0.989 0.989 0.989 0.989 0.989 0.988 0.989 0.989 0.988 0.988 0.988 0.989 0.988 Thu 0.979 0.977 0.983 0.983 0.983 0.983 0.982 0.980 0.978 0.982 0.982 0.982 0.983 0.982 Thu 0.566 0.558 0.588 0.594 0.592 0.593 0.593 0.574 0.564 0.590 0.595 0.595 0.594 0.591

Fri 0.988 0.989 0.988 0.989 0.989 0.988 0.988 0.988 0.989 0.989 0.989 0.988 0.989 0.988 Fri 0.979 0.977 0.983 0.983 0.982 0.982 0.982 0.980 0.978 0.981 0.982 0.982 0.982 0.982 Fri 0.555 0.546 0.578 0.584 0.582 0.583 0.583 0.563 0.552 0.580 0.585 0.585 0.584 0.580

Sat 0.991 0.991 0.987 0.987 0.987 0.987 0.986 0.991 0.991 0.987 0.987 0.986 0.988 0.988 Sat 0.982 0.980 0.982 0.981 0.981 0.981 0.980 0.982 0.981 0.980 0.980 0.980 0.981 0.981 Sat 0.565 0.557 0.584 0.590 0.588 0.589 0.589 0.572 0.562 0.586 0.591 0.592 0.590 0.588

Sun 0.990 0.991 0.987 0.987 0.987 0.987 0.986 0.991 0.991 0.987 0.987 0.986 0.988 0.989 Sun 0.982 0.982 0.981 0.981 0.981 0.980 0.980 0.982 0.982 0.980 0.979 0.979 0.980 0.980 Sun 0.557 0.549 0.578 0.583 0.581 0.583 0.583 0.565 0.555 0.579 0.584 0.585 0.584 0.581

Mon 0.989 0.989 0.988 0.989 0.989 0.988 0.988 0.989 0.989 0.989 0.989 0.988 0.989 0.988 Mon 0.980 0.978 0.984 0.984 0.983 0.983 0.983 0.980 0.979 0.983 0.983 0.983 0.983 0.983 Mon 0.555 0.547 0.578 0.584 0.581 0.583 0.582 0.563 0.552 0.579 0.585 0.585 0.584 0.580

Tue 0.989 0.989 0.989 0.989 0.989 0.988 0.988 0.989 0.989 0.989 0.989 0.988 0.989 0.988 Tue 0.979 0.977 0.983 0.983 0.982 0.983 0.982 0.980 0.978 0.982 0.982 0.982 0.982 0.982 Tue 0.559 0.550 0.582 0.587 0.585 0.586 0.586 0.566 0.556 0.583 0.588 0.589 0.587 0.583

Wed 0.988 0.989 0.988 0.989 0.989 0.988 0.988 0.988 0.989 0.989 0.989 0.988 0.989 0.988 Wed 0.979 0.976 0.982 0.983 0.982 0.982 0.982 0.979 0.977 0.981 0.982 0.982 0.982 0.982 Wed 0.558 0.549 0.581 0.587 0.584 0.586 0.585 0.565 0.555 0.582 0.587 0.588 0.586 0.583

Thu 0.990 0.990 0.988 0.988 0.988 0.988 0.988 0.990 0.990 0.989 0.988 0.988 0.989 0.989 Thu 0.979 0.977 0.983 0.983 0.982 0.982 0.982 0.980 0.978 0.982 0.982 0.982 0.982 0.982 Thu 0.558 0.550 0.580 0.586 0.584 0.585 0.585 0.566 0.556 0.582 0.587 0.588 0.586 0.583

Fri 0.990 0.991 0.988 0.988 0.988 0.988 0.987 0.990 0.990 0.988 0.988 0.987 0.989 0.989 Fri 0.980 0.978 0.983 0.983 0.982 0.982 0.982 0.980 0.979 0.981 0.982 0.982 0.982 0.982 Fri 0.559 0.551 0.580 0.586 0.583 0.585 0.585 0.566 0.556 0.581 0.586 0.587 0.586 0.583

CT vs CNT

IT vs INT

CT CNT

IT INT

Fig. 9. Evaluation of the CT, CNT, IT, and INT models. Each row shows how well the model computed from one day’s worth of data fits the data of all the
other days. Light areas represent good fitting and dark areas poor fitting.

