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A bstract

Termination of logic programs with negated body atoms (here called general logic 
programs) is an im portant topic. One reason is that many computational mechanisms 
used to process negated atoms, like Clark’s negation as failure and Chan’s constructive 
negation, are based on termination conditions. This paper introduces a methodology for 
proving termination of general logic programs w.r.t. the Prolog selection rule. The idea is to 
distinguish parts of the program depending on whether or not their termination depends on 
the selection rule. To this end, the notions of low-, weakly up-, and up-acceptable program 
are introduced. We use these notions to develop a methodology for proving termination 
of general logic programs, and show how interesting problems in non-monotonic reasoning 
can be formalized and implemented by means of terminating general logic programs.

1. In tro duc tio n

General logic programs (g l p ’s for short) provide formalizations and implementations for 

special forms of non-monotonic reasoning, as illustrated by Apt and Bol (1994) and Baral 

and Gelfond (1994). For example, Prolog’s negation as finite failure operator can be used 

to implement the temporal persistence problem in Artificial Intelligence as a logic program 

(Kowalski & Sergot, 1986; Evans, 1990; Apt & Bezem, 1991). The implementation of 

operators like Clark’s negation as failure (Clark, 1978) and Chan’s constructive negation 

(Chan, 1988), is based on termination conditions. Therefore the study of termination of 

G LP ’s (e.g., De Schreye & Decorte, 1994) is an important topic.

Two classes of g l p ’s that behave well w.r.t. termination are the so-called acyclic and 

acceptable programs (Apt & Bezem, 1991; Apt & Pedreschi, 1991). In fact, Apt and Bezem 

(1991) prove that if negation as finite failure is incorporated into the proof theory, then 

for any acyclic program, all sld-derivations with arbitrary selection rule of ground queries 

terminate. The converse of this result, i.e., if a program terminates for all ground queries, 

then it is acyclic, holds only under the assumption that the program is ‘non-floundering’. 

Apt and Pedreschi (1991) establish analogous results on termination for so-called acceptable 

programs, this time w.r.t. the Prolog selection rule, which selects the leftmost literal of a 

query.

Floundering is an abnormal form of termination which arises as soon as a non-ground 

negated atom is selected, as explained e.g., in (Apt & Bol, 1994). To treat also non-ground 

negated atoms, Chan (1988) introduced a procedure known as Chan’s constructive negation. 

Using Chan’s constructive negation, Marchiori (1996) showed that the notions of acyclicity 

and acceptability provide a complete characterization of programs that terminate for all 

ground queries.
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The notion of acceptability combines the definition of acyclicity with a semantic condi

tion, and therefore proving acceptability may be rather cumbersome. The aim of this paper 

is to develop a methodology for proving termination with respect to the Prolog selection 

rule, by using as little semantic information as possible. A program P  is split into two 

parts, say Pi and P->: then one part is proven to be acyclic, the other one to be acceptable, 

and these results are combined to conclude that the original program is terminating w.r.t. 

the Prolog selection rule. The decomposition of P  is done in such a way that no relations 

defined in P\ occur in P%. We introduce the notions of up-acceptability, where P\ is proven 

to be acceptable and P2 to be acyclic, and of low-acceptability, which treats the converse 

case (Pi acyclic and P2 acceptable). In order to be of more practical use, the notion of 

up-acceptability is generalized to weak up - acceptability. We integrate these notions in a 

bottom-up methodology for proving termination of general logic programs. We apply our 

results to programs formalizing problems in non-monotonic reasoning. In particular, we 

show that the planning in the blocks world problem can be formalized and implemented by 

means of an up-acceptable program. This provides a class of queries (up-bounded queries) 

that can be completely answered.

Even though our main theorems (Theorem 5.5, 6.4 and 7.2) deal with Chan’s construc

tive negation only, a simple inspection of the proofs shows that they hold equally well for 

the case of negation as finite failure.

Our approach provides a simple methodology for proving termination of G LP ’s, by com

bining the results of Bezem, Apt and Pedreschi on acyclic and acceptable programs. The 

relevance of this methodology is twofold: for a large class of programs, it overcomes the 

drawback of the method of Apt and Pedreschi (1991), namely the use of too much semantic 

information; and it allows to identify those parts of the program whose termination is de

pendent on the use of the Prolog selection rule. Moreover, the examples that are given, show 

that systems based on the logic programming paradigm provide a suitable formalization and 

implementation for problems in non-monotonic reasoning.

The paper is organized as follows. The next section contains some terminology and 

preliminaries. In Sections 3 and 4 the notions of acyclicity and acceptability are presented. 

Sections 5, 6, and 7, contain our alternative definitions of acceptability. In Section 8 these 

definitions are integrated in a methodology for proving termination. Finally, in Section 9 

some conclusions are given. This paper is an extended and revised version of (Marchiori,

1995).

2. P re lim inaries

The following notation will be used. We follow Prolog syntax and assume that a string 

starting with a capital letter represents a variable, while other strings represent constants, 

terms and relations. Relation symbols are often denoted by p ,q ,r. A literal is either an 

atom p (s i, . . . ,  Sk), or a negated atom . . . ,  Sk), or an equality s =  t, or an inequality

V(s ^  t), where V quantifies over some (perhaps none) of the variables occurring in s, t. 

Equalities and inequalities are also called constraints, and denoted by c. An inequality 

V(s ^  t) is primitive if it is satisfiable but not valid. For instance, X  ^  a is primitive. An 

(extended) general logic program, denoted by P , R, is a finite set of clauses

H  < ¿ 1 , . . . ,  l.m.
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with m > 0, where H  is an atom, and Li is a literal, for i G [l,m]. A query is a finite 

sequence of literals, and is denoted by Q.

To treat negated non-ground atoms, Chan (1988) proposes to augment sld-resolution 

with a procedure, informally described as follows. For a substitution 9 =  {X\/t\,. . . ,  X n/tn}, 

we denote by E$ the equality formula (A'i =  t\ A .. . A X n =  tn). For any negated atom ->A, 

if all the sld-derivations of A are finite, and 91 , . . . ,  Ok, with k > 0, are the computed answer 

substitutions, then the answers for ->A are obtained from the negation of 3(Egt V .. . V Egk), 

where 3 quantifies over the variables not occurring in A. For instance, consider the program

p(a) .

p(b)

The answer to the query ~<p(X) is X  /  «A  X  ^  b. We call sldcnf-resolution, sld- 

resolution augmented with Chan’s procedure. To show the correctness of sldcnf-resolution, 

we choose as program semantics the Clark’s completion (Clark, 1978). This semantics is a 

natural interpretation of a GLP as a set of definitions. Intuitively, the Clark’s completion 

of a program P, denoted by comp(P), is the first-order theory obtained by replacing the 

implication of each clause of P  with an equivalence. It is constructed as follows. Below, V 

quantifies over X\,. . . ,  X k.

• For every relation symbol p occurring in P, having say k > 0 arguments:

- if p does not occur in the head of any clause then add the formula 

V(p(A'i,. . . ,  X k) ^  false);

- otherwise, if k =  0 then add the formula p  true; if k > 0 and C\ ,...,Ci, with 

I > 1 are all the clauses of P  with head symbol p, with C'i =  p(s\, . . . ,  slk) <— Qi, 

then add the formula V(p(A'i,. . . ,Xk) Vje[lj/](3Vj(£^j A Qi)), where Vi is the 

set of variables of C'i, E;t is (s^ =  X\ A .. . A s\ =  Xk), and X \,. . . ,  Xk are fresh 

variables.

• Finally, the following free equality axioms are added, so that the equality theory of 

comp(P) becomes the same as the one of the Herbrand universe.

_  ƒ  (-X15 • • •; A'fc) =  f (Y i , . . . ,  Yk) —>• (A'l =  1 i  A .. . A Xk =  Yk), 

for every function symbol ƒ,

— ƒ  (Ĵ l !  • • • ! Xk) 7̂  §0 :1 , • • • , 1 rn)j

for every distinct function symbols ƒ  and g,

— X  ^  s,

for every term s s.t. X  occurs in s.

The soundness of sldcnf-resolution w.r.t. Clark’s semantics follows from

comp(P) \= V(A 3 (E01 V .. . V Egh)),

where V quantifies over all the free variables of the formula, sldcnf-resolution is complete 

only for queries having all terminating derivation. In fact, Chan’s procedure is not defined 

if A has an infinite derivation. As a consequence, the notion of (infinite) derivation is
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not always defined. This is a problem for the study of termination of G LP ’s, because 

the notion of derivation is of crucial importance. Therefore, we refer here to an alternative 

definition of Chan’s procedure given by Marchiori (1996), where the subtrees used to resolve 

negative literals are built in a top-down way, constructing their branches in parallel. As a 

consequence, the main derivation is infinite if at least one of these subtrees is infinite. 

