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10 Hyperbolic Structures and Root Systems

Gert Heckman and Eduard Looijenga 

March 30, 2010

Abstract

We discuss the construction of a one parameter family of complex 
hyperbolic structures on the complement of a toric mirror arrangement 
associated with a simply laced root system. Subsequently we find 
conditions for which parameter values this leads to ball quotients.

1 G eom etric structures
Suppose M  is a connected smooth complex manifold of dimension n. In 
fact we shall assume that M  is an open subset of Cn with coordinates c =  
(ci, • • • , zn) on M. Write d¿ for d/dzi. A connection on the one jet bundle 
of M  is given by a system of n(n +  l) /2  linear differential equations

id A  + + ba  (- )]/ (- ) = 0
k

with coefficients , bij holomorphic on M  and a local solution ƒ holomorphic 
around some p G M. For p G M  the space of local solutions near p is 
a complex vector space which we denote by V*. Clearly a local solution 
ƒ G V* is completely determined by the numerical values f(p) and 5¿/(p) for 
i =  1, • • • , n. Hence the dimension of V* is at most equal to (n +  1).

D efinition 1.1. The system of n(n +  l) /2  linear differential equations

id A  + + ba  (- )]/ (- ) = 0
k

is called integrable if the dimension ofVp is equal to (n +  1) for all p G M.
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We assume from now on that the system is integrable. If 7  : [0,1] —> M  is 
a path fromp =  7 (0) to q = 7 (1) then analytic continuation of local solutions 
along 7  gives an invertible linear map

A* : V* ->■ V*J i 7 • 7  Q

of local solution spaces. Indeed the inverse of A* is equal to with 7 -1 
the path 7  in reversed direction. If the path 8 : [0,1] —> M  has begin point 
q = 8(0) and end point r =  £(1) then the composition 87  is defined by first 
traversing 7  and subsequently 8. It has begin point p and end point r and 
the product rule

A* — A* A* ■ V*  \ V*/1¿7 — ■ vp ^  vr 
is obvious. Let us write H\(M,p) for the fundamental group of M  with base 
point p. The product rule on IIi(M ,p ) is derived from the above composition 
rule. Hence the map 7  1—> A* yields a representation

p* :U 1(M ,p )^ G L (V p*)

which is called the dual monodromy representation of the integrable system.
Let us assume that the base point p E M  is fixed throughout the rest of 

these notes. So we will drop the index p and simply write V*, H\(M) and 
so on. Let us denote V  =  Hom(V*,C) for the vector space dual to V*, and 
write

p : n,(M) -► GUV) . p(7) = ( p - ( T 1))' = V*
for the monodromy representation. The image G = p (H i(M )) inside GL(V) 
is called the monodromy group, and we write T =  P G  inside PGL(V) for the 
projective monodromy group acting on P(V). Write P  : GL(V) PGL(V) 
for the natural map. Note that H \(M )/Ker(Pp) =  T by the homomorphism 
theorem.

We define the multivalued evaluation map

ev: M  —+V , f(ev(q)) =  A*f(q)

for all ƒ G V*. Here 7  : [0,1] —> is a path from p to q, and A *f  is the 
analytic continuation of ƒ G V* along 7  as above. The multivaluedness of 
the evaluation map comes from the choice of a path 7  from p to q.

Note that ev(q) is a nonzero vector in V  for all q G M, because for each 
q G M  there exists a local solution in V* which does not vanish at q. Hence 
the multivalued projective evaluation map

Pev : M  — P(V) , Pev(q) =  [ev(q)\
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is well defined. Here we denote by [w] G P(V) the line through v G V  — {0}. 
Since the projective evaluation map is the main object of study we have 
chosen to denote the initial local solution space by V* and the dual (range 
of evaluation map) vector space by V.

