
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/84366

 

 

 

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

http://hdl.handle.net/2066/84366


A Lightweight Approach to 
Datatype-generic Rewriting

Thomas van Noort 
Alexey Rodriguez Yakushev 
Stefan Holdermans 
Johan Jeuring 
Bastiaan Heeren 
José Pedro Magalhäes
Technical Report UU-CS-2010-008 
March 2010

Department of Information and Computing Sciences 
Utrecht University, Utrecht, The Netherlands 
www.cs.uu.nl

http://www.cs.uu.nl


ISSN: 0924-3275

Department o f Information and Computing Sciences
Utrecht University
P.O. Box 80.089
3508 TB Utrecht
The Netherlands



A lightweight approach to 
datatype-generic rewriting

T h o m a s  v a n  N o o r t 1 , A l e x e y  R o d r i g u e z  Y a k u s h e v 2 , 
S t e f a n  H o l d e r m a n s 2 , J o h a n  J e u r i n g 3,4, 

B a s t i a a n  H e e r e n 4 , a n d  J o s e  P e d r o  M a g a l h ä e s 3

1 Institu te  for Com puting and Inform ation Sciences, Radboud University Nijmegen 
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands, thom as@ cs.ru .nl
2 Vector Fabrics, Paradijslaan 28, 5611 KN Eindhoven, The Netherlands 

{a lexey ,stefan}@ vecto rfab rics.com
3 Departm ent of Inform ation and Computing Sciences, U trecht University 

P.O. Box 80.089, 3508 TB Utrecht, The Netherlands, {johan j ,jpm}@ cs.uu.nl
4 School of Com puter Science, Open University of the Netherlands 

P.O. Box 2960, 6401 DL Heerlen, The Netherlands, b astiaan .h eeren@ ou .n l

Term-rewriting systems can be expressed as generic programs param- 
eterised over the shape of the terms being rewritten. Previous imple
mentations of generic rewriting libraries require users to either adapt the 
datatypes that are used to describe these terms or to specify rewrite rules 
as functions. These are fundamental limitations: the former implies a lot 
of work for the user, while the latter makes it hard if not impossible to 
document, test, and analyse rewrite rules. In this report, we demonstrate 
how to overcome these limitations by making essential use of type-indexed 
datatypes. Our approach is lightweight in that it is entirely expressible in 
Haskell with GADTs and type families and can be readily packaged for use 
with contemporary Haskell distributions.

1 Introduction

Consider a Haskell datatype Prop for representing formulae of propositional logic, 
d a ta  Prop =  Var String | T | F | Not Prop | Prop :A: Prop | Prop :V: Prop, 

and suppose we wish to simplify such formulae using the principle o f contradiction:
p A —p ^  ± .
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Ideally, our formulation of this rewrite rule as an executable program is neither much 
longer nor much more complicated than this rule itself.

One approach is to encode the rule as a function and then to apply it to individual 
formulae using some bottom-up traversal combinator transform  :

simplify :: Prop ^  Prop 
simplify =  transform contradiction 

w h ere
contradiction (p :A: Not q) | p = q =  F  
contradiction p =  p .

Although this implementation is relatively straightforward, encoding rules by functions 
has a number of drawbacks. To start with, rules cannot be concise one-line definitions 
as we have to provide a catch-all case in order to avoid pattern-matching failures at 
run-time. Secondly, pattern guards (such as p = q in our example) are needed to deal 
with multiple occurrences of variables, cluttering the definition. Lastly, rules cannot 
be analysed easily since it is hard to inspect functions.

A way to overcome these drawbacks is to  provide specialised rewriting functionality. 
That is, we can define a datatype representing rewrite rules on formulae and implement 
the machinery required for rewriting (e.g., functions for matching formulae against 
rules and substituting formulae for metavariables) on top of this datatype. While this 
does overcome the drawbacks mentioned above, this approach comes with a serious 
disadvantage: it requires a large amount of datatype-specific code. If our next task is to 
rewrite, say, arithmetic expressions, we have to define a new datatype for representing 
rewrite rules and a new implementation of all the rewriting machinery.

However, both the datatype for representing rules and the associated rewriting ma
chinery can be determined from the type that is used to describe the terms being 
rewritten. Hence, there is an excellent opportunity for datatype-generic programming 
here. In this report, we seize this opportunity and present a rewriting library that is 
generic in the type of terms being rewritten. Using our library, the example above can 
be written as

simplify :: Prop ^  Prop
simplify =  transform (rewriteW ith contradiction) 

w h ere
contradiction p =  p : A: Not p  ^  F .

The library provides rewriteW ith  and ^ ,  which are generic and, in this case, instanti
ated with the type of propositional formulae Prop. A noticeable aspect of our approach 
is tha t metavariables in rewrite rules, such as p in our example, are introduced through 
ordinary function abstraction in Haskell, allowing the user to define her rules in terms 
of the term  type Prop rather than some dedicated type for representing rules over 
Prop. The body of the function contradiction is now a fairly direct transcript of the 
rule p A — p  ^  ± . As we will see, rewrite rules constructed with our library neither 
suffer from the drawbacks of the approach that uses pattern matching nor require large 
amounts of datatype-specific boilerplate code.

More specifically, the contributions of this report are the following:
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• We present a library for term rewriting that is implemented using a simple design 
pattern (Section 4) for datatype-generic programming in Haskell extended with 
type families (Chakravarty et al., 2005b,a ; Schrijvers et al., 2008). As such, 
our library is “lightweight” and can be used readily with recent versions of the 
Glasgow Haskell Compiler (GHC) 1.

• To represent rewrite rules our library needs to extend the type that is used 
to describe the terms being rewritten internally with an extra constructor for 
metavariables (Section 5.2) . This extension is constructed generically using a 
type-indexed datatype (Hinze et al., 2004). Distinct metavariables in a single 
rewrite rule can, in our approach, range over rewritable terms of different type 
(Section 5.1).

• Internally, the library implements rewriting in terms of generic functions for 
pattern matching (Section 5.4) and substitution (Section 5.3) over generically 
extended datatypes. These datatypes are, however, completely hidden from the 
user, who writes her rewrite rules using the constructors of the types of terms 
tha t are to be rewritten (Section 6 ).

• We compare the efficiency of our library to that of other approaches to term 
rewriting in Haskell (Section 10) .

This report is based on a paper presented at the 2008 Workshop on Generic Program
ming (Van Noort et al., 2008). The present report includes several improvements over 
this previous work. Most prominently, while the library described in the WGP paper 
could only be used to  generically rewrite values of regular datatypes, we now support 
generic rewriting for a strictly larger class of datatypes, including types from families 
of mutually recursive datatypes. Furthermore, we now detect ill-formed rewrite rules 
(Section 7) and facilitate guarded rewrite rules (Section 8 ) as well as heterogeneously 
typed metavariables (Section 5.1) .

1.1 Road map

The remainder of this report is structured as follows. In Section 2, we discuss the 
two fundamental approaches to representing rewrite rules in Haskell. In Section 3 we 
present our proposal for a datatype-generic library for term  rewriting from a user’s 
perspective.

Sections 4 to 6  deal with the implementation of our library’s main functionality. Sec
tion 4 showcases, through an example generic function, how datatype-generic functions 
are implemented in our library. Section 5 discusses how generic rewriting functionality 
is composed from more elementary generic functions for pattern matching and substi
tution, and shows how these functions are implemented. In Section 6 , we demonstrate 
how the not so programmer-friendly representation of rewrite rules, used internally by 
the generic functions from Section 5, is hidden from the users of our library.

1T he library is dubbed g u a rd e d -re w ritin g  and available on Hackage.
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Sections 7 and 8  discuss additions to the core functionality. In Section 7, it is 
shown how nonsensical rewrite rules can be detected statically, i.e., without applying 
them. In Section 8 , the library is extended with support for rewrite rules that have 
preconditions associated with them.

Section 9 discusses, as a case study, the use of our library in a realistic application. 
Section 10 presents the results of two performance benchmarks. Section 11 discusses 
related work; Section 12 concludes.

2 Representing rewrite rules

Before we present our approach to datatype-generic rewriting in Section 3, let us first 
have a more in-depth look at the two fundamental approaches to representing rewrite 
rules in Haskell tha t were already briefly discussed in the Introduction: the extensional 
approach (Section 2.1) and the intensional approach (Section 2.2).

2.1 Extensional representations

The extensional approach to representing rewrite rules encodes rules as Haskell func
tions, using pattern matching to check whether the argument term  matches the left- 
hand side of the rule. If this is indeed the case, the right-hand side of the rule is 
returned; otherwise, the argument term  is returned unchanged. For example, the rule

— (p A q) ^  —p V —q,
tha t is derived from one of De Morgan’s laws, is extensionally encoded as

deMorgan :: Prop ^  Prop
deMorgan (Not (p :A: q)) =  N o tp :V : Not q
deMorgan p =  p .

Note the catch-all case that makes that arguments not matching the pattern — (p A q) 
do not result in run-time errors.

As Haskell lacks support for nonlinear patterns, rewrite rules containing metavari
ables with multiple left-hand-side occurrences cannot be written as functions directly. 
Instead, such variables are encoded by means of so-called pattern guards. For instance, 
a rule for the principle of the excluded middle,

p V —p ^  T ,
in which the metavariable p occurs twice at the left-hand side, is implemented by

excludedMiddle :: Prop ^  Prop 
excludedMiddle (p :V : Not q) | p = q =  T  
excludedMiddle p =  p,

where the second occurrence of p  is replaced by an occurrence of a fresh variable q 
and equality of p and q is enforced through the guard p = q. Note that this encoding 
requires equality to be defined for values of type Prop.
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In some applications of rewriting, it is useful to know whether or not a rewrite rule 
was applied successfully. This information can be made available, at the expense of 
some additional notational overhead, by wrapping the rewriting result in a Maybe- 
value:

excludedMiddleM  :: Prop ^  Maybe Prop 
excludedMiddleM  (p :V: Not q) | p = q =  Just T  
excludedMiddleM p =  Nothing.

Encoding rewrite rules in terms of Haskell functions allows for function-parameterised 
traversal combinators to be used directly in rewriting applications. As an example, 
the Uniplate library (Mitchell and Runciman, 2007) provides, amongst others, the 
combinator transform ,

transform  :: Uniplate a  ^  (a  ^  a ) ^  a  ^  a ,
which applies its argument function in a bottom-up fashion in all recursive positions 
in a tree. Given a suitable Uniplate-instance for the type Prop, it is straightforward to 
use this combinator to  remove certain classes of tautological clauses from propositional 
formulae:

removeTautologies :: Prop ^  Prop 
removeTautologies =  transform excludedMiddle.