Termination of G LP ’s depends on the selection rule. For instance, the program

P  < -  q . p -

terminates if the Prolog selection rule, which chooses the leftmost literal of a query, is 

used. But, the program does not terminate if the selection rule which chooses the rightmost 

literal of a query is used. We shall consider the generalization of the Prolog selection 

rule to programs containing constraints, which delays the selection of primitive constraints 

as follows: the leftmost literal of a query which is not a primitive inequality is chosen. 

For simplicity, we continue to refer to this selection rule as the Prolog selection rule. An 

sldcnf-tree that is obtained by using the Prolog selection rule is called ldcnf-tree.

To prove termination of logic programs, suitable functions from ground atoms to natural 

numbers, called level mappings, will be used. Let Bp denote the Herbrand base of P.

D efin ition 2.1 (Level Mapping) A level mapping (for P ) is a function | | from Bp to 

natural numbers. □

A level mapping is extended to negated ground atoms by |-iA| =  |A|. We do not need to 

extend this notion also to constraints, because they represent terminating atomic actions. 

However, note that the presence of constraints in a query influences termination, because, 

for instance, a derivation finitely fails if an unsatisfiable constraint is selected.

3. Acyclic P rogram s

Our method will be based on the notions of acyclicity and acceptability, which are used 

to characterize a class of terminating programs w.r.t. an arbitrary and the Prolog selection 

rule, respectively. In this section we recall the definition of acyclicity, and some useful 

results from (Marchiori, 1996), while acceptability will be discussed in Section 4.

Apt and Bezem (1991) study termination of G LP ’s w.r.t. an arbitrary selection rule. 

They introduce the following elegant syntactic notion.

D efin ition 3.1 (Acyclic Program) A program P  is acyclic w.r.t. a level mapping \ | if 

for all ground instances H  <— L \,. . . ,  Ln of clauses of P  we have that \H\ > |L*| holds for 

alH  < 1 < n s.t. Li is not a constraint. P  is acyclic if there exists a level mapping | | s.t. 

P  is acyclic w.r.t. | |. □

If a program is acyclic, then all ground queries have only finite derivations, and hence 

terminate. To extend this result to non-ground queries, the following notion of boundedness 

is used.

D efin ition 3.2 (Bounded Query) Let | | be a level mapping. A query Q =  L \,. . . ,  Ln is 

bounded (w.r.t. | |) if for every 1 < i < n, the set

|Q|i =  {\L'i\ | L'i is a ground instance of L*}
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is finite. □

Notice that ground queries are bounded. Apt and Bezem prove that for an acyclic 

program, every bounded query Q has only finite derivations w.r.t. negation as finite failure. 

The converse of this result does not hold, due to the possibility of floundering. Instead, using 

Chan’s constructive negation, we obtain a complete characterization (Marchiori, 1996). 

First, we formalize the concept of termination w.r.t. an arbitrary selection rule.

Defin ition  3.3 (Terminating Query and Program) A query is terminating (w.r.t. P ) if 

all its s ldcnf-derivations (in P) are finite. A program P  is terminating if all ground queries 

are terminating w.r.t. P. □

Theorem 3.4 Let P  be an acyclic program and let Q be a bounded query. Then every 

s ld cn f-tree for Q in P  contains only bounded queries and is finite.

Theorem 3.5 Let P  be a terminating program. Then there exists a level mapping \ \ s.t.: 

(i) P  is acyclic w.r.t. \ \; (ii) for every query Q, Q is bounded w.r.t. | | iff Q is terminating.

From Theorems 3.4 and 3.5 it follows that terminating programs coincide with acyclic 

programs and that for acyclic programs a query has a finite s ldcnf-tree if and only if it 

is bounded. Notice that when negation as finite failure is assumed, Theorem 3.5 does not 

hold. For instance, the program:

p(X) <- q(Y) . 

q (s (X )) <- q (X ) . 

q(0)

is terminating (floundering) but it is not acyclic.

Finding a level mapping for proving acyclicity is a creative process. We refer the reader 

to (De Schreye & Decorte, 1994) for a thorough presentation of various techniques for 

constructing level mappings.

The following section illustrates how an interesting problem in nonmonotonic reasoning 

can be formalized and implemented as an acyclic program.

3.1 A n  Example: Blocks W orld

The blocks world is a formulation of a problem in AI, where a robot performs a number 

of primitive actions in a simple world (see for instance Nilsson, 1982). Here we consider 

a simpler version of this problem by Sacerdoti (1977). There are three blocks a, b, c, and 

three different positions p, q, r on a table. A block can lay either above another block or 

on one of these positions, and it can be moved from one position to another. The problem 

consists of specifying possible configurations, i.e., those obtained from the initial situation 

by performing a sequence of possible moves. An example of an initial situation is given in 

Figure 1.

Kowalski (1979) gives a clausal representation of this problem by means of pre- and post

conditions. Here we formulate the problem using McCarthy and Hayes’ situation calculus
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b

a c

u&

Figure 1: The Blocks-World

(McCarthy & Hayes, 1969), in terms of facts, events and situations. There are three types 

of facts: loc(X,L) stands for ‘block X  is in location V\ above(X,Y) for ‘block X  is on 

block Y ’; and clear(L) for ‘there is no block in location L\ There is only one type of event: 

move(X, L) stands for ‘move block X  into location L\ Finally, situations are described 

using lists: [ ] denotes the initial situation, and [A'ejA's] the situation obtained from Xs  

by performing the event Xe. Based on the above representation, the blocks world can be 

formalized as the following GLP BLOCKSW ORLD:

1) holds (1, []) <- . le  £

2) b lock (b l) <- . blG  B

3) p o s it io n (p l)  <— . p ie  V

4) h o ld s (lo c (X ,L ), [move(X,L)|Xs]) *—

b lock (X ), 

p o s it io n (L ) ,

ho ld s (c le a r(top (X )) ,X s ), 

h o ld s (c le a r (L ),X s ) ,

L ^  to p (X ).

5) h o ld s (lo c (X ,L ), [Xe|Xs]) <-

b lock (X ), 

p o s it io n (L ) ,

-i abnorm al(loc(X ,L ),Xe,Xs), 

h o ld s (lo c (X ,L ),X s ) .

6 )  holds(above(X,Y),Xs) *—

ho ld s (lo c (X ,top (Y )) ,X s ) .

7) holds(above(X ,Y),Xs) *—

h o ld s (lo c (X ,to p (Z )) ,X s ), 

h o ld s (lo c (Z ,to p (Y )) ,X s ) .

8) ho lds (c lear(L ),X s) *—

-i occupied(L,Xs) .

9) abnorm al(loc(X ,L ),move(X,L5) ,Xs) .
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10) occup ied(L ,X s)^

h o ld s (lo c (X ,L ),X s ) .

11) lega ls ( [ (a ,L l ) , (b ,L2 ) , ( c ,L3 )] ,X s )

h o ld s ( l o c ( a ,L l ) ,X s ) , 

ho lds ( loc (b ,L2 ) ,Xs ) , 

ho lds ( loc (c ,L3 ) ,X s ) .

Here top(X) denotes the top of block X, B =  {a, b, c}, V =  {p, q, r, top(a),top(b),top(c)}, 

and £  =  {loc(a,p),loc(b,q),loc(c,r)}. Moreover, lines 1, 2 and 3 abbreviate sets of clauses, 

and line 1 specifies the initial situation. The relation holds describes when a fact is possible 

in a given situation, and the relation lega ls  when a configuration is possible in a given 

situation.

Consider the following level mapping, where for a ground term y, \y\ denotes the length 

of the list y, otherwise (i.e., if y is not a list) |y| is 0.

\block(x)\ =  0, 

\position(x)\ =  0, 

\abnormal(x, y, z)\ =  0,

Iholds(x, y) I

3 * |y| + 1 if x is of the form loc(r, s),

3 * |y| + 3 if x is of the form clear(r, s),

3 * |y| + 4 if x is of the form above(r, s),

0 otherwise.

\occupied(x, y)\ =  3 * \y\ + 

\legals(x,y)\ =  3 * \y\ + 2.

It is easy to check that BLOCKSW ORLD is acyclic w.r.t. | |.

Therefore, the class of questions expressed by means of bounded queries can be com

pletely answered. For instance, the question ‘when block a remains in its initial position p 

under the occurrence of an action?’ can be formalized as the query ho ld s ( l o c ( a ,p ) , [A] ). 

This query is bounded, hence every of its sldcnf-derivations is finite, with answer \/L(A ^  

move(a, L )).

Note that this query would flounder when negation as finite failure is used.

4. Acceptable P rogram s

In the previous section, we have seen how termination of G LP ’s w.r.t. an arbitrary selection 

rule can be proven by means of the notion of acyclicity. The notion of acceptability (Apt 

& Pedreschi, 1991) is used for proving termination of G LP ’s w.r.t. the Prolog selection rule. 

In this section, we recall this notion, together with some useful results from (Marchiori,

1996). Acyclicity and acceptability will be combined in the following sections to provide 

more practical tools for proving termination of G LP ’s w.r.t. the Prolog selection rule.

