
Stream Mining for Network Management

著者 Yoshida Kenichi, Katsuno Satoshi, Ano
Shigehiro, Yamazaki Katsuyuki, Tsuru Masato

journal or
publication title

IEICE Transactions on Communications

volume E89-B
number 6
page range 1774-1780
year 2006-06-01
URL http://hdl.handle.net/10228/00006942

doi: info:doi/10.1093/ietcom/e89-b.6.1774

1774
IEICE TRANS. COMMUN., VOL.E89–B, NO.6 JUNE 2006

PAPER

Stream Mining for Network Management

Kenichi YOSHIDA†a), Satoshi KATSUNO††, Shigehiro ANO††, Katsuyuki YAMAZAKI††,
and Masato TSURU†††, Members

SUMMARY Network management is an important issue in maintain-
ing the Internet as an important social infrastructure. Finding excessive
consumption of network bandwidth caused by P2P mass flows is especially
important. Finding Internet viruses is also an important security issue. Al-
though stream mining techniques seem to be promising techniques to find
P2P and Internet viruses, vast network flows prevent the simple application
of such techniques. A mining technique which works well with extremely
limited memory is required. Also it should have a real-time analysis ca-
pability. In this paper, we propose a cache based mining method to re-
alize such a technique. By analyzing the characteristics of the proposed
method with real Internet backbone flow data, we show the advantages of
the proposed method, i.e. less memory consumption while realizing real-
time analysis capability. We also show the fact that we can use the proposed
method to find mass flow information from Internet backbone flow data.
key words: stream, mining, network, management

1. Introduction

Network management is an important issue to maintain the
Internet as an important social infrastructure. The treatment
of P2P and Internet viruses are the two most important is-
sues of network management. Since the vast consumption of
network bandwidth caused by P2P mass flows is becoming
excessive, a method to find and prevent them is an important
network management task to keep the Internet working op-
timally. To protect Internet security, finding Internet viruses
is also an important issue.

Since both P2P and Internet viruses are rapidly mak-
ing new varieties, automatic finding methods of their new
varieties are desired. Stream mining techniques seem to be
promising techniques to find new P2P and Internet viruses
automatically. However, vast network flows prevent the sim-
ple application of such techniques. A stream mining tech-
nique which works well with extremely limited memory is
required. Also it should have a real-time analysis capabil-
ity. For example, 10 Gbps of network bandwidth can trans-
fer 100 Tera bytes of data per day. Since today’s Internet
backbone has a broader bandwidth, a mining system has to

Manuscript received September 28, 2005.
Manuscript revised February 9, 2006.
†The author is with the Graduate School of Business Science,

University of Tsukuba, Tokyo, 112-0012 Japan.
††The authors are with KDDI R&D Laboratories Inc.,

Fujimino-shi, 356-8502 Japan.
†††The author is with the Department of Computer Science and

Electronics, Faculty of Computer Science and Systems Engineer-
ing, Kyushu Institute of Technology, Iizuka-shi, 820-8502 Japan.

a) E-mail: yoshida@gssm.otsuka.tsukuba.ac.jp
DOI: 10.1093/ietcom/e89–b.6.1774

handle more than 100 Tera bytes of data per day. Although
a large computer with Giga bytes of memory can be used,
the memory size of such a computer is still extremely small
if we compare it to the amount of data to be analyzed. The
real-time analysis capability is also indispensable.

In this paper, we propose a cache based mining algo-
rithm. The original concept of the proposed algorithm is
the use of a fixed size cache memory to find frequent items.
Through the best use of the fixed size cache, we hope to re-
alize a stream mining method which can work well with ex-
tremely limited memory resources while realizing real-time
analysis capability.

By analyzing the characteristics of the proposed
method with real Internet backbone flow data, we show the
advantages of the proposed method. We also show the fact
that we can use the proposed method to find mass flow in-
formation from the Internet backbone flow data.

Section 2 of this paper first surveys related work and
determines their limitations in order to clarify the motiva-
tion of this research. Section 3 explains our methods, and
Sect. 4 reports on the experimental results. Section 5 exam-
ines characteristics of the proposed method. Finally, Sect. 6
concludes our findings.

