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Abstract. The increasing growth of data on protein-protein interaction (PPI) networks has
boosted research on their comparative analysis. In particular, recent studies proposed models
and algorithms for performing network alignment, the comparison of networks across species
for discovering conserved modules. Common approaches for this task construct a merged
representation of the considered networks, called alignment graph, and search the alignment
graph for conserved networks of interest using greedy techniques. In this paper we propose
a modular approach to this task. First, each network to be compared is divided into small
subnets which are likely to contain conserved modules. To this aim, we develop an algorithm
for dividing PPI networks that combines a graph theoretical property(articulation) with
a biological one (orthology). Next, network alignment is performed on pairs of resulting
subnets from different species. We tackle this task by means of a state-of-the-art alignment
graph model for constructing alignment graphs, and an exact algorithm for searching in
the alignment graph. Results of experiments show the ability of this approach to discover
accurate conserved modules, and substantiate the importance of the notions of orthology
and articulation for performing comparative network analysis in a modular fashion.

Key words: Protein network dividing, modular network alignment.

1 Introduction

With the exponential increase of data on protein interactions obtained from advanced technologies,
data on thousands of interactions in human and most model species have become available (e.g. [1,
2]). PPI networks offer a powerful representation for better understanding modular organization
of cells, for predicting biological functions and for providing insight into a variety of biochemical
processes.

Recent studies consider a comparative approach for the analysis of PPI networks from different
species in order to discover common protein groups which are likely to be related to shared relevant
functional modules [3-5].

This problem is also known as pairwise network alignment. Algorithms for this task typically
construct a merged graph representation of the networks to be compared, called alignment (or
orthology) graph, and model the problem as an optimization problem on such graph. Due to the
computational intractability of such optimization problem, greedy algorithms are commonly used
[6-10].

1.1 Problem Statement

Conserved modules, discovered by computational techniques such as [6], have in general small size
compared to the size of the PPI network they belong to. Moreover, PPI networks are known to have
a scale-free topology where most proteins participate in a small number of interaction while a few
proteins, called hubs, contains a high number of interaction. As indicated by recent studies, hubs
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whose removal disconnects the PPI network (articulation hubs) are likely to appear in conserved
interaction patterns [11,12]. These observations motivate the focus of this paper on the problem
of performing modular network alignment. Specifically, we propose a two phases approach for this
task: divide and align. The divide phase transforms each PPI network into a set of small subnets
which are expected to cover conserved complexes. The align phase uses an existing evolution-based
alignment graph model to merge suitable pairs of subnets from each species, and an exact search
technique for extracting conserved modules from each alignment graph.

1.2 Contributions

We introduce an heuristic algorithm for dividing a PPI network into subnets, which combines
biological (orthology) and graph theoretical (articulation) information. The algorithm starts by
identifying groups of orthologous articulations, called centers, which are expanded into subsets
consisting of orthologous nodes.

The algorithm automatically determines the number of subsets and has the property of being
parameterless.

We use this algorithm for performing network alignment, by merging pairs of resulting subnets
from different species, and applying exact optimization for searching conserved modules across
species. We introduce a new notion, modular alignment, because we align only particular PPI
subnets achieving conserved modules inside of them while current methods of global or local
network alignment try to align whole PPI networks.

In order to test the performance of this approach, we consider an instance of the method that
uses a state-of-the-art evolution-based alignment graph model [6]. Results of experiments show
effectiveness of the proposed approach, which is capable of detecting accurate conserved complexes.
Furthermore, we show that improved performance can be achieved by merging modules detected
with our algorithm with those identified by Koyuturk et al. algorithm [6]. In general, these results
substantiate the important role of the notions of orthology and articulation in modular comparative
PPI network analysis.

1.3 Related Work

Recent overviews of approaches and issues in comparative biological networks analysis are pre-
sented in [4, 5]. Based on the general formulation of network alignment proposed in [3], a number
of techniques for (local and global) network alignment have been introduced ([6—10,13]).

Techniques for local network alignment commonly construct an orthology graph, which provides
a merged representation of the given PPI networks, and search for conserved subnets using greedy
techniques ([6-10]).

While the above algorithms focus on alignment of whole global networks, we focus on 'modular’
network alignment. Modular network alignment is an alighment of particular subnets of given net-
works to be compared. To the best of our knowledge, we propose the first algorithm which directly
tackles the modularity issue in network alignment in the meaning that dividing step achieves con-
served modules inside of particular subnets and therefore one can perform only modular alignment
for local network alignment problem.

