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A b s tr a c t .  Advances in modern technologies for measuring protein-protein 
interaction (PPI) has boosted research in P PI networks analysis and 
comparison. One of the challenging problems in com parative analysis 
of P P I networks is the comparison of networks across species for dis­
covering conserved modules. Approaches for this task  generally merge 
the considered networks into one new weighted graph, called alignment 
graph, which describes how interaction between each pair of proteins is 
preserved in different networks. The problem of finding conserved pro­
tein complexes across species is then transform ed into the problem of 
searching the alignment graph for subnetworks whose weights satisfy 
a  given constraint. Because the la tte r problem is com putationally in­
tractable, generally greedy techniques are used. In this paper we pro­
pose an alternative approach for this task. First, we use a technique we 
recently introduced for dividing P P I networks into small subnets which 
are likely to  contain conserved modules. Next, we perform network align­
ment on pairs of resulting subnets from different species, and apply an 
exact search algorithm  iteratively on each alignment graph, each time 
changing the constraint based on the weight of the solution found in the 
previous iteration. Results of experiments show th a t this m ethod discov­
ers multiple accurate conserved modules, and can be used for refining 
state-of-the-art algorithms for com parative network analysis.

K ey w o rd s: biological networks alignment, optim ization

1 In trod u ction

W ith the recent advances in modern technologies for measuring protein-protein 
interaction, an exponential increase of data on protein-protein interactions has 
been generated. D ata on thousands of interactions in human and most model 
species have become available (e.g. [1,2]). Graph-representation of P PI interac­
tion of proteins provides a powerful tool for analyzing and understanding mod­
ular organization of cells, for predicting biological functions and for providing 
insight into a variety of biochemical processes. Recent studies consider a compar­
ative approach for the analysis of P PI networks from different species in order
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2 Divide, Align and Full-Search for Discovering Conserved Protein Complexes

to  discover common protein groups which are likely to  share relevant functions 
[3-5]. In particular, this problem is called pairwise network alignment when two 
PPI networks are considered. Algorithms for this problem generally construct 
a merged weighted graph representation of the two networks, called alignment 
(or orthology) graph, which describes how interaction between each pair of pro­
teins is preserved in different networks. The problem of finding conserved protein 
complexes across species is then transformed into the problem of searching the 
alignment graph for subnetworks whose weights satisfy a given constraint. Due 
to the computational intractability of such problem, greedy algorithms are com­
monly used [6,7]. Conserved modules, discovered by computational techniques 
such as [6], have in general small size compared to  the size of the P PI network 
they belong to. Moreover, as indicated by recent studies, hubs whose removal 
disconnects the P PI network (articulation hubs) are likely to  appear in conserved 
interaction patterns [8,9]. Based on these motivation, in [10] we introduced an 
algorithm, called DivA for dividing a pair of P PI networks into small subnets 
which are expected to  cover conserved modules, with the goal of performing 
modular network alignment. We used this algorithm for performing network al­
ginment in a modular way, by merging pairs of resulting subnets from different 
species, and then applying an exact optimization algorithm for finding the heav­
iest subgraph of a weighted graph. Application of this algorithm generates one 
solution for each alignment subnet. In this paper we propose an extension of this 
search algorithm which allows to  detect an higher number of conserved modules 
of biological interest. Specifically, the idea is to  modify the exact search algo­
rithm for finding the heaviest subgraph of an alignment network, by introducing 
an upper bound on the maximum weight of the subgraph to  be found. Iterated 
runs of this constrained algorithm are performed, with different values of the 
upper bound generated at each iteration using the weight of the solution found 
in the previous iteration. We call this search approach full-search. In this way 
multiple subnets of the alignment network are discovered. The resulting method, 
called D ivA full, divides each P PI network into subnets using DivA, aligns pairs 
of subnets from different species, and performs full-search on each aligning pair. 
We use the state-of-the-art evolution-based alignment graph model introduced 
in [6] to  construct an alignment graph. Results of experiments show effectiveness 
of the proposed approach, which is capable of detecting an high number of accu­
rate conserved complexes. This number is considerably greater than  the number 
of results identified only by using DivA whereas D ivA fu ll’s results contain all 
DivA’s results. Furthermore, we show th a t improved performance is achieved by 
merging solutions discovered by D ivA full with those identified by Koyuturk et 
al.’s algorithm [6].