In order to eliminate the multivaluedness of these maps let us denote by 
M  the universal T-covering space of M related_to our fixed base point p. In 
other words, M  is equal to Ker(Pp )\M  with M  the universal covering of M, 
and r  =  U 1(M )/Ker(Pp ) the projective monodromy group. Then we have 
the commutative diagram

M  P(V)

m  r \p (y )

with the left vertical arrow an unramified T-covering map, and the group 
T =  H i(M )/  Ker(Pp) acting as group of deck transformations on the left side 
of the diagram, and the group T =  P G  acting as projective monodromy group 
on the right side of the diagram. The top horizontal arrow is singlevalued 
and removes the multivaluedness of the projective evaluation map on M. But 
r\P(V) is an ill defined space unless the action of T on (the image of Pev 
in) P(V) is properly discontinuous. Recall that the multivalued Wronskian 
(with d0fj = f j )

W U o r-  > fn) = det(5j/?-)o<iJ<n 
is nowhere vanishing if and only if / 0, / i ,  • • • , fn is a basis of the local solution 
space V*. Note that the Wronskian is a solution of the first order system

n

a  +  E  4  w m  ƒ»’ ••• .ƒ»)(-) =  ° 
i= 1

in local coordinates as before. Hence once the Wronskian is nonzero some­
where it remains nonzero everywhere. A basis / 0, • •• ,ƒ« of V* identifies 
P(V) with Pra(C), and identifies

Pev(q) -  [f0(q) : h(q) : • • • : fn(q)\ : M  -+ Pra(C)

with the projective evaluation map. This map is locally biholomorphic since 
(say f0 ± 0)

, f n )  =  f o +1 det(5»(/j/fo ) ) l< i , j< n
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is essentially the Jacobian of the projective evaluation map in the affine chart 
{/o 7  ̂ 0}. The conclusion is that M  is locally modelled on the projective 
space P(V) of dimension n. We say that M  is equipped with a projective 
structure, and the projective evaluation map is also called the Schwarz map 
of the projective structure.

D efinition 1.2. A projective structure on M  with Schwarz map

Pev : M  —>• P(V)

is called an elliptic structure if V  has a Hermitian form (•,•) of Euclidean 
signature that is invariant under the rnonodrorny group G.

In other words M  becomes a Kahler manifold locally modelled on the pro­
jective space P(V) equipped with the Fubini-Study metric. By construction 
the Schwarz map Pev : M  —>• P(V) becomes a local isometry.

Suppose V  has a Hermitian form (•, •) of Lorentzian signature (n, 1) then

B (V ) = {[v] G P(V); (v,v) < 0}

is called the complex hyperbolic ball of dimension n. The complex ball is 
endowed with its natural hyperbolic metric.

D efinition 1.3. A projective structure om M  with Schwarz map

Pev : M  —>• P(V)

is called a hyperbolic structure if V  has a Hermitian form (•,•) of signature 
(n, 1) that is invariant under the rnonodrorny group G. Moreover we also 
require that

p Tv  : M  —> ® (V )

so the image of the Schwarz map should be contained inside the ball ®(V).

In other words M  becomes a Kahler manifold, which is locally modelled 
on the complex hyperbolic ball B(V). By construction the Schwarz map Pev : 
M  —>• ®(V) is a local isometry An elliptic or hyperbolic structure is called a 
geometric structure, and the Schwarz map is also called the developing map 
of the geometric structure. The intuitive idea of the developing map is the 
unrolling of the geometric manifold M  over P(V) or B(V) respectively If the 
vector space V  with the Hermitian form of Euclidean or Lorentzian signature 
is given we simply write P =  P(V) and B =  B(V).
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Exam ple 1.4. Suppose M  has a hyperbolic structure, for which the hyper­
bolic metric on M  is complete. For example if M  is a compact space the 
metric is always complete. Never mind that this contradicts our (avoidable) 
assumption that M  C C™ is Zariski open. Then the developing map

Pev : M  —> B

becomes an unramified covering map, hence is a biholornorpic isomorphism, 
since B is simply connected. Therefore we get a commutative diagram

M  B

m  r \B

with T a discrete torsionfree subgroup of Aut(B) =  PU(V, (•,•)). Any M  =  
r \B  for such T arrises this way, and such T exist in abundance.