In order to study termination of general logic programs with respect to the Prolog 

selection rule, Apt and Pedreschi (1991) introduced the notion of acceptable program. This
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notion is based on the same condition used to define acyclic programs, except that, for a 

ground instance H  <— L \ , . . . ,  L n of a clause, the test \H\ > \Li\  is performed only until the 

first literal Ln  which fails. This is sufficient since, due to the Prolog selection rule, literals 

after Ln  will not be selected. To compute n, a class of models of P , here called specialized 

models, is used. The following notion is used. The restriction of an interpretation J  to a 

set S of relations, denoted by I\s , is the set of atoms of I  having their relations in S.

D efin ition 4.1 (Spec ia lized  Model) Let Negp be the least set S of relations s.t.: the 

relations of P  occurring in negated atoms are in S; and if an element of S occurs in the 

head of a clause, then all the relations occurring in the body of that clause are in S. Let 

P be the set of clauses in P  whose head contains a relation from Negp. Now a model I  

of P  is specialized if I\NegP a model of comp(P^). □

D efin ition 4.2 (Acceptable Program) Let | | be a level mapping for P  and let J  be an

interpretation of P. P  is acceptable w.r.t. \ \ and J  if J  is a specialized model of P, and 

for all ground instances H  <— L\,. . . ,  Ln of clauses of P  we have that \H\ > |L*| holds for 

every 1 < i < n s.t. Li is not a constraint, where n =  m in({n} U {i G [1, n] \ L Li}). P  is 

acceptable if it is acceptable w.r.t. some level mapping and interpretation. □

If a program is acceptable, then every ground query has only finite ld cn f-derivations, 

hence it terminates. To extend this result to non-ground queries, as for the acyclic case, 

the following notion of boundedness is used.

D efin ition 4.3 (Bounded Query) Let | | be a level mapping and let J  be a specialized 

model of P. A query Q =  L\,.. . ,L n is bounded (w.r.t. | | and I)  if for every 1 < i < n

|Q|j =  {\L'i\ | L [ ,.. . ,L[i ground instance of L\,.. . ,L;t and

L ^ L [ , . . . , L U }

is finite. □

Apt and Pedreschi prove that for an acceptable program, every bounded query has only 

finite derivations w.r.t. the Prolog selection rule and negation as finite failure. The converse 

of this result holds when Chan’s constructive negation is used (Marchiori, 1996). First, we 

formalize the concept of termination w.r.t. the Prolog selection rule.

Defin ition  4.4 (Left-Terminating Query and Program) A query is left-terminating 

(w.r.t. P) if all its ld cn f-derivations are finite. A program P  is left-terminating if every 

ground query is left-terminating w.r.t. P. □

Theorem 4.5 Let P  be an acceptable program and let Q be a bounded query. Then every 

ld c n f-tree for Q in P  contains only bounded queries and is finite.

Theorem 4.6 Let P  be a left-terminating program. Then there exists a level mapping \ \, 

and a specialized model L of P  s.t.: (i) P  is acceptable w.r.t. \ \ and L; (ii) for every query 

Q, Q is bounded w.r.t. \ \ and L iff Q is left-terminating.

In the following section an acceptable program that formalizes planning in the blocks world 

is given.
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4.1 A n Example: Planning in the Blocks World

Consider planning in the blocks world, amounting to the specification of a sequence of 

possible moves transforming the initial configuration into a final configuration, e.g., as 

in Figure 2. This problem can be solved using a nondeterministic algorithm (Sterling & 

Shapiro, 1994): while the desired configuration has not yet been reached, find a legal action, 

update the current configuration, and check that it was not already obtained. The following 

program PLANNING follows this approach: it consists of all the clauses of the program 

BLOCKSW ORLD , minus 6) and 7), and plus the following clauses:

b

a c

c

P q r

Figure 2: Planning in the Blocks-World

1 p) transform (Xs,S t,P lan) <— 

s ta te (S tO ), 

le g a ls (S tO ,X s ), 

tran s (X s ,S t,[S tO ] ,P lan ).

2p) tr a n s (X s ,S t ,V is ,[ ]) <— 

le g a ls (S t ,X s ) .

3p) tran s (X s ,S t,V is , [Act |Acts] ) <— 

s ta te (S t l ) ,

-i member(Stl,V is ) ,

lega ls (S tl,[A c t|X s]) ,

trans([A ct|Xs],S t, [S tlI Vis] ,A c ts ).

4p) s ta te ( [ (a ,L I ) , (b ,L 2 ), (c,L3)] ) <— 

P = [p ,q ,r ,to p (a ) ,to p (b ) ,to p (c )] , 

member(LI,P), 

member(L2,P), 

member(L3,P).

5p) member(X, [XIY])
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Qp) member(X, [Y|Z]) 

member(X,Z).

Planning in the blocks-world is specified by the relation transform: in clause Ip) first a 

legal configuration for the actual situation is found by means of the predicate lega ls ; then 

the predicate trans is used to construct incrementally a plan from this configuration to 

the final one. It uses an accumulator as third argument, to guarantee that a plan does not 

pass twice through the same configuration. Clause 3p) takes care of expanding a plan: it 

first looks for a configuration which was not already considered, and then it adds to the 

plan the legal action yielding that configuration. Clause 2p) guarantees termination of the 

construction when the final configuration is reached.

To prove the acceptability of PLANNING, we have to find a model of PLANNING that is 

also a model of comp({5p), 6p)}U BLOCKSW ORLD\ {6), 7), 11)}). We do not need to use all 

this semantic information, because from the acyclicity of BLOCKSW ORLD , it follows that 

PLANNING is left-terminating if the following program TRAS is acceptable. We postpone the 

justification of this claim till the next section.

l'p) transform (Xs,S t,P lan) <— 

s ta te (S tO ),

trans (X s ,S t,[S tO ] ,P lan ).

2p) tr a n s (X s ,S t ,V is ,[ ]) .

3'p) trans (Xs, S t , V is , [Act | Acts] ) <— 

s ta te (S t l ) ,

-i member(Stl,V is ) ,

tra n s ( [Act|Xs],St, [S tlI V is] ,A c ts ).

4p) s ta te ( [ ( a ,L I ) , (b ,L 2 ), (c ,L3 )]) <—

P = [p ,q ,r ,to p (a ) ,to p (b ) ,to p (c )] , 

member(LI,P), 

member(L2,P), 

member(L3,P).

5p) member(X, [XIY]) .

Qp) member(X,[Y|Z]) <— 

member(X,Z).

TRAS is obtained from PLANNING by first deleting the subprogram ‘defining’ lega ls , and 

next the literals with relation le ga ls  occurring in the body of the remaining clauses. By 

considering TRAS, we need less semantic information, namely a model of TRAS that is also a 

model of comp({5p), 6)}). To show that TRAS is acceptable, we consider the following level 

mapping:

\member(x, y)\ =  \y\;

\state(x)\ =  7;

|trans(x, y, z ,w )\ =  tot — card(el(z) fl S) + 3 * (|x| + 1) + 5 + |z|;

188



P r o v in g  T e r m in a t io n  o f  G e n e r a l  L o g ic  P r o g r a m s

|trans form(x, y,z)\ =  tot + 3 * (|cc| + 1 ) + 6.

Above, S denotes {[(a,pl),(b,p2),(c,p3)] \ {pl,p2,p3} C {p,q,r,top(a),top(b),top(c)}}, 

and tot is the cardinality of S. Moreover, if z is a list then el(z) denotes the set of its 

elements, otherwise it denotes the empty set; card(el(z) fl S) is the cardinality of the set 

el(z)nS; finally, if a; is a list then \x\ denotes its length, otherwise it denotes 0. Observe that 

(tot — card(el(z) fl S)) > 0. Thus | | is well defined. For an atom p(si, . . . ,  sn), we denote 

by [p(si , . . . ,sn)] the set of all its ground instances. Consider the following interpretation

^transform =  [transf O rm (X ,Y , Z)],

Itrans =  [trans (X ,Y , Z,W)\,

I member =  {member(x, y) | y is a list s.t. x G set(y)},

I  state =  {state(x) I X G S}.

It is easy to prove that I  is a model of TRAS. Moreover, Negtras =  {member}, and 

TRAS- is equal to {5p),6p)}. So, I\{member} is a  model of comp(TRAS- ). To show that 

TRAS is acceptable w.r.t. I  and | |, we use the following properties of | |, which are readily 

verified:

\transform(x,y,z)\i > 8, 

\trans(x,y, z,w)\i > 8, 

\trans(x,y, z,w)\i > \z\.

(1)

(2)

(3)
The proof of the acceptability of TRAS proceeds as follows:

• Consider a ground instance:

trans for m(xs,xt, plan) state(stO), trans(xs, st, [st0\,plan). 

of 1 p). From (1) it follows that:

\transform(xs, xt,plan)\ > \state(st0)\.

Suppose that I  |= state(stO). Then stO G S, so card(el(S f l eZ([siO])) =  1; hence:

\transform(xs, xt,plan)\ > \trans(xs, st, [st0\,plan)\.