Many papers have investigated the importance of hubs in PPI networks and functional groups
[12,14-18]. In particular, it has been shown that hubs with a central role in the network architecture
are three times more likely to be essential than proteins with only a small number of links to
other proteins [16]. Moreover, if we take functional groups in PPI networks, then, amongst all
functional groups, cellular organization proteins have the largest presence in hubs whose removal
disconnects the network [12]. Computational techniques for identifying functional modules in PPI
networks generally search for clusters of proteins forming dense components [19, 20]. The scale-free
topology of PPI networks makes difficult to isolate modules hidden inside the central core [21].
In [22] several multi-level graph partitioning algorithms are described addressing the difficulty of
partitioning scale-free graphs.
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The approach we propose differs from the above mentioned works because it does not address
(directly) the problem of identifying functional modules in a PPI network, but uses homology
information and articulations for dividing PPI networks into subnets in order to perform network
alignment in a modular fashion.

2  Graph Theoretic Background

Given a graph G = (U, ), nodes joined by an edge are called adjacent. A neighbor of a node u is
a node adjacent to w. The degree of v is the number of elements in F containing the vertex w.

Let G(U, E)) be a connected undirected graph. A vertex w € U is called articulation if the
graph resulting by removing this vertex from G and all its edges, is not connected.

A tree is a connected graph not containing any circle. A tree is called rooted tree if one vertex
of the tree has been designated as the root. Given a rooted tree T'(V, I'), the depth of a vertex
v € V is the number of edges from the root to v without repetition of edges. Leaves of the tree T
are vertices which have only one neighbor. The depth of a tree is the highest depth of its leaves. A
spanning tree T'(V, F') of a connected undirected graph G(U, F) is a tree where V. =U and I' C F.

Given an edge-weighted (or node-weighted) graph G(U, F) with a scoring function w : e €
E—-%(orw:uelU —R). Total weight w(G) of G is the sum of weights of all edges (or nodes)
in the graph:

w(G) = > wle) (or w(G) = wlu)).

VecF YuelU

Suppose a connected undirected graph G(U, E) and a vertex v € U are given. Let N(u) a set
of all neighbors of w and N’(u) C N(u) be. A center of u is the set C(u) = N'(u) U {u}.

Observe that a center can be expanded to a spanning tree of G(U, E). Moreover, the center as
an initial set of expansion can be consider as a root if we merge all vertices of center to one node.
Such spanning tree created from a center, called centered tree, has zero depth all vertices of center
and the vertices of i- depth are new nodes added in ith iteration of expansion to the spanning
tree. Therefore a centered tree , can be generated as follows:

— the 0-depth of the centered tree is the center
— the i-th depth of the centred tree consists of all neighbors of (4 — 1)-th depth which are not
yet in any lower depth of the centered tree yet.

Examples of a spanning and centered tree are on Figure 1.

A PPI network is represented by an undirected graph G(U, E). U denotes the set of proteins
and E denotes set of edges, where an edge uu’ € F represents the interaction between u € U
and v € U. Given PPI networks G(U, F) and H(V, I'). A wvertex uw € U is orthologous if there
exists at least one vertex v € V such that wv is an orthologous pair. Orthologous articulation
is an orthologous vertex which is an articulation. An orthology path is a path containing only
orthologous vertices.

3 From Orthologous Articulations through Centers to Trees

Given a PPI network G(U, F) and the set of vertices O C U, which are orthologous w.r.t. the
vertices of the other PPI network to be compared with G. Let n = |O|. We generate centers from
orthologous articulations, and expand them into centered subtrees containing only orthologous
proteins. The resulting algorithm, called Divide, is sketched in pseudo-code in Algorithm 1, and
described in more detail below.

Computing Articulations (Line 1). Computation of articulations can be performed in linear
time by using, e.g., Tarjan’s algorithm described in [23] or [24].
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Fig. 1. Examples of spanning and centered tree in the same graph. The dark grey node in the left figure
represents a root. Dark grey nodes in the right figure represent a center. Numbers indicate depths of nodes
in trees. Solid edges are edges of a spanning tree. Dash edges are other edges of the graph.

Greedy Counstruction of Centers (Lines 3-10). The degree (in G) of all orthologous artic-
ulations is then used for selecting seeds for the construction of centers. Networks with scale-free
topology appear to have edges between hubs systematically suppressed, while those between a hub
and a low-connected protein seem favored [25]. Guided by this observation, we greedily construct
centers by joining one orthologous articulation hub with its orthologous articulation neighbors,
which will more likely have low degree.