However, even though Haskell’s pattern-matching facilities enable a more or less 
direct encoding of rewrite rules as functions and the interaction with traversal libraries 
comes almost for free, the extensional approach to representing rewrite rules raises 
some issues.

• Extensionally represented rules cannot be easily observed as in Haskell it is not 
possible to inspect functions. Still, there are several reasons why it is desirable 
to have observable rewrite rules:
D ocum entation: If rules are observable, they can be pretty-printed in order to 

generate documentation for a rewrite system.
S tatic  checking: Observability of rules allows for checking whether a given set 

of rewrite rules constitutes a confluent and terminating rewrite system. 
A utom ated  testin g : In most applications, a rule is expected to preserve the 

semantics of the term  being rewritten. One way to test this property is 
to randomly generate terms, to rewrite these, and then to check whether 
the rewritten terms indeed have the same semantics as the original terms. 
However, a rewrite rule with a nontrivial left-hand side will most likely not 
match successfully against a randomly generated term. Hence, such rules 
are in danger of not getting tested sufficiently. If left-hand sides of rules 
are inspectable, term  generation can be directed to produce matching terms 
more often, effectively improving test coverage.
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A ssociativ ity- and com m utativity-aw are rewriting: Many domains, such as that 
of logical propositions, have associative and commutative operators. If the 
rewriting infrastructure is aware of this fact, rewrite rules can be speci
fied more concisely and repetition can be avoided. W ith an intensional 
approach, this can be implemented by making the matching algorithm re
turn  all possible substitutions. In an extensional approach, the behavior of 
pattern matching is fixed and cannot be made aware of these operators. 

Inversion: If the left-hand side and right-hand side of a rewrite rule can be 
accessed, these can be exchanged, resulting in the inverse of the rule. 

Tracing: When a sequence of rewrite steps leads to an unexpected result, one 
may want to learn which rules were applied in which order.

• It is tedious to have to  specify a catch-all case when rules are encoded as func
tions. All rule definitions require this extra case.

• The lack of nonlinear pattern matching in Haskell becomes a nuisance if left-hand 
sides of rules contain many occurrences of the same variables.

• As Haskell lacks first-class pattern matching, the user cannot easily abstract over 
commonly occurring structures in the left-hand sides of rewrite rules.

These issues can be overcome by switching to an intensional representation instead.

2.2 Intensional representations

In the intensional approach, rewrite rules are not encoded as functions, but as values 
of a datatype, so that the left- and right-hand sides of rules become observable:

d a ta  Rule a  =  Rule { lhs :: a , rhs :: a  }.
Values of type Rule a  are used to encode rewrite rules with left- and right-hand sides of 
type a . For example, rewrite rules for formulae of propositional logic can be expressed 
as values of type Rule EProp , where EProp is an extended version of the datatype Prop 
of propositional formulae with an extra constructor Metavar to represent metavariable 
occurrences in rewrite rules:

d a ta  EProp
=  EVar String | E T  | EF  | ENot EProp | EProp :©: EProp | EProp :©: EProp 
| Metavar String.

W ith values of type Rule EProp in place, we need to define rewrite functions that 
interpret these values as functions over propositions represented by Prop:

rewritePropW ith :: Rule EProp ^  Prop ^  Prop.
Here we do not give an implementation of rewritePropW ith , but note that its type (and 
thus its implementation) is specific to propositional formulae. If we want to implement
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rewrite functionality that works on different datatypes, then we have to define new 
rewrite functions for these types.

W ith the proposition-specific rewrite function rewritePropW ith , rules over proposi- 
tional formulae can be written and used as in
removeTautologies :: Prop ^  Prop
removeTautologies =  transform (rewritePropW ith excludedMiddle) 

w h ere
excludedMiddle =  Rule { lhs =  Metavar "p" :©: ENot (Metavar "p"), rhs =  E T }.

An apparent inconvenience of this style of defining rules is that, rather than reusing 
the type Prop of terms being rewritten and the constructors Not and :V: , to make 
provision for metavariables, one has to use the extended representation EProp and its 
constructors ENot and :©: .

3 Datatype-generic rewriting

In this section, we present the interface to our library for datatype-generic rewriting. 
In Sections 4 to 6 , we zoom in at the concrete implementation of this interface.

The rewrite system that we present in this paper uses intensionally represented 
rewrite rules. As observed in the previous section, straightforward implementations 
of such rewrite systems suffer from two drawbacks: (1 ) they require a significant 
amount of datatype-specific code and (2 ) rewrite rules need to be expressed in terms 
of a new datatype obtained by extending the original datatype with a constructor 
for metavariables. Our system, however, is carefully designed to circumvent these 
drawbacks: (1 ) we provide a single implementation of rewriting that is generic in the 
type of terms being rewritten and (2 ) we completely hide the internal representation 
of rewrite rules from the user of our library.

More specifically, in our approach rewrite rules are specified in terms of tem plates:
closedWorldTemplate :: Template Prop 
contradictionTemplate :: Prop ^  Template Prop 
deMorganTemplate :: Prop ^  Prop ^  Template Prop 
closedWorldTemplate =  N ot T ^  F  
contradictionTemplate p =  p :A: N o tp ^  F  
deMorganTemplate p q =  Not (p :A: q) ^  N o tp  :V: Not q.

Templates are constructed by means of an operator ^ ,
( ^ )  :: a  ^  a  ^  Template a ,

which takes a left-hand side and a right-hand side of a type a  and produces a template 
for rewrite rules on a . Note that both sides of a template are just values of the type 
of terms being rewritten. In particular, templates are expressed without need for an 
additional datatype providing for metavariables. Instead, metavariables are encoded 
as ordinary Haskell function arguments. The template for the De Morgan rule from
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the example above, for instance, uses two metavariables which are introduced through 
function arguments p and q .

To prepare templates for use in our rewrite system, the user needs to synthesise 
rules from these. To this end, the library provides an overloaded function synthesise 
(defined in Section 6.3), tha t takes templates (or functions producing templates) for 
rewrite rules on some type a  to values of type Rule a :

closedWorld, contradiction, deMorgan :: Rule Prop 
closedWorld =  synthesise closedWorldTemplate 
contradiction =  synthesise contradictionTemplate 
deMorgan =  synthesise deMorganTemplate.

Here, values of type Rule a  (with an implementation that differs slightly from the one 
given above; see Section 5) form the internal representation of rewrite rules on a  in 
our library.

The generic rewrite functionality is now exposed through a pair of rewrite functions 
rewriteW ith  and rew riteW ithM . The first,

rewriteW ith  :: Rewritable a  ^  Rule a  ^  a  ^  a ,
takes as arguments a rule over some rewritable type a  (see Section subsec:making- 
terms-rewritable) and a value of type a , and attem pts to apply the rule to the value. 
For example, the expression

rewriteW ith closedWorld (N ot T)
yields the formula F . If the second argument to rewriteW ith  does not match the left- 
hand side of its first argument, the value to be rewritten is returned unmodified; for 
instance,

rewriteW ith contradiction ( Var "x" :A: Not ( Var "y"))
yields Var "x" :A: Not ( Var "y") as the argument term  does not match a contradictory 
formula. To make a failed attem pt at rewriting explicit in the value returned, the 
second generic rewrite function,

rewriteW ithM  :: (Rewritable a , Monad ^ ^  Rule a  ^  a  ^  ^  a ,
wraps its result in a monad ^ . For example, instantiating ^  with the Maybe-monad, 
the invocation

rewriteW ithM  deMorgan ( T  :A: F ) 
results in the value Nothing, while

rewriteW ithM  deMorgan (Not ( T  :A: F )) 
produces Just (N ot T  :V: N o tF ).
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As with other lightweight approaches to  generic rewriting, such as Scrap Your Boiler
plate (Lammel and Peyton Jones, 2003) and Uniplate (Mitchell and Runciman, 2007), 
a small effort is required from the users of our library in order to prepare their datatypes 
for generic rewriting. In particular, they must describe the structure of their datatypes 
(Section 3.1) and make these datatypes instances of the type class Rewritable (Sec
tion 3.2) .

3.1 Representing the structure of datatypes

In our library, the structure of datatypes is described through instances of a type class 
Representable:

class Representable a  w h ere  
ty p e  Rep a  :: *
from  :: a  ^  Rep a  
to :: Rep a  ^  a .

Here, Rep is a so-called associated type synonym  (Chakravarty et al., 2005a). A type 
a  is representable if it is isomorphic to  its generic representation type Rep a ; the 
isomorphism is witnessed by a pair of functions from  and to tha t convert between the 
type and its generic representation.

Base types, such as In t , Float, and Char form their own generic representations:
in s ta n c e  Representable Int w h ere  ty p e  Rep Int =  Int ; from  =  id ; to =  id 
in s ta n c e  Representable Float w h e re  ty p e  Rep Float =  F loat; from  =  id ; to =  id 
in s ta n c e  Representable Char w h ere  ty p e  Rep Char =  Char ; from  =  id ; to =  id .

Further generic representation types are composed from a fixed set of structure con
structors. These include the nullary type constructor Nil and the binary type con
structors :+: and ::: , defined as:

in fix r 6  :+:
in fix r 5 :::
d a ta  Nil =  Nil
d a ta  a  :+: ft =  Inl a  | Inr ft
d a ta  a  ::: ft =  a  ::: f t .

A given datatype’s representation type follows immediately from its structure. Choice 
amongst data constructors is encoded in terms of right-nested sums constructed by 
:+: . A data constructor itself is represented as a type-level list of its argument types, 

constructed by ::: and Nil. (Note that, instead of the the more common sums-of- 
products representation of datatypes (Jansson and Jeuring, 1997; Backhouse et al., 
1999; Hinze, 2000), we use a list-like representation (Holdermans et al., 2006) as we 
want to  make sure that constructor arguments are always encoded as the first operand 
of the constructor ::: .) For example, Haskell’s Maybe-type, given by

d a ta  Maybe a  =  Nothing | J u s t a ,
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is represented by the type N i l :+: (a  ::: Nil) and we can write
in s ta n ce  Representable (Maybe a ) w h ere  

ty p e  Rep (Maybe a ) =  N i l :+: (a  ::: Nil) 
from Nothing =  Inl Nil 
from  (Just x ) =  Inr (x ::: Nil) 
to (Inl Nil) =  Nothing
to (Inr (x ::: Nil)) =  Just x .

The type-class methods from  and to form a so-called embedding-projection pair and 
are supposed to witness the isomorphism between a type and its generic representation 
“modulo undefinedness” , i.e., it should hold that to o from  =  id and from  o to C id 
(Hinze, 2000).