We are interested in the general setting of a smooth projective manifold 
M  = M U D  with D  a divisor that is an arrangement, that is in suitable local 
coordinates D  is a finite collection of hyperplanes. Suppose we have given 
on M  a projective structure

idA  + aU z)dk + h ( z)\ f(z) = 0 
k

which is regular singular along D. This means that local solutions have 
moderate growth along D. Assume that the projective structure on M  is in 
fact a hyperbolic structure. Let G be the monodromy group and T =  PG  
the projective monodromy group.

In our examples it seldom happens that the hyperbolic metric on M  is 
complete. However under very restrictive conditions it is possible to construct 
a new compactification M  M + with an associated partial compactifica- 
tions M  M+, and a partial compactification B B+, both with action 
by T, and a continuous equivariant extension Pev  : M + — y B+ such that 
the diagram

M  ------ ► M+ B+ 

M  ------ ► M+ T\B+
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commutes. The left vertical arrow is an unramified covering, while the other 
two vertical arrows should be ramified coverings. The crucial property we 
want is that the extended developing map

P^v+ : M + —y B+

is a locally biholomorphic covering map over the full ball B, and hence is a 
biholomorphic isomorphism. The desired compactification M + of M  should 
be obtained from the divisor D  in M  by a birational Cremona type transfor­
mation (blow up and blow down process). By a careful analysis of the local 
exponents of our given integrable system corresponding to the hyperbolic 
structure one can see which of the strata of the intersection lattice of D  need 
to be blown up and in which order. However the blow down process can only 
be achieved in an indirect way from Stein factorization in the diagram

M  ------ ► M+ ------ ► M+ B+

Pev^
M  ------ ► M+ ------ ► M+t ---- ^  T\B+

Again we want the Stein factorization

■ M +  — ► B+

to be a locally biholomorphic covering over the full ball B, and hence a 
biholomorphic isomorphism.

It is absolutely necessary to understand the one dimensional case of the 
Euler-Gauss hypergeometric equation, before dealing with the delicacies of 
the higher dimensions.

2 T he E uler-G auss hypergeom etric equation
Let M  be equal to P — {0,1, oo} with variable z, 9 =  zd and P =  C U {oo} 
the Riemann sphere. The Euler-Gauss hypergeometric equation is the second 
order linear differential equation

[0(0 +  7  -  1) -  z(0 +  a)(0 +  f3)\f = 0
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with Q!,/5,7 three complex parameters. We shall be interested in the case 
that a, (3,7  G R and even that a, (3,7  G Q. It has regular singular points at 
z = 0,1 and 00 with local exponents given by the Riemann scheme

0 1 00
0 0 a
1 -  7 7 -  (a + [3) P

The first line contains the three singular points and the next two lines give 
the local exponents at these points. So the exponent differences at 0, 1 and 
00 are k = 1 — 7 , A =  7  — (a + (3) and n =  (3 — a  respectively We shall 
assume that 0 < k , A, n and k +  A, k + fj,, X + fj, < 1, which can always be 
arranged after shifting a, (3,7  by integers and performing sign changes on the 
differences k, A,/i. Such a parameter set is called reduced.

Let II =  IIi(M ,p ) be the fundamental group of M  =  P — {0,1, 00} with 
base point p = 1/2 with three generators 7o,7 i , 7 oo and the single relation 
7oo7 i7o =  1 as indicated in the following picture.

Now let us pick two linearly independent solutions f i , f 2 on the upper 
half plane HI, and consider the projective evaluation map

Pev : H ->■ P , Pev(z) = h {z )/ f2{z)

which is also called the Schwarz map. Because of the ambiguity of the base 
choice / i ,  ¡2 the Schwarz map is only canonical up to an action of Aut(P). We 
claim that the the Schwarz map Pev  maps the upper half plane HI conformally
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onto the interior of a triangle with sides circular arcs, and with angles ktt, Xn 
and //.7T at the vertices Pev(0), Pev( 1) and Pev(oo) respectively. This circular 
triangle is called the Schwarz triangle of the hypergeometric equation.