2. Related Work

Monitoring Internet traffic is an extensively studied area,
e.g. [1]–[4]. IETF’s IPPM working group proposes a frame-
work of IP performance metrics [3]. Their work is important
in providing a baseline to compare the measured results by
standardizing the attributes to be measured. Surveyor [4] is
a project to create measurement infrastructure. NLANR [2]
has a project to develop a large-scale data collection system
as the base infrastructure for various data analysis. CAIDA
[1] is making various tools to analyze network data. Their
visualization tools cover various analysis of network data.

Analysis of measured data is also studied [5], [6].
Some studies, e.g. [7], try to use data mining techniques to
automate analysis. Though [7] claims its functionality with
restricted memory, further research is necessary.

When considering the importance of data mining per-
formance, various methods for frequent item finding have
been proposed. Among them, Coarse counting [8], Sticky
sampling, Lossy Counting [9], hash-based approaches [10],
[11], and the use of group test [12] are important meth-
ods. These methods can quantify frequently appearing items

Copyright c© 2006 The Institute of Electronics, Information and Communication Engineers

YOSHIDA et al.: STREAM MINING FOR NETWORK MANAGEMENT
1775

without any omissions. However, we found that these meth-
ods had poor performance when working with limited mem-
ory. These methods tend to overestimate the frequencies of
occurrence when the available memory is limited.

In this study, we investigate a method which uses a
fixed size cache memory to find frequent items. The man-
agement of cache memory significantly affects the perfor-
mance of our method. The study of cache management has
a long history. LRU based methods such as LFU, LRU-k
[13], and 2Q [14] form an important family of management
strategies. However, extensive study on the use of these
methods for frequent item finding has not been reported.

The memory management strategies we used in this
study, i.e. random2 and hash2, retain information on mul-
tiply accessed entries. Random2 was originally developed
in the study of spam filters [15] and its characteristics were
reported in [16]. In this paper, we introduce hash2 as an
enhancement of random2.

Among conventional studies, CPM [16] and Space-
Saving [17] has the best performance with restricted mem-
ory. We empirically show the advantage of our new method
in Sect. 4. Comparison with the second best method, i.e.
hCount∗ [11], is also reported in this paper. Note that most
of the mining methods which work well with limited mem-
ory, e.g. CPM, Space-Saving and hCount∗, are off line meth-
ods. They tend to lack the function of handling so called
concept drift [18]. The method we proposed in this paper
has the ability to handle concept drift while retaining per-
formance under limited memory.

Finally, from the view point of flow measurement,
there exist a considerable number of works to measure huge
traffic on high-speed links such as core routers in the Inter-
net backbone. Note that a flow here is a sequence of packets
having the same five-tuples, that is, source/destination ad-
dresses, source/destination ports, and protocol. To measure
(process) a huge number of packets per unit time on a very
high-speed link, packet sampling is often employed such as
NetFlow and sFlow in commodity routers. For retrieving
the original flow information from the sampled data, sev-
eral methods have been proposed for obtaining flow statis-
tics [19], [20] and for counting the frequency (i.e., the num-
ber of packets) of each of flows frequently appeared, which
is often called an elephant flow [21]. On the other hand, to
cope with the memory limitation of measurement systems to
record the per-flow information on a huge numbers of flows,
the use of a kind of irreversible compression of information
by Bloom filter or its extension (space-code Bloom filter)
has also been proposed for counting only elephant flows [22]
or for roughly counting all flows in a multi-resolution way
[23]. However, these all methods generally suffer from over-
head of complex off-line processing and difficulty of finding
appropriate parameters of them for archiving a reasonable
accuracy of counting, due to the nature of statistical infer-
ence from sampled and/or compressed information.