• Consider a ground instance: 

trans(xs, st,vis, [act\acts])

state(stl), -imember(stl, vis), trans([act\xs], st, [sil|m s], acts). 

of 2'p). From (2) it follows that:

\trans(xs, st, vis, [act\acts])\ > |s ia ie (s il)|
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and from (3):

\trans(xs, st, vis, [act\acts])\ > \->member(stl, vis)\.

Suppose that I  \= state(stl),-imember(stl,vis). Then stl G S, but st 1 0 set(vis); 

so card(S fi el([stl\vis])) =  card(S Del(vis)) + 1; hence tot — card(S fl el([stl\vis])) < 

tot — card(S fl el(vis)). Therefore,

|trans(xs, st, vis, [act\acts])\ > \trans([act\xs\, st, [siljms], acts)|.

• The proof for the other clauses of TRAS is similar.

5. U p-Acceptab ility

In this section, we introduce a first integration, called up-acceptability, of the notions of 

acyclicity and acceptability. We show that up-acceptability provides a more practical tool 

than acceptability for proving left-termination of G LP ’s.

In Section 4.1 we claim that in order to prove left-termination of PLANNING, it is sufficient 

to prove acceptability of the ‘part’ of PLANNING called TRAS and acyclicity of the rest of the 

program. Let us explain how we arrive to this conclusion. First, PLANNING is partitioned 

into two parts: an upper part, say Pi consisting of clauses 1 ) , . . . ,  6), and a lower part, say 

R, consisting of the rest of PLANNING. This partition is such that no relation defined in 

Pi occurs in R. This kind of partitioning of a program is defined by Apt, Marchiori and 

Palamidessi (1994) as follows.

Say that a relation is defined in P  if it occurs in the head of at least one of its clauses, 

and that a literal is defined in P  if its relation is defined in P.

D efin ition 5.1 (Program Extension) A program P  extends a program R, denoted by 

P  > R, if no relation defined in P  occurs in R. □

So P  extends R  if P  defines new relations possibly using the relations defined already 

in R. For instance, the program Pr.

P <- q,r.
extends the program Pi'.

q <- s. 

s <—.

Next, we consider the program TRAS obtained from Pi by deleting all the literals defined 

in R. We call this operation difference, defined as follows.

D efin ition 5.2 (D ifference of Two Programs) The difference of the programs P  and R, 

denoted by P  © R, is the program obtained from P  by deleting all the clauses of R  and all 

the literals defined in R. □
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For instance, if P\ and P2 are defined as above, then P 2 © Pi is the program p<— r.

Finally, we prove that TRAS is acceptable and that R  is acyclic, and in doing that we 

have to take care that the two level mappings used are related by a condition, namely that 

for every ground instance, say C =  H  <— Qi,L, Q 2 , of a clause of Pi, for every literal L 

contained in C and defined in R , the level mapping of L is not greater than the level mapping 

of H. This condition is important to ensure left-termination. For instance, consider the 

program P

1) q ( f (X )) <- p(Y), q (X ).
2) p(f(X)) <- p(X).

and take Pi =  {1)} and R  =  {2)}. Then Pi extends R, Pi © R  is acceptable w.r.t. the level 

mapping \q(x)\pt =  \x\, R  is acyclic w.r.t. the level mapping \p(x)\p =  \x\, but P  is not 

left-terminating.

So, the steps we applied to PLANNING are summarized in the following definition of 

up-acceptability, that characterizes left-terminating programs.

For a level mapping | | and a program /?, the restriction of\\to R, denoted | ||#, is the 

level mapping for R  defined by |A||# =  |A|.

D efin ition 5.3 (Up-Acceptability) Let | | be a level mapping for P. Let R  be s.t.

P  =  Pi U R  for some Pi, and let 7 be an interpretation of P  © R. P  is up-acceptable w.r.t.

| |, R  and I  if the following conditions hold:

1. Pi extends R;

2. P  © R  is acceptable w.r.t. | ||pq_r and 7;

3. R  is acyclic w.r.t. | ||#;

4. for every ground instance H  <— L\,. . . ,  Ln of a clause of Pi, for every 1 < i < n,

• if Li is defined in R  and is not a constraint, and

• if 7 |= L n , . . . ,  Lik, where L n , . . . ,  Ln- are those literals among l.\....... I.-, whose

relations occur in P  © R,

then \H\ > \Li\.

A program is up-acceptable if there exist | |, R  and 7 s.t. P  is up-acceptable w.r.t. | |, R, I.

□

Observe that by taking for R  the empty set of clauses, we obtain the original definition 

of acceptability. Next, we introduce the notion of up-bounded query.

D efin ition 5.4 (Up-bounded Query) Let P  be up-acceptable w.r.t. | |, R  and 7, and let

Q =  L\,... ,Ln. Q is up-bounded if for every 1 < i < n the set

|Q|“P,J =  {\L'i\ | L[ , . . . ,  L'n is a ground instance of Q and 7 |= L'ki A .. . A Lfk } 

is finite, where L'ki, . . . ,  7'fcj are the literals of L[ , . . . ,  L'i_ 1 whose relations occur in P  © R.

□
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In order to show that all ld cn f-derivations of an up-bounded query are finite: we shall 

prove that a ld cn f-derivation of an up-bounded query contains only up-bounded queries; 

and we shall associate with each derivation of the query a descending chain in the well- 

founded set of pairs of multisets of natural numbers, with the lexicographic order. Recall 

that a multiset (see e.g., Deshowitz, 1987) is a unordered collection in which the number 

of occurrences of each element is counted. Formally, a multiset of natural numbers is a 

function from the set (N, <) of natural numbers to itself, giving the multiplicity of each 

natural number. Then, the ordering < mui on multisets is defined as the transitive closure 

of the replacement of a natural number with any finite number (possibly zero) of natural 

numbers that are smaller under <. Since < is well-founded, the induced ordering < mui is 

also well-founded. For simplicity we shall omit in the sequel the subscript mul from < mui.

W ith an up-bounded query Q, we associate a pair tt(Q)up,i  =  (|[Q]|up,7,Pi, | [Q]\up,i;n) of 

multisets, where for a program P  and an interpretation I

\[Q]\up,i;p =  bag(max\Q\lP,I\. . . , max\Q\ukpJ ) ,

where . . . . ,  Lkm are those literals of Q whose relations occur in P  Q R, and max\Q\̂ p,r 

is the maximum of |Q|“P,J (which is by convention 0 if |Q|“P,J is the empty set).

Recall that the lexicographic order -< (on pairs of multisets) is defined by (X , Y ) -< 

(Z , W )  iff either X  < Z .  or X  =  Z  and Y  < W .
Then we can prove the following result.

Theorem 5.5 Suppose that P  is up-acceptable w.r.t. \ \, R  and I .  Let Q be an up-bounded 

query. Then every ld c n f-derivation for Q in P  contains only up-bounded queries and is 

finite.

Proof. Let £ =  Q i , . . . ,  Qn, . . . be a ld cn f-derivation for Q in P. We prove by induction on 

n that Qn is up-bounded, and that if it is the resolvent of a query Qn-i by the selection of 

a literal which is not a constraint, then 7r(Qn )up,i < ^ (Q n-i )u p, i -
For the base case n =  1, we have that Q i is up-bounded by assumption. Now consider 

n > 1, and suppose that the result holds for n — 1. Thus, Qn-i is up-bounded. Suppose 

that the resolvent of Qn-i is defined and that the selected literal, say L, is not a constraint. 

It follows from the fact that Qn-i is up-bounded and from the definition of up-acceptability 

(here also condition 4 is used) that Q n is up-bounded. Next, we show that Tr(Qn )upj  is 

smaller than 7r(Qn-i )up , i  in the lexicographic order. If the relation symbol of L  occurs 

in P  l i  then the first component of 7r(Qn )up,i becomes smaller because of condition 2 . 

Otherwise, if the relation symbol of L  occurs in R  then the first component of 7r(Qn )up,i 
does not increase because of condition 1 , while the second one becomes smaller because of 

condition 3. The conclusion follows from the fact that the lexicographic ordering is well- 

founded, and from the fact that, in a derivation a constraint can be consecutively selected 

only a finite number of times. □

Exam ple 5.6 ( p l a n n in g  is  Up-Acceptable) Call R-BLOCKSWORLD the program ob

tained from BLOCKSWORLD by deleting the clauses 6) and 7). We prove that PLANNING is 

up-acceptable w.r.t. | |, R-BLOCKSWORLD, and I  defined as in the examples of Sections 3.1
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and 4.1. PLAN N IN G 0R-BLO CK SW O RLD  is (not incidentally) the program TRAS. The proof 

of up-acceptability proceeds as follows.

1. PLANNING ex tends  R-BLOCKSW ORLD .

2. It is proven in Section 4.1 that TRAS is acceptable.

3. It is proven in Section 3.1 that R-BLOCKSW ORLD acyclic.

4. Consider a ground instance

transform(c, s,p) <— state(sO), legals(s0, c), trans(c, s, [sO],p). 

of 1), and suppose that I  \= state(s0). Then

|transform(c, s,p)\ =  tot + 3 * (|c| + 1) + 6 > 3 * |c| + 2 =  \legals(s0, c)|.