For example, for the boundary interval (0,1) let us choose the solutions 
fh  ¡2  to be real on (0,1). This is possible since the hypergeometric equation 
is a real differential equation, since the parameters a, ft, 7  were assumed to be 
real numbers. In that case the image of the interval (0,1) under the Schwarz 
map is a real interval. For a general choice of ƒ 1, / 2 the image of (0,1) is the 
transform under an element of Aut(P), so a fractional linear transformation, 
of a real interval, and therefore equal to a real interval or a circular arc.

The angles of the Schwarz triangle at the vertices Pev(0), Pev( 1) and 
Pen(00) are equal to ktt, Xtt and respectively For example, near the 
origin 0 let us choose the solutions / i , ƒ2 of the form

/ i(~ ) = -1_7(1 + •••). h ( z ) = ( !  + ' ' ' )  

which in turn implies that

f i(z )/ f2(z) = zK (! + ■■■)

which indeed gives an angle k tt  at the vertex Pev(0) of the Schwarz triangle. 
For a general choice of / i , / 2 this angle k tt  is conserved by some fractional 
linear transformation.

By continuity we can extend the Schwarz map

Pev : HI U (—00, 0) U (0,1) U (1, 00) —> P

with image the Schwarz triangle minus its vertices. The key step in the argu­
ment of Schwarz is the beautiful insight that the analytic continuation of Pev
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is given by the reflection principle. Indeed, there are three possibilities for 
analytic continuation from the upper half plane HI to the lower half plane —HI, 
namely through the intervals (—oo,0), (0,1) and (l,oo). The analytic con­
tinuation of the Schwarz map is obtained by reflecting the Schwarz triangle 
in the corresponding sides. Now we can iterate the above construction with 
the new triangle, which allows one to understand the full analytic continua­
tion of the Schwarz map, step by step reflecting in sides of circular triangles. 
The domain of this full analytic continuation is the universal covering space 
M  of M  =  P — {0,1, oo}, and we write

Pev : M  —> P

for the analytic continuation of the Schwarz map.
The range of this map can get messy, as the triangles start overlapping. 

However in case the Schwarz triangle is dihedral, which means that

n = 1/k , A =  1 //  , ¡jl= 1/m

for some integers k ,l,m >  1, we do get a regular tesselation by mirror images 
of the Schwarz triangle. These requirements are called the Schwarz integrality 
conditions. The range G of this tesselation is equal to

G =  P, C, D

upto an action of Aut(P), depending on whether the angle sum of the Schwarz 
triangle

( k  +  A +  j j )  7T =  (1/k +  l/l +  l/m)ir 

is greater than tt, equal to tt, or smaller than tt respectively Here

D = { w G C ;  \w\ < 1}

denotes the unit disc. In this last case the disc D is bounded by a circle 
(Klein’s Orthogonalkreis) which is orthogonal to the three circles bounding 
the Schwarz triangle. This leads one to spherical, Euclidean and hyperbolic 
planar geometry respectively Note that in all three cases G is simply con­
nected. These results go back to Riemann [10], Schwarz [11] and Klein [6] in 
the golden 19th century of German mathematics.

Under the Schwarz conditions we shall now rephraze the above results 
in the language used in the first section. The fundamental group n  of M  =
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P—{0,1, 00} with base point z0 = 1/2 has three generators 70, 71, 7 oo with the 
single relation 7oo7 i7o =  1- The projective monodromy group T =  T(k,l,m ) 
is isomorphic to a quotient of H/H(k,l,m ) with H (k,l,m ) be the normal 
subgroup of II generated by 7q , 7 \ and 7 ™.

It is clear thatjdie Schwarz map factors through the intermediate covering 
M  =  II(k ,l,m )\M , and so the Schwarz map

Pev : M  —> G

is locally biholomorphic with image the complement in G of all vertices of the 
tesselating triangles. At this point we can fill in the vertices and the points 
above the vertices of the tesselating triangles, resulting in a commutative 
diagram

M  = U (k ,l,m )\M  ------ ► M+ G

M  = P - {0,1, 00} ------ ► M+ =  P T\G
The left vertical arrow is an unramified T-covering, while the middle vertical 
arrow is a ramified covering, branched of orders k, I and m above the points 
0, 1 and 00 respectively The extended Schwarz map

P^v+ : M + ->• G

is a locally biholomorphic covering map. Since M + is connected and G simply 
connected such a covering is a bijection, and we conclude that the extended 
Schwarz map is biholomorphic from M + onto G.

