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Abstract—With the recent progress of cloud and distributed
computing technologies, data migration and replication among
distributed data centers grows rapidly. To manage a simplified
scenario that a single sender sends a large-sized file to multiple
recipients, i.e., one-to-many file transfer, on a network with full-
duplex links, we are developing the Multipath-Multicast (MPMC)
file transfer. A file is appropriately divided into equally-sized
blocks; different blocks are concurrently transmitted to the same
recipient on multiple paths; while the same block is concurrently
transmitted to multiple recipients by multicast, aiming at shorter
reception completion times of all recipients. However, on large-
scale complex network topologies, it is not easy to find a
good block transfer schedule, i.e., that realizes the reception
completion times of most recipients close to their lower-bounds in
MPMC. In this report, therefore, a gossiping approach to allow
block transfer among recipients is introduced into MPMC and
evaluated through simulation on two real backbone topologies.
Since unused capacities of links in the original basic MPMC can
be utilized in the MPMC with gossiping, a good schedule can
be found more easily compared with the basic MPMC even with
the same simple greedy block allocation.

Index Terms—OpenFlow, multipath transfer, multicast trans-
fer, one-to-many file transfer, gossiping

I. INTRODUCTION

As cloud and distributed computing technologies are widely
spread, a rapid growth of data migration and replication either
in a data center or among distributed data centers is becoming
a problem. Therefore, it is of necessity that a single sender
sends a large-sized file to multiple recipients, i.e., one-to-many
file transfer, to complete the file reception by each recipient
as fast as possible.

Transferring a file on a single multicast tree by “reliable”
multicasting is an approach to efficient one-to-many file trans-
fer. Although it can prevent wasting link capacities in general
and some commercial products for multicast file transfer are
available [1], the reception completion times are throttled by
the recipient at the worst location. Addressing this weakness,
the use of multiple multicast trees with appropriately grouping
recipients was considered [2], but it does not utilize the aggre-
gated capacity of multiple network paths. On the other hand,
data transmission leveraging multiple paths has emerged and
attracted attention for diverse applications [3]. For example, a
multipath transmission scheme was proposed that employs a

fountain code to encode transmission data and achieves higher
reliability without retransmissions [4], but it does not utilize
multicasting. For one-to-many file transfers in a data center, a
P2P-based data dissemination scheme was proposed focusing
on typical data center network topologies such as the FatTree
and Multi-Routed Tree [5].

Based on these observations, we proposed a one-to-many
file transfer scheme, Multipath-Multicast (MPMC), with the
use of multiple paths and multicast to fully and efficiently
utilize the link capacity at the same time. In particular,
we focused on a network with full-duplex links in which
different data can be transmitted in both directions of the
same link simultaneously, implicitly assuming dedicated high-
speed wired links. The MPMC was implemented based on the
capability of flexibly controllable routing of OpenFlow [6].
To shorten the reception completion time of each recipient
in MPMC, a good transfer schedule in space and time (i.e.,
route and phase) is essential. However, on large-scale complex
network topologies, good schedules in MPMC are not easy to
find. In this report, therefore, a gossiping approach to allow
block transfer among recipients is introduced in MPMC and
evaluated on two large-scale topologies through simulation.
Although “gossiping” often represents a data exchange among
recipients in an ad-hoc, autonomous, and unsynchronized
manner, in our work, the block transfer among recipients is
globally scheduled by controller to transfer a block from an
already received recipient to an unreceived recipient as long
as the link capacity allows.

The reminder of this paper is organized as follows. The
MPMC one-to-many file transfer is outlined in Section 2. The
MPMC with gossiping is introduced in Section 3 and evaluated
in Section 4. Concluding remarks are given in Section 5.

II. MULTIPATH-MULTICAST FILE TRANSFER

The MPMC one-to-many file transfer was proposed in our
previous work [6], in which a file is divided into equally-
sized blocks; different blocks are concurrently transmitted
to the same recipient on multiple paths to fully utilize the
link capacity; and the same block is concurrently transmitted
to multiple recipients by multicast to efficiently utilize the
link capacity. An essential assumption is that all links are
full-duplex so that different data can be transmitted in both978-1-5386-4633-5/18/$31.00 copyright 2018 IEEE



directions of the same link simultaneously. In addition, for
simplicity, a fixed, dedicated, error-free communication net-
work is assumed. The block transfer in space and time is
scheduled in a centralized manner meaning that the central
scheduler (i.e., controller) knows the network topology, link
capacities, and sender/recipients’ locations.