Consider a ground instance 

trans(c, s, v, [ ]) <— legals(s, c). 

of 1). Then

|trans(c, s, v, [ ])| =  tot — card(el(v) fl S) + 3 * (|c| + 1) + 5 + |v| > 3 * |c| + 2 .

□

The following corollary establishes the equivalence of the notions of acceptability and 

up-acceptability. It follows directly from Theorem 5.5 and Theorem 4.6.

Corollary 5.7 A general logic program is up-acceptable if and only if it is acceptable.

6. W eak U p-Acceptab ility

Because in some cases up-acceptability does not help to simplify the proof of termination, 

in this section we generalize this notion and introduce weak up-acceptability. We start 

with an example of a program that cannot be split into two non-empty programs satisfying 

up-acceptability. Next, we introduce weak up-acceptability and establish analogous results 

as for up-acceptability. Finally, we apply weak up-acceptability for simplifying the proof of 

left-termination of our example program.

6.1 An Example: Ham iltonian Path

A Hamiltonian path of a graph is an acyclic path containing all the nodes of the graph. 

The following program HAMILTONIAN defines hamiltonian paths: it consists of the following 

clauses

1) ham(G,P) <—

path (N l,N 2 ,G ,P ), 

cov(P ,G ).

2) cov(P,G) <—

-i notcov(P,G) .

3) notcov(P,G) <—

193



M a r c h io r i

node(X,G), -■ member(X,P) .

4) node(X,G) <—

member( [X,Y],G ).

5) node(X,G) <—

member([Y,X],G).

augm ented  w ith  the program  ACYPATH defin ing acyclic paths:

p i) path(N l,N2,G ,P) <-

path l(N 1 , [N2],G,P). 

p2) p a th l(N l, [Nil P I] ,G ,[N il PI]) 

p3) p a th l(N l,[X I|P I] ,G ,P ) <- 

member( [Y1,X1],G),

-i member (Y1, [XI | PI] ) ,  

path l(N l,[Y1,X1|P1],G ,P ). 

pA) member(X,[X|Y]) . 

p5) member (X, [YIZ] ) <- 

member(X,Z).

A graph is represented by means of a list of edges. For graphs consisting only of one 

node, we adopt the convention that they are represented by the list [[a, _L]], where _L is 

a special new symbol. In the clause p i) path describes acyclic paths of a graph, and 

path(nl,n2 ,g ,p) calls the query path l(n l, [n2],g,p). The second argument of pathl is used 

to construct incrementally an acyclic path connecting n l with n2: using clause p3), the 

partial path [x\pl\ is transformed into [y, x\pl\ if there is an edge [y,x\ in the graph g such 

that y is not already present in [®|pl]. The construction terminates if y is equal to n l, 

because of clause p2). Thus the relation pathl is defined inductively by the clauses p2) and 

p3), using the familiar relation member, specified by the clauses p4) and p5). Notice that, 

it follows from p2 ) that if n l and n 2 are equal, then [nl] is assumed to be an acyclic path 

from n l to n 2 , for any g.

The relation ham(g,p) is specified in terms of path and cov: it is true if p is an 

acyclic path of g that covers all its nodes. The relation cov is defined as the negation 

of notcov, where notcov(p, g) is true if there is a node of g which does not occur in p. 

Finally, the relation node is defined in terms of member in the expected way. For instance, 

ham([[a,b] , [b,c] , [a,a] , [c,b]] , [a ,b ,c]) holds, corresponding to the path drawn in 

bold in the graph of Figure 3.

The program HAMILTONIAN is not terminating, because ACYPATH is not. However, 

HAMILTONIAN is left-terminating. In order to prove this result using acceptability (Defini

tion 4.2), we need to find a model of HAMILTONIAN that is also a model of the completion 

comp({3), 4), 5 ) , j?4), j>5)}) of the program consisting of the clauses 3), 4), 5 ) ,p4),pb). This 

is not very difficult, however it is not needed, as we shall see in the follow. Note also that 

the notion of up-acceptability does not help to prove left-termination using less semantic 

information. Nevertheless, we can split HAMILTONIAN in two subprograms: P> consisting 

of ACYPATH plus clause 1), and P\ consisting of the remaining clauses 2) — 5). Note that 

P2 ‘almost’ extends Pi, because Pi contains some literals (those with relation {member})
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o
b ---------ca

Figure 3: The Hamiltonian path of [[a, b], [b, c], [a, a], [c, b]\

defined in P->. Since the subprogram 5 j ? ) , 6 j ? ) defining these literals is extended by both 

Pi and by P> \ {5p), 6 j ? ) } ,  it follows that left-termination of {5p), 6 j ? ) }  does not depend on 

the termination behaviour of the rest of HAMILTONIAN. So, for proving left-termination of 

HAMILTONIAN it is sufficient to show that P> © P\ is acceptable, that P\ is acyclic, and that 

the corresponding level mappings satisfy the condition in Definition 5 . 3 .  Thus, we need 

only to find a model of P2 © Pi that is also a model of comp({p4),p5)}). □

6.2 W eak Up-Acceptability

Formally, we modify up-acceptability by considering a more general way of partitioning the 

program, specified using the following notion of weak extension. Recall that for a set S of 

relations, P\s denotes the clauses of P  that define the relations from S.

D efin ition 6.1 (Program Weak Extension) A program P  weakly extends a program R, 

denoted by P  > w R, if for some set S of relations we have that:

• p  =  p l u P|5, and Pi extends P^;

• R  extends P\s; and

Note that only the relations of S which are defined in P  play a role in the above definition. 

Definition 5.1 is a particular case of the above definition, obtained by considering P\s to be 

equal to 0 (which includes the case that 5 =  0).

Exam ple 6.2 The program

p(X) <- q(X), r(X). 
r(f(X)) <- r(X).

weakly extends the program

• P  © Pig extends R  © P 15. □
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q(X) <- s ( X ) , r ( X ) . 
s(X)

This can be seen by taking S  =  {r}. Then Pi is p(X) <— q ( X ) , r(X)  P |5 is r ( f  (X)) <— 
r  (X) ., P i and R  both extend P\$. Moreover, P  ©  P |5 is p(X) <—  q(X) . and R  ©  P\$ is

q(X) <- s (X)  . 
s(X)

Finally, it is easy to check that P  © P\s extends R  © P\g. □

Thus the notion of weak up-acceptability is obtained from Definition 5.3 by replacing 
in condition 1 ‘extends’ by ‘weakly extends’.

D efin ition  6.3 (Weak U p - A c c e p t a b i l i t y )  Let | | be a level mapping for P . Let R  be a
set of clauses s.t. P  =  Pi U R  for some P i, and let 7 be an interpretation of P  © R.  P  is 
weakly up-acceptable w.r.t. \ \, R  and 7 if the following conditions hold:

1. P i weakly extends R;

2. P ©  R  is acceptable w.r.t. | ||pq_r and 7;

3. R  is acyclic w.r.t. | ||^;

4. for every ground instance H  <— L i , . . . ,  L n of a clause of Pi, for every 1 < i < n,

•  if Li is defined in R  and is not a constraint, and

• if 7 |= L n , . . . ,  Lik, where L n , . . . ,  7 are those literals among l . \ ........whose
relations occur in P  © R,

then \H\ > \Li\. □

In order to prove the analog to Theorem 5.5, we need to use triples of finite multisets, 
instead of pairs, with the lexicographic ordering (A'i, X 2 , X 3 ) (Y i ,Y 2 ,Y 3 ) iff either 
(A'i, X 2 ) ( l i ,  Y2 ) (by abuse of notation we use also to denote the lexicographic ordering 
on pairs of multisets), or X \  = Y\ and and X 2 = Y2 and X$ < I 3 . We consider the triple:

t (Q)uP,i  = (|[Q ]|up ,7 ,peP |S , |[Q]Up,j,_ReF|S! |[Q ]|«p,j,F |S)-

T heorem  6.4 Suppose that P  is weakly up-acceptable w.r.t. \ \, R  and I .  Let Q be an up- 
bounded query. Then every l d c n f -derivation for Q in P  contains only up-bounded queries 
and is finite.

Proof. Let S  be the set of relations used to prove that P  is weakly up-acceptable w.r.t.
| |, R  and 7. The proof is similar to the one of Theorem 5.5, except that we consider 
t (Q)up,i  instead of tt(Q)upj , and we show that T(Qn)upj  is smaller than T(Qn- i ) upj  in the 
lexicographic order as follows. If the relation symbol of 7  occur in P li  but not in S, 
then the first component of T(Qn)upj  becomes smaller because of condition 2. Otherwise, 
if the relation symbol of 7  occur in R  then the first component of T(Qn)upj  does not
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increase because of condition 1, while the second one becomes smaller because of condition
3. Finally, if the relation symbol of L  occur in S , then the first and second components 
of T(Qn)upj  do not increase, because of condition 1, while the third one becomes smaller 
because of condition 2. □

E x a m p l e  6 .5  (HAMILTONIAN i s  Weakly Up-A cceptab le)  We prove that HAMILTONIAN 
is weakly up-acceptable. Consider as upper part the program P> consisting of ACYPATH 
augmented with clause 1), and as lower part the program Pi:

2) cov(P,G) <—
-i no tco v (P ,G )  .