TABLE I
MODELS: PARAMETERS AND EVALUATION.

σ µ k λ α RP
2pXq , Sqq RC

2pXq , Sqq RQ
2pXq , Sqq objpXq , Spqq

CT 1.31 2.44 1.32 0.34 0.86 0.985 0.999 0.999 0.994
CNT 1.59 1.72 1.35 0.30 0.77 0.962 0.999 0.999 0.987

IT 0.73 3.65 1.08 6.16 0.42 0.970 0.999 0.996 0.988
INT 1.65 3.34 1.21 1.93 0.87 0.981 0.990 0.978 0.983

of two sets of quantiles) magnifies errors in the tail of the
distribution, their association is expected to be effective.

objpX,Sq � 1

3
pRP

2pX,Sq�RC
2pX,Sq�RQ

2pX,Sqq. (7)

We build four types of duration models for CT, CNT,
IT, INT, based on fourteen days’ worth of data of duration
samples coming from the same dataset used in evaluating the
group mobility detection method as described in Section III-D,
which consists of different days of the week. Let Spq be the
samples of date p and type q P tCT,CNT, IT, INT u, and
Sq �

¤
p

Spq . To build a good model for given type q, we

determine parameters Xq so as to maximize the objective
function as Eq. (8). Maximization is performed using the L-
BFGS-B algorithm [35].

Xq � argmax
X

obj pX,Sqq. (8)

As there are fewer train users than non-train users, this
corresponds to about 1 million samples each for the CT and
IT models and 25 million samples each for the CNT and INT
models for each day. Table I shows the parameters and the
averaged fitting performance of the most general models for
CT, CNT, IT, and INT, respectively. Figure 8 shows the two
components of the CNT model, its PDF, PP-plot, and QQ-plot.
The PDFs of the four models are depicted in Fig. 10(a) and
will be discussed in IV-C.

B. Evaluation of the models

In order to evaluate our models and their computation
process, we use an approach similar to the leave-one-out cross-
validation technique used in statistical model validation [36].

For each day of our dataset, we compute a model using
this day’s worth of data and then evaluate how well it fits the
data of all the other days. This allows us to ensure that the
computed models do not overfit the data. The evaluation is
performed on two weeks of data using the objective function,
objpXpq, Sp1q1q where Xpq is the maximized parameters (9)
for date p and q P tCT,CNT, IT, INT u, Sp1q1 is the com-
parison samples of date p1 and q1 P tCT,CNT, IT, INT u.

Xpq � argmax
X

objpX,Spqq. (9)

Figure 9 shows the values of the objective function for each
model type, where one row represents the evaluation of one
day’s model by all the other days. The values are shown by
indicating the gradient of intensity from obj ¤ 0.8 (dark) to
obj � 1.0 (light). The average value is 0.995 for CT, 0.969
for CNT, 0.988 for IT, and 0.981 for INT. As a comparison,
the two last tables of Fig. 9 show the results obtained when
evaluating the CT models with the CNT data (average of
0.755) and when evaluating the IT models with the INT
data (average of 0.578) and show that these models are very
different.

We can deduce from these results that, independently of
the day, all models fit remarkably well the data of all other
days. This proves that our models are generalized well to
other datasets and thus that they do not overfit the data. Also,
the slightly darker areas that can be observed in the CNT
table correspond to Saturdays and Sundays. As their evaluation
averages 0.965, although these models still fit the data, it is
suggested that the behavior of users on weekend is slightly
different from weekdays.
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(a)

(b) (c)

Fig. 10. (a) shows the PDFs of the CNT, CT, INT and IT models for durations
in r0s, 7ss and r30s, 120ss. (b) shows the CNT and CT PDFs between 0s
and 40s. (c) shows the INT and IT PDFs between 30s and 210s.

C. Discussion

Figure 10(a) shows that connected duration distributions
have an important peak of short durations corresponding to
background applications, whereas idle duration distributions
are much more driven by human behavior and look like log-
normal distributions. Idle duration distributions also contain
a significant proportion of long durations (more than 1 min),
corresponding to periods when users are not using their device
at all.