Specifically, let A be the set of orthologous articulations of G. The first center consists of the
element of A with highest degree and all its neighbors in A. The other centers are generated iter-
atively by considering, at each iteration, the element of A with highest degree among those which
do not occur in any of the centers constructed so far, together with all its neighbors in A which
do not already occur in any other center. The process terminates when all elements of A are in at
least one center. Then an unambiguous label is assigned to each center.

Initial Expansion (Lines 11-16). By construction, centers cover all orthologous articula-
tions. Articulation hubs are often present in conserved subnets detected by means of comparative
methods such as [6]. Therefore, assuming that the majority of the remaining nodes belonging to
conserved modules are neighbors of articulation hubs, we add to each center all its neighboring
ortholog proteins, regardless whether they are or not articulations. We perform this step for all
centers in parallel.

We mark these new added proteins with the label of the centers to which they have been added.
These new added proteins form the first depth centered trees.

Observe that there may be a non-empty overlap between first depth centered trees (as illus-
trated in the right part of Figure 2).

Parallel Expanding of Trees (Lines 17-27) Successive depths of trees are generated by
expanding all nodes with only one label which occur in the last depth of each (actual) centered
tree. We add to the corresponding trees all orthologous neighbors of these nodes which are not
yet labelled. Then we assign to the newly added nodes the labels of the centered trees they belong
to. This process is repeated until it is impossible to add unlabeled orthologous proteins to at least
one centered tree.

Observe that each iteration yields to possible overlap between newly created depths (see the
left part of Figure 3).
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Fig. 2. Examples of centers of centered trees (left figure) and of their initial expansion (right figure).
Seeds of centers are solid nodes. Dark grey nodes are the rest of centers connected to a seed by solid edges.
Light grey nodes are orthologous proteins which are not articulations. Empty nodes are non-orthologous
proteins. Dot edges are the rest of edges in the graph. In the second (right) graph dash edges indicate the
expansion and connect nodes of centers (zero depth centered trees) with nodes of the first depth centered
trees. Nodes on the grey background indicate the overlap among centered trees.

Fig. 3. Examples of parallel expansion of trees (left figure) and of the final assigning remaining nodes
(right figure). Seeds of centers are solid nodes. Dark grey nodes are the rest of centers connected to a seed
by solid edges. Light grey nodes are orthologous proteins which are not articulations. Empty nodes are
non-orthologous proteins. Dash edges indicate the process of expansion. Dot edges are the rest of edges
in the graph. Nodes on the grey background create the overlap. Numbers are labels of trees assigned to
nodes during expansion.
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Assigning Remaining Nodes to Trees (Lines 28-42). The remaining orthologous nodes,
that is, those not yet labelled, are processed as follows. First, unlabeled nodes which are neighbors
of multi-labelled nodes are added to the corresponding centered trees. Then the newly added nodes
are marked with these labels. This process is iterated until there are no unlabeled neighbors of
multi-labelled nodes.

Nodes which are not neighbors of any labelled protein are still unlabeled. We assume that they
may possibly be part of conserved complexes which do not contain articulations. Hence we create
new subtrees by joining together all unlabeled orthologous neighbor proteins.

An example of these final steps is shown on the right part of Figure 3.

Complexity. The algorithm divides only orthologs of a given PPI network where the number
of all orthologs is n = |O|. It performs a parallel breadth-first search (BFS). It general, BFS has
O(|V| + |F|) complexity, where V and F denote the number of nodes and edges, respectively.
However, Divide constructs trees considering only orthologous nodes, so the number of edges,
which are traversed, is |O’| — 1, where |O’| is the number of orthologs vertices of the constructed
subtree. The possible overlap between trees can increase the number of traversed edges and visited
vertices. In the worse case all orthologous vertices are visited by each center (all nodes are in the
overlap). So, if the number of centers is k, the complexity of Divide is O(kn).

4 Divide and Align Algorithm

The Divide algorithm divides orthologous proteins of the PPI network into overlapping subtrees.
We separately apply this algorithm to each of the two PPI networks from the distinct species to be
compared. Nodes of each constructed subtree induce a PPI subnetwork. Pairs of such induced sub-
networks from different species are merged into small orthology graphs if at least two orthologous
pairs exist between proteins of those subnetworks.