The functional programmer’s all-time favourite datatype, i.e., the type of cons-lists,
d a ta  [a ] =  [] | a  : [a ], 

is in our approach represented by N i l :+: (a  ::: [a ] ::: Nil), yielding the declaration
in s ta n c e  Representable [a ] w h ere

ty p e  Rep [a ] =  N i l :+: (a  ::: [a ] ::: Nil)
from  [ ] =  Inl Nil
from  (x : xs ) =  Inr (x ::: xs ::: Nil)
to (Inl N il) =  []
to (Inr (x ::: xs ::: N il)) =  x : x s .

Note that the generic representation types of recursive datatypes are themselves non
recursive: from  only converts the top-level constructor of a value into its generic 
representation and leaves all subtrees untouched.

For the type Prop of propositional formulae,
d a ta  Prop =  Var String | T | F | Not Prop | Prop :A: Prop | Prop :V: Prop, 

we have
ty p e  Var =  String ::: Nil
ty p e  T =  Nil
ty p e  F =  Nil
ty p e  Not =  Prop ::: Nil
ty p e  And  =  Prop ::: Prop ::: Nil
ty p e  Or =  Prop ::: Prop ::: Nil

as abbreviations for the generic representations of the alternatives and then
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in s ta n c e  Representable Prop w h ere
ty p e  Rep Prop =  Var :+: T  :+: F  :+: N o t :+: A nd  :+: Or
from  ( Var x ) =  Inl (x ::: Nil)
from T =  Inr (Inl N il)
from F =  Inr (Inr (Inl N il))
from  (N o tp) =  Inr (Inr (Inr (Inl (p ::: Nil))))
from  (p :A: q) =  Inr (Inr (Inr (Inr (Inl (p ::: q ::: Nil)))))
from  (p :V: q) =  Inr (Inr (Inr (Inr (Inr (p ::: q ::: Nil)))))
to (Inl (x ::: Nil)) =  Var x
to (Inr (Inl N il)) =  T
to (Inr (Inr (Inl N il))) =  F
to (Inr (Inr (Inr (Inl (p ::: Nil))))) =  N o tp
to (Inr (Inr (Inr (Inr (Inl (p ::: q ::: Nil)))))) =  p :A: q
to (Inr (Inr (Inr (Inr (Inr (p ::: q ::: Nil)))))) =  p :V: q.

Instance declarations of Representable can be quite verbose, as in the case for Prop. 
However, these declarations are completely determined by the structure of the repre
sented datatypes and can easily be derived automatically, for example by means of a 
Template Haskell program (Sheard and Peyton Jones, 2002). Moreover, all tha t needs 
to be done to use our library on a user-defined datatype, such as Prop, is declaring 
it an instance of Representable, Typeable, and Rewritable—and, as we will see next, 
instances of the latter two can be given almost effortlessly.

3.2 Making terms rewritable

The class Rewritable of types with rewritable values is given by
class (Representable a , Typeable a ,

Eq (Rep a ), Extensible (Rep a ), Matchable (Rep a ), Substitutable (Rep a ), 
Sampleable (Rep a ), Diffable (Rep a )) ^

Rewritable a .
As this class does not have any methods or associated types, it is only introduced for 
its superclass constraints. These constraints encode the conditions that need to be 
fulfilled by a term  type in order for its values to be rewritable.

Not only do we need an instance of Representable, we also require term  types to 
be in the class Typeable tha t was originally introduced for use with the Scrap Your 
Boilerplate-library (Lammel and Peyton Jones, 2003). Currently, Typeable is Haskell’s 
de facto  standard API for reifying types at the value level and as such it is included 
in the base libraries tha t ship with the Glasgow Haskell Compiler. Recent versions 
of the GHC even provide support for automatically deriving instances of Typeable for 
user-defined datatypes.

The remaining superclass constraints on Rewritable place restrictions on the generic 
representations of term types and make specific parts of the generic rewriting machin
ery available for all instances of Rewritable. More specifically, each of these constraints
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accounts for one generic function. As representation types are built from a limited set 
of type constructors, these constraints imply no additional burden on the user of our 
generic rewriting library. That is, all needed instances for the base types In t, Float, and 
Char and the representation constructors Nil, :+: , and ::: are already provided by the 
library. The details behind these instances are discussed in the next sections: in Sec
tion 4 we give instances of the standard class Eq for our generic representation types; 
in Section 5 we give the definitions and instances of the custom classes Extensible, 
Matchable, and Substitutable, while Section 6  covers Sampleable and Diffable.

For now, we observe that, with the appropriate instances of Representable and 
Typeable in place, putting a term  type in the class Rewritable reduces to a mere one
liner:

in s ta n c e  Rewritable Int 
in s ta n c e  Rewritable Float 
in s ta n c e  Rewritable Char
in s ta n c e  Rewritable a  ^  Rewritable (Maybe a ) 
in s ta n c e  Rewritable a  ^  Rewritable [ a  ] 
in s ta n c e  Rewritable Prop.

4 Generic equality

The previous section introduced the interface to our library for datatype-generic rewrit
ing. Let us now turn to the concrete implementation of this interface.

In this section, we present an implementation of a type-indexed equality function. In 
the next section, this generic function is used in our implementation of generic pattern 
matching, but here it also serves as a neat example of the design pattern for lightweight 
type-indexed functions tha t we employ for all generic functions in our library. The 
general pattern for implementing generic functions, followed throughout this paper, is 
tha t we overload a given function f  for all generic representation types and then derive 
a generic version f / tha t “ties the knot” and works for all types in Rewritable.

In our implementation, we rely on the class Eq from Haskell’s Standard Prelude to 
provide an interface for overloaded equality:

class Eq a  w h ere
(=), (^ ) :: a  —— a  —— Bool 
x =  y =  -  (x ^  y )
x ^  y =  -  (x =  y ).

As the class Rewritable requires the generic representation types of all its instances to 
be in the class Eq, we can directly define an equality operator =' tha t works for all 
types of rewritable terms:

(= /) :: Rewritable a  ^  a  — a  — Bool 
x = / y =  from  x =  from  y .
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To test two equally typed rewritable terms for equality, we convert them to their 
generic representations and then test these for equality.

It remains to declare instances of Eq for the types that appear in generic represen
tations. The case for Nil is straightforward:

in s ta n ce  Eq N il w h ere
Nil =  Nil =  True.

For sums, we require the summands to be instances of Eq and test whether both 
generic representations have their origins in the same alternative. If so, both values 
are compared recursively; otherwise, we produce False:

in s ta n c e  (Eq a , Eq ft) ^  Eq (a  :+: ft) w h ere  
Inl x  =  Inl y =  x =  y 
Inr u =  Inr v =  u =  v 
_ =  _ =  False.

The case for ::: is more delicate. In our encoding of a datatype’s structure, the second 
type argument of ::: is always another type-level list and so we can assume that this 
type argument is itself in Eq as well. The first type argument, however, can be any 
type and, hence, we cannot just assume it to be an instance of Eq. Instead, we require 
this type argument to be in Rewritable, so that we can use the operator = / defined 
above to compare values of this type:

in s tan c e  (Rewritable a , Eq ft) ^  Eq (a  ::: f t) w h ere  
(x ::: xs) =  (y ::: ys) =  x = y A xs =  y s .

5 Matching and substituting

In the previous section, we demonstrated how generic functions are implemented in 
our library. We continue our exploration of the internals of the library by discussing 
the core functionality of our library: the implementation of the function rewriteW ith  
and its monadic companion rew riteW ithM .

These are implemented in terms of two generic functions m atch/ and substitute/,
m atch/ :: (Rewritable a , Mappable I , Monad ^ ^

Pattern a  I  — a  — ^  (Substitution I ) 
substitute/ :: (Rewritable a , Monad ^ ^

Substitution r  — Pattern a  I  — ^  a .
The type Pattern a  I  (see Section 5.2) is used in our library for the intensional 
representation of the left- and right-hand sides of rewrite rules over a term  type a . Its 
type argument I  is a so-called metavariable environm ent: a type-level list tha t encodes 
the types of the metavariables in a rewrite rule. Successfully matching a term  against a 
left-hand-side pattern results in a substitution (Section 5.3) for the metavariables that
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occur in the pattern. As pattern matching may fail, the function match' returns its 
result in a monad ^ . This function requires the metavariable environment I  involved 
to be in the class Mappable (defined in Section 5.1), which simply means that an empty 
substitution can be produced for I . Substitutions are partial maps from metavariables 
drawn from a given environment to matched subterms. Given such a substitution 
and a right-hand-side pattern, the generic function substitute' attem pts to construct 
a new term  value. This construction fails if the substitution is not defined for all 
metavariables that occur in the right-hand-side pattern, which explains the monadic 
result type of substitute ' .

As metavariable environments are only of interest to the internals of our library, 
they are hidden from the user by wrapping the left- and right-hand-side patterns that 
constitute a rewrite rule in an existential type:

d a ta  Rule :: * ^  * w h ere
Rule :: Mappable I  ^  Pattern a  I  ^  Pattern a  I  ^  Rule a .

Here, the existential type Rule is defined as a so-called generalised algebraic datatype 
or GADT (Xi et al., 2003; Peyton Jones et al., 2006).

Given the GADT Rule and suitable definitions of m atch' and substitute ', the monadic 
rewrite function rewriteW ithM  can be written as

rewriteW ithM  :: (Rewritable a , Monad ^ ^  Rule a  ^  a  ^  ^  a 
rewriteW ithM  (Rule lhs rhs) x =  do 

s ^  match' lhs x 
substitute' s rhs.

That is, the term x is matched against the left-hand side lhs of a given rewrite rule. If 
the match is successful, the resulting substitution s is applied to the right-hand side 
rhs of the rewrite rule in order to produce the result term. An implementation for 
the nonmonadic rewrite function rewriteW ith  is obtained by instantiating the type of 
rewriteW ithM  with the Maybe-monad:

rewriteW ith  :: Rewritable a  ^  Rule a  ^  a  ^  a 
rewriteW ith rule x  =  case rewriteW ithM  rule x o f 

Nothing ^  x 
Just y ^  y .

In the remainder of this section, we discuss the implementation of metavariables 
(Section 5.1), patterns (Section 5.2), substitutions (Section 5.3), and generic pattern 
matching (Section 5.4).

5.1 Typed metavariables

In our intensional representation of rewrite rules, we encode metavariables by De Bruijn  
indices (De Bruijn, 1972) . Our implementation allows different metavariables to range 
over differently typed subterms. To enforce a type-safe use of metavariables, we adopt
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the approach of Pasalic and Linger (2004) and implement metavariables as values of 
the GADT Rej of typed references:

d a ta  Ref :: * — * — * w h ere  
RZero :: R ef a  (a  ::: I )
RSucc :: R ef a  I  — R ef a  (ft ::: I ).