The aim of scheduling is to achieve the reception completion
time (RCT) of each recipient as short as possible, where RCT
of recipient R is defined as the duration from the time when
the sender starts sending the file to at least one recipient to
the time when recipient R has received the entire contents of
the file. The RCT inherently varies among recipients due to
their heterogeneity in the network topology. The lower-bound
of RCT of recipient R is equal to the file size divided by the
max-flow value (i.e., the aggregate capacity of a concurrent
transfer on possibly multiple paths) from sender S to R, and
an “optimal schedule” will realize such RCT lower-bounds
for every recipient. Therefore, if the number of recipients is
one, this scheduling problem is solved simply by applying
the standard max-flow problem. However, if the number of
recipients is more than one, this problem is different from
the well-known single-source multiple-sink max-flow problem.
Although it can be formulated as a kind of optimization
problem, an efficient algorithm to solve it is not trivial.
Therefore we proposed a simple greedy block allocation to
generate a schedule relying on the max-flow problem that can
be solved by well-known algorithms efficiently, e.g., with a
computational cost proportional to the number of links on the
network.

The basic idea is as follows. Let S be the sender who
possesses multiple blocks to be sent to multiple recipients.
Block transfer is scheduled on a phase-by-phase basis, i.e.,
it is determined that which block is sent to which recipient
on which path (route) from S in each phase, which is called
the block allocation. The max-flow value and a set of paths
from S to each recipient to realize the value are computed and
leveraged in the block allocation. Those paths are called the
max-flow paths although the set of the max-flow paths is not
unique. To define a phase, let bj be the max-flow value from
the sender to recipient j and wj be the total size of unreceived
blocks for j at the beginning of the phase. The remaining-
data transmission time Dj of recipient j is computed as
Dj = wj/bj , i.e., the minimum necessary time to receive the
entire file by j. A recipient that has the (non-zero) shortest
remaining-data transmission time is selected as the primary
recipient of the phase. In a tie-break, a pre-defined ordered
list of recipients (called the recipient order parameter) is
used to decide the primary recipient. All unreceived blocks
for the primary recipient are allocated to its max-flow paths
to send; the current phase ends at the time the file reception
by the primary recipient has completed. In other words, the
time duration of a phase is the remaining-data transmission
time of the primary recipient of the phase.

On the other hand, recipients other than the primary re-
cipient are called the secondary recipients of the phase.
The secondary recipients are also sorted in the ascending

order of their remaining-data transmission times as block
allocation priority. In a tie-break, the recipient order parameter
is used again to decide the order of the secondary recipients
in the current phase. According to that order as priority, each
secondary recipient is examined to allocate unreceived blocks
on its max-flow paths that (partially) overlaps one of the max-
flow paths of the primary recipient as long as unused capacities
of links and unprocessed recipients exist in the current phase.
In this way, the max-flow paths of the primary recipient will
branch and reach some other secondary recipient, which forms
multiple multicast trees. Such a simple and greedy block
allocation without backtracking for each phase is repeated until
all recipients have received all blocks, i.e., the one-to-many file
transfer has completed.

An example of MPMC file transfer is illustrated in Fig.1.
Hosts (S,R1, R2, R3) and switches (0, 1, 2, 3, 4) are con-
nected at 1 [Gbps], respectively; and these switches are
connected each other at 100 [Mbps]. S transfers the same
file to R1, R2, and R3. The max-flow value bj from S to
Rj are b1 = 200, b2 = 300, b3 = 200 [Mbps], respectively.
The max-flow paths to each recipient can be a set of unit-
capacity paths (called as unit-paths). In this case, the unit
capacity is 100 [Mbps] and the normalized max-flow value
Mj is defined by bj/100, i.e., the number of the unit-paths to
realize the max-flow value; M1 = 2,M2 = 3,M3 = 2. The
file to send is divided by the least common multiple (LCM)
of the normalized max-flow values of all recipients. Thus, the
file is divided into six blocks in this case. The recipient order
parameter is set to (R1, R2, R3),