Let us now compare the models for train users and non-
train users in order to determine the influence of a moving
group of users on the mobile network. Figure 10(b) shows
that CNT contains proportionally more durations between 0s
and 4s than CT and fewer between 4s and �8. Moreover,
the short-durations peak is higher in CNT than in CT. This
means that, not on a train, more accesses to the network
are made by background applications or correspond to quick
accesses by users, for example to check for new messages or
briefly consult an application. On a train, however, accesses
generally last longer, for instance to browse the web or watch
a video. This means that users tend to use their devices more
on a train, which can be explained by the fact that they have
more time to spare, especially when commuting. As shown
in Fig. 10(c), a train trip contains more durations between 0s
and 60s than INT and fewer between 60s and �8. As short
idle durations correspond to frequent network accesses and
long idle durations correspond to sparse network accesses, this
means that users tend to access the network more frequently
on a train.

Let µCT , µCNT , µIT , and µINT be the means of these
distributions: we obtain µCT � 22.7s, µCNT � 15.2s,
µIT � 24.5s, and µINT � 96.3s. As devices constantly
alternate between one connected duration and one idle du-
ration, the activity of users can be modeled as the couple of

random variables pC, Iq with C � CT , I � IT for train
users and C � CNT , I � INT for non-train users. The
proportion of time that train users spend connected is thus
µCT {pµCTLµIT q � 48.1 % and the proportion of time non-
train users spend connected is µCNT {pµCNT � µINT q �
13.6 %. We deduce from these values that train users are about
3.5 times more active than non-train users. A large group of
moving users will therefore have 3.5 times more impact on
network resources than the same number of non-moving users,
confirming that public transportation has a significant impact
on mobile networks in metropolitan areas.

The use of control-plane signals to approximate network
utilization is presented here as an example of user-level
analysis that can be conducted using our group mobility
detection method. Compared with analyses based on user-
plane data, it has the advantage of being extremely fast
and can be performed on all users without requiring data
sampling. Estimating network utilization with connected and
idle durations still remains an approximation.

V. SIMULATION-BASED ASSESSMENT FOR MOBILE
NETWORK FUNCTIONS

In this section, we present an example of how to evalu-
ate base station functions by using the connectivity models.
We build appropriate simulation configurations representing
mobile users communications in a metropolitan area with
commuter trains and train stations.

In the simulation, we focus on the situation where train users
have worse QoS than non-train users. One possible solution
is to put base stations near train tracks. However, those base
stations would only be used when a train is passing by. In order
to mitigate QoS degradation for train users without wasting
extra power in base stations, we define dynamic base station
functions essentially based on the ideas discussed in [29], [30].
Our purpose is to evaluate the following functions using our
connectivity models and simulation environment.

 On/off switching function: Dynamic on/off switching of
base stations when a train is getting nearer or getting
farther from the base stations.

 Dynamic orientation function: Dynamic orientation of the
base stations’ antennas to follow the movement of the
trains.

A. Simulation configuration

To assess the efficiency of dynamic base stations, we
develop a network simulation using QualNet 7.4 [37] that can
simulate packet-level behaviors of wireless communications in
realistic environments.

1) City setup: Figure 11 depicts the outline of the simula-
tion and the parameters for city setup are described in Table II.
Three train stations are located in the area and each train
station is surrounded by seven static eNBs that have three
sectors. These eNBs are located in hexagonal grids. One train,
200m long and 3m wide, goes from west (left) to east (right)
at a constant 60km/h. This speed represents the average travel
speed of commuter trains in the middle of metropolitan urban
city. The simulation starts when the train is at the west edge,
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Fig. 11. Simulation field.

TABLE II
SIMULATION PARAMETERS FOR CITY SETUP.

Parameters Values
Size of simulation area 2 km x 15 km

Size of measurement area 2 km x 10 km
Number of base stations 21 (3 train station x 7 base stations)

Number of sectors 3
Distance between train stations 5 km

Train movement 60 km/h (constant)

and the measurement starts when the train is at station A, and
ends when the train is at station C. The simulation ends when
the train is at the east edge. A total of 500 non-train users are
distributed in the coverage of each sector and those users do
not move during simulation. Varied numbers of train users are
uniformly distributed in the train. The eNB selection by users
is based on received signal power, e.g., train users are likely
to connect to the eNB from which a user device observes the
strongest signal power.