Here, we use as metavariable environments I  the heterogeneous lists constructed from 
Nil! and : : : / tha t we also use in generic representations. A value of type R ef a  I  then 
carries the Peano encoding of an index for an a -typed position in a heterogeneous list 
of type r . Note that such a value can never refer to  an empty list, simply because the 
constructor types dictate that the lists contain at least one value.

As an example of the use of Ref, consider the function deref for dereferencing a 
typed reference to a value in a heterogeneously typed list:

deref :: R ef a  I  — I  — a
deref RZero (x ::: xs ) =  x
deref (RSucc r ) (x ::: xs) =  deref r x s .

In the implementation of match/ and substitute/, typed references are used as indices 
into heterogeneously typed partial maps:

d a ta  PMap :: * — * w h ere
PNil :: PMap Nil
PCons :: Rewritable a  ^  Maybe a  — PMap I  — PMap (a  ::: I ).

Values of type PMap I  are partial maps from I -typed references to rewritable terms. 
Looking up a value in a partial map is implemented through the function lookup,

lookup :: Monad ^  ^  R ef a  I  — PMap I  — ^  a 
lookup RZero (PCons Nothing s ) =  fa il " n u ll  re fe re n c e "  
lookup RZero (PCons ( Just x ) s ) =  return x 
lookup (RSucc r ) (PCons mb s ) =  lookup r s ,

tha t returns its result in a monad ^  to provide for the case in which looking up fails. 
Since the types of the RZero and RSucc constructors ensure that the referenced partial 
map is nonempty, the definition of lookup does not require a case for PN il.

For the construction of partial maps of type PMap I , we require that I  is a type- 
level list of rewritable-term types, so that PNil and PCons can be used to produce an 
initial, empty map. To this end, we make the list constructors Nil and ::: instances 
of a class Mappable tha t provides an empty-map constructor:

class Mappable I  w h ere  
empty :: PMap r  

in s ta n c e  Mappable Nil w h ere  
empty =  PNil

in s ta n c e  (Rewritable a , Mappable I ) ^  Mappable (a  ::: I ) w h ere  
empty =  PCons Nothing em pty.
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Updating a rewritable term  in a partial map involves destructing a typed reference 
and traversing the map until the appropriate position has been reached:

update :: R ef a  I  ^  a  ^  PMap I  ^  PMap r
update RZero x (PCons mb s) =  PCons ( Just x ) s
update (RSucc r ) x (PCons mb s) =  PCons mb (update r x s ).

Singleton mappings are then constructed by updating a single term  in an empty map:
singleton :: (Rewritable a , Mappable I ) ^  R ef a  I  ^  a  ^  PMap r  
singleton r x =  update r x em pty.

Finally, two maps for the same environment I  can be merged if they agree on their 
codomain:

(©) :: Monad ^  ^  PMap I  ^  PMap I  ^  ^  (PMap I )
PNil ® PNil =  return PNil
PCons Nothing s ® PCons Nothing s' =  liftM  (PCons Nothing) (s ® s')
PCons Nothing s ® PCons ( Just y ) s' =  liftM  (PCons ( Just y )) (s ® s ')
PCons ( Just x ) s ® PCons Nothing s' =  liftM  (PCons ( Just x )) (s ® s')
PCons ( Just x ) s ® PCons ( Just y ) s'

| x =' y =  liftM  (PCons (Just x )) (s ® s')
| otherwise =  fa il "merging f a i lu re " .

Here, liftM ,
liftM  :: Monad ^  ^  (a  ^  ft) ^  ^  a  ^  ^  ft,

is the function from Haskell’s standard libraries that lifts a given unary function into 
an arbitrary monad. If, for at least one reference, the arguments of the monadic merge 
operator ® produce different terms, merging fails. As all terms contained in a partial 
map are of types in the class Rewritable, equality of terms can be tested by means of 
the generic equality test = '.

5.2 Generic patterns

Recall from the definition of the GADT Rule tha t the left- and right-hand sides of 
rewrite rules are represented by values of the type Pattern a  I , where a  is the type 
of terms to be rewritten and I  is a metavariable environment. The idea is to derive 
the definition of Pattern a  I  from the definition of a , much like in Section 2.2 the 
definition of EProp was derived from the definition of Prop, but without requiring the 
user to explicitly declare the pattern type. As pattern types are supposed to hold the 
same values as their corresponding term  types, but additionally allow each subterm to 
be replaced by a metavariable, Pattern  can be elegantly defined in terms of a so-called 
type-indexed datatype. A type-indexed datatype (Hinze et al., 2004) is a datatype that 
is defined by induction over the structure of generically representable types.

Here, we encode type-indexed datatypes as datatype families (Schrijvers et al., 2008). 
That is, we define a datatype family Extended,
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data fam ily Extended a  :: * — *
with index a . A type Extended a  I  is to be interpreted as the type that is obtained 
from extending a  with metavariables from I .

Instances of Extended are given for all representation constructors. These instances 
recursively introduce metavariable alternatives in all subterm positions in the generic 
representation of a type’s structure, while duplicating the remainder of the structure. 
A pattern is then defined as either a duplicate of a type’s structure with metavariable 
alternatives for all subterm positions or otherwise a metavariable of the appropriate 
type:

ty p e  Pattern a  I  =  Extended (Rep a ) r  :+: R ef a  I .
As values of base types do not contain subterms, the extension of these types amounts 
to mere duplication:

n e w ty p e  in s ta n c e  Extended In t I  =  I n t  Int 
n e w ty p e  in s ta n c e  Extended Float I  =  F loat Float 
n e w ty p e  in s ta n c e  Extended Char I  =  Char1 Char.

Note that in our library subterm positions in a type are encoded as elements of type- 
level lists. Hence, sums and lists are extended recursively with metavariable alterna
tives inserted for all list elements:

d a ta  in s ta n c e  Extended Nil I  =  N il
d a ta  in s ta n c e  Extended (a  :+: ft) I  =  Inl/ (Extended a  I ) | Inr/ (Extended ft I ) 
d a ta  in s ta n c e  Extended (a  ::: ft) I  =  Pattern a  I  : : : / Extended ft I .

Because extended types contain at least the values of the original representation 
types (modulo renaming of constructors and redirections into sum types), converting 
from terms to patterns is straightforward. First, we declare a class Extensible of types 
that can be lifted into their extended counterparts,

class Extensible a  w h ere  
extend :: a  — Extended a  N il,

and then we define a generic extension function extend/ for constructing patterns from 
terms:

extend/ :: Rewritable a  ^  a  — Pattern a  Nil 
extend/ x =  Inl (extend (from x )).

Note that a value of a type Pattern a  Nil, due to the empty metavariable environment, 
is guaranteed to not contain any metavariables.

Lifting base types reduces to wrapping values in the extension constructors I n t , 
Floatt, and Char/ :

in s tan c e  Extensible Int w h e re  extend =  In t  
in s tan c e  Extensible Float w h ere  extend =  Float/ 
in s tan c e  Extensible Char w h e re  extend =  Char1.
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Extension of the empty list involves converting from Nil to  N i l ,
in s ta n c e  Extensible Nil w h ere  

extend Nil =  N i l ,
while sums are extended recursively:

in s ta n c e  (Extensible a , Extensible ft) ^  Extensible (a  :+: ft) w h ere  
extend (Inl x ) =  Inl/ (extend x ) 
extend (Inr y ) =  Inr1 (extend y ).

For ::: , we require the first type argument to be rewritable, so tha t subterms can be 
lifted generically:

in s ta n c e  (Rewritable a , Extensible ft) ^  Extensible (a  ::: f t) w h ere  
extend (x ::: xs) =  extend/ x : : : / extend x s .

The conversion from terms to  patterns is used in Section 6  for the synthesis of rewrite 
rules from functions over term types.

5.3 Generic substitutions

Substitutions are just partial maps over a given metavariable environment:
ty p e  Substitution I  =  PMap I .

Applying a substitution then involves traversing a value of an extended type and 
replacing all metavariable occurrences by subterms drawn from the partial map in 
order to obtain a term  representation:

class Substitutable a  w h ere
substitute :: Monad ^  ^  Substitution I  — Extended a  I  — ^  a .

As looking up metavariables in partial maps may fail, substitute returns its result in 
a monad ^ . To apply a substitution to  a pattern, we distinguish between values of 
extended types and metavariables. In the former case, we use substitute to yield a 
representation and then convert this representation to a term  by means of to . In 
the latter case, the metavariable is looked up in the partial map that represents the 
substitution:

substitute/ :: (Rewritable a , Monad ^ ^  Substitution I  — Pattern a  I  — ^  a 
substitute/ s (Inl e) =  liftM  to (substitute s e) 
substitute/ s (Inr r ) =  lookup r s

Substitutions over extended base types are performed by stripping off the extension 
constructors:

in s ta n c e  Substitutable Int w h ere  substitute s (I n t  n ) =  return n 
in s ta n c e  Substitutable Float w h ere  substitute s (Floatt r ) =  return r 
in s ta n c e  Substitutable Char w h ere  substitute s ( Char* c) =  return c.
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Similarly, for the empty lists of constructor arguments, we have
in s ta n ce  Substitutable Nil w h ere  

substitute s Nil/ =  return N il.
Extended sum values are processed recursively and the obtained values are reinjected 
into the appropriate side of the original sum type:

in s ta n ce  (Substitutable a , Substitutable ft) ^  Substitutable (a  :+: ft) w h ere  
substitute s (In l  e) =  liftM Inl (substitute s e) 
substitute s (Inr1 e) =  liftM Inr (substitute s e).

The instance for ::: once more requires all elements in a list to be in the class 
Rewritable and invokes the generic function substitute/ to apply substitutions to pat
terns:

in s ta n ce  (Rewritable a , Substitutable ft) ^  Substitutable (a  ::: ft) w h ere  
substitute s (pat : : : / es) =  liftM2 ( ::: ) (substitute/ s pat) (substitute s es).

To lift the list constructor ::: into a monad, this instance uses the standard function 
liftM 2 ,

liftM2 :: Monad ^  ^  (a  — ft — 7 ) — ^  a  — ^  ft — ^  y , 
for turning binary functions into monadic operations.

5.4 Generic pattern matching

Finally, let us consider how substitutions are constructed, namely, by generically 
matching term  values against patterns. The required machinery breaks down in a 
class Matchable of representation types which can be matched against their recursively 
extended counterparts,

class Matchable a  w h ere
match :: (Mappable I , Monad ^ ^  Extended a  I  — a  — ^  (Substitution I ),

and a top-level generic function m atch/ for matching terms against either an extended 
representation or otherwise a top-level metavariable:

m atch/ :: (Rewritable a , Mappable I , Monad ^ ^
Pattern a  I  — a  — ^  (Substitution I ) 

m atch/ (Inl e) x =  match e (from x ) 
m atch/ (Inr r ) x =  return (singleton r x ).