Recent overviews of approaches and issues in comparative biological networks 
analysis are presented in [4,5]. Based on the general formulation of network 
alignment proposed in [3], a number of techniques for (local and global) net­
work alignment have been introduced ([6,7,11,12]). Techniques for local network 
alignment commonly construct an orthology graph, which provides a merged rep­
resentation of the given P PI networks, and search for conserved subnets using
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greedy techniques ([6],[7],[11]). In particular, in [11], d-clusters are defined for 
searching efficiently between a pair of networks, where a d-cluster consists of d 
proteins th a t are close together in the network, and d is a user-given parame­
ter. Another param eter is used for identifying pairs of d-clusters, one from each 
network, called seeds, which provide starting regions of the alignment graph to 
be expanded. The algorithm searches for modules conserved across species by 
expanding these seeds using a greedy technique similar th a t used in [6],[7]. While 
the above algorithms focus on network alignment, we focus on ’m odular’ net­
work alignment. Many papers have investigated the importance of hubs in PPI 
networks and functional groups [9,13-17]. In particular, it has been shown tha t 
hubs with a central role in the network architecture are three times more likely 
to be essential than  proteins with only a small number of links to  other proteins 
[15]. Moreover, if we take functional groups in P PI networks, then, amongst 
all functional groups, cellular organization proteins have the largest presence in 
hubs whose removal disconnects the network [9]. Computational techniques for 
identifying functional modules in P PI networks generally search for clusters of 
proteins forming dense components [18,19]. The scale-free topology of P PI net­
works makes difficult to  isolate modules hidden inside the central core [20]. In
[21] several multi-level graph partitioning algorithms are described addressing 
the difficulty of partitioning scale-free graphs. The approach we propose dif­
fers from the above mentioned works because it does not address (directly) the 
problem of identifying functional modules in a P PI network, but combines graph- 
theory, biology and heuristic search for discovering conserved protein complexes 
in a modular fashion.

2 D iv id e  A lign  and Full-Search

Given a graph G =  (V, E ), nodes joined by an edge are called adjacent. A 
neighbor of a node u is a node adjacent to  u. The degree of u is the number of 
elements in E  containing the vertex u.

Let G(V, E ) be a connected undirected graph. A vertex v G V is called 
articulation if the graph resulting by removing this vertex from G and all its 
edges, is not connected.

The Divide algorithm divides orthologous proteins of the P PI network into 
subsets. It consists of the following steps:

1. Detect orthologous articulations of the P PI network.
2. Reduce their number by constructing centers using preferential attachment 

property .
3. In parallel, incrementally expand from each center only alongside orthologous 

neighbors.
4. Stop when expanding sets are starting to  overlap and if they do not have 

any orthologous neighbor which is not yet added to  one of the actual sets.
5. If some orthologous nodes are not in any of the generated set, then join 

together neighboring ones.



The preferential attachment in the step 2 is a general property of scale-free 
networks. It means th a t if a new node is introduced into the network, it will more 
likely attach to  a node of the network with very high degree than  to  a node 
with very low degree. Hence, based on this motivation, we construct centers 
by joining one orthologous articulation hub with its orthologous articulation 
neighbors, which will more likely to  have low degree. The whole algorithm with 
all technical issues is described in [10].

After dividing, each set of orthologs proteins generates a subnetwork of the 
PPI network. Pairs of such subnetworks from distinct species can be merged into 
orthology graphs, which are mined for discovering alignments corresponding to 
protein complexes conserved across species.

To this aim we use a common approach, based on the construction of a 
weighted metagraph between two P PI networks of different species. In this m eta­
graph each node corresponds to an homologous pair of proteins, one from each 
of the two P PI networks. The metagraph is called alignment or orthology graph. 
Weights are assigned either to  edges, like in [6], or to  nodes, like in [7], of the 
alignment graph using a scoring function. The function transforms conservation 
and eventually also evolution information to  one real value for each edge or node. 
Induced subgraphs with to tal weight greater than  a given threshold are consid­
ered to  be relevant alignments. In this way one gets two subsets of proteins from 
each discovered subgraph from the two species, and each such subset provides a 
conserved complex of proteins.