We assume one extra base station, called additional BS, is
added at each intermediate point between two train stations,
i.e., (A and B) and (B and C). In order to evaluate the
fundamental efficiency, we use five scenarios as follows.

[A] As a reference model, no additional BS.
[B-1] Additional BS without on/off switching or dynamic

orientation functions.
[B-2] Additional BS with an on/off switching function but

no dynamic orientation function.
[B-3] Additional BS with no on/off switching function but

with a dynamic orientation function.
[B-4] Additional BS with both on/off switching and dy-

namic orientation functions.

These scenarios are differentiated by the presence or absence
of each function in order to simplify the determination of the
performance benefit of each function.

2) Radio setup: The parameters for radio setup are de-
scribed in Table III. We adopt the 800MHz frequency band
for wireless communication, as is commonly used for LTE
communication. To simplify the situation, user devices use
only one channel in the simulation and the band width for
the communication is 10MHz. The transmission power is
45dBm which means that the packet would be transferred
for an approximately 2km distance, which is assumed be the
size of macro-cell ordinarily deployed in cities. The path loss
model is standardized in 3GPP [38] and fading would be
modeled as a random process since it can be due to multi-
path propagation, shadowing from obstacles, etc.. The path

TABLE III
SIMULATION PARAMETERS FOR RADIO SETUP.

Parameters Values
Channel Frequency 800 MHz

LTE bandwidth 10MHz (50 RB / subframe)
LTE Scheduler type ROUND-ROBIN

eNB transmission power 45 dBm
Pathloss model COST231-Walfisch-Ikegami NLOS

Shadowing model LOGNORMAL
Shadowing mean 10 dB

loss PLpxq is described as follows:

PLpxq � P̄Lpxq �Np0, σ2q, (10)

P̄Lpxq � �55.9� 38� log10pxq
� p24.5� 1.5

f

925
qlog10pfq,

(11)

where x is the distance from the base station and f is the
frequency of the electromagnetic wave. The serving sector
is simply decided by user devices seeking the highest gain,
which means user devices handover as they connect to the base
station that delivers the strongest signal. Dynamic switching of
base stations when a train is closer/farther than the threshold
from the base stations, with threshold for switching being the
radio coverage of the base station. Dynamic orientation of the
base station’s antennas to follow the movement of the trains.
The angle and direction of the antenna are designed to face
the middle of the train.

3) Application setup and evaluation metrics: In the sim-
ulation, each user device connects to the network according
to the connectivity models introduced in Section IV. After
the simulation starts, a user u individually starts an active
duration after a random waiting duration r0, paveragepCT q�
averagepIT qq{2s. This draws 1-st active duration d

puq
a1 for the

active state from the CT/CNT model. After the active state
ends, the user goes inactive and draws 1-st idle duration d

puq
i1

from the IT/INT model. After the inactive state ends, the user
goes active again, drawing a duration d

puq
a2 from the CT/CNT

model and again selecting a serving base station based on the
received signal power. Each user repeats the above processes
independently from each other, until the simulation ends.

To evaluate the typical performance metrics, we define the
following applications and metrics. Each user device executes
the applications while it is in the active state.

 TCP-FTP. User u P U continuously downloads files while
u is connected through a TCP session. In the beginning
of each active duration, user device establishes a TCP
session that lasts until the end of the active duration.
Using the TCP-FTP application, we measure the mean
throughput ThU as follows.

ThU � 1

NU

¸
u

1

Tu

npuq¸
i�1

d
puq
ai th

puq
i , (12)

where NU is the number of users, Tu is the total active
duration for user u, npuq is the number of active duration
of user u, dpuqai is the i-th active duration and th

puq
i is the

throughput for the i-th active duration of user u.
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Fig. 12. Relative performance normalized to [A].