A snapshot of block transfer in the 2nd phase and a total
block allocation over three phases are illustrated in Fig.1 and
the left of Fig.2, respectively. At the beginning of the 1st
phase, the remaining-data transmission time of each recipient
is in the following order: D2 < D1 = D3. Therefore, the
primary recipient of the 1st phase is R2. In the 1st phase,
R2 has completed the file transfer, while R1 receives blocks
0, 1, 2, 3 and R3 receives blocks 0, 1, 4, 5 as its secondary
recipients in this schedule. At the beginning of the 2nd phase,
the remaining-data transmission time R1 and R3 are the
same. Therefore the primary recipient of the 1st phase is
R1 according to the pre-defined recipient order parameter. In
the 2nd phase, R1 has completed the file transfer, while R3

receives blocks 3 only as its secondary recipient. Six blocks
are transferred on three unit-paths to the primary recipient
(R2) in the 1st phase, while two blocks are transferred on
two unit-paths to the primary recipient (R1) in the 2nd phase.
Therefore, the time duration of the 2nd phase is half of that of
the 1st phase. Finally, in the 3rd phase, the last recipient R3

has completed the file transfer but this schedule is not optimal.
R1 and R2 achieve their lower-bounds of RCT but R3 does
not. On more large-scale complex network topologies, a good
schedule is sometimes difficult to obtain based solely on the
simple greedy block allocation.

Of further note is on our preliminary MPMC system for
Ethernet-based networks [6]. An MPMC controller was im-
plemented on Trema [8], which is a Ruby-based framework



Fig. 1. An example of block transfer in the 2nd phase.

Fig. 2. A block transfer schedule (Left:Basic, Right:Gossiping).

for OpenFlow Controller (OFC), to manage different types of
OpenFlow Switchs (OFSs) including hardware and software
ones. The sender agent on the sender host and the recipient
agent on each recipient host were also implemented. In our
OpenFlow-based implementation, each unit-path is flexibly
routed as a UDP flow and the multicast forwarding is realized
using the packet-copy on OFS. The MPMC controller collects
the network topology, accepts a sending request and receiving
requests from the sender and the recipient agents, decides a
schedule, configures each OFS, and starts the block transfers
by directing the sender and the recipient agents. In the current
system, lost packets will be retransmitted by unicast after
finishing all phases.

III. MULTIPATH-MULTICAST FILE TRANSFER WITH
GOSSIPING

In the same manner as the original MPMC (called the
basic MPMC), let S be the original sender who originally
possesses multiple blocks to be sent to multiple recipients.
Block transfer is scheduled on a phase-by-phase basis. In
contrast to the basic MPMC, however, a recipient can retrieve
some blocks from not only S but also other recipients who
already possess such blocks in case of gossiping. Therefore,
the max-flow value from a recipient as potential sender to
another recipient should be considered, and the remaining-data
transmission time of each recipient R with a potential sender
R′ is computed. Each phase ends at the time when the primary
recipient of the current phase has received all blocks, and then
a potential sender and a recipient for the next phase will be
selected, until all recipients have received all blocks, i.e., the
file transfer has completed. Note that the primary sender of
the 1st phase is always original sender S and the primary
recipient of the 1st phase is the same one in the basic MPMC.

Fig. 3. Block allocation process in phase k

The flowchart of a certain phase is shown in Fig.3 and two
main functions are described in the following subsections.

A. Select a pair of the primary sender and the primary
recipient

To define a phase, each pair of a potential sender (either
the original sender S or a recipient who has already received
all blocks in the preceding phases) and a potential recipient
(a recipient who has not received all blocks yet) is examined
in terms of the remaining-data transmission time of the pair.
A pair with the shortest remaining-data transmission time is
selected as the primary sender S∗

k and the primary recipient R∗
k

of phase k. If there are two or more pairs having the shortest
remaining-data transmission time, the one with the smallest
number of hops from S∗

k to R∗
k is chosen. In a tie-break, the

recipient order parameter is used to decide S∗
k and R∗

k.