The problem of finding induced subgraphs with weight greater than  a given 
threshold is reduced in these methods to  the problem of finding a maximal in­
duced subgraph. Then an approximation greedy algorithm based on local search 
is used because the maximum induced subgraph problem is NP-complete (cf.
[6]).

In our approach, we align only pairs of subnets from different species having 
more than  one orthologous pair, yielding orthology graphs with more than  one 
node. Because of the small size of the resulting subnets, we use exact optimization
[22] for searching in each of such graphs, instead of greedy techniques employed 
in common approaches.

Specifically, the exact optimization algorithm [22] for finding the maximum 
weighted induced subgraph is first applied. Then the process is iterated by adding 
at each iteration the constraint which bounds the weight of the induced subgraph 
by the weight of the solution found in the previous iteration.

Formally, let f  be a function which computes the weight of a subgraph in an 
input graph and C  be a set of constraints which defines an induced subgraph of 
the input graph. Then we want to  maximize the function f  on the set defined 
by constrains C , th a t is, to  solve the following optimization problem:

opt =  max f  (OptP  )

Algorithm 1 illustrates the resulting full-search procedure which uses the 
above constrained optimization problem at each iteration with different bound 
on the maximum allowed weight.

4 Divide, Align and Full-Search for Discovering Conserved Protein Complexes
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A lg o r i t h m  1 Full Search Algorithm
In p u t :  G: alignment subnetwork, e > 0
O u tp u t :  List of heavy induced subgraphs of G w ith weight >  e

1 Formulate the problem of M axInducedSubGraph for G as (O ptP )
2: m axw eigh t  =  to
3: C  =  C  +  {opt < m axw eight}
4: w h ile  m axw eigh t > e do
5: solve (O p tP ) by an exact m ethod
6 if  opt > e th e n
7 record discovered solution
8 e n d  if
9 m axw eigh t  =  opt

10: e n d  w h ile

We call the resulting algorithm D ivA full. Finally, redundant alignments are 
filtered out as done in, e.g., [6]. A subgraph G 1 is said to  be redundant if there 
exists another subgraph G2 which contains r% of its nodes, where r  is a threshold 
value th a t determines the extent of allowed overlap between discovered protein 
complexes. In such a case we say th a t G 1 is redundant for G2.

3 E valuation  C riteria

In order to  assess the performance of our approach, we use the state-of-the-art 
framework for comparative network analysis proposed in [23], where we change 
the proposed aligning procedure and searching algorithm to MaWish ([8]).

In order to  filter out solutions tha t may also be found when a randomized 
protein-protein interaction relation between nodes is considered, we apply the 
following statistical procedure.

1. A collection of 10000 radomized networks are generated by shuffling the 
edges of the P PI networks while preserving vertex degrees, as well as by 
shuffling the pairs of homologous proteins while preserving the number of 
homologous partners per protein.

2. MaWish is used for finding solutions on each of the randomized networks.
3. The results are clustered into groups of solutions with equal size (that is, 

number of subnetwork’s nodes). For each size and for each run, the best 
result (the one with highest score) is recorded. If there is no solution for a 
given size, we build an artificial cluster consisting of one zero weight solution.

4. For each size, the score at the 95%-percentile, of the corresponding cluster of 
random solutions, is chosen as treshold for removing ’insignificant’ solutions.

We use known yeast complexes catalogued in the MIPS database. Category 
550, which was obtained from high throughput experiments, is excluded and we 
retained only manually annotated complexes up to  depth 3 in the MIPS tree 
category structure as standard of tru th  for quality assessment.
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In order to  measure statistically significant matches between a solution and 
a true complex we use the hypergeometric (HG) overlap score. The significance 
level of a solution is described by means of a function maximizing — log(HG) 
through the whole set of true complexes which intersect with the yeast PPI 
network at least in one protein. Solutions having no annotated protein in the 
MIPS catalogue are discarded.

We generate again a set of several (10000) radomized networks using the 
procedure described in the previous section. In each of such networks we find the 
most significant solution (which maximizes — log(HG)) for each of the considered 
sizes, by modifying the algorithm MaWish in such a way th a t it outputs a solution 
of a given size (number of nodes). Specifically, in the incremental procedure 
MaWish at each cycle more than  one node can be added in order to  generate 
a subgraph with high weight. In the modified version of MaWish we use, if the 
size of subgraph has reached the given size, we stop. If the size of subgraph has 
exceeded the given size, we iteratively remove nodes with smallest gain for the 
actual subgraph, until a subgraph of the given size is obtained.