If a term  x is to be matched against an extended representation e , x is itself converted 
to a generic representation from x  and matched by means of m atch . If x is matched 
against a metavariable r , a singleton substitution is constructed that maps r to x . 
Pattern-m atch failures are dealt with monadically.
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Matching values of base type against extended base values requires an equality test. 
If this test succeeds, an empty substitution is produced; otherwise, a mismatch is 
reported:

in s ta n c e  Matchable In t w h ere  
match (I n t  n ) n '

| n =  n / =  return empty 
| otherwise =  fa il " p a tte rn  mismatch" 

in s tan c e  Matchable Float w h ere  
match (Floatt r ) r '

| r =  r / =  return empty 
| otherwise =  fa il " p a tte rn  mismatch"

in s ta n c e  Matchable Char w h ere  
match ( Char1 c) c/

| c =  c/ =  return empty 
| otherwise =  fa il " p a tte rn  mismatch".

Provided that both the extended representation and the term  representation are com
pletely defined (i.e., do not diverge), matching is always successful for empty lists:

in s tan c e  Matchable Nil w h ere  
match Nil! Nil =  return em pty.

For values of sum types, we check whether the extended representation and the term 
representation encode the same alternative. If so, we proceed recursively; otherwise, 
matching fails:

in s ta n c e  (Matchable a , Matchable ft) ^  Matchable (a  :+: ft) w h ere  
match (In l  e) (Inl x ) =  match e x 
match (Inr1 e) (Inr y ) =  match e y 
m a tc h__  =  fail " p a tte rn  mismatch".

For nonempty lists, we attem pt to match the head x against a pattern pat by means of 
a call to the generic function match/ and the tail xs against extended representations 
es through a recursive call to match /. If both x and xs are matched successfully, the 
resulting substitutions are merged with the operator ® from Section 5.1:

in s ta n ce  (Rewritable a , Matchable ft) ^  Matchable (a  ::: ft) w h ere
match (pat ::: / es) (x ::: xs ) =  jo in  (liftM2 (®) (m atch/ pat x ) (match es x s )).

As both matching and merging may fail, this gives rise to a nested monadic structure, 
which we flatten with a call to the function jo in ,

jo in  :: Monad ^  ^  ^  (p a . ) ^  ^  a ,
from the standard libraries.

This completes our implementation of generic matching and substitution.
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6 Synthesising rewrite rules

In the previous section, we have demonstrated how rewrite rules are, in our library, 
intensionally represented in terms of the type synonym Pattern  and the type-indexed 
datatype Extended. Implementing patterns through generic types frees the user of the 
library from the burden of defining separate datatypes for representing the left- and 
right-hand sides of rewrite rules for various term  types, but still allows us to enjoy the 
benefits of observable rules.

However, this use of generic types raises the question how the user is supposed to 
define her rewrite rules. Using $ from the Haskell Prelude,

in fix r 0  $
( $ ) :: (a  — ft) — a  — ft 
f  $ x =  f  x ,

to avoid excessive use of parentheses, she could write the rewrite rule derived from the 
principle of contradiction as

contradiction :: Rule Prop 
contradiction =  Rule lhs rhs 

w h ere
lhs =  Inl $ Inr1 $ Inr1 $ ImT $ Inr1 $ In l  $

(Inl $ IniT $ Inr1 $ ImT $ In l  $ Inr RZero :::/ N i l ) :::'
Inr RZero :::/ N il  

rhs =  Inl $ Inr1 $ Inr1 $ In l  N i l ,
but clearly this style of definition is not exactly user-friendly and, moreover, quite 
error-prone. Of course, the definition of so-called smart constructors, such as

(A/) :: Extended Prop — Extended Prop — Extended Prop 
p A/ q =  Inl $ Inr1 $ Inr1 $ ImT $ Inr1 $ In l  $ p ::: / q :::/ Nil1

make take away some of the burden, but these smart constructors then need to be 
defined for all types of rewriteable terms, defeating the very purpose of datatype- 
generic programming. Instead, our library facilitates the definition of rewrite rules in 
terms of the real constructors of the type of terms that are to be rewritten. The rule 
above, for example, can conveniently and concisely be written as

contradiction :: Rule Prop
contradiction =  synthesise (Ap — p :A: Not p — F).

That is, rewrite rules are synthesised from functions that take placeholders for metavari
ables as arguments and produce values of the type of rewritable terms—in this case, 
Prop. This way, rewrite rules are specified in the same way for different term  types, 
while the internal representation of the rules remains hidden from the user.

To synthesise rules from functions, we develop some more generic machinery. The 
idea is to instantiate each function parameter twice—each time with distinct term
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values. For example, for the function Ap — p :A: Not p — F tha t we used above, we 
could instantiate the parameter p first with the value T and then with the value F . 
The first instantiation then yields the left-hand side T  :A: N ot T and the right-hand 
F ; the second instantiation yields F  :A: N o tF  and F . Next, we compare the obtained 
pairs of left- and right-hand sides to determine where metavariables are to  be inserted. 
As, in our example, the produced left-hand sides differ in the left operand of : A: 
and in the argument of Not, an occurrence of some metavariable is inserted in these 
locations. The two right-hand sides are identical, so no metavariable occurrence will 
show up there.

In this section, we implement this scheme of producing rewrite rules generically. We 
first show how to generate pairs of distinct values for term  types (Section 6.1). Then, 
we present a generic diff function that localises the positions in which metavariables are 
to be inserted (Section 6.2). Finally, a class of synthesiser types is given (Section 6.3).

6.1 Generic sampling

To produce pairs of distinct values for types in Rewritable, we define a class Sampleable,
class Sampleable a  w h ere  

left :: a 
right :: a .

Instances of Sampleable are supposed to have their methods left and right produce 
values that differ in their top-level constructors. W ith instances of Sampleable declared 
for all generic representation types, functions left/ and right/ can be defined generically 
for all types of rewritable terms:

left/, right/ :: Rewritable a  ^  a 
left' =  to left 
right/ =  to right.

As always, appropriate instances for base types are straightforward to produce:
in s ta n c e  Sampleable Int w h ere  left =  0 ; right =  1 
in s ta n c e  Sampleable Float w h e re  left =  0 ; right =  1 
in s ta n c e  Sampleable Char w h ere  left =  ’a ’ ; right =  ’b ’ .

For Nil, it is not possible to produce distinct left and right values:
in s ta n ce  Sampleable N il w h ere  

left =  Nil 
right =  Nil.

As a result, no metavariables are ever introduced in rules over types with only a 
single nonbottom value. (Note that this is by no means a fundamental limitation as 
meaningful rewrite rules for such types cannot be given anyway.) Sum types present 
us with the opportunity to actually produce values that are distinct in their top-level 
constructor. For left, we choose Inl, while for right, Inr is selected:
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in s ta n c e  (Sampleable a , Sampleable ß ) ^  Sampleable (a  :+: ß ) w h ere  
left =  Inl left 
right =  Inr left.

The values for left and right need to be finite, as infinite values will lead to nonter
mination of the generic diff function in Section 6.2. To guarantee termination, we 
require the leftmost constructor of a datatype to be nonrecursive, such that left al
ways produces a finite value for this constructor. Then, we can use the same value in 
the definition of left and right as the top-level constructor distinguishes the values.

For ::: , we have only one constructor at our disposal, so a distinction in top-level 
constructors is to be made at a deeper level:

in s tan c e  (Rewritable a , Sampleable ß ) ^  Sampleable (a  ::: ß ) w h ere  
left =  left' ::: left 
right =  right' ::: right.

6.2 Generic diff

To determine at which positions in a pattern metavariables are to be introduced, we 
require the ability to generically compute a “diff” between two patterns. If such a 
position is found, it depends on the type of the metavariable to be introduced whether 
or not a new pattern can be distilled from the differences between the pattern values 
compared. To this end, we require term  types to be in the class Typeable, so that their 
types can be compared at run-time.

The class Typeable comes with an operation gcast,
gcast :: ( Typeable a , Typeable ß ) ^  p a  ^  Maybe (p  ß ),

tha t allows values of type p a  to be cast into values of type p  ß  if and only if a  and ß  
are the same type. In our implementation of a generic diff, we attem pt to cast values 
of type P attern a  I  into values of type Pattern ß  I  with both a  and ß  in Typeable. 
This means we need a cast operation that operates on the second-to-last argument of 
a type constructor rather than on the last argument. To obtain such an operation, we 
define a type Flip tha t swaps the last two arguments of a type constructor,

n e w ty p e  Flip p a ß  =  Flip (p  ß  a ),
and then define a function gcast' for casting second-to-last type arguments:

gcast' :: ( Typeable a , Typeable ß ) ^  p  a  j  ^  Maybe (p  ß  7 ) 
gcast' x =  case gcast (Flip x ) o f 

Nothing ^  Nothing 
Just (Flip y ) ^  Just y .

Next, we define a class Diffable of representation types for which a diff can be 
computed:
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class Diffable a  w h ere  
diff :: Typeable ft ^

Extended a  I  ^  Extended a  I  ^  Maybe (Extended a  (ft ::: I )).
For each generic representation type a , the overloaded function diff takes two values 
of type Extended a  I  for some environment I  and attem pts to  introduce a new ft- 
typed metavariable at the deeper locations in which the two values differ. If the two 
values differ at top-level or at an inappropriately typed location, diff fails and produces 
Nothing.

Diffs for rewritable terms can now be computed by means of a generic function diff ':
diff ' :: (Rewritable a , Typeable ft) ^

Pattern a  I  ^  Pattern a  I  ^  Maybe (Pattern a  (ft : : : I  )) 
diff ' (Inl e) (Inl e') =

case diff e e' of Nothing ^  gcast' (Inr RZero) ; Just e" ^  Just (Inl e") 
diff ' (Inr r ) (Inr r ') | r =  r ' =  Just (Inr (RSucc r )) 
diff ' __  =  Nothing.

This generic function takes patterns over a type a  as argument. If both patterns consist 
of values e and e' of an extended type, the overloaded diff function is used to compare 
e and e'. (Note that these values are produced by left and right from Section 6.1 and 
have to be unequal or finite as to ensure termination.) If diff successfully computes 
a combined value e" of extended type, this value is wrapped in a pattern Inl e" and 
returned. If diff fails, we attem pt to insert a metavariable RZero of type ft at top- 
level. As insertion of such a metavariable is only allowed if a  and ft are the same type, 
we use the function gcast' defined above to compare a  and ft at run-time. If both 
patterns are metavariable alternatives Inr r and Inr r ', we require r and r ' to be the 
same metavariable and construct a corresponding metavariable Inr (RSucc r ) in the 
extended environment ft : : : I . If r and r ' are not equal, or if the two patterns are 
constructed from different alternatives, we produce Nothing.