To this aim we use a common approach, based on the construction of a weighted metagraph
between two PPI networks of different species. In this metagraph each node corresponds to an
homologous pair of proteins, one from each of the two PPI networks. The metagraph is called
alignment or orthology graph. Weights are assigned either to edges, like in [6], or to nodes, like
in [7], of the alignment graph using a scoring function. The function transforms conservation and
eventually also evolution information to one real value for each edge or node.

In our experiments we use the evolution-based alignment graph model introduced in [6]. In that
model, a weighted alignment graph is constructed from a pair of PPI networks and a similarity score
S, which quantifies the likelihood that two proteins are orthologous. A node in the alignment graph
is a pair of ortholog proteins. Each edge in the alignment graph is assigned a weight that is the
sum of three scoring terms: for protein duplication, mismatches for possible divergence in function,
and match of a conserved pair of orthologous interactions. We refer to [6] for a detailed description
of these terms. Induced subgraphs of the resulting weighted alignment graph with total weight
greater than a given threshold are considered as relevant alignments. This problem is reduced to
the optimization problem of finding a maximal induced subgraph. In [6], an approximation greedy
algorithm based on local search is used because the maximum induced subgraph problem is NP-
complete. This greedy algorithm selects at first one seed which can likely contribute at most to
the overall weight of a potential subgraph. Such seed is expanded by adding (removing) nodes to
(from) the subgraph while the actual subgraph weight increases.

In this study, after the diving step and aligning possible pairs of PPI subnetworks a set of small
alignment graphs is produced. We use exact optimization [26] for searching in those graphs. We
call the resulting algorithm DivA (Divide and Align).

Finally, redundant alignments are filtered out as done, e.g., in [6]. A subgraph G, is said to be
redundant if there exists another subgraph G5 which contains r% of its nodes, where r is a threshold
value that determines the extent of allowed overlap between discovered protein complexes. In such
a case we say that Gy is redundant for Gs.
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Algorithm 1 Divide algorithm

Input: G: PPI network, O: orthologous nodes of G
Output: S: list of subsets of O

1
2
3
4:
5:
6.
7
8

: A = { orthologous articulations of G}
S =<>
: repeat {Construction of centers}

root = element of A with highest degree not already occurring in S
s = {root} U { neighbors of root in A not already occurring in S}
S =<s5>

: until all members of A occur in S
:d=0

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34
35:
36:
37:
38:
39:
40:
41:
42:

Assign depth d to all elements of S
Assign label I; to each s in S and to all its elements
for sin S do
s = s U{ all neighbors of s in O}
Assign label I, to all neighbors of s in O
end for
d=1
Assign depth d to all elements of S having yet no depth assigned
repeat {Expand one depth centered trees from nodes with one label}
N = { unlabeled neighbors in O of elements in s of depth d having only one label }
for n in N do
Assign to n all labels of its neighbors of depth d having only one label
for l; € n do
s=sU{n}
end for
end for
d=d+1
Assign depth d to all elements of S having yet no depth assigned
until S does not change
repeat {Expand centered trees from nodes multiple labels}
R = { unlabeled proteins in O with at least one multi-labelled protein as neighbor }
for r in R do
Assign to r all labels of its neighbors
for l; € r do
s=sU{r}
end for
end for
until S does not change
repeat
choose an unlabeled element u of O
t = {u} U {all elements of O which can be reached alongside an orthology path from u}
Assign label I; to t and to all its elements
S =<t8>
until O does not contain any unlabeled node
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5 Experimental Results

In order to assess the performance of our approach, we use the state-of-the-art framework for com-
parative network analysis proposed in [6], called MaWish. The two following PPI networks, already
compared in [6], are considered: Saccharomyces cerevisiae and Caenorhabditis elegans, which were
obtained from BIND [1] and DIP [2] molecular interaction databases. The corresponding networks
consist of 5157 proteins and 18192 interactions, and 3345 proteins and 5988 interactions, respec-
tively. All these data are available at the webpage of MaWish'. Moreover, the data already contain
the list of potential orthologous and paralogous pairs, which are derived using BLAST FE-values
(for more details see [11]). 2746 potential orthologous pairs created by 792 proteins in S. cerevisiae
and 633 proteins in C. elegans are identified.

5.1 Divide phase

Results of application of the Divide algorithm to these networks are summarized as follows.