3) n otco v ( P ,G )  <—
node (X ,G) ,  -■ member(X,P) .

4) node(X,G) <—
member( [X, Y ] , G ) .

5) node(X,G) *—
me mber([Y,X ] ,G ) .

Take {m em ber}  as set S  of relations.

1. P> weakly extends Pi.

2. The program © P i, consisting of

1) ham(G,P) <—
p a t h ( N l , N 2 , G , P ) . 

p i)  p a t h ( N l ,N 2 ,G ,P )  <-
p a t h l ( N 1 , [ N 2 ] , G , P ) . 

p2) p a t h l ( N l ,  [N i lP I ]  ,G, [ N i l P I ] )  
p i)  p a t h l  (N l ,  [XI | PI] ,G,P) <- 

member( [ Y 1 ,X 1 ] ,G ) ,
-i member (Y1, [XI | PI] ) ,  
p a t h l ( N l , [ Y 1 , X 1 | P 1 ] , G , P ) . 

pA) member(X,[X|Y] ) . 
p5) member (X, [YIZ] ) <- 

member(X,Z).

is acceptable w.r.t. the following level mapping:

|member(s, t)\ =  |i|;

\ pathl (nl ,p l , g ,p) \  = \pl\ +  \g\ + 2 (\g\ -  \pl n  g\) +  1;

\path(nl,  n2, g,p)\ =  3|^| +  3;

\ham(g,p)\  =  3\g\ + 4 ,

and the interpretation I  = I ham U l path U Ipathi U /member, with:
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h a m  =  [ham{G ,P%

^path {path(nl ,n2,g ,p)  \ \g\ +  1 >  |p|},

Ipathi = { p a t h l ( n l , p l , g , p )  \ \pl\ -  \pl fl g\ > \p\ -  \p fl g\},

Imember =  {member  (s , t)  | t  list s.t. s G set(t)},

where for two lists p  and g, p d g  denotes the list containing as elements those x  which 
are elements of p  for which there exists a y  s.t. [x, y] is an element of g.

We prove that I  is a model of P>.

•  Consider a ground instance of the clause p i) and suppose that

I  \= p a th l{ n l , [n2],g,p).

Note that |[n2]| — \[n2\ fl g\ <  1. So \p\ ^ \ p H g \  < 1 .  But \p fl g\ < \g\. Then 
\p\ < \g\ +  1 , hence I  \= pa th (n l ,  n 2, g,p).

•  Consider a ground instance of the clause p3) and suppose that

I  \= member([y  1, xl],  g), ~^member(y 1 , [x l \p l] ) ,pa th l(n l ,  [y 1, x l \p l \ ,  g,p).

Thus |[y l,® l|p l]| — |[y l ,xl\pl\C\g\ >  \p\ — \pf\g\, where y  1 0  [®l|pl] and [y 1 ,x l \  G 
g. Therefore \[yl, xl\p l]  (lg\ =  1 +  \[xl\pl] (lg\. So \ [y l ,x l \p l} \ - \[y l ,x l \p l]n g \  = 
|[ccl|i>l]| — |[icl|i>l] fl g\. Then |[®l|j)l]| — |[®l|j)l] fl g\ >  \p\ — |i> D g |. Hence 
I  \ =pa thl (n l ,  [xl \pl] ,g,p).

•  The proof for the other clauses is analogous.

Now, Negp2 = {m em ber}  and P., =  {(ƒ), (fl1)}. It is routine to check that I\{member} 
is a model of c o m p ^ J  ).

3. Pi is acyclic w.r.t. the level mapping:

\cov(p,g)\ = \p\ +  b | + 3 ;

\notcov(p,g)\ = \p\ +  \g | +  2;

|node(s, t)\ =  |i| +  1;

|member(s, t)\ =  |i|.

4. Consider a ground instance

ham(g,  p) pa th{n l,  n2, g , p ) , cov(p , g ) .

of 1) and suppose that I  \= p a t h ( n l ,n 2 , g,p). So | |̂ +  1 > \p\. Hence \ham(g,p)\ =  
3bl + 4  > bl +  \g\ + 3  =  \cov(p,g)\. □

198



P r o v in g  T e r m in a t io n  o f  G e n e r a l  L o g ic  P r o g r a m s

7. L o w -A c c e p ta b ility

In the previous two sections, we have integrated the notions of acyclicity and acceptability, 
by means of a partition of the program into an upper and a lower part. We introduced the 
notion of up- and weak up-acceptability, where the upper part of the program is proven to 
be acceptable and the lower part acyclic. In order to treat also the converse case, i.e., the 
upper part being acyclic and the lower part acceptable, we introduce now the notion of low- 
acceptability. We follow the structure of the previous sections: first, a motivating example is 
presented. Next, we define the notion of low-acceptability and prove some results. Finally, 
we apply this notion to the program of our example.

7.1 A n Exam ple: Graph Specialization

Graph structures are used in AI for many applications, such as the representation of re
lations, situations or problems (see e.g., Bratko, 1986). Two typical operations on graphs 
are find a path between two given nodes, and find a subgraph with some specified properties. 
The program SPECIALIZE below uses both these operations to solve the following problem. 
Given two nodes n \ ,  n 2 in a graph g, find a node n  that does not belong to any acyclic path 
in g from m  to n 2 . The program SPECIALIZE consists of the clauses:

1) s p ec ( N l ,N 2 ,N ,G )  <
-1 u nspec (N l ,N 2 ,N ,G ) .

2) unsp ec (N l  ,N2 ,N,G) <—
p a t h ( N l , N 2 , G , P ) , 
member(N,P) .

augmented with the program ACYPATH of the previous section. The relation spec is spec
ified as the negation of unspec, where unspec(n l, n 2 , n, g) is true if there is an acyclic 
path of the graph g connecting the nodes n l  and n2 and containing n. For instance, 
s p e c (a ,b ,c ,  [ [a ,b ]  , [b ,c ]  , [a ,a ] , [ c ,b ]]  ) holds (Figure 4).

Observe that SPECIALIZE is not terminating: for instance, the query p a th l(a , [b ,c ]  ,d ,e )  
has an infinite derivation obtained by choosing as input clause (a variant of) the clause p3) 
and by selecting always its rightmost literal. However SPECIALIZE is left-terminating. In 
order to prove this result using acceptability (Definition 4.2), we need to find a model of 
SPECIALIZE that is also a model of com p(SPEC lA LlZE),  which is rather difficult. Note also 
that the notions of weak up- and up-acceptability do not help to simplify the proof. How
ever, we can split SPECIALIZE in two subprograms: P> consisting of the clause 1) and P\ 
consisting of the rest of the program. Note that P2 extends Pi. Therefore, in order to show 
that SPECIALIZE is left-terminating, it is sufficient to prove that P> © P\ is acyclic, that P\ 
is acceptable, and that the corresponding level mappings are suitably related.

7.2 L ow -A cceptability

Formally, we introduce the following notion of low-acceptability.
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Figure 4: spec(a, b, c, [[a, b], [b, c], [a, a], [c, 6]]) holds

D efinition  7.1 ( L o w - A c c e p t a b i l i t y )  Let | | be a level mapping for P.  Let R  be a set of 
clauses s.t. P  = Pi U R  for some Pi, and let I  be an interpretation of R. P  is low-acceptable 
w.r.t. | |, R  and I  if the following conditions hold:

1. Pi extends R;

2. P  © R  is acyclic w.r.t. | ||pq_r;

3. R  is acceptable w.r.t. | ||^ and I;

4. for every ground instance H  <— L i , . . . ,  L n of a clause of Pi, for every 1 < i < n, if Li 
is defined in R  and is not a constraint, then \H\ > |L*|.

A program is low-acceptable if there exist | |, R  and I  s.t. P  is low-acceptable w.r.t. | |, 
R  and I .  □

The notion of low-boundedness is defined as in the previous section, by replacing |Q|“P,J 
with

|Q |to o ,/ _  | | £ / |  |  ̂ js a ground instance of Q and I  \= L'kl A . . .  A L k },

where L'k i , . . . ,  L k are the literals of L [ , . . . ,  L 'i _ 1 whose relations occur in R.
To prove the analogue of Theorem 5.5 for low-bounded queries, we associate with a 

low-bounded query Q a pair tt(Q)iow,i =  (|[Q]|zoiu,7,Pd of multisets, with for a
program P  and an interpretation I

\[Q]\iow,i,p = bag(max\Q\lk ™,r, . . . ,  m ax\Q \lk ™,r),

where L kl ,■■■, /.*•„. are the literals of Q whose relations occur in P.