In contrast with them, our method proposed in this pa-
per is very light-weight and memory-efficient because it just
counts the frequency of each of appeared flows in a fixed-

sized table with a novel table-entry replacement strategy,
while it can find and count elephant flows in an on-line man-
ner with a reasonable accuracy. Note that, a sliding window-
based on-line method of counting elephant flows has been
proposed [24], but it is still complex compared with our
proposed method. In general, a window-based method re-
quires both auxiliary buffer to store the item information in
the sliding window and periodic operations over the sliding
window. It suffers from the trade-off between accurate but
costly fine-grained sliding and inaccurate but light coarse-
grained sliding. In the algorithm proposed in [24], the accu-
racy, memory requirement, and computational overhead for
each step are sensitive to the sliding window size. In addi-
tion, the existence of appropriate window size is not proven
for a huge scale data (in [24], total number of distinct flows
is just 1647).

3. CPM-Stream & Hash2

We have investigated an off line version of CPM (Cache-
based Pattern Mining) which uses a fixed size cache memory
to find frequent items [16]. Figure 1 shows its algorithm. It
simply counts the frequency of items. A fixed size cache
was used to store frequencies.

If the size of cache is large enough, calculating the in-
dex of a cache entry for an item is simple (Fig. 1, 5th line). A
standard hash technique can be used to find the index for the
recently encountered item†. Free entries can be used for the
newly encountered items. When memory is restricted, cache
entries have to be reused by deleting old entries in the cache
memory. How an entry is selected to be deleted significantly
affects the performance of CPM. The memory management
strategy, Random2, (Fig. 2) is the strategy CPM uses in such
cases.

Among conventional studies, CPM and Space-Saving
show the best performance when available memory is lim-
ited [16], [17]. However, both CPM and Space-Saving are
essentially off line algorithms and cannot handle so called

Algorithm CPM
begin

Create empty heap;
while (input item) do

i = index of item in heap;
increment heap cnt[i] by 1;
if (heap cnt[i]>thresh hold)

print message;
done

end

Fig. 1 Algorithm of CPM.

int i = random() % HEAP;

for (p=1; (heap_cnt[i]>p); p++)

i = random() % HEAP;

Fig. 2 C program code of Random2.

†This requires an auxiliary hash table. The need for this hash
table is omitted in hash2. See later in this Section.

1776
IEICE TRANS. COMMUN., VOL.E89–B, NO.6 JUNE 2006

Algorithm CPM-Stream
begin

Create empty heap;
while (input Item) do

Idx = Find Index of Item in Heap;
increment heap cnt[Idx] by 1;
if (heap cnt[Idx]>thresh hold)

print message;
i = randomly select heap element;
decrement heap cnt[i] by 1;

done
end

Fig. 3 Algorithm of CPM-Stream.

concept drift [18]. For example, when a user tries to transfer
data using P2P software, a P2P flow starts at some point in
time, and ends after it transfers the data of intention. During
that period, the packets of this P2P traffic appear frequently.
However, after the P2P completes its data transfer, they are
not frequent.

Since original CPM cannot process this, we have devel-
oped an on-line version. Figure 3 shows the on-line version
of CPM, named CPM-Stream, and Fig. 5 shows its memory
management strategy hash2.

To handle concept drift, CPM-Stream randomly de-
creases one counter when its increments another counter for
the new item (See under lined line in Fig. 3). By doing this,
CPM-Stream handles concept drift. Even if the frequency
of some items is large, it gradually becomes small as long
as the item does not appear again.

We also enhance the memory management strategy
(See Figs. 4 and 5). Hash2 is an enhancement of random2.
When the memory management of CPM-Stream do not find
entry for the given item, it has to make space by deleting
old entry. To do so, it use hash2 to make space for new en-
try by deleting old entry (See last part of Figs. 4 and 5). It
first calculates N hash values of a given item. N hash func-
tions are used for this purpose. Next it generates N indexes
from N hash values. Then hash2 selects the index which
refers to the least frequent entry out of N entries referred by
N indexes. We used 4 as N in the experiments reported in
the next section. Although we did not extensively seek the
best N, 4 tends to make reasonably good results in various
experiments.