We compare significance levels of true solutions with those obtained from 
random networks. In this way we obtain empirical p-values for each of the so­
lutions. These p -values are further corrected for multiple testing using the false 
discovery rate (FDR) procedure introduced in [24].

The following notions of specificity, sensitivity and purity are used to  assess 
the quality of the results.

— Let C  be the set of solutions with at least one annotated protein in MIPS 
catalogue and let C  * C C  be the subset of solutions with a significant match 
(p < 0.05). The specificity of the solution is defined as |C * |/ |C |.

— Let M  be the set of true complexes th a t intersect with the yeast P PI network 
and let M  * C M  be the subset of complexes with a significant match by a 
solution. The sensitivity of the solution is defined as |M * |/|M |.

— A solution is called pure if there exists a true complex whose intersection 
with the solution covers at least 75% of MIPS annotated proteins in the 
solution. Let D be the set of all solutions with at least 3 MIPS annotated 
proteins and let D* C D be the subset of pure solutions. The purity of the 
solutions is defined as |D * |/|D |.

4 R esu lts

The two following P PI networks, already compared in [8], are considered: Sac­
charomyces cerevisiae and Caenorhabditis elegans, which were obtained from 
BIND [1] and DIP [2] molecular interaction databases. The corresponding net­
works consist of 5157 proteins and 18192 interactions, and 3345 proteins and 
5988 interactions, respectively. All these data are available at the webpage of 
MaWish1. Moreover, the data already contain the list of potential orthologous

1 www.cs.purdue.edu/homes/koyuturk/mawish/.

http://www.cs.purdue.edu/homes/koyuturk/mawish/
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and paralogous pairs, which are derived using BLAST E-values (for more de­
tails see [8]). We get 2746 potential orthologous pairs created by 792 proteins in
S. cerevisiae and 633 proteins in C. elegans are identified.

We obtain 266 true complexes from the MIPS catalogue whose intersection 
with the yeast (Saccharomyces cerevisiae) P PI network consist of 876 proteins.

For Saccharomyces cerevisiae, 697 articulations, of which 151 orthologs, and 
83 centers are identified. After expansion of these centers we covered 639 or­
thologs. The algorithm assigns the remaining 153 orthologous proteins to  152 
new sets.

For Caenorhabditis elegans, 586 articulations, of which 158 orthologs, are 
computed, and 112 centers are constructed from them. Expansion of these cen­
ters covers 339 orthologs. The algorithm assigns the remaining orthologous 294 
proteins to  288 new sets.

We observe th a t the last remaining orthologs assigned to  new sets without 
expanding from centers are ’isolated’ nodes, in the sense th a t they are rather 
distant from each other and not reachable from ortholog paths stemming from 
centers.

The dividing procedure generates 235 subnets of Saccharomyces cerevisiae 
and 400 subnets of Caenorhabditis elegans.

We perform network alignment with MaWish using the same param eter values 
as those reported in [8]. By constructing alignment graphs between each two 
subnets from different species containing more than  one ortholog pair, we obtain 
884 alignment graphs, where the biggest one consists of only 31 nodes.

We apply Algorithm 1 to  each of the resulting alignment graphs. Zero weight 
threshold (e =  0) is used for considering an induced subgraph as a heavy sub­
graph or a legal alignment. Redundant graphs are filtered using r  =  80% as the 
treshold for redundancy.

In this way D ivA full discovers 151 solutions (alignments). By filtering out 
insignificant results we get 41 solutions.

Using only DivA we get 72 nonredundant alignments against 151 discovered 
by D ivA full. Because DivA takes only the first best possible solution from 
each alignment graph, all these solutions are also discovered by D ivA full. This 
happens in the first iteration of the latter algorithm. In the following iterations, 
D ivA full discovers other solutions, which have less weight than  those discovered 
in the first iteration. Therefore the best solution can never be filtered out as 
redundant one. Hence after filtering, D iv A fu ll’s results always contain all DivA’s 
solutions and a large number of other, potentially interesting, results identified 
by applying full search (Algorithm 1).