In other words the projective monodromy group T(fc, I, m) = II/II(fc, I, m) 
acts properly discontinuously on G with quotient T(k,l,m )\G =  P. This 
quotient map is ramified above the images under Pev+ of 0,1, 00 of orders 
k, I, m respectively The projective monodromy group T(fc, I, m) is called the 
Schwarz triangle group.

The group W (k ,l,m ) generated by the reflections in the sides of the 
Schwartz triangle is called the Coxeter triangle group. The Schwartz triangle 
group is the index two subgroup of the Coxeter triangle group, consisting of 
even products of reflections in the sides of the Schwartz triangle. The Coxeter 
triangle group W (k ,l,m ) acts on G by holomorphic and antiholomorphic 
transformations.

1 0



3 B inary lift o f th e  hypergeom etric equation

Consider the map w =  ( |  — \(z +  1 /z)) =  —(z2 — z 2)2/4 from P to P. It 
is a degree 2 ramified covering as indicated in the following picture

0

w -------------- •------------- •--------------------- •------
0 1 00

with ramification points z = 1 above w =  0 and z = — 1 above w =  1. 
Consider the Euler-Gauss hypergeometric equation on the projective line P 
with coordinate w and with Riemann scheme

w = 0 w = 1 w = 00
0 0 a
1 - 7 7  -  (a +  p) 13

of regular singular points and local exponents. The pull back under the map 
w = \ — | ( z  +  z“1) of the hypergeometric equation lives on the projective 
line P with coordinate z and takes the form

[192 +  k\----------9 +  2/̂ 2 -+  (\k\ +  k2)2 — A2] /  =  0
1 — z- i 1 — z

with 9 =  zd and d =  d/dz as before. It is easy to check the linear relations

01 =  A +  7̂ k\ +  k2 , /3 =  —A +  7̂ k\ +  k2 , 'j =  ̂ k\ k2

between the two parameter sets. This pull back has four regular singular 
points z =  1, — 1, 0, 00 with Riemann scheme

z = 1 z = — 1 z = 0 z = 00
0 0 a a
2 - 2 7 2 7 - 2  (a + /3) 13 13

as is clear from the above ramification picture and the Riemann scheme of 
the Euler-Gauss hypergeometric equation.

1 1



The multiplicative group Cx with the action of the group S2 =  {±1} by 
z i y z±:L together with the pull back of the hypergeometric equation has a 
natural generalization. Let G be a simple complex Lie group with maximal 
torus H  and Weyl group W. Instead of Cx with the action of S2 we consider 
the complex torus H  = (Cx)ra with the action of W. For simplicity we 
restrict ourselves to the simply laced case of type A D E.

4 T he root system  hypergeom etric equation
Let E[ =  (Cx)ra be a complex torus of dimension n with Lie algebra f) =  C™. 
For A in the character lattice Q =  Hom(ii, Cx) we denote the associated 
character by Et 3 h > hx E C x. For £ in the Lie algebra f) we denote the 
associated translation invariant vector field by 9g. The relation

9c{hx) =  A{0 h x V h e H

identifies Q with a sublattice of ()* =  Hom((), C).
Assume that Q carries an even integral scalar product (•, •) such that

R  = {a  G Q] (a, a) = 2}

is an irreducible root system of type A D E  of rank n. Extend the scalar 
product from Q to f)* and transfer it to f) =  ()*. Let W  < Aut(f)*) be the 
Weyl group generated by the orthogonal reflections sa(A) =  A — (A,cu)o; on 
()*, and transfer the action of W  to f) and E[ as well.

Let us fix a decomposition R  = R + U R_  into positive and negative roots. 
The full automorphism group W ' of Q is equal to W ' =  W  x D  with D  the 
subgroup of W ' fixing the associated positive chamber.

The codimension one subtorus Eta = {h  G Et] ha = 1} is called the mirror 
associated with the root a  in R. We denote H  = H °  U (UEta) and call H ° 
the complement of the toric mirror arrangement.