The entries in the cache are to be deleted only when the
memory management of CPM-Stream does not find the en-
try for the given new item. When the memory management
of CPM-Stream does not find the entry for the given item,
hash2 selects an entry to be deleted and deletes it. Note that,
CPM-Stream decreases one counter of a randomly selected
item (underlined in Fig. 3) every time a packet comes, and
decreasing counter of an item leads to increasing the prob-
ability that the item will be deleted by hash2. However, the
delete operation itself will be performed by hash2.

Although both hash2 and random2 have a mechanism
to implement the “Retaining multiply accessed entries”
strategy, they select entries to be deleted randomly. Random
function is used by random2. Hash2 uses a hash function
as a substitute for the random function. Although random2

Function Find Index of Item in Heap
Input

Item: Data to be stored in Cache
Variable

Hash[]: Table of Hash Values
Idx[]: Table of Cache Index

begin
Calculate N hash values from Item

and store them into Hash[]
Idx[] = Hash[] % Cache Size
if (one of entry refereed by Idx[] stores Item)
then return Idx that refers the entry
else Calculate Idx by Hash2

heap cnt[Idx] = 0
return Idx

end

Fig. 4 Pseudo code of memory management strategy.

Function Hash2
Input

Item: Data to be stored in Cache
Variable

Hash[]: Table of Hash Values
Idx[]: Table of Cache Index

begin
Calculate N hash values from Item

and store them into Hash[]
Idx[] = Hash[] % Cache Size
return Idx that refers least frequent entry

end

Fig. 5 Pseudo code of Hash2.

needs an auxiliary hash table to find the index for the re-
cently encountered item, hash2 does not require such table.
Hash2 can find the index for the recently encountered item
by calculating its hash values (Fig. 4 8 ∼ 10 lines). Thus, the
memory efficiency of hash2 is slightly improved upon from
random2.

4. Experimental Results

In this section, we analyze an IP header log with CPM-
Stream and other methods. The IP header log was recorded
on a monitoring point of a commercial Internet backbone,
and is a collection of MD5 values containing 164 million IP
packets. Only the source IP address, destination IP address,
source port number, and destination port number are used to
calculate MD5 values. Since MD5 values and original data,
i.e., set of IP address and port number, has one-to-one corre-
spondence, finding frequently appearing MD5 values from
this data means finding frequent/mass flows caused by P2P
traffic†.

Because of the file system limitation of the operating
system we used, the IP header log is stored in multiple files.
The size of each file is 2G bytes. The first file stores the
packets of first period. The second file stores the succeeding
period, and so on. About 900 sub-files are used to store the
entire IP header file.

†The use of MD5 value is to make experimentations easy. By
using MD5 value, auxiliary programs which calculate basic statis-
tics become simpler. The size of data file also becomes smaller. In
the real situation, the use of MD5 is not necessary. Here we just
select MD5 to make experimentations easy in a way which does
not affect the accuracy of the results.

YOSHIDA et al.: STREAM MINING FOR NETWORK MANAGEMENT
1777

Fig. 6 Frequency drift of IP flows.

4.1 Concept Drift in Internet Data

We first check how the frequency of flow changes. To do
this, we make a list of MD5 values which appear more than
1,000 times in the 450th file. Next we check how many
of them also appear in other files. Here a PC with suffi-
cient memory to hold all the information was used. Figure 6
shows the results. The vertical axis shows how many of the
MD5 values that appear on the 450th file also appear in the
other file. The horizontal axis is the file number and repre-
sents the time sequence.

As clearly shown in the figure, the frequency of flows
are changing. As the file numbers’ difference becomes
large, i.e. as the difference of the files’ creation time be-
comes large, the number of found flows in both files be-
comes small. This is due to the drift of flow frequencies.
Thus stream mining methods have to handle concept drift to
analyze this drift of flow frequencies.

Note that in each of the files which store IP header in-
formation, packets of the top flows which have more than
1,000 packets represent about 50% of all of the packets.
Thus finding these top flows can contribute to finding mass
flows.