It remains to  give instances of Diffable for our generic representation constructors. 
As values of base types contain no subterms and can thus only differ at top-level, an 
implementation of diff for these types reduces to testing for equality:

in s ta n ce  Diffable Int w h ere  
diff (Int! n ) (Int! n ')

| n =  n ' =  Just (I n t  n )
| otherwise =  Nothing

in s ta n ce  Diffable Float w h ere  
diff (Float! r ) (Float! r ')

| r =  r ' =  Just (Float! r )
| otherwise =  Nothing 

in s ta n ce  Diffable Char w h ere  
diff ( Char c) ( C har c!)

| c =  c' =  Just ( Char1 c)
| otherwise =  Nothing.
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The extension of Nil holds only a single value N il', so diff for empty lists cannot fail:
in s ta n c e  Diffable Nil w h ere  

diff Nil! Nil' =  Just Nil!.
For values of sum type, we compare the top-level constructors. If these are different, 
we produce Nothing; otherwise, comparison proceeds recursively:

in s ta n ce  (Diffable a , Diffable ft) ^  Diffable (a  :+: ft) w h ere  
diff (In l  e) (Inl' e') =

case diff e e' of Nothing ^  Nothing ; Just e'' ^  Just (In l  e'') 
diff (Inr1 e) (Inr1 e') =

case diff e e' of Nothing ^  Nothing ; Just e'' ^  Just (In r  e'') 
d i f f__ =  Nothing.

Similarly, for ::: , the comparison of two values pat :::' es and pat' :::' es' continues 
recursively underneath the constructor : : : ' :

in s ta n c e  (Rewritable a , Diffable ft) ^  Diffable (a  ::: ft) w h ere  
diff (pat :::' es) (pat' :::' es') =  

case (d iff ' pat pa t', d iff es es') o f
(Just pat '', Just es '') ^  Just (pat '' :::' es '')
_ ^  Nothing.

6.3 Generic synthesis

W ith generic sampling and generic diff defined, we can now implement the synthesis 
of rewrite rules from functions over term  types. These functions wrap the left- and 
right-hand sides of rules in values of a type Template,

d a ta  Template a  =  Template a  a ,
of which the values simply constitute pairs of terms. For the concise definition of 
templates, we introduce an operator ^ :

infix 1 ^
( ^ )  :: a  ^  a  ^  Template a 
lhs ^  rhs =  Template lhs rhs.

Next, we define a class Synthesiser of types of which the values can be used to 
synthesise rewrite rules:

class Rewritable ( Term a ) ^  Synthesiser a  w h ere  
ty p e  Term a  :: * 
ty p e  Env a  :: *
patterns :: a  ^  (Pattern ( Term a ) (Env  a ), Pattern ( Term a ) (Env a )).
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Each instance a  of Synthesiser has an associated type synonym Term a  tha t gives 
the type of terms that are rewritten by a synthesised rewrite rule. Similarly, the 
associated type synonym E nv a  gives the term  types over which the metavariables 
of a synthesised rule range. For example, a rewrite rule synthesised from a function 
of a type a  — ft — Template 7  has two metavariables, ranging over values of types 
a  and f t , and is used to rewrite terms of type 7 . Operationally, a value x of a type 
from Synthesiser can be used to  produce a pair patterns x tha t contains the left- and 
right-hand-side components of a rewrite rule. Synthesis then reduces to combining 
these components in a Rule-value:

synthesise :: (Synthesiser a , Mappable (Env  a )) ^  a  — Rule ( Term a ) 
synthesise x =  le t (lhs, rhs) =  patterns x in  Rule lhs rhs.

Instances of the class Synthesiser are defined inductively over the structure of func
tion types. As a base case, we have an instance for Template a  for any type a  of 
rewritable terms:

in s ta n ce  Rewritable a  ^  Synthesiser ( Template a ) w h ere  
ty p e  Term  ( Template a ) =  a 
ty p e  Env ( Template a ) =  Nil
patterns ( Template lhs rhs) =  (extend/ lhs, extend/ rhs).

Rewrite rules that are synthesised directly from templates over a  operate on terms 
of type a  and contain no metavariables. Left- and right-hand sides for these rules 
can be obtained simply by lifting template components into the type Pattern a Nil 
of patterns over a  without variables, for which we use the generic function extend' 
defined in Section 5.2.

In the inductive step, we require, in order for a function type a  — ft to be in the 
class Synthesiser, a  to be a type of rewritable terms and ft to be a type of synthesisers:

in s ta n c e  (Rewritable a , Synthesiser ft) ^  Synthesiser (a  — ft) w h ere  
ty p e  Term  (a  — ft) =  Term ft 
ty p e  Env (a  — ft) =  a  ::: Env ft 
patterns f  =

le t (lhs, rhs) =  patterns ( f  left/)
(lhs/, rhs/) =  patterns ( f  right/) 

in  case (d iff/ lhs lhs/, d iff/ rhs rhs/) o f 
(Just lhs//, Just rhs//) — (lhs//, rhs//)
_  — error " sy n th e s is  f a i lu re " .

Function abstraction over a  adds an a -typed metavariable to the environment Env f t , 
but does not alter the type Term ft of terms the synthesised rule operates on. Patterns 
of the left- and right-hand sides of the rewrite rule are constructed by applying the 
function twice (once on the value produced by left/ and once on the value produced by 
right/) and then computing diffs from the obtained components, possibly introducing 
occurrences of a new metavariable that ranges over terms of type a . If diffs cannot 
be computed, synthesis fails with a run-time error—an issue to be discussed in more 
detail in the next section.
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7 Detecting ill-formed rewrite rules

In the previous sections, we have shown the implementation of our library’s core func
tionality. In particular, we have shown how, although we use an intensional represen
tation of rewrite rules internally, we allow the user to define rules in terms of functions 
over the datatypes of terms being rewritten. Due to  this sugarcoating, additional 
verification of rewrite rules is required.

Consider, for example, the following rewrite rule over propositional formulae,
funny  :: Rule Prop
funny  =  synthesise (An — f  n — T), 

where f  is some function taking Int-values to  values of type Prop:
f  :: In t — Prop.

It is unclear what the semantics of such a rewrite rule should be. That is, in a 
well-formed rewrite rule we expect metavariables to  exclusively occur as constructor 
arguments, not as arguments to arbitrary functions. Using Haskell’s variables as place
holders for our metavariables means, however, tha t we cannot preclude such ill-formed 
rules and that we have to rely on the user not to construct nonsensical rules as the 
one above.

Another class of meaningless rewrite rules can be excluded by equipping our library 
with functionality for detecting their ill-formedness. Consider, for instance, the rule

unbound :: Rule Prop
unbound =  synthesise (Ap — T — T  :V: p),

in which the metavariable p on the right-hand side is not bound on the left-hand side 
of the rewrite rule, and,

superfluous :: Rule Prop
superfluous =  synthesise (Ap q — p :V: p — p ),

in which the metavariable q is superfluous since it is “declared” but not used at all in 
the rewrite rule. In general, we consider a rewrite rule well-formed if and only if all 
of its declared metavariables are bound in its left-hand side—and, interestingly, this 
notion of well-formedness can be checked for statically, i.e., without applying the rule.

To this end, we extend the library with a function validate tha t provides the user 
with an opportunity to verify the use of declared metavariables in rewrite rules:

validate :: Rewritable a  ^  Rule a  — Bool.
This function is intended to be applied just after rule synthesis.

Validation is achieved by constructing a use record with a field for each metavariable, 
denoting its presence in the left-hand side of the rewrite rule:
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d a ta  Record :: * — * w h ere  
RNil :: Record Nil
RCons :: Bool — Record I  — Record (a  ::: I ).

An initial blank record is created by setting each presence to False:
class Recordable I  w h ere  

blank :: Record r  
in s tan c e  Recordable Nil w h ere  

blank =  RN il
in s ta n c e  Recordable I  ^  Recordable (a  ::: I ) w h ere  

blank =  RCons False blank.
We now require environments to be instances of the type class Recordable and, hence, 
a constraint is added to the constructor Rule from Section 5:

d a ta  Rule :: * — * w h ere
Rule ::(••• , Recordable I ) ^  P attern a  I  — Pattern a  I  — Rule a .

A use record is updated by traversing the left-hand side of a rewrite rule and checking 
off each metavariable encountered:

class Validateable a  w h ere
record :: Extended a  I  — Record I  — Record I .

Recall from Section 5 tha t a Pattern  is either a value of a corresponding extended type 
or else a metavariable. In the former case, we traverse the extended term  recursively, 
looking for metavariable occurrences; in the latter case we, check off the metavariable 
in the use record:

record/ :: Rewritable a  ^  Pattern a  I  — Record I  — Record r
record/ (Inl e) rec =  record e rec
record/ (Inr RZero) (RCons b rec) =  RCons True rec
record/ (Inr (RSucc r )) (RCons b rec) =  RCons b (record/ (Inr r ) rec).

Traversing base-type values results in no change to the use record as base values cannot 
contain metavariables:

in s ta n ce  Validateable Int w h e re  record (Int! n ) =  id 
in s ta n ce  Validateable Float w h ere  record (F loat r ) =  id 
in s ta n ce  Validateable Char w h e re  record ( Char/ c) =  id .

Similarly, traversing Nil values results in the original record:
in s ta n c e  Validateable Nil w h ere  

record Nil/ =  id .
Values of sum types are traversed by stripping their top-level constructor:
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in s ta n c e  ( Validateable a , Validateable ft) ^  Validateable (a  :+: ft) w h ere  
record (Inl/ e) =  record e 
record (Inr/ e) =  record e .

For ::: , we update the record by traversing the subterms and the pattern in sequence:
in s ta n ce  (Rewritable a , Validateable ft) ^  Validateable (a  ::: ft) w h ere  

record (pat :::/ es) =  record/ pat o record es.
Note that since the record is only used to check off metavariable use, the order of the 
calls to record/ and record plays no role.

Next, we add a superclass constraint for Validateable to the declaration of the class 
Rewritable from Section 3.2,

class (• • •, Validateable (Rep a )) ^  Rewritable a ,
and define a top-level function for validating rules:

validate :: Rewritable a  ^  Rule a  — Bool 
validate (Rule lhs rhs) =  check (record/ lhs blank) 

w h ere
check RNil =  True
check (RCons b rec) =  b A check rec.