Theorem  4.1. The system of n(n+l)/2 linearly independent differential 
equations

1 I h ~ a
[e^r, + \k 0‘(£ )a (v )1 _  h- J a ' + a k v) ] f ( h)  = 0 V G i)

a > 0

is an integrable system on the toric mirror arrangement complement H ° , and 
is invariant under W . Here [)* =  [) via (•, •) and [)* 9  a  =  cüv G f). Moreover 
a = (n +  l)/4,  n — 2, 6,12, 30 for type An, Dn, E &, E 7, E$ respectively.
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As discussed in the first section the above special hypergeometric system 
associated with the root system R  gives a projective structure on H °, which 
is invariant under W '.

In the example of the root system of type Ai this equation boils down to 
(take £ =  77 =  a v/2 with variable z = ha and derivative 9 =  zd)

^ 2 ^ i  — z - ' f t  = ®

which is the pull back of the Euler-Gauss hypergeometric equation with the 
parameters k\ = k, k2 = 0 and A =  0 as described in the previous section.

Lemma 4.2. The orbifold fundamental group II^VF'yii0) is the extended 
affine Artin group

Art =  Art x D
with Art the affine Artin group with the usual generators T0,Ti, • • • ,Tn and 
braid relations, and D the group of automorphisms of the fundamental alcove.

Lemma 4.3. In the rnonodrorny representation p : II^VF'yii0) —> GLra+1(C) 
the Artin generators Ti map to complex reflections ti =  p(Tj) satisfying the 
quadratic Hecke relation (U — 1 )(U +  q) = 0 with q = exp(—27rik).

Lemma 4.4. For 0 < k < m with m the hyperbolic exponent given by

(
2/(n + l) for type An 
l/(n — 2) for type Dn 
l/ (n - 3 ) for type E n

the rnonodrorny representation is irreducible, and has an invariant Herrnitian 
form of Lorentz signature.

Lemma 4.5. For 0 < k < m the image of the Schwarz map

Pev : W \ H °  ->• Pra =  Pra(C) 

is contained in the ball B™ =  Bra(C).

The conclusion is that for each 0 < k < m the toric mirror arrangement 
complement H °  is endowed with a hyperbolic structure, which is invariant 
under W '. Equivalently W '\H ° has a hyperbolic structure as an orbifold.

13



5 T he Schwarz conditions
Let us assume that the connected smooth complex manifold M  has a smooth 
projective compactification M  = M  U D  with D  a divisor with normal 
crossings. In local coordinates z =  (zi,--- ,zn) the divisor D  is given by 
Zi • • • zd =  0 for some d =  1, • • • ,n. Suppose that we have given on M  a 
hyperbolic structure with regular singularities along D, which takes the form

idA  +  aU z^  +  M z)] ƒ(*) = 0
k

in these local coordinates. Suppose this system has local exponents (an 
unordered set with with possible repetitions) pi, • • • , fJ>n+i in Qd, where we 
write zM =  z™1 • • • z™d if ¡jl = nijtj with {ei, • • • , e<i} the standard basis 
of Zd. Clearing out common denominators in a minimal way by going to a 
finite covering we can assume that the local exponents { ¡ i i, • • • , ¡in+i} are in 
fact contained in Z™. In turn, this approximates locally on M  the projective 
evaluation map

z =  (zi, ■ ■ ■ , zn) i—y (zw : z^2 : • • • : z ^ +1) 

as a rational map with possibly poles along the divisor D.

D efinition 5.1. We say that the compactification M  =  M U D  is well adapted 
to the given projective structure on M  if (on a finite covering as above) the 
projective evaluation map extends locally over D as a rational map. This 
means that the closure and inclusion relations on the intersection lattice of 
D are preserved under the projective evaluation map.

In case the compactification M  = M  U D  is well adapted to the given 
projective structure the projective evaluation map might contract some of 
the strata, but it has a rational extension over D  without having to perform 
any further blow ups.