4.2 Memory Efficiency

As we explained before, performance under limited memory
resources is important in applying mining methods to ana-
lyze network data. Among conventional studies, original
CPM [16] has the best performance under limited memory
conditions. Recently [17] reports Space-Saving which has
similar memory performance with theoretical upper bound
of memory usage. hCount∗ [11] has the second best perfor-
mance. Figure 7 compares CPM-Stream, original CPM (i.e.
off line version of CPM), and hCount∗.

In this experiment, we measured the performance of
each method by changing the memory size, i.e. the number
of cache entries. The entire IP header log data (i.e. 164M
packets data of 2.68Mflows) was used. The flows whose
packets appear more than 10,000 times are marked as fre-

Fig. 7 Comparison of memory efficiency.

Fig. 8 Effect of cache size and number of cache function.

quent. 2050 flows meet this condition in the data and 73%
of packets belong to these flows.

CPM-Stream and CPM make underestimation errors.
They both underestimate the frequency of data under lim-
ited memory conditions and miss frequent items. hCount∗
makes overestimation errors. It overestimates frequency
of data under limited memory conditions and misidentified
non-frequent items as frequent. Figure 7 compares the num-
ber of errors generated by these methods.

As shown in the figure, CPM is always best and CPM-
Stream is next. hCount∗ is the worst among these 3 meth-
ods. The performance degradation of CPM-Stream from
CPM is due to the handling of concept drift. The random de-
crease of the counter (See under lined line in Fig. 3) causes
the performance degradation. However, as described in next
sub-section, this performance degradation can be compen-
sated when handling of concept drift is necessary. For exam-
ple, Fig. 7 shows an area where hCount∗ outperforms CPM-
Stream. However as we describe in the next session, we be-
lieve the benefit of concept drift handling is more important
than this performance degradations.

Figure 8 shows the effect of memory size and number
of hash functions used in hash2. In this figure, horizontal
axis is the number of cache entries, and vertical axis is the

1778
IEICE TRANS. COMMUN., VOL.E89–B, NO.6 JUNE 2006

Fig. 9 Effect of online analysis.

percentage of found frequent flows. 100% means that CPM-
Stream finds all 2050 frequent flows. As shown in the fig-
ure, we can improve the performance of CPM-Stream by in-
creasing the number of hash functions used in hash2. How-
ever, larger N also requires larger processing cost. We can
also improve the performance of CPM-Stream by increasing
the memory size. The performance (i.e., accuracy), process-
ing cost, memory resources are in trade-off situation. Since
the memory for 1M entries is small enough in the practical
situation and the use of 4 hash functions is enough with 1M
entries to achieve good accuracy, we use 4 hash function in
the following experiments†.

4.3 Effect of Concept Drift

Since we store the IP header log in multiple files, we can
find mass flows by analyzing each file using an off line data
mining program such as CPM and hCount∗. Figure 9 shows
a problem of such off line analysis. Since the occurrence
of some flows are stored in multiple files separately, off line
analysis underestimates the frequency of such flows. For
example, off line analysis underestimates the frequency of
flow A in Fig. 9. Off line analysis can only estimate the
frequency of flow B in this case.

Figures 10, 11, and 12 show the results made by
CPM-Stream using different cache sizes (6400, 25600, and
102400 entries respectively). Each figure shows the num-
ber of found flows with CPM-Stream and the difference of
the results between CPM-Stream and off line CPM. Here
CPM used enough memory to find all frequent flows. CPM-
Stream continuously inputs multiple files in time sequence.
Thus the flows only found by off line CPM is due to the in-
sufficient memory and the flows only found by on line CPM-
Stream is due to the phenomenon shown in Fig. 9.

As shown in those figures, the number of flows only
found by off line CPM decreases as the memory size of
CPM-Stream increases. And the number of flows only
found by CPM-Stream increases as the memory size of
CPM-Stream increases. With 25,600 cache entries, the
number of flows only found by off line CPM and the num-
ber of flows only found by CPM-Stream are roughly equal.
With cache entries more than 25,600, the number of found
flows by CPM-Stream outperforms that by off line CPM due

Fig. 10 With 6400 cache entries.