Starting with a blank record, validate records all occurrences of metavariables at the 
left-hand side of a rewrite rule and then verifies that all metavariables in the environ
ment of the rule are checked off in the updated record.

8 Guarded rewriting

In the previous section, we have added some infrastructure for statically validating 
rewrite rules to the core functionality of our library. In this section, we further extend 
the library and add support for rewrite rules guarded by preconditions.

As an example, consider the datatype Lam  of lambda-expressions,
d a ta  Lam  =  Var String | Abs String Lam  | App Lam Lam,

and an accompanying function fv  tha t produces the variables that appear free in a 
given lambda-expression:

fv  :: Lam  — [ String].
Now suppose that we want to define a rewrite rule that implements eta-reduction:

Ax. e x  — e, if x  not free in e.
That is, eta-reduction applies to expressions that match the pattern Ax. e x, but only 
if such an expression additionally fulfills the precondition that the variable x does not
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appear free in the expression e . Using the extension presented in this section, such 
rewrite rules can, with our library, be written as in

etaReduction :: Rule Lam
etaReduction =  synthesise (Ax e ^  Abs x  (App e ( Var x )) ^  e f x fv  e).

Here, we synthesise a rule over lambda-expressions from a function that produces a 
template constructed with the operators ^  and § . The latter adds a guard to the 
rewrite rule, i.e., a boolean expression that may refer to the metavariables abstracted 
over by the synthesiser function.

In order to implement preconditions, we extend our type Rule of rewrite rules with 
a component containing a guard:

d a ta  Rule :: * ^  * w h ere
Rule :: (Mappable I , Recordable I , Testable I ) ^

Pattern a  I  ^  Pattern a  I  ^  Guard I  ^  Rule a .
In addition to the classes Mappable (cf. Section 5) and Recordable (cf. Section 7), 
metavariable environments used within rules are restricted to be instances of the class 
Testable, to be explained below. Guard types are defined inductively over the structure 
of metavariable environments. That is, we have a type family Guard,

ty p e  fam ily  Guard I  :: *,
with instances

ty p e  in s ta n ce  Guard Nil =  Bool
ty p e  in s ta n ce  Guard (a  ::: I ) =  a  ^  Guard I .

A guard for a rewrite rule without metavariables is just a boolean expression. For 
rules that do have metavariables, a guard is a function tha t takes an argument of 
appropriate type for each metavariable and produces a boolean.

Given a substitution for a metavariable environment I  (cf. Section 5.3), values of 
type Guard I  can be tested in order to obtain a boolean that indicates whether the 
corresponding precondition is fulfilled. To this end, we define the type class Testable 
of environments for which guards are testable:

class Testable I  w h ere
test :: Guard I  ^  Substitution I  ^  Bool.

For the empty-environment type Nil, the guard is itself already a value of type Bool, 
so testing can just discard the supplied substitution (which can only be constructed 
by PNil anyway):

in s ta n ce  Testable Nil w h ere  
test b PNil =  b.

For an environment a  ::: I , the guard function is applied to the value that is to  be 
substituted for the metavariable corresponding to a  and the resulting guard for I  is 
tested recursively:
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in s ta n ce  Testable I  ^  Testable (a  ::: I ) w h ere  
test f  (PCons (Just x ) s ) =  test s ( f  x ) 
test f  (PCons Nothing s ) =  error " t e s t  f a i lu re " .

If no substitution value is available, the governing rewrite rule was ill-formed (cf. Sec
tion 7) and testing fails with a run-time error.

As the GADT Rule now requires all metavariable environments to be testable, en
forcing preconditions is straightforward:

rewriteW ithM  :: (Rewritable a , Monad ^ ^  Rule a  — a  — ^  a 
rewriteW ithM  (Rule lhs rhs grd) x =  do 

s ^  match/ lhs x
if test grd s th e n  substitute/ s rhs else fa il "p re c o n d itio n  f a i lu re " .

If, for a given rule Rule lhs rhs grd and term  x , x successfully matches against the 
left-hand side lhs, the resulting substitution s is tested against the guard grd . If the 
test succeeds, the substitution s and the right-hand side rhs are combined to produce 
a new term; otherwise, the rule does not apply and rewriting fails.

W hat remains is to adapt the synthesis of rules from templates and functions produc
ing templates (cf. Section 6 ) . Firstly, we extend templates with a boolean component:

d a ta  Template a  =  Template a  a Bool.
Next, we redefine and introduce the smart constructors — and , respectively:

infix  1 — 
infix  0  §
(—) :: a  — a  — Template a 
lhs — rhs =  Template lhs rhs True 
( ) :: Template a  — Bool — Template a 
Template lhs rhs b § b/ =  Template lhs rhs b/.

The class Synthesiser now gets an additional method guard tha t produces, for a syn
thesised rule, a guard of appropriate type:

class • • • ^  S’ynthesiser a  w h ere

guard :: a  — Guard (Env a )
For rules synthesised directly from templates, this guard is just the boolean from the 
template:

in s ta n c e  • • • ^  Synthesiser ( Template a ) w h ere

guard ( Template lhs rhs b) =  b.
For rules synthesised from functions, the guard is itself a function too:

31



instance • • • ^  Synthesiser (a  ^  ft) w here

guard f  =  guard o f .
The function synthesise, finally, tha t turns synthesisers into rewrite rules simply puts 
guards in the right places in rules:
synthesise :: (Synthesiser a , Mappable (Env a ), Testable (Env a )) ^  a  ^  Rule ( Term a ) 
synthesise x =  le t (Ihs, rhs) =  patterns x  in  Rule Ihs rhs (guard x ).

Note that the given implementation of guarded rewrite rules has one obvious draw
back: preconditions are encoded extensionally rather than intensionally and are there
fore not observable. This reintroduces some of the problems mentioned in Section 2. 
Most prominently, when pretty-printing rewrite rules, the rendering of preconditions 
will pose a problem. The other issues listed in Section 2 are, however, of lesser impor
tance. To what extent rewrite rules are still suitable for automated testing, strongly 
depends on how often preconditions apply: only if preconditions are rarely fulfilled, 
the generation of appropriate test data may be problematic. For inversion and tracing, 
nonobservability of preconditions plays no limiting role.

9 A case study: solving arithmetic equations

The previous section completed our exploration of our generic library for term  rewrit
ing. In this and the next section, we evaluate our approach. In this section, we present 
(part of) a small case study of a more or less realistic use of our library: solving arith
metic equations using term rewriting. In Section 10, we discuss some results obtained 
from benchmarking.

In the case study in this section, we use some of the more advanced features of our 
library, such as heterogeneously typed metavariables and guarded rewrite rules. 

Consider the problem of solving the equation

1 + ( X - 3 F  =  3'
To solve such an equation with a single variable, we use the so-called cover-up method, 
which is based on covering up the part of the equation that contains the variable. We 
can define cover-up rewrite rules for addition, subtraction, multiplication, division, 
and exponentiation operations; with these rules we solve the example equation in the 
following sequence of steps:

1 1 81 ^  (x-3)2 = 3
8(x-3)2 = 2

(x  — 3) 2 =  4
x  — 3 = 2 V x  — 3 =  —

<3- x =  5 V x  =  1 .
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The domain of interest is represented by a variation of the datatype Prop from 
Section 1, tha t allows for formulae to be expressed over atoms of different types,

d a ta  Prop a  =  Var a  | T | F | Not (Prop a )
| Prop a  : A: Prop a  | Prop a  : V: Prop a ,

a type of equations,
d a ta  Equation a  =  a  : = : a ,

and a type Expr of various arithmetic expressions,
d a ta  Expr =  Const Rational | Varia String  | Expr :+: Expr | Expr :-: Expr 

| Expr :*: Expr | Expr :/: Expr | Expr :": Expr.
For each of these datatypes we need instances of the class Representable (as described 
in Section 3), the class Typeable (can be derived by the GHC), and Rewritable (one 
line).

Using the datatypes, the equation 1 +  (x- 3)2 =  3 is represented as 
Var ( (Const 1 :+: ( Const 8  :/: (( Varia "x" :-: Const 3) :": Const 2))) : =  : Const 3). 

The solution to  this equation, x  =  5 V x  =  -1 ,  is represented as
Var ( Varia "x" : =  : Const 5) :V: Var ( Varia "x" : =  : Const (-1 )).

Our rewrite system consists of simple rules for simplifying propositions, such as
orTrueLeft :: Rewritable a  ^  Rule (Prop a ) 
orTrueLeft =  synthesise (Ap ^  T  :V: p ^  p ),

and some rules for rewriting additions, which require preconditions,
coverPlusLeft :: Rule (Equation Expr) 
coverPlusLeft =  synthesise (Ax y z ^  

x :+: y : =  : z ^  x : =  : z :-: y § hasVaria x A noVaria y ).
In the rule coverPlusLeft, all metavariables range over expressions. We only want 
to apply this rule if there are variables in the expression x and no variables in the 
expression y , so as to guarantee the isolation of those variables on the left-hand side 
of the equation. The helper functions hasVaria and noVaria test the presence (or 
absence) of variables in an expression.

Dealing with exponentiation requires a more complex rule:
coverPowerEven :: Rule (Prop (Equation Expr)) 
coverPowerEven =  synthesise (Ax n y ^  

le t z =  y :": Const (1 /  n )
in  Var (x :": Const n : = : y ) ^  Var (x : =  : z ) : V: Var (x : = : Const 0 :-: z )

§ hasVaria x A n > 0 A isEven n ).
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As this definition illustrates, complex rewrite rules can be become quite verbose, but 
we can freely use local definitions to keep rules more or less readable. Since our rewrite 
rules are observable, a pretty-printer would be able to  format such rules nicely. (Note, 
however, tha t guards in rewrite rules are not observable since these are just boolean 
values, as described earlier in Section 8.)

10 Benchmarks

The biggest disadvantage of generic programming techniques is tha t they can be a 
source of inefficiency. The introduction of representation types and corresponding 
conversions to and from the original datatypes generally imposes a penalty on execu
tion time. We have measured the performance of our generic rewriting library to assess 
how large this penalty is, compared to hand-written code for a specific datatype. We 
have performed two separate tests of different complexities. The first one deals with 
logical propositions and uses neither preconditions nor metavariables of different types. 
The second one deals with arithmetic equations, and uses the full power of our generic 
rewriting library. Both are bundled with the library for analysis and repeatability.

10.1 Turning propositions into disjunctive normal form

Our first benchmark uses the datatype Prop of propositional formulae from the Intro
duction, extended with constructors for implication and equivalence. We have defined 
16 rewrite rules and used these rules to bring the logical proposition to disjunctive 
normal form (DNF). This rewrite system is a realistic application of our rewriting 
library, and is very similar to the system that is used in an exercise assistant for e
learning systems (Heeren et al., 2008). None of the rules has preconditions, and all 
metavariables are of type Prop.