Definition 5.2. Assume that the compactification M  =  M  U D is well 
adapted to the given projective structure on M . We say that the Schwarz 
conditions hold, if the projective evaluation map has locally a biholornorphic 
extension over those codimension one strata of D, which are not contracted 
under the projective evaluation map.
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The above definitions should be formulated in a slightly more general way, 
so as to include possibly logarithmic terms as well. Despite the fact that in 
most examples logarithmic terms do occur along some strata, we leave this 
aside for the moment.

Q uestion 5.3. I f  the hyperbolic structure orn M  has a well adapted com­
pactification M  = M U D  for which the Schwarz conditions do hold, then the 
projective monodromy group T is a discrete subgroup of Aut(B) of cofinite 
volume, and the projective evaluation map

is biholornorphic onto a Heegner divisor complement.

6 T he Schwarz conditions for root system s
Let {q'i , • • • , oi,n} be the set of simple roots in the fixed set of positive roots 
R+. The biholomorpic map

is an isomorphism of Abelian groups, and the embedding (Cx)ra Cn defines 
a partial compactification of H. Here is a picture for the root system of type

Pen : M  T\B

A-2-

z i =  0 -i =  l

15



Using the action of the extended Weyl group W ' on the torus H  this partial 
compactification extends to a smooth full compactification H  ^  H  by a 
boundary divisor with normal crossings. These boundary divisors are called 
the toric strata.

The intersection of the mirror arrangement UHa with this toric bound­
ary divisor is transversal. There is a natural way to resolve the mirror ar­
rangement to a divisor with normal crossings. If we are given a connected 
component of an intersection of mirrors, then the set of those roots, whose 
mirror contains the component, forms a root subsystem of R. We say that 
the connected component is irreducible if the associated root subsystem is 
irreducible. We start by blowing up the irreducible connected components of 
dimension zero, and consider the strict transform of the mirror arrangement 
on this blow up. Subsequently we blow up the irreducible connected com­
ponents of dimension one, and consider the strict transform of the mirror 
arrangement on this blow up. Repeating this construction we arrive at a 
smooth compactification

H °  -->• (H °)+
with a boundary divisor with normal crossings. Remark that the construction 
is equivariant for the action of the extended Weyl group W '.

The special hypergeometric system described in the previous section has 
regular singular points at infinity, both for the toric strata and the blown up 
mirror arrangement. The following results are obtained by explicit calcula­
tions.

Lemma 6.1. The Schwarz conditions for the toric strata are given for type 
An by

(n -  l)k/2 6 1/N ,

and for type Dn or E n by
dk E 1/N .

Here d is the length in the Coxeter diagram from an extremal node to the 
triple node, so d = 1, n — 3 for type Dn and d = 1, 2, n — 4 for type E n.

Lemma 6.2. The Schwarz conditions for the mirror strata and near the 
identity element are given by (with h the Coxeter number)

(1 -  2k)/2 G 1/N if>  0 , [hk-  l ) /2 G 1/N if>  0 ,
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and near the other special point of type A7 in E 7 by

(1 -  2k)/2 G 1/N if>  0 , (8k-  l ) /2 G 1/N if > 0 ,

and near the other special points of type A8 and D 8 in Eg by

(1 -  2k)¡2 G 1/N if>  0 , (9k -  1) G 1/N if>  0 
(1 -  2k)¡2 G 1/N if > 0 , (U k  -  l ) /2 G 1/N if>  0

respectively. Here the phrase x G 1/N if > 0 means if x > 0 then x G 1/N.

Corollary 6.3. Say (1 — 2k)¡2 =  1/p with p G N; p > 3 so the rnonodrorny 
around a mirror is an order p reflection. For the root system R  of rank at 
least 2 we find the solutions

p = 3 : A2 ^3 A 4 ^7, D 4,D^,Dg, Eg, E j
p = 4 ■ a 2 ^3 A 5 d 4 D 5 E q

p = 6 ■ a 2 ^3 A 4 A 5, D ,
p = 10 : ^2

to the above Schwarz conditions.

For all cases in the above table Question 5.3 says that the hyperbolic 
structure on W '\H ° is in fact obtained as the complement of a Heegner 
divisor in a ball quotient T\®.