For Saccharomyces cerevisiae, 697 articulations, of which 151 orthologs, and 83 centers are
identified. Expansion of these centers into centered trees results in 639 covered orthologs. The
algorithm assigns the remaining 153 orthologous proteins to 152 new subtrees.

For Caenorhabditis elegans, 586 articulations, of which 158 orthologs, are computed, and 112
centers are constructed from them. Expansion of these centers into centered trees results in 339
covered orthologs. The algorithm assigns the remaining orthologous 294 proteins to 288 new sub-
trees.

We observe that the last remaining orthologs assigned to subtrees are ’isolated’ nodes, in the
sense that they are rather distant from each other and not reachable from ortholog paths stemming
from centers.

The divide part of algorithm run only less than half of a second on a desktop machine (AMD
Athlon 64 Processor 3500+, 2 GB RAM) in practical.

5.2 Alignment phase

We obtain 235 subtrees for Saccharomyces cerevisiae and 400 subtrees of Caenorhabditis elegans.
Nodes of each such tree induce a PPI subnetwork. By constructing alignment graphs between each
two PPI subnetworks containing more than one ortholog pair, we obtain 884 alignment graphs,
where the biggest one consists of only 31 nodes. For each of such alignment graphs, the maximum
weighted induced subgraph is computed by exact optimization. Zero weight threshold is used for
considering an induced subgraph a legal alignment. Redundant graphs are filtered using r = 80%
as the threshold for redundancy. In this way DivA discovers 72 alignments.

The computation of induced subgraphs by an exact search took a few minutes compared to
around a second in MaWish on a desktop machine (AMD Athlon 64 Processor 3500+, 2 GB RAM).

5.3 Comparison between DivA and MaWish

We performed network alignment with MaWish using parameter values as reported in [11]. The
algorithm discovered 83 conserved subnets.

A paired redundant alignment is a pair (Gq, Ga) of alignments, with G; discovered by Diva
and G discovered by MaWish, such that either 1 is redundant for G5 or vice versa. For a paired
redundant alignment (G1, Gs) we say that Gy refines Go if the total weight of Gy is bigger than
the total weight of G.

DivA finds 14 new alignments not detected by MaWish. Figure 5 shows the best new alignment
found by Diva (left) and the alignment of DivA which best refines an alignment of MaWish.

There are 58 paired redundant alignments, whose total weights are plotted in the left part of
Figure 4. Among these, 40 (55.6%) are equal (crosses in the diagonal), and 18 (25%) different. 5

b www. cs.purdue. edu/homes /koyuturk/mawish/.
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Fig. 4. Left figure: Distribution of pairs of weights of paired redundant alignments, one obtained from
MaWish and one from DivA. Weights of alignments found by DivA are on the z-axis, those found by MaWish
on the y-azis. Right figure: Interval weight distributions of non-redundant alignments discovered by MaWish
(solid bars) and DivA (empty bars). The x-axis show weight intervals, the y-azis the number of alignments
in each interval.

Fig.5. Left: The best new alignment. Dash lines mark orthologous pairs. Solid line is protein-protein
interaction. Right: The refined alighment with the greatest weight. Dash lines mark orthologous pairs.
Solid line is protein-protein interaction. A loop on a protein means duplication.
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(6.9%) (diamonds below the diagonal) with better DivA alignment weight, and 12 (16.7%) (circles
above the diagonal) with better MaWish alignment weight (for 1 pair it is undecidable because of
rounding errors during computation).

The right plot of Figure 4 shows the binned distribution of total weights of the 14 (19.4%)
found by DivA but not MaWish, and 28 found by MaWish and not by DivA. The overall weight
average of the DivA ones (1.197) is greater than the overall average of the MaWish ones (0.7501),
indicating the ability of DivA to find high score subnets, possibly due to the exact search strategy
used.

Of the 14 new alignments detected by DivA, 8 of them have a intersection with a true MIPS
complex (cf. Table 1). Three of these alignments (6., 12. and 14.) have equal (sub)module in their
true S. cerevisiae complex.