B. Select the secondary recipient

The secondary recipients of phase k are sorted in the
ascending order of the remaining-data transmission time of
the recipient with the primary sender S∗

k as allocation priority.
In a tie-break,I the one with the smallest number of hops from
S∗
k to recipient R is chosen. If a tie-break still happens, the

recipient order parameter is used again to decide the order
of the secondary recipients of the current phase. Similarly to
the basic MPMC, according to that order as priority, each
secondary recipient R is examined to allocate unreceived
blocks on its max-flow paths from S∗

k that (partially) overlaps
one of the max-flow paths of R∗

k from S∗
k as long as unused

capacities of links and unprocessed recipients exist in the
current phase. However, in contrast to the basic MPMC, a
block can be transferred to secondary recipient R not only
from S∗

k but also any recipient who already possesses the block
and is directly connected to a switch on one of the max-flow
paths of R.

C. Example

To explain the proposed MPMC with gossiping, the same
topology of Fig.1 is used where R1, R2, and R3 have the
max-flow values of b1 = 200, b1 = 300, and b1 = 200



Fig. 4. An example of block transfer with gossiping in the 2nd phase.

[Mbps], respectively. The file is divided into six blocks
Bj (j = 0, 1, ..., 5). The recipient order parameter is set
to (R1, R2, R3). In the first phase, since only the original
sender S possesses all the blocks, S becomes the primary
sender. Since R2 has the shortest remaining-data transmission
time from the primary sender, all blocks are transferred to
R2 as the primary recipient of the phase. At the same time,
B0, B1, B2, B3 are delivered to R1 by multicast transfer, and
B0, B1, B4, B5 are delivered to R3.

In the second phase, a pair of the primary sender and the
primary recipient of the phase should be decided. There are
two potential senders; the original sender S and recipient
R2 who has already received all blocks in the first phase.
Among multiple pairs that have the shortest remaining-data
transmission time, the pairs (S,R1), (R2, R1), and (R2, R3)
that have the short hop number are chosen. According to the
given recipient order parameter, the pairs (S,R1) and (R2, R1)
are chosen. Finally, since the original sender S is generally
prioritized as the primary sender, the pair (S,R1) is selected
so that all unreceived blocks of R1 are transferred from S.
At the same time, some blocks are transferred from S to R3

as the secondary recipient. Notably, in contrast to the basic
method, some blocks can also be transferred from R1 to R3

using the unused capacities on the paths from R1 to R3. The
schedule over two phases is shown in the right of Fig.2. A
snapshot of block transfer in the 2nd phase is shown in Fig.4
where the link from switch 2 to 3 is utilized.

IV. PERFORMANCE EVALUATION

A. Schedule search

For both MPMC methods (with and without gossiping),
given the recipient order parameter, one schedule instance is
generated as explained in the previous sections. By varying
the recipient order parameter at random N times, at most N
different schedules are generated. We define Maximum RCT
and Average RCT to measure the performance of a schedule.
The maximum reception completion time (Maximum RCT) is
the longest value of the RCTs of all recipients and the average
RCT is the average value of the RTCs of all recipients. The
recipient order parameter strongly affects the resulting block
allocation and thus the generated schedule instance especially
when a number of recipients have the same max-flow value.
The best one schedule is chosen from at most N schedule
instances so as to minimize the maximum RCT first and then

to minimize the average RCT among those instances, called
schedule search with the number N of schedule generations.

In the following subsections, the basic and the proposed
gossiping MPMC methods are simulated on two large-scale
topologies [7] (resenting real backbone networks) but in an
ideal condition, i.e., with no packet loss and no link propaga-
tion delay. These methods are compared in terms of the RCTs
of recipients realized by the schedule obtained by “schedule
search” with different N of schedule generations (N is 10,
25, and 50). To get statistical results, in each setting, the
simulation experiments are repeated by 50 times to get the
best, average, and worst case performance of each method
with each of different schedule generations.