MaWish yields 83 solutions, and after filtering out insignificant results we get
34 solutions.

For both algorithms, we measure specificity, sensitivity and purity of all so­
lutions and only of significant ones, in order to  see whether results consider 
’insignificant’ are true noise in the data.

Moreover, we compare pairs of redundant alignments as well as new different 
results. A paired redundant alignment is a pair (G1, G2) of alignments, with G 1
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discovered by D ivA full and G2 discovered by MaWish, such th a t either G 1 is 
redundant for G2 or vice versa. For a paired redundant alignment (Gi , G2) we 
say th a t G1 refines G2 if the weight of G 1 is bigger than  the weight of G2.

Results of our experiments are summarized as follows.
Of the 83 solutions of MaWish 56 (67.5%) have at least one MIPS anno­

ta ted  protein and 15 (18.1%) have at least 3 annotated proteins. From the 
151 D ivA full results, 103 (68.2%) have at least one annotated protein and
35 (23.2%) have at least 3 annotated proteins.

There are 70 redundant alignments, whose pair of weights are plotted on 
the left part of Fig. 1. Among these, 48 (31.8% of D ivA full results) are equal 
(red crosses in the diagonal) and 22 (14.6%) different. 8 (5.3%) (green crosses 
below the diagonal) with better D ivA full alignment weight, and 13(8.6%) (blue 
crosses above the diagonal) with better MaWish alignment weight (for 1 (0.7%) 
pair it is undecidable because of rounding errors during computation).

D ivA full finds 81 (53.6%) new alignments, th a t is, not discovered by MaWish. 
The right plot of Fig. 1 shows the binned distribution of weights of these align­
ments, together with the new 17 ones discovered by MaWish but not by D ivA full. 
There is no significant difference between the overall weight average of the 
D ivA full (0.8) and the the MaWish (0.86) results.

DivAfull vs MaWish
redundant alignments between S. cerevisiae and C. elegans

DivAfull vs MaWish 
nonredundant alignments between S. cerevisiae and C. elegans

weight

F ig . 1. Analysis all alignments discovered by MaWish and D ivA full. Left figure: Dis­
tribution of pairs of weights of paired redundant alignments, one obtained from MaWish 
and one from D ivA full. Weights of alignments found by D ivA full are on the x-axis, 
those found by MaWish on the y-axis. is a paired redundant alignment. Right figure: 
Interval weight distributions of non-redundant alignments discovered by MaWish and 
D ivA full . The x-axis shows weight intervals, the y-axis the num ber of alignments in 
each interval.

By considering the union of all alignments discovered by MaWish and D ivA full 
and by filtering out the redundant ones, 164 alignments are obtained, from which 
54.3% consist of refined or new D ivA full ones, and 29.3% consist of alignments 
discovered by both methods. Of all these alignments 111 have at least one anno­
tated  protein and 40 at least with 3 annotated proteins. This results indicate a
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significant improvement (54.3%) of the performance of MaWish when augmented 
with D ivA full.

Statistical evaluation of all solution for D ivA full and MaWish, is reported in 
Table 1. One can observe th a t D ivA full outperforms MaWish and the number of 
D ivA full solutions is almost double of the number of MaWish ones. Combining 
results obtained by both algorithms generally increases sensitivity and purity, 
while specificity is increased only w.r.t MaWish solutions. The latter phenomenon 
can be justified by the effect of nonredundant MaWish results, since more of 
them do not have a significant match (p < 0.05) and therefore decrease overall 
specificity when combined with D ivA full solutions.

DivAfull vs MaWish
redundant alignments between S. cerevisiae and C. elegans

DivAfull vs MaWish 
nonredundant alignments between S. cerevisiae and C. elegans

weight

F ig . 2. Analysis significant alignments discovered by MaWish and D ivA full. Left figure: 
D istribution of pairs of weights of paired redundant alignments, one obtained from 
MaWish and one from D ivA full. Weights of alignments found by D ivA full are on the 
x-axis, those found by MaWish on the y-axis. is a  paired redundant alignment. Right 
figure: Interval weight distributions of non-redundant alignments discovered by MaWish 
and D ivA full . The x-axis shows weight intervals, the y-axis the number of alignments 
in each interval.

If the same analysis is performed only on the significant alignments then the 
following results are obtained.