Conversion to DNF has been tested with four different strategies: such a strategy 
controls which rewrite rule is tried, and where. The strategies range from naive (i.e., 
apply some rule somewhere), to more involved strategy specifications tha t stage the 
rewriting and use all kinds of traversal combinators. We implemented these combina- 
tors in a type-specific fashion. They could also be implemented generically, and not 
necessarily with the library we present. However, this would add another source of 
inefficiency to our tests, one that we do not wish to benchmark; hence our choice for 
implementing the strategies in a type-specific fashion.

We use QuickCheck (Claessen and Hughes, 2000) to generate a sequence of random 
propositions. The random-number generator is initiated with a fixed seed so that the 
same sequence is used for all test runs. We carefully profiled our tests to assure that 
the computation time was being spent mostly on the rewriting functionality, and not 
on auxiliary infrastructure such as data generation.

Because the strategy highly influences how many rules are tried, we vary the number 
of terms tha t has to be brought to disjunctive normal form depending on the strategy 
that is used. Table 1 shows for each strategy the number of terms that are normalised, 
how many rules are successfully applied, and the total number of rules that have been
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fired. The final column shows the percentage of rules that succeeded: the numbers 
reflect tha t the simpler strategies fire more rules.

Strategy Terms Rules applied Rules tried Ratio
dnf- 1 1 0 , 0 0 0 217,076 113,511,244 0.19%
dnf- 2 50,000 492,114 22,224,222 2 .2 1 %
dnf-3 50,000 487,490 22,467,730 2.17%
dnf-4 1 0 0 , 0 0 0 872,494 18,327,913 4.76%

Table 1: The strategies benchmarked.

We compare the execution times of three different implementations for the collection 
of rewrite rules.
Pattern  M atching (P M ): The first implementation defines the 16 rewrite rules as 

functions that use pattern matching. This implementation suffers from all the 
drawbacks that were mentioned in Section 1, making this version less suitable for 
an actual application. However, this implementation of the rules is worthwhile 
to study because Haskell has excellent support for pattern matching, which will 
likely result in efficient code.

Specialised Rew riting (S R ): We have also written a specialised rewriting system that 
operates on propositions, very much like that described in Section 2.2. The most 
significant difference is tha t we have reused the Var constructor for representing 
metavariables too, thus mixing object variables with metavariables.

Generic Rew riting (G R ): Here we implemented the rules using the generic functions 
for rewriting tha t are introduced in this paper. The instance of the Representable 
type class is similar to the declaration in Section 3, except that it also includes 
the constructors for equivalence and implication.

All test runs were executed on a machine running Windows XP Professional x64 
Edition with SP2 on an Intel Core 2 Duo 3Ghz with 2GB of RAM. The programs were 
compiled with the GHC (version 6.10.4) with standard optimisation level (using the 
-O1 compiler flag). We do not use optimisation level -O2 because we noticed tha t it 
sometimes reduced performance. Execution times were measured as the difference of 
the value returned by the function System .C PU Tim e.getC PU Tim e  from the base li
braries that ship with theGHC, after and before the execution of the test, and averaged 
over 1 0  runs.

Table 2 shows the performance for each implementation of the strategies. The 
absolute figures are given in seconds, and we also show the figures relative to the 
pattern-matching approach (PM).

The table shows that PM is significantly faster than the other approaches. The spe
cialised rewriting approach (SR) adds observability of the rewrite rules, at the cost of 
approximately doubling execution time. The generic approach (GR), when compared
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Strategy Absolute (s) Relative
PM SR GR PM SR GR

dnf- 1 3.11 10.89 37.21 1 .0 0 3.49 11.94
dnf- 2 2.52 4.82 15.03 1 .0 0 1.92 5.98
dnf-3 2.49 4.87 15.45 1 .0 0 1.95 6.19
dnf-4 3.94 7.28 19.45 1 .0 0 1.84 4.93

Table 2: Benchmark results for the Prop datatype with -O1.

to the SR approach, suffers from a slowdown of a factor of about 3. This is proba
bly due to the conversions to and from the structure representation of propositions. 
We also observe a correlation between strategy ratio of rule application (Table 1) and 
performance (the higher the ratio, the better the performance). This confirms that 
the overhead of both the SR and GR approaches is caused by the rewriting infrastruc
ture: the PM approach has little overhead from trying rules as it uses Haskell’s native 
support for pattern matching.

Inspired by Magalhaes et al. (2010), we repeated our benchmark setting compilation 
flags - fu n fo ld in g -c re a tio n - th re s h o ld  to  450 and - fu n fo ld in g -u s e - th re s h o ld  to 
60. These flags control, respectively, the keenness of the compiler to export function 
definitions into interface files and to inline them. This has been shown to increase the 
performance of certain generic functions, since inlining “large” functions such as to 
and from  exposes opportunities for further optimisations. We show the new results in 
Table 3. Note tha t the relative figures are still in relation to PM compiled with -O1, 
as this is the “standard” approach at the “standard” optimisation level.

„ Absolute (s) Relativestrategy p M gR Qr  p M gR Qr

dnf- 1 3.02 10.78 22.57 0.97 3.46 7.24
dnf- 2 2 . 1 2 4.00 7.36 0.84 1.59 2.93
dnf-3 2 . 1 2 4.07 7.63 0.85 1.63 3.06
dnf-4 2.51 4.49 7.70 0.64 1.14 1.95

Table 3: Benchmark results for the Prop datatype with increased inlining.

Increased inlining effectively improves the performance. All the approaches benefit 
from it, but the most pronounced gains are seen in the GR approach, where perfor
mance is improved to between 40% and 60% of the original levels. Strategy dnf-4, 
in particular, shows the highest improvement, now taking only twice as much as the 
original PM approach.
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10.2 Solving arithmetic equations

Our second benchmark is performed on a family of datatypes representing arithmetic 
equations, as introduced in Section 9. We use 25 rules, some with preconditions and 
some using metavariables of different types, therefore testing the full potential of our 
library in a realistic setting. These rules are applied to isolate variables on the left-hand 
sides of equations.

Again, we have used QuickCheck for test data generation. We test a single strategy, 
and use type-specific traversals for its application. We compare our library against a 
pattern-matching approach (PM) only, and again include figures with standard -O1 
optimisation and with increased inlining as described previously. The results, as an av
erage over 10 runs, are summarised in Table 4 . We can conclude that the introduction 
of preconditions and metavariables of different types does not significantly influence 
performance. Promoting inlining continues to prove useful to increase the performance 
of our library.

Absolute (s) Relative
Op i on PM GR PM GR

Standard 0.57 2.44 1.00 4.29
Increased inlining 0.60 1.87 1.06 3.30

Table 4: Benchmark results for solving arithmetic equations.

Our benchmarks confirm that observability of rules comes at the expense of loss in 
runtime efficiency. Furthermore, generic definitions introduce some additional over
head. The trade-off between efficiency and genericity depends on the application at 
hand. For instance, the library would be suitable for the online exercise assistant, 
because runtime performance is less im portant in such a context.

We believe that improving the efficiency of generic library code is an interesting area 
for future research. By inlining and specialising generic definitions, and by applying 
partial-evaluation techniques, we expect to  get code that is more competitive to the 
hand-written definitions for a specific datatype.

11 Related Work

Jansson and Jeuring (2000) implement a generic rewriting library in PolyP (Jansson 
and Jeuring, 1997), an extension of Haskell with a special construct for generic pro
gramming. Our library differs in a number of aspects. First, we use no extensions 
of Haskell specific to generic programming. This is a minor improvement, since we 
expect that Jansson and Jeuring’s library can easily be translated to plain Haskell as 
well. Second, we use a type-indexed datatype for specifying rules. This is a major 
difference, since it allows us to generically extend a datatype with metavariables. In 
Jansson and Jeuring’s library, a datatype either has to be extended by hand, forcing 
users to introduce a new constructor, or one of the constructors of the original datatype
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is to be reused for metavariables. Neither solution is very satisfying, since either func
tions unrelated to rewriting must now handle the new metavariable constructor, or we 
are forced to introduce a safety problem in the library since an object variable may 
accidentally be considered a metavariable.

Libraries that provide generic traversal combinators, such as Strafunski (Lammel 
and Visser, 2002), Scrap Your Boilerplate (Lammel and Peyton Jones, 2003), Uniplate 
(Mitchell and Runciman, 2007), Bringert’s “almost compositional” functions (Bringert 
and R anta, 2006), and probably more, can be used to  define extensionally represented 
rewrite rules. These suffer from the disadvantages described in Section 2, but typically 
perform better than intensionally represented rules (see Section 10) .

Our generic pattern-matching function is a variation on the generic unification func
tions of Jansson and Jeuring (1998) and Sheard (2001). A generalisation of our library 
to full unification is possible, but probably hard to keep user-friendly as unification 
results may contain metavariable occurrences tha t can then no longer be hidden from 
the user. Adapting our library to use mutable variables to improve performance, as in 
Sheard’s work, should be relatively straightforward.

Brown and Sampson (2008) implement generic rewriting using the Scrap Your 
Boilerplate-library. Patterns are described in a special-purpose datatype that does 
not depend on the type of values being rewritten. In contrast to  our system, rules are 
not typed and hence ill-typed rules are only detected at runtime.

There exist a number of programming languages built on top of the rewriting 
paradigm, such as ELAN (Borovansky et al., 2001), OBJ (Goguen and G rant, 1997), 
ASF+SDF (Van Deursen et al., 1996), and Stratego (Bravenboer et al., 2008). Instead 
of built-in support for rewriting, we focus on how to support rewriting in a mainstream 
higher-order functional programming language by providing a library.

12 Conclusions and Further Work

We have presented a library for datatype-generic term  rewriting. Our library over
comes problems in previous generic rewriting libraries: users do not have to adapt or 
manually extend the datatypes that are used to represent terms; they do not need 
knowledge of the internals of the library; and they can document, test, and analyse 
their rewrite rules. The performance of our library is not as good as tha t of hand
written, datatype-specific rewrite functions, but we think the loss of performance is 
acceptable for many applications.

In contrast to rewrite rules that are defined using an extensional representation, our 
library requires tha t rule synthesisers do not inspect their metavariable arguments. 
Concretely, we do not allow arbitrary function applications in the right-hand side of a 
rule template, but unfortunately this restriction cannot be enforced statically.

There is ongoing work on generating test data for rewrite rules generically. That is, 
the left-hand side of a rewrite rule can be used as a template for test-data generation 
to improve testing coverage. We plan to use this approach in a testing framework that 
is to be shipped with our library.
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