7 A geom etric in terpretation
We look for a commutative diagram

w '\h ° r'\®

M  r\®

with M. a suitable moduli space and Per  a suitable period map. The left 
vertical arrow should be a suitable finite covering map corresponding to the 
finite index subgroup T' of T. The following theorem is due to Deligne and 
Mostow [5],[9],[12], based on earlier work of Picard and Terada.
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Theorem  7.1. Given n + 3 distinct points z0,--- , zn+2 on the projective 
line P and rational numbers 0 < no, • • • , Hn+2 < 1 with = 2. WViie 
Hi =  rrii/m as quotient of natural numbers with gcd(m,m0, ■ ■ ■ ,mra+2) =  1. 
Consider the curve

c ( z )  ■. v m =  n < *  -  * r

with holornorphic differential oj =  dx/y. The periods

r zi+1 
/ a;

J Z i

are solutions of the Lauricella F jj hypergeometric equation. Let SM 6e i/ie 
subgroup of the symmetric group Sn+3 fixing n =  (po, • • • ,Hn+2)- 

I f  for all i ± j  the Schwarz conditions

^  +  ^  1 ^  f i3) t  j  ^  = ^

do hold then the period map

M  = S^\Mo,n+Z r \B

is an embedding as a Heegner divisor complement.

This theorem gives a geometric interpretation for the hypergeometric sys­
tem associated with the root system of type An. Let zo = 0,zn+2 = 00 and 
zi, ■ ■ ■ , zn+1 G Cx with Z\ ■ ■ ■ zn+1 =  1 and take these numbers modulo the 
action of the cyclic group Cn+1 of order n + 1. If we take Hi =  • • • =  ¡¿n+i =  k 
and n0 =  nn+2 =  (1 — (n+ l)k/2) then W ’ = Sn+1 x S2 < is the extended 
Weyl group and W '\H ° —> A4 = S^\A4otn+3- The Schwarz conditions in the 
theorem of Deligne and Mostow (for W ' rather than S^)

(1 — — Hi) =  (n — l)k/2 G 1/N 
fin+1)/2 =  (1 -  2k)¡2 G 1/N 

(1 — Ho ~ Hn+2)¡2  =  ((n +  1 )k — l ) /2 G 1/N

coincide with the Schwarz conditions for our special hypergeometric system 
associated with the root system An along the toric strata, along the mirrors, 
and near the identity element respectively.
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Remark that W ' =  unless k =  ( l — (n+l)k/2) <=>■ k = 2/(n + 3), which 
happens for (p,n) =  (4,5), (6,3), (10,2). From the root system perspective 
there is additional hidden symmetry for these cases.

Let us now discuss the situation for the root system R  of type E e with 
p =  4, and its relation to moduli of quartic curves. The first step is the 
following result of Looijenga [8]

Theorem  7.2. There is a biholornorphic isomorphism from the moduli space 
M.' of smooth quartic curves marked with a bitangent onto the quotient space 
W '\H ° of type E 6.

The second step is a result of Kondo [7], which in turn is based on the 
Torelli theorem for quartic surfaces of Shafarevic and Piatetskii-Shapiro.

Theorem  7.3. There is a period isomorphism from the moduli space A4 of 
smooth quartic curves onto a Heegner divisor complement in a ball quotient 
r \B  given as follows. To a smooth quartic curve one associates the smooth 
quartic surface ramified of order 4 over P2 with ramification locus the given 
smooth quartic curve, and subsequently applies the Torelli theorem for quartic 
surfaces.

The special hypergeometric system associated with the root system R  of 
type E q with k = 1/4 is part of the following commutative diagram

M '  =  W '\H ° r'\®

M  r \B
The left vertical arrow is the covering map of degree 28 from the moduli 
space M.' of smooth quartic curves marked with a bitangent onto the moduli 
space M. of smooth quartic curves, by forgetting the bitangent. The bottom 
horizontal arrow is the period map as obtained by Kondo. Again we have 
the phenomenon of hidden symmetry, which in this case can be explained by 
looking at the moduli space in connection with the space W \ H ° for
the root system R  of type E 7, see the paper of Looijenga [8].
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