T heorem  7.2 Suppose that P  is low-acceptable w.r.t. \ \, R  and I .  Let Q be a low-bounded 
query. Then every l d c n f  -derivation for  Q in P  contains only low-bounded queries and is 
finite.
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Proof. The proof is similar to that of Theorem 5.5, where one replaces tt(Q)up,i  with

The following result is a direct consequence of Theorems 7.2 and 4.6.

C o r o l l a r y  7 .3  A general logic program is low-acceptable i f  and only i f  it is acceptable.

E x a m p l e  7 .4  ( s p e c i a l i z e  i s  Low-Acceptable)  We show that the program SPECIALIZE 
is low-acceptable. Consider the program S P E C 1= S P E C IA L IZ E \{1 )} . Then the proof proceeds 
as follows.

1. The p r o g r a m  {1)} extends S P E C l.

2. The program { l ) } © S P E C l  is acyclic w.r.t. the level mapping 

\spec{n l,n2 ,n ,g )\  =  3|#| +  5.

3. The program S P E C l is acceptable w.r.t. | | and the interpretation I , with | | defined as 
in Example 6.5 for atoms with relation member, pa th l ,  path, and \unspec(nl, n2, n,g)\  =  
3b | "I" 4; and with I  = I-unspec u I  path U Ipathl U Imember i S.t.:

Iunspec = [unspec(N  1, N2, N ,  G)],

and Ipath, Ipathi, and I member are as before (Example 6.5).

4. Consider a ground instance

spec(nl, n 2 , n, g) <— ->unspec(nl,n2 ,n ,g )  

of 1). Then

\spec(nl, n2, n, g)\ =  3|g| +  5 > 3|g| +  4 =  \unspec(n l ,n2 ,n ,  g)\.

Consider the query Q =  sp e c (a ,b ,X , [ [a ,b ]  , [b ,c ]  , [ a ,a ] ] ). Because Q is low- 
bounded, it has a finite ldcnf-tree, with answer X  ^  a , X  ^  b. Notice that by using 
negation as failure Q flounders. □

8. A  M e th o d o lo g y  for P r o v in g  L eft-T erm in a tio n

Definitions 5.3, 6.3 and 7.1 provide a method for proving left-termination of a GLP, which 
is summarized in Definition 8.1 below. In this section, we first discuss advantages and 
drawbacks of this method. Next, we introduce a methodology for proving left-termination 
of GLP’s that incorporates the notions we have introduced in the previous sections. Finally, 
we give an example in order to illustrate the methodology.

D e f i n i t i o n  8 .1  (A Method f o r  Prov ing  L e f t - T e r m in a t io n )

1. Find a maximal set R  of clauses of P  s.t. R  forms an acyclic program and P l \  U li  
is s.t. either R  extends P\ or vice versa.

2. If R  extends P\ then:
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(a) Prove that P  © R  is acceptable w.r.t. a level mapping, say | \pqr ,  and an inter
pretation.

(b) Use | |pq_r to define a level mapping | for R  s.t. R  is acyclic w.r.t. | |#, and s.t. 
for every ground instance H  <— L \ , . . . ,  L n of a clause of R,  for every 1 < i < n: 
if Li is defined in Pi  then >  \Li\pQR holds.

3. If Pi extends R  then:

(a) Prove that R  is acyclic w.r.t. a level mapping, say | \r.

(b) Use | \r  to define a level mapping | \p q r  for P  © R  s.t. P  © R  is acceptable 
w.r.t. | \p q r  and an interpretation I, and s.t. for every ground instance H  ^
l . \ ........L„ of a clause of P i, for every 1 < i < n: if Li is defined in R  and if
those literals among l . \ ........L-, whose relations occur in P  © R,  say L n , . . . ,  Lik,

are s.t. I  \= L n , . . . ,  1.^.. then \H\p qr  >  \Li\p holds. □

An advantage if this method is that it partly overcomes a drawback of the original 
method of Apt and Pedreschi to prove left-termination, where one has to find a specialized 
model of the entire program. Unfortunately, our method is not always applicable. This 
happens because in point 2. we use P  © R,  thus discarding the literals of R  occurring in 
Pi. These literals could be relevant for the left-termination behaviour of P i. For instance, 
in the program

P <- q. P- 
q <- s .

if we take Pi and R  to be the first and second clause, respectively, then Pi extends R, 
but Pi © R  is p<— p, a clearly non-acceptable program. This problem can be overcome by 
considering also some semantic information about R,  which leads to the following alternative 
definition of up-acceptability.

D e f i n i t i o n  8 .2  (New U p - A c c e p t a b i l i t y )  Let | | be a level mapping for P . Let R  be s.t.
P  =  Pi U R  for some P i, let I r  be a specialized model of R,  and let Ip t be a specialized 
model of P  © R.  P  is new up-acceptable w.r.t. | |, R, I r  and Ip 1 if the following conditions 
hold:

1. Pi extends R;

2. for all ground instances H  <— L \ , . . . ,  L n of clauses of Pi, for every 1 < i < n, with

n  = m in ( { n }  U { j  G [1, n\ \ I r  U I Pl ^  Lj}),

•  if Li is defined in P li  then \H\ > \Li\,

•  if Li is defined in R  then \H\ > |L*|.

3. R is acyclic w.r.t. | |. □
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One can check that the results we proved for up-acceptability hold as well for the above 
definition. In particular, the notion of new up-acceptability is equivalent to the one of 
acceptability. Note that here we have to find some semantic information on both the ‘upper’ 
and the ‘lower’ part of the program; however, information on the ‘lower’ part is used only 
on the ‘upper’ part of the program. Therefore, also in this case, less semantic information 
is needed than with the original definition of acceptability by Apt and Pedreschi. Let us 
illustrate the application of new up-acceptability in the following toy example.

E x a m p l e  8 .3  Consider again the program

1) p <- q ,  p.
2) q <- s .

We prove that it is new up-acceptable.

1. The program {1)} extends {2)};

2. Consider the level mapping

bl = kl =  i, \s\ =  o,
and the interpretations

J{i)} =  {P}> J{2)} =  0-
Then I ^ y  and J{2)} are specialized models of {1)} and of {2)}, respectively. We have 
that I {i) U J{2)} ^  q and \p\ =  |g|.

3. From |g| =  1 > 0 =  |s| it follows that {2)} is acyclic w.r.t. | |. □

Observe that Definition 8.2 is still not applicable in some cases, for instance to the 
program

1) p <- q ,  p.
2) q <- s .

because the program { 1)} © {2)} has no specialized model.
Another drawback of our method is its lack of incrementality. Nevertheless, we can 

define an incremental, bottom-up method, where the decomposition step is applied iter
atively to the subprograms until the partition of a subprogram becomes trivial. This is 
possible because of the equivalence of up-/weak up-/ low-acceptability and acceptability. 
These observations are incorporated in the following definition. Recall that Bp  denotes the 
Herbrand base of P .

D e f i n i t i o n  8 .4  (An In cre m enta l  Method)

•  Split P  into n  > 1 parts, say P i, . . . , P n s.t. for every i G [1, n  — 1]:

-  Pi+ 1 (weakly) extends I):

-  either Pi or P*+ i is acyclic.
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•  Define incrementally the level mapping | |p1u...uPn =  I |fj U . . .  U | \pn and the inter
pretation Ip1\j...\jpn =  Ip t U . . .  U Ipn as follows.

1. (base) If Pi is acyclic then find the corresponding level mapping | \pt ; otherwise 
prove that Pi is acceptable w.r.t. a level mapping | and an interpretation Ip1.

2. (induction) Suppose that | \ph is defined for every 1 <  k < i, and suppose that 
Iph is defined for every 1 <  k < i if Pi is acyclic, and for every ! < / . - <  i if I)  is 
acceptable, with 1 < i < n. Then,

(a) If Pi+ 1 is acyclic then use | \p{ to define a level mapping | |pi+1 for Pi+i © Pi 
s.t. Pi+ 1 © Pi is acyclic w.r.t. | |pi+1, and s.t. for all ground instances H  <— 
L i , . . . ,  L m of clauses of P*+i, for every 1 < j  < m, if L j  is defined in Pi then
\H\Pi+1 >  \Lj \p,.

(b) If Pi is acyclic then use | |pi to define a level mapping | |pi+1 for P*+i © Pi 
s.t.:

i.A. either Pi+i © Pi is acceptable w.r.t. a specialized model Ip i+1 and 
| |pi+1; in this case set Ip i to be Bp{;

B. or find a specialized model Ip i of Pi © Pj_i, and a specialized model 
IPi+i ° f  Pi+i © Pi s -t- f°r ground instances H  <— L i , . . . , L m of 
clauses of Pi+i and for every 1 <  k < fn  if L k is defined in P*+i then 
\H\ p i+1 >  \Lk \pi+1.

ii. For all ground instances H  <— L i , . . . ,  L m of clauses of Pi+i and for every 
1 < k < fn  if L k is defined in Pi then |i i |p i+1 >  \Lk \pi .