 UDP-CBR. User u periodically receives fixed size UDP
packets. The size of a UDP packet is 1k byte and
is sent every 2 seconds, which is sufficiently small to
make it unlikely that packets will be dropped during
communication due to network congestion. As for the
UDP-CBR application, we measure the mean latency
LatU and jitter JU as follows.

LatU � 1

NU

¸
u

1

Lu

Lu̧

l�1

Lat
puq
l , (13)

JU � 1

NU

¸
u

1

Lu � 1

Lu̧

l�2

���Latpuql � Lat
puq
l�1

��� , (14)

where Lu is the number of packet user u sends, and
Lat

puq
l is the latency for l-th packet user u sends.

To simplify the conditions, these two applications do not
appear together. By considering two different applications, we
have ten scenario variations in total. In addition, we measure
the simple power consumption Ce to evaluate the efficiency
of the eNBs.

Ce � 1

T

¸
e

seTe, (15)

where se is the number of sectors eNB e has, and Te is the
duration eNB e is connected by at least one user device. Here
we simply assume that the power consumption for eNB is
proportional to the duration that the eNB is connected to any
user device.

B. Simulation result

Figure 12 depicts the relative values of TCP throughput,
UDP latency, UDP jitter, and power consumption averaged
over the whole measurement period of 600 secs, which are
respectively normalized to those in [A]. Figures (a),(b), and
(c) depict TCP-throughput, UDP-latency and UDP-jitter of
train users. Figure (d) depicts the power consumption. From
Figs. (a) to (c), [B-1] and [B-3] indicate the same performance
as [B-2] and [B-4] respectively, which suggests the dynamic
switching ON/OFF function does not affect the user perceived
performance in this configuration. In Fig. (d), [B-1] indicates
the same additional power consumption as [B-3] since the
additional base station has no switching scheme in both
scenarios.

In terms of train users’ performance shown in Fig. 12(a),
(b) and (c), even without the dynamic orientation function, the
additional base station can clearly mitigate the degradation of

throughput, latency, and jitter of train users, as indicated by
[B-1]. As the number of train users increases, the normalized
throughput (i.e., the ratio of mitigation from [A]) decreases
because the train users share the fixed amount of the additional
resources. As the number of train users increases, the normal-
ized latency and jitter decrease first but exhibit a downward
convex curve, which implies the capability of the additional
BS is regulated by the number of train users and is appropriate
for 600 train users.

It is clearly shown by comparing [B-3] with [B-1] that
the dynamic orientation function mitigates the degradation of
throughput, latency, and jitter of train users more effectively.
For example, in the case of 600 train users, the normalized
throughput, latency and jitter are 962%, 18% and 32% re-
spectively with the dynamic orientation function, while they
are 418%, 33% and 67% without it.

Note that, as the number of train users increases, the change
of the normalized performance exhibits a similar shape to [B-
1], implying that the dynamic orientation function also has the
limitation regarding with the number of train users.

In terms of power consumption shown in Fig. 12(d), while
the additional power consumption is 9.5% in the case of
no switching scheme, the switching scheme mitigate the
additional power consumption; [B-2] indicates 1.3% and [B-4]
indicates 2.0%.

C. Discussion

To deeply analyze how the dynamic orientation function
improves the performance, we draw time transitions of TCP
throughput, UDP latency and UDP jitter of train users as
depicted in the case of 1000 train users in Fig. 13. The
horizontal axis is the simulation time and the vertical axis is
the mean values during the corresponding 10 seconds’ period.
The train constantly moves and its head arrives at train station
A, B and C, at 0s, 300s, and 600s respectively.

In Fig. 13(a), [A] indicates high throughput around t � 80
and 380, which means that the throughput for train user is
unlikely to increase as soon as the train go through a train
station. This suggests that TCP throughput cannot increase
quickly after being connected to a congested base stations.
In case of [B-1], the same phenomenon occurs at t � 80
and 380. Also, the additional BS improves the throughput
especially when the train travels around the middle of two train
stations. In this situation, since the additional BS is not used
by non-train users, the throughput quickly increases as soon as
train users connect to the additional BS. [B-3] indicates much
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Fig. 13. Time transition of TCP throughput, UDP latency and UDP jitter for train users in the case of 1000 train users.

greater improvement. Since the additional BS with dynamic
orientation function covers a wider area than that without the
function, train users perceive earlier increase and later decrease
of throughput than that in [B-1]. In addition, while the same
phenomenon occurs at t � 80, the throughput around t � 380
is better than the other scenarios. This suggests that a better
handover in [B-3] may contribute a higher TCP throughput in
the succeeding base station.