Table 1. HG= hypergeometric, Size = number of alignment nodes of an alignment, N = number of
proteins of alignment nodes which are annotated in the best (according to hypergeometric score) true S.
cerevisiae’s MIPS complex of the alignment. M = number of proteins of alignment nodes in S. cerevisiae.
Intersection = |N|/| M|

Align. |Score|Size|| M| MIPS category Intersection|—log( HG)
1. |4.28| 8 | 4 208 proteasome 100(%) 7.25
4. [1.65] 5 | 2 19/228 regulator 100(%) 3.45
6. |1.41] 5 | 2 19/228 regulator 50(%) 1.71
7. 1062 2| 2 208 proteasome 100(%) 3.56
8. |0.61| 2 | 2 |Replication fork complexes| 100(%) 3.22
9. |053] 2| 2 19/228 regulator 100(%) 3.45
12. 1043] 2 | 2 19/228 regulator 50(%) 1.71
14. 1039 2 | 2 19/228 regulator 50(%) 1.71

From the refined alignments, three of them have intersection with a true MIPS complex.

Table 2. True complexes associated to MaWish refined alignments.

Align. |Score(Size||M|| MIPS category |Intersection|—log(HG)
1. |4.46 | 10 | 10 |Cdc28p complexes| 10(%) 1.47
2. [0.62] 2 | 2 | Casein kinase IT | 100(%) 4.81
3. 1038| 2 | 2 | SNFI1 complex 50(%) 2.16

Table 3. True complexes associated to DivA refined alignments.

Align. Score(Size||M|| MIPS category |Intersection|—log(HG)
1. |6.35] 15 | 11 [Cdc28p complexes|  9(%) 1.47
2. [1.26| 4 | 4 | Casein kinase IT | 100(%) 10.39
3. 1081| 3 | 2| SNFI1 complex 50(%) 2.16

Note that alignments 1. and 3. in both Table 2 and 3 have equal hypergeometric score, showing
that the coverage, that is, number of proteins of an alignment contained in its best true MIPS
module, does not change. Alignment 2. in Table 2 covers 50% of the true complex, while its
refinement in Table 3 covers the entire true complex (Casein kinase 11, consisting of 4 proteins).

Three of these alignments have equal (sub)module in their true S. cerevisiae complex.
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By considering the union of all alighments of MaWish and DivA and by filtering out the redun-
dant ones, 97 alignments are obtained, from which 26% consist of new or refined DivA ones. In
particular, conserved modules of three new true MIPS classes are detected: replication fork com-
plexes, mRNA splicing, SCF-MET30 complex. Moreover, the alignment by MaWish which covers
50% of the true complex Casein kinase II (this complex consists of 4 proteins) is refined by Diva
in such a way that the entire true complex is covered (all four proteins).

In this experiment we searched for the best solution in each orthology graph only. A full-search,
where all possible solutions are found for each orthology graph, has been used in [27]. This yielded
to a considerable increase of the number of results. Statistical evaluation of those results indicated
their biological relevance. In general, the results show that DivA can be successfully applied to
refine’ state-of-the-art algorithms for network alignment.

6 Conclusion

The comparative experimental analysis with MaWish indicates that DivA is able to discover new
alignments which seem to be on average more conserved because of higher weight than those dis-
covered by MaWish but not by DivA. Improved performance is shown to be achieved by combining
results of MaWish and DivA, yielding new and refined alignments.

The selection of centers is biased on the orthology information but it can be changed for another
property. Hence the divide algorithm can be applied to perform modular network alignment of
other type of networks.

Finally, we considered here an instance of our approach based on the evolution-based alignment
graph model by Koyuturk et al. [11]. We intend to analyze instances of our approach based on
other methods, such as [7].

Acknowledgments

We would like to thank Mehmet Koyuturk for discussion on the MaWish code.

References

1. Bader, G.D., Donaldson, 1., Wolting, C., Ouellette, B.F.F., Pawson, T., Hogue, C.W.V.: Bind-the
biomolecular interaction network database. Nucleic Acids Res 29(1) (January 1 2001) 242-245

2. Xenarios, 1., Salwinski, L., Duan, X.J., Higney, P., Kim, S.M., Eisenberg, D.: Dip, the database of
interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic
Acids Research 30(1) (January 1 2002) 303-305

3. Kelley, B.P., Sharan, R., Karp, R.M., Sittler, T., Root, D.E., Stockwell, B.R., Ideker, T.: Conserved
pathways within bacteria and yeast as revealed by global protein network alignment. Proceedings of
the National Academy of Science 100 (September 2003) 11394-11399

4. Sharan, R., Ideker, T.: Modeling cellular machinery through biological network comparison. Nature
Biotechnology 24(4) (April 2006) 427-433

5. Srinivasan, B.S., Shah, N.H., Flannick, J., Abeliuk, E., Novak, A., Batzoglou, S.: Current Progress in
Network Research: toward Reference Networks for kiKey Model Organisms. Brief. in Bioinformatics
(2007) Advance access.