Fig. 11 With 25600 cache entries.

Fig. 12 With 102400 cache entries.

to the proper handling of concept drift.
As mentioned in Sect. 4.2, the handling of concept drift

slightly decreases the memory efficiency of CPM-Stream
from the off line version of CPM. However, if the target data
requires the analysis of concept drift, the proper handling of
concept drift compensates the memory efficiency degrada-

†We also checked the effect of hash program in the auxiliary
experimentations. Since the change of hash program has negligible
effects on the results and the results by the program in the standard
C library were good enough, we only show the experimental results
where we change the number of hash functions used in hash2.

YOSHIDA et al.: STREAM MINING FOR NETWORK MANAGEMENT
1779

tion.

5. Discussion

CPM-Stream is a modified version of CPM which is origi-
nally suitable for off line analysis. Two important modifica-
tions are the handling of concept drift and the replacement of
the memory management strategy from random2 to hash2.
The importance of concept drift handling is examined in the
previous section.

Figure 13 shows how random2 and hash2 select entries
to be deleted. Both memory management strategies are us-
ing the retaining multiply accessed entries strategy. They
both select less frequently accessed entries as the candidate
for deletion. To realize this selection, random2 increases a
counter (“p” in Fig. 2) in the loop. Here the counter acts
as the threshold of frequency. When the heap size is small,
the frequency of the entries in the heap tend to be high. By
gradually increases the counter, random2 tries to select less
frequent entries in the heap. Hash2 selects the least frequent
entry out from randomly selected entries. This statistically
selects less frequent entries in the heap.

Another important characteristic of random2 and hash2
is that they both retain newly encountered data for a cer-
tain period. When CPM and CPM-Stream encounter new
data, the frequency counter of the new data is set to be one.
When the counter is small, they are entries to be deleted if
random2 and hash2 find them as the candidates for dele-
tion. However, since both random2 and hash2 randomly
select candidates for deletion, the entry for the newly en-
countered data gets a postponement. If the newly encoun-
tered data is frequent, the counter of the data will increase
rapidly. Thus random2 and hash2 will not delete them and
CPM and CPM-Stream can find new frequent data.

We believe that we can realize a different implemen-
tation of the “Retaining multiply accessed entries” strategy.
Random2 and hash2 are the first attempts. However, the
two characteristics discussed above are important to design
new implementations of the “Retaining multiply accessed
entries” strategy.

Another important issue related to the memory man-
agement is how to confirm the sufficiency of the memory
size used by CPM-Stream. CPM-Stream does not guarantee

Fig. 13 Selection of Random2 & Hash2.

the quality of its analysis. If the memory size that the CPM-
Stream used was too small, the results miss many frequent
items. However, we can check its quality by comparing the
result of CPM-Stream with that of the off line version CPM
as shown in Figs. 10, 11, and 12. Note that the off line anal-
ysis of CPM has to analyze the data which is monitored in
some time period. Since the data monitored in some time
period is far smaller than the total data, we can use enough
memory to find all the frequent items. Thus we can check
the quality of CPM-Stream results by comparing it with the
results of the off line analysis.

Concept drift handling of CPM-Stream rely on its
memory management strategy hash2. For example, after
the file transfer of P2P terminates its massive data trans-
fer, the counter of its flow starts decreasing. Since main
routine of CPM-Stream randomly decreases the counter in
the cache (See under lined line in Fig. 3), the average decre-
ment of the counter is 1

Cache Size per each new packet. Thus,
the counter of the terminated massive flow becomes zero af-
ter CPM-Stream process “Number of packets of terminated
flow”*“Cache Size” new packet.

Hash2 may delete this entry before the counter be-
comes zero. The user may start the same flow before the
counter becomes zero. Thus the behavior of CPM-Stream
is more complicated. However, based on the experimental
results shown in the previous section, we find the behav-
ior of CPM-Stream is quite natural. It tends to delete old
terminated flow information naturally. It may increase the
counter of old discontinued flow’s counter. However, count-
ing such discontinued flow as frequent flow does not cause
any practical problem.