Figure 13(b) indicates that the latency is drastically im-
proved at t � 150 and 450, when the train travels around the
middle of train stations. In [A], two peaks can be observed
at t � 150 and 450, which means base stations around train
stations do not sufficiently cover the train users while train is
between train stations. In contrast, in [B-1], two small peaks
and two large peaks can be observed around t � 120 and
210, and t � 420 and 510 respectively, which means that the
additional BSs partially cover between train stations but there
are still gaps between base stations around train stations and
additional base stations. The difference of the size of the peak
largely depends on the angle of the sector of base stations,
which are likely to cover the east (right) side of each train
station in the scenarios. As for [B-3], the dynamic orientation
function cover almost all area between train stations. Thus,
as described in Fig. 12(b), the dynamic orientation function
drastically improves the latency. On the other hand, small
peaks are still observed at t � 240 and 540 due to a small gap
of the coverage of base stations, which could be improved by
designing the location and angle of base stations.

In Fig. 13(c) the shapes of time transition are similar to
Fig. 13(b). Although the average jitter indicates insignificant
difference between [A] and [B-1], the time transition indicates
a certain improvement at t � 150 and 450. On the other hand,
two peaks in [B-3] at t � 240 and 540 are relatively greater
than those of Fig. 13(b), which means that train users are
likely to use the network so that the small gap of base station
coverage cause relatively large degradation in jitter.

As a summary of this section, our simulation reveals that
the dynamic base station scheme on the additional base
station largely mitigates the QoS degradation in terms of
TCP throughput, UDP latency, and UDP jitter, with a small
volume of additional power consumption. On the other hand,
our simulation suggests the limitation of dynamic orientation
function, that is the capability of the additional BS is regulated
by the number of train users and the coverage of the base

station. The additional BS with dynamic orientation function
is likely to provide better Web browsing by the improving of
throughput and smooth voice call and video streaming services
by improving of latency and jitter, than that without dynamic
orientation function.

VI. CONCLUSION

In this paper, we have focused on fast and dense group
mobility and mobile network signaling data. Fast and dense
group mobility may cause a significant degradation of users
perceive QoS. Signaling data is convenient and useful for
mobile network operators due to its low volume and its easy
accessibility. Firstly, a lightweight group mobility detection
method was developed, based solely on signaling data. The
method can successfully detect train movements in an actual
LTE network. Secondly, based on the same data and the results
obtained by the detection method, connected/idle duration
models for train users and non-train users were built to
characterize network utilization. The obtained models revealed
that train users consumed about 3.5 times more resources than
non-train users, which is consonant with the fact that public
transportation induces dynamic changes in network utilization
and significant affects the network resources. Finally, these
models were leveraged in mobile network simulations to
assess the effectiveness of a dynamic base station switch-
ing/orientation scheme to mitigate QoS degradation with low
power consumption in a group mobility scenario. The simu-
lation results showed that the dynamic switching/orientation
functions improved users’ perceived throughput, latency and
jitter, which were 962%, 18%, 32% compared to those without
the additional base stations implementing the functions, with
small amount of additional power consumption of 2.0% in
case of a moderate number of train users. It was also indicated
that the scheme could not be very effective when the number
of train users becomes larger. This would suggest that group
mobility detection and the obtained connection/idle duration
models based on control-plane data analytics are usable and
useful for the development of mobility-aware resource alloca-
tion functions in base stations.

Our future work includes enhancing the control-plane data
analytics for quickly and accurately monitoring group mobility
and modeling the access patterns in group mobility. Validating
the generality of the models and the simulation conditions also
remains a task, and is essential for a reliable simulation-based
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assessment of newly introduced mobility-aware functions be-
fore their deployment. More effective online use of control-
plane data analytics should also be considered for monitoring
and estimating the users’ perceived QoS in the field, which
allows the constant evaluation of mobility-aware functions
after being deployed on base stations.
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