From the significant 34 MaWish results, 25 (73.5%) have at least one an­
notated protein and 4 (11.8%) have at least 3 annotated proteins. From the 
significant 41 D ivA full results, 34 (83%) have at least one annotated protein 
and 10 (24.4%) have at least 3 annotated proteins.

D ivA full finds 18 new alignments not detected by MaWish. There are 23 
redundant alignments. Among these, 22 (53.7% of D ivA full results) are equal 
and 1 (2.4%) different with better MaWish alignment weight.

The right plot of Fig. 2 shows the binned distribution of weights of the 18 
(43.9%) found by D ivA full but not MaWish, and 11 found by MaWish and not 
by D ivA full. The overall weight average of the D ivA full ones (1.609) is greater 
than the overall average of the MaWish ones (0.8536).



By considering the union of all significant alignments of MaWish and D ivA full 
and by filtering out the redundant ones, we get together 52 alignments, from 
which 34.6% results are added as new ones by the D ivA full method and 42.3% 
are equal results discovered by both methods. This shows th a t performance of 
the MaWish model is improved by 34.6% when the algorithm is augmented with 
the D ivA full method. From all alignments, 41 have at least one annotated 
protein and 10 at least with 3 annotated proteins.

Table 2 report statistical evaluation of results of MaWish, D ivA full, and 
their union. D ivA full solutions have better specificity than MaWish solutions 
and similar sensitivity. Concerning purity, D ivA full has 7 pure solutions from 
10 considered, while MaWish has 3 pure solutions from 4. Because of the small 
number of the considered alignments, the purity measure in this case does not 
provide sufficient information for comparing the two algorithms. Considering the 
union of MaWish and D ivA full generally increases sensitivity and specificity. 
Moreover, the new solutions added by D ivA full increase the number of pure 
alignments.

In summary, these results show th a t D ivA full can be successfully applied to 
discover conserved protein complexes and to  ’refine’ state-of-the-art algorithms 
for network alignment.

T a b le  1. Specificity, sensitivity and purity  for all alignments discovered by D ivA full 
and MaWish. The first row of table shows results for combined solutions of bo th  algo­
rithms.

10 Divide, Align and Full-Search for Discovering Conserved Protein Complexes

Algorithm No. of alignments Specificity (%) Sensitivity (%) Purity  (%)
D ivA full & MaWish 164 44 6.8 92

D ivA full 151 46 6 91
MaWish 83 43 6 87

T a b le  2. Specificity, sensitivity and purity  for significant alignments discovered by 
D ivA full and MaWish. The first row of table shows results for combined significant 
solutions of bo th  algorithms.

Algorithm No. of alignments Specificity (%) Sensitivity (%) Purity  (%)
D ivA full & MaWish 52 51 4.5 70

D ivA full 41 50 3.4 70
MaWish 34 48 3.8 75

5 C onclusion

This paper introduced a heuristic algorithm, D ivA full, for discovering conserved 
protein complexes, which is an extension of a previously proposed algorithm,
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DivA. Results of the comparative experimental analysis indicated th a t D ivA full 
improves the search procedure of DivA. Moreover, comparison between MaWish 
and D ivA full indicated tha t D ivA full is able to  discover new alignments which 
significantly increase the number of discovered complexes. D ivA full solutions 
showed also improved match with well-know yeast complexes measured by speci­
ficity, sensitivity and purity. Combination of solutions discovered by both MaWish 
and D ivA full, yielded new and refined alignments.

Although using an exact search in D ivA full requires higher computational 
time than  the greedy searching of MaWish (in our experiment it took more than  4 
hours on a desktop machine (AMD Athlon 64 Processor 3500+, 2 GB RAM)), the 
advantage of a modular approach relies also in possible parallelization of parts of 
the method. For instance, the full search algorithm can be run independently on 
each alignment graph. Moreover, ad-hoc internal parallelization can be applied 
to improve efficiency. We are actually working on such optimized implementation 
of D ivA full.

Results show th a t the filtering procedure used for removing ’insignificant’ 
results seems to  be rather strict, because it appears to  discard a substantial 
number of solutions which seem to be biologically meaningful. A more thorough 
analysis of real biological functions of some of the new discovered results is still 
needed.

Finally, we intend to  analyze instances of our approach based on other m eth­
ods, such as [7].
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