Above, fn = m in ({ m }  U { j  G [l,m ] | Ip^.-.uPi+t L j}) .
□

We prove that this method is correct, i.e., that P  is left-terminating if the above method 
is applicable. To deal with non-ground queries, we use the original notion of boundedness 
by Apt and Pedreschi, this time w.r.t. the interpretation resulting from the method.

D efin itio n  8.5 (Bounded Query) Suppose that the partition P i , . . . ,  Pn of P , | \pt u...uPn 
and Ip 1\j...\jpn are obtained using the method of Definition 8.4. Let Q = L i , . . . ,  L m . Then 
Q is bounded (w.r.t. \ \ and Ipju.-.uP^J if for every 1 <  i < m, the set

\Q\iPlU'"UPn =  | L [ , . . . ,  L'n is a ground instance of Q and 
Iptu-.upn \= L [ A  . . .  A L\_  J

is finite. □

T h eorem  8.6  Suppose that the partition P i , . . . ,  Pn, \ Ipju.-.uPn and IPii)...uPn are obtained 
using the method of Definition 8-4- Let Q be a bounded query w.r.t. \ |_p1u...up„ and Ip t u...uPn - 
Then every ld c n f -derivation of Q is finite and it contains only bounded queries.

Proof. Recall that Ip1u...uP„ = Ip t U . . .  U Ipn . For a bounded query Q = Q i , . . . ,  Qm, we de
fine the n-tuple tt(Q)iPlU,„UPn =  (| [Q]\iPn,pnePn- i  > • • • > I [Q] Ii P,2 ,-P29 -Pi> I[Q]\iPl,Pi) of multisets, 
with for a program P , and an interpretation J, |[Q]|/,p =  bag(max\Q \kl , . . . ,  m ax\Q \km),

204



P r o v i n g  T e r m i n a t i o n  o f  G e n e r a l  L o g i c  P r o g r a m s

where L kl, ■ ■ ■, L km are the literals of Q whose relations occur in P. The proof is similar to 
the one of Theorem 5.5. □

In the following section we illustrate the application of this method.

8.1 A n Exam ple: Graph R eduction

In Example 7.4, a program is described which for a graph g and two nodes n l  and n2, finds 
a node n that does not belong to any acyclic path in g from n l  to n2. Using this program, 
we define here the program REDUCE which for a non-empty graph g and two nodes n l and 
n 2, computes the graph g' obtained from g by removing all the nodes that do not belong to 
any acyclic path in g from n l to n 2, and all the arcs containing at least one of such nodes 
(see Figure 5).

Figure 5: rem(a, b, [[a, b], [b, c], [a, a], [c, b]], [[a, b], [a, a]]) holds

The program REDUCE consists of the clauses:

1) red(N l,N 2,G 1,G 2) <
-i u n if  (G l, [] ) ,  
sp ec(N l,N 2 ,N ,G 1), 
rem (N ,G l,G ), 
red (N l,N 2 ,G ,G 2).

2) red(N l,N 2,G ,G ) <-
spec(N l,N 2,N ,G ) .

3) rem (N ,[[X ,Y ]IG l],G 2) <-
member(N, [X, Y]) ,  
rem (N ,G l,G 2).

4) rem (N,[[X ,Y] |G 1],[[X ,Y ] |G2]) <
-i member(N, [X,Y] ) ,  
member(N,G1), 
rem (N ,G l,G 2).

5) rem(N, [ ] , [ ] )
6) unif(G ,G ) .
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plus the program SPECIALIZE. The relation red(nl,  n2, g, g’) is defined by two mutually 
exclusive cases, corresponding to the clauses 1) and 2). Clause 1) describes the case where 
there is a node that does not belong to any acyclic path in g from n l  to n 2 : first, the 
relation spec is used to find such a node; next, the node and the corresponding arcs are 
deleted from the graph, using the relation rem;  finally, red  is called recursively on the 
resulting graph. Clause 2) describes the final situation, where g contains only nodes that 
belong to some of its acyclic paths from n l  to n 2  . The relation rem(n ,g l ,g2)  holds if the 
graph g2 is obtained from the graph g 1 by deleting all the arcs containing the node n  of g 1 . 
It is recursively defined by the clauses 3), 4) and 5), as one would expect.

Observe that queries of the form red(nl,n2,  [],g) fail, for every n l,n2 ,g .
We prove that REDUCE is left-terminating by using our bottom-up method. REDUCE 

can be partitioned in three parts:

•  Pi is the program S P E C l of Example 7.4;

•  P> consists of the clauses 3), 4), 5) of REDUCE plus the clauses 1), p4), p5) of SPE
CIALIZE;

•  P3 consists of the clauses 1), 2), and 6) of REDUCE.

It is easy to check that P2 is acyclic. Moreover, P3 extends P>. and P2 weakly extends Pi 
w.r.t. {member}.  So we can apply the bottom-up approach to construct a level mapping
I |PiUP2uP3 and an interpretation Ip 1uP2uP3- The proof proceeds as follows.

•  Pi is acceptable w.r.t. | |pj and Ip t given in Example 7.4.

•  P2 © P i is acyclic w.r.t. | \p2 defined as in Example 7.4 for spec and m em ber , and s.t. 

\ r e m (n ,g l ,g 2 )\p2 = \g 1 | +  2.

Moreover, clause 1) of SPECIALIZE satisfies the condition relating the two level map
pings.

•  In order to define | |p3, Ip 3 and Ip2, we apply point i.B. Consider the level mapping 

\red(n l,n2 , g l ,  g2)\ps =  31^11 +  5,

\un if(g ,g ) \p 3 =  0, 

and let

I p2 = {rem(n,  gl,  g2) \ g 1, g2 lists and either gl = g2 = [ ] or \g2\ < |5 1|}U 

U[spec(X, Y, Z, W)\  U {member(n, g) \ g list and n in set(g)},

Ip 3 = [ r e d ( N l ,N 2 ,G l ,G 2 ) \U  { u n i f ( x , y )  \ x  = y}.

It is easy to check that Ip2 and Ip 3 are specialized models of P> © Pi and P3 © P2, 
respectively. It remains to check the tests in points i.B and ii.

-  Consider a ground instance

red(nl,  n 2 , gl, g2) < - ->unif(g 1, [ ]), spec{nl, n2, n, gl),
rem (n , g l ,  g), red (n l ,  n 2 , g, g2 ).
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of 1). We have that:

\r e d (n l ,n 2 , g l , g 2 )\Ps =  3^1| + 5  > 0 =  \->unif(g 1, [ ] ) |f3;

\red(n l,n2 , g l ,  g2)\ps =  3 |g l| +  5 =  \spec(nl, n2, n, g l) \p2;

\r e d (n l ,n 2 ,g l ,g 2 ) \Ps =  3|#1| +  5 > \gi\ + 2 = \rem(n, g l ,  g)\p2.

Now, suppose that Ip 2 U Ip3 |= ->unif(gl, [ ]), rem (n , g l ,  g). Then g and g l  are 
lists, g 1 ^  [ ], and \g\ <  \gl\. Then,

\red (n l ,n 2 ,g l ,g 2 ) \p 3 =  3|^1| +  5 > 3\g\ +  5 =  \red(n l,n2 , g, g2)\Ps.

-  Consider a ground instance

r e d ( n l ,n 2 ,g ,g) ->spec{nl, n 2 , n, g).

of 2). We have that:
\red(nl, n2, g, g)\p3 =  3|#| +  5 =  \spec{nl, n2, n, g)\p2.

Observe that the presence of the literal ->unif(G  1, [ ]) is fundamental to guarantee left- 
termination. Without it, left-termination would no longer hold (take for instance the query 
red (n l ,  n 2 , [ ],g)).

9. C o n c lu sio n

In this paper we proposed simple methods for proving termination of a general logic pro
gram, with respect to SLD-resolution with constructive negation and Prolog selection rule. 
These methods combine the notions of acceptability and acyclicity. They provide a more 
practical proof technique for termination, where the semantic information used is minimal- 
ized. We have illustrated the relevance of the methods by means of some examples, showing 
in particular that SLD-resolution augmented with Chan’s constructive negation is powerful 
enough to formalize and implement interesting problems in non-monotonic reasoning.

We would like to conclude with an observation on related work. Apt and Pedreschi 
(1994) introduced a modular approach for proving acceptability of logic programs, i.e., they 
do not deal with programs containing negated atoms. Proving termination of general logic 
programs in a modular way, using the notion of acceptability, seems a rather difficult task, 
because it amounts to building a model of the completion of a program by combining models 
of the completions of its subprograms. Apt and Pedreschi do not tackle this problem. In 
this paper, we have provided an alternative way of proving termination w.r.t. the Prolog 
selection rule, where one tries to simplify the proof by using as little semantic information 
as possible, possibly in an incremental way using the methodology illustrated in Section 8 .
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