6. Conclusion

Network management is an important issue to maintain the
Internet as an important social infrastructure. Finding ex-
cessive consumption of network bandwidth caused by P2P
mass flow is especially important. In this paper, we show
how we can use a stream mining technique to analyze P2P
mass flow with experimental results. The characteristics of
our approach are:

• A mining technique which works well with extremely
limited memory
• The handling of concept drift to capture the current

mass flow
• The “Retaining multiply accessed entries” strategy to

best utilize the available memory resources

The effect of the handling of concept drift and behav-
ior of the “Retaining multiply accessed entries” strategy, i.e.
random2 and hash2, are also discussed with experiments
which use actual Internet traffic. The experiments also show
that we can use the proposed approach to find mass flow
from Internet backbone flow data.

References

[1] http://www.caida.org/

1780
IEICE TRANS. COMMUN., VOL.E89–B, NO.6 JUNE 2006

[2] http://moat.nlanr.net/
[3] Rfc2330, framework for ip performance metrics.
[4] http://www.advanced.org/surveyor/
[5] J. Mirkovic, G. Prier, and P.L. Reiher, “Attacking ddos at the source,”

Proc. 10th IEEE International Conference on Network Protocols,
pp.312–321, 2002.

[6] Y. Ohsita, S. Ata, M. Murata, and T. Murase, “Detecting distributed
denial-of-service attacks by analyzing tcp syn packets statistically,”
Proc. IEEE Globecom 2004, vol.4, pp.2043–2049, 2004.

[7] E.D. Demaine, A. Lopez-Ortiz, and J.I. Munro, “Frequency estima-
tion of internet packet streams with limited space,” Proc. 10th An-
nual European Symposium on Algorithms, 2002.

[8] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J.D.
Ullman, “Computing iceberg queries efficiently,” Proc. 24th Int.
Conf. Very Large Data Bases, VLDB, pp.299–310, 1998.

[9] G. Manku and R. Motwani, “Approximate frequency counts over
data streams,” Proc. 28th International Conference on Very Large
Data Bases, pp.346–357, Hong Kong, China, 2002.

[10] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent
items in data streams,” Proc. Int. Colloquium on Automata Lan-
guage and Programming, pp.693–703, 2002.

[11] C. Jin, W. Qian, C. Sha, J.X. Yu, and A. Zhou, “Dynamically main-
taining frequent items over a data stream,” Proc. twelfth international
conference on Information and knowledge management, pp.287–
294, 2003.

[12] G. Cormode and S. Muthukrishnan, “What’s hot and what’s not:
Tracking frequent items dynamically,” Proc. Principles of Database
Systems, pp.296–306, 2003.

[13] E.J. O’Neil, P.E. O’Neil, and G. Weikum, “The LRU-K page re-
placement algorithm for database disk buffering,” Proc. ACM SIG-
MOD International Conference on Management of Data, pp.297–
306, 1993.

[14] T. Johnson and D. Shasha, “2Q: A low overhead high performance
buffer management replacement algorithm,” Proc. Twentieth Inter-
national Conference on Very Large Databases, pp.439–450, Santi-
ago, Chile, 1994.

[15] K. Yoshida, F. Adachi, T. Washio, H. Motoda, T. Homma,
A. Nakashima, H. Fujikawa, and K. Yamazaki, “Density-based spam
detector,” KDD2004, pp.486–493, 2004.

[16] K. Yoshida, S. Katsuno, Y. Fujita, M. Tsuru, S. Ano, and K. Ya-
mazaki, “Lru is not better than random!,” IEICE Trans. Commun.
(Japanese Edition), vol.J88-B, no.10, pp.2012–2021, Oct. 2005.

[17] A. Metwally, D. Agrawal, and A.E. Abbadi, “Efficient computation
of frequent and top-k elements in data streams,” ICDT, ed. T. Eiter
and L. Libkin, Lecture Notes in Computer Science, vol.3363,
pp.398–412, Springer, 2005.