B. Evaluation at Columbus

The performance was evaluated for transferring 100 [MB]
on a topology of Fig. 5 (top) in which 69 switches are
connected each other at 100 [Mbps]; one selected switch
is connected to the sender and each of other switches is
connected to each different recipient at 1 [Gbps] (larger than
its max-flow value). Two sender locations (no. 1 and no. 29)
are randomly selected and examined. The maximum value and
the average value of the lower-bounds of RCT per recipient are
8.00 and 4.44 [s] from the sender located at no. 1, respectively;
8.00 and 4.48 [s] from the sender located at no. 29. The file is
divided into 12 and 6 blocks for senders at no. 1 and no. 29,
respectively. This is because, in case of the sender located at
no. 1 for example, the normalized max-flow values of recipient
are 1, 2, 3, and 4.

The results on “The maximum RCT” are omitted to show
because the values were equal to the lower-bound (8 [s]) in
almost cases and there was not much difference between the
basic method and the gossiping method. About “The average
RCT” (averaged over 68 recipients), Fig.5 (bottom) shows
the statistical performance results of the schedule obtained
by schedule search for two sender locations. In the results,
all of the best, average, and worst case performances among
50 experiential trails are clearly improved by the gossiping
method. With a sufficient number of schedule generations (50),
even the worst case performance in the gossiping method is
close to its lower-bound (4.44 and 4.48 [s] for senders at
no. 1 and no. 29, respectively), meaning that the RCT of
each recipient is close to its lower-bound in the majority of
recipients. With a small number of schedule generations (10),
the average case performance in the gossiping method is still
close to its lower-bound. The worst case performance (among
50 trials) is also significantly improved.

As a deeper look into the difference, a certain schedule of
the basic method and another certain schedule of the gossiping
method (both are generated using the same recipient order
parameter) are compared in case of the sender location at
no. 29. In the basic method, it takes 8 [s] over 6 phases, while
in the gossiping method, it takes 8 [s] over 4 phases to finally
complete the file transfer. Therefore, in terms of the maximum
RCT, two methods show the same and optimal performance.
However, in the basic method, there are 13 recipients who do



Fig. 5. Topology Columbus [7] and the average RCT over 68 recipients.

not reach the lower-bound, while in the proposed method there
are only 3 recipients who do not reach the lower-bound.

C. Evaluation at Switch

Another evaluation was conducted for transferring 100
[MB] on a topology of Fig. 6 (top) with 73 switches in a way
similar to the previous Columbus case. Two sender locations
(no. 2 and no. 29) are selected. The maximum value and
the average value of the lower-bounds of RCT per recipient
are 8.00 and 4.95 [s] from the sender at no. 2, respectively;
8.00 and 4.94 [s] from the sender at no. 29. For both sender
locations, the file is divided into 6 blocks.

The results on the average RCT in Fig.6 (bottom) indicate
that the performance characteristics are almost similar with the
Columbus case. The advantage of the gossiping method to the
basic method in terms of the average RCT is more significant
in case with a small number of schedule generations (10).

V. CONCLUDING REMARKS

We have introduced a gossiping approach to allow inter-
recipients transfer into MPMC-style one-to many file transfer
so that unused capacities of links have more chances to
leverage. The simulation results on two large-scale topologies
suggest that a good schedule, i.e., by which most recipients
achieve the RCTs close to their lower-bounds, is more easily
found in the proposed gossiping method.

A short discussion on the proposed method in terms of
computational costs and adaptability to changes is given below.
In the block allocation, the max-flow problem should be
solved to decide the max-flow paths between two hosts. Thus,
if the number of involved hosts (the original sender and
all the recipients) is large, it needs to be computed many
times, i.e., for each potential pair among hosts. However,
if the topology does not change, such computations can be

Fig. 6. Topology Switch [7] and the average RCT over 72 recipients.

conducted before-hand. To adapt dynamic changes of network
topology including link capacities and switch/link availability,
more work is needed. In addition, the one-to-many file transfer
is assumed to start after all recipients join. A delayed join of
recipients remains as future work. About the cost of schedule
search, the experimental results suggest the proposed method
accept a relatively small number of search.

We will investigate how a good schedule is found more
effectively and how it depends on the network topologies in-
cluding the locations of sender and recipients. We also plan to
implement the proposed method with OpenFlow by enhancing
our implementation of the basic method and demonstrate its
feasibility on a wide-area OpenFlow testbed in Japan.

This research is supported by JSPS Grant-in-Aid for Scien-
tific Research 16K00130.
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