6. Koyutiirk, M., Grama, A., Szpankowski, W.: Pairwise local alignment of protein interaction networks
guided by models of evolution. In: RECOMB. Volume 3500 of Lecture Notes in Bioinformatics.,
Springer Berlin / Heidelberg (May 2005) 48-65

7. Sharan, R., Ideker, T., Kelley, B.P., Shamir, R., Karp, R.M.: Identification of protein complexes by
comparative analysis of yeast and bacterial protein interaction data. Journal of Computional Biology
12(6) (2005) 835-846

8. Hirsh, E., Sharan, R.: Identification of conserved protein complexes based on a model of protein
network evolution. Bioinformatics 23(2) (2007) 170-176

9. Sharan, R., Suthram, S., Kelley, R.M., Kuhn, T., McCuine, S., Uetz, P., Sittler, T., Karp, R.M., Ideker,
T.: From the Cover: Conserved patterns of protein interaction in multiple species. Proceedings of the
National Academy of Sciences 102(6) (2005) 1974-1979



12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

P. Jancura, J. Heringa, E. Marchiori

Flannick, J., Novak, A., Srinivasan, B.S., McAdams, H.H., Batzoglou, S.: Graemlin: General and
robust alignment of multiple large interaction networks. Genome Res. 16(9) (2006) 1169-1181
Koyutiirk, M., Kim, Y., Topkara, U., Subramaniam, S., Grama, A., Szpankowski, W.: Pairwise align-
ment of protein interaction networks. Journal of Computional Biology 13(2) (2006) 182-199

Przulj, N.: Knowledge Discovery in Proteomics: Graph Theory Analysis of Protein-Protein Interac-
tions. CRC Press (2005)

Singh, R., Xu, J., Berger, B.: Pairwise global alignment of protein interaction networks by matching
neighborhood topology. (2007) 16-31

Przulj, N., Wigle, D., Jurisica, I.: Functional topology in a network of protein interactions. Bioinfor-
matics 20(3) (2004) 340-384

Rathod, A.J., Fukami, C.: Mathematical properties of networks of protein interactions. CS374 Fall
2005 Lecture 9, Computer Science Department, Stanford University (2005)

Jeong, H., Mason, S.P., Barabasi, A.L., Oltvai, Z.N.: Lethality and centrality in protein networks.
NATURE v 411 (2001) 41

Ekman, D., Light, S., Bjérklund, A.K., Elofsson, A.: What properties characterize the hub proteins
of the protein-protein interaction network of saccharomyces cerevisiae? Genome Biology 7(6) (2006)
R45

Ucar, D., Asur, S., Catalyurek, U., Parthasarathy, S.: Improving functional modularity in protein-
protein interactions graphs using hub-induced subgraphs. In: 10th European Conference on Principle
and Practice of Knowledge Discovery in Database (PKDD), Berlin, Germany (September 18-22 2006)
Bader, G.D., Lssig, M., Wagner, A.: Structure and evolution of protein interaction networks: a sta-
tistical model for link dynamics and gene duplications. BMC Evolutionary Biology 4(51) (2004)

Li, X.L.., Tan, S.H., Foo, C.S., Ng, S.K.: Interaction graph mining for protein complexes using local
clique merging. Genome Informatics 16(2) (2005) 260-269

Yook, S.H., Oltvai, Z.N., Barabsi, A.L.: Functional and topological characterization of protein inter-
action networks. PROTEOMICS 4 (2004) 928-942

Abou-Rjeili, A., Karypis, G.: Multilevel algorithms for partitioning power-law graphs. In: 20th
International Parallel and Distributed Processing Symposium (IPDPS). (2006)

Tarjan, R.: Depth-first search and linear graph algorithms. STAM Journal on Computing 1(2) (1972)
146-160

Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipulation. Commun. ACM
16(6) (1973) 372-378

Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks. Science 296 (2002)
910-913

Wolsey, L.A.: Integer Programming. 1 edn. Wiley-Interscience (September 9 1998)

Jancura, P., Heringa, J., Marchiori, E.: Divide, align and full-search for discovering conserved protein
complexes. In Marchiori, E., Moore, J.H., eds.: EvoBIO. Volume 4973 of Lecture Notes in Computer
Science., Springer (2008) 71-82