[18] G. Widmer and M. Kubat, “Learning in the presence of concept drift
and hidden contexts,” Mach. Learn., vol.23, no.1, pp.69–101, 1996.

[19] N. Duffield, C. Lund, and M. Thorup, “Estimating flow distributions
from sampled flow statistics,” Proc. ACM SIGCOMM, pp.325–336,
Karlsruhe, Germany, Aug. 2003.

[20] N. Hohn and D. Veitch, “Inverting sampled traffic,” Proc. ACM
SIGCOMM Internet Measurement Conference, pp.222–233, Miami,
USA, Oct. 2003.

[21] T. Mori, M. Uchida, R. Kawahara, J. Pan, and S. Goto, “Identi-
fying elephant flows through periodically sampled packets,” Proc.
ACM SIGCOMM Internet Measurement Conference, pp.115–120,
Taormina, Sicily, Italy, Oct. 2004.

[22] C. Estan and G. Varghese, “New directions in traffic measurement
and accounting,” Proc. ACM SIGCOMM, pp.323–336, Pittsburg,
Aug. 2002.

[23] A. Kumar, J. Xu, J. Wang, O. Spatscheck, and L. Li, “Space-code
bloom filter for efficient per-flow traffic measurement,” Proc. IEEE
Infocom, Hong Kong, March 2004.

[24] L. Golab, D. DeHaan, E. Demaine, A. Lopez-Ortiz, and J.I. Munro,
“Identifying frequent items in sliding windows over on-line packet
streams,” Proc. ACM SIGCOMM Internet Measurement Confer-

ence, pp.173–178, Miami, USA, Oct. 2003.

Kenichi Yoshida received his Ph.D. from
Osaka University in 1992. In 1980, he joined
Hitachi Ltd., and is working for University of
Tsukuba from 2002. His current research inter-
est includes application of internet and applica-
tion of machine learning techniques.

Satoshi Katsuno received the B.S. de-
gree and the M.S. degree in electric engineering
from the University of Tokyo, Japan in 1989 and
1991, respectively. He joined Kokusai Denshin
Denwa Co., Ltd. (KDD), in 1991. He worked
at the Tokyo Research & Operation Center of
Telecommunication Advancement Organization
(TAO) from 2001 to 2004. Since April 2004,
he has been at KDDI R&D Laboratories Inc. He
has been engaged in research on network quality
measurement.

Shigehiro Ano received the B.E. and the
M.E. degrees in electronics and communica-
tion engineering from Waseda University, Japan
in 1987 and 1989, respectively. Since joining
KDD in 1989, he has been engaged in the field
of ATM switching system and ATM network-
ing. His current research interests are network
management over the next generation Internet,
QoS routing architecture and multicast protocol
for IP broadcasting. He is currently the Senior
Manager of IP Communication Quality Lab. in

KDDI R&D Laboratories Inc. He received IPSJ Convention Award in
1995.

Katsuyuki Yamazaki received B.E. and
D.E. degrees from the University of Electro-
communications and Kyushu Institute of Tech-
nology in 1980 and 2001, respectively. At KDD
Co. Ltd., he had been engaged in development
of ISDN and S.S. No.7, R&D and international
standards of ATM networks, consultation for a
new telecommunication company, and R&D of
Internet QoS and networking. He is currently
at KDDI R&D Labs. Inc., and responsible for
R&D strategy.

Masato Tsuru received B.E. and M.E.
degrees from Kyoto University, Japan in 1983
and 1985, respectively, and then received his
D.E. degree from Kyushu Institute of Technol-
ogy, Japan in 2002. He worked at Oki Elec-
tric Industry Co., Ltd., Nagasaki University,
Japan Telecom Information Service Co., Ltd.,
and Telecommunications Advancement Organi-
zation of Japan. Since April 2003, he has been
an Associate Professor in the Department of
Computer Science and Electronics, Kyushu In-

stitute of Technology. His research interests include performance measure-
ment, modeling and analysis of computer communication networks. He is
a member of the IPSJ, JSSST, and ACM.

