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Abstract

We consider the problem of correcting the 

posterior marginal approximations computed 

by expectation propagation and Laplace ap

proximation in latent Gaussian models and 

propose correction methods that are simi

lar in spirit to the Laplace approximation of 

Tierney and Kadane (1986). We show that in 

the case of sparse Gaussian models, the com

putational complexity of expectation propa

gation can be made comparable to that of 

the Laplace approximation by using a parallel 

updating scheme. In some cases, expectation 

propagation gives excellent estimates, where 

the Laplace approximation fails. Inspired by 

bounds on the marginal corrections, we ar

rive at factorized approximations, which can 

be applied on top of both expectation propa

gation and Laplace. These give nearly indis

tinguishable results from the non-factorized 

approximations in a fraction of the time.

1 Introduction

Following Rue et al. (2009), we consider the problem 

of computing marginal probabilities over single vari

ables in (sparse) latent Gaussian models. Probabilistic 

models with latent Gaussian variables are of interest in 

many areas of statistics, such as spatial data analysis 

(Rue and Held, 2005), and machine learning, such as 

Gaussian process models (e.g. Kuss and Rasmussen, 

2005). The general setting considered in Rue et al. 

(2009) as well as in this paper is as follows. The prior 

distribution over the latent variables is a Gaussian ran

dom field with a sparse precision (inverse covariance)
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matrix and the likelihood factorizes into a product of 

terms depending on just a single latent variable. Both 

the prior and the likelihood may depend on a small set 

of hyper-parameters (say at most 6 in total). We are 

interested in the posterior marginal probabilities over 

single variables given all observations.

Rue et al. (2009) propose an integrated nested 

Laplace approximation to approximate these poste

rior marginal distributions. Their procedure consists 

of three steps. 1) Approximate the posterior of the 

hyper-parameters given the data and use this to de

termine a grid of hyper-parameter values. 2) Ap

proximate the posterior marginal distributions given 

the data and the hyper-parameters values on the 

grid. 3) Numerically integrate the product of the 

two approximations to obtain the posterior marginals 

of interest. The crucial contribution is the improved 

marginal posterior approximation in step 2), based on 

the approach of Tierney and Kadane (1986), that goes 

beyond the Gaussian approximation and takes into ac

count higher order characteristics of (all) likelihood 

terms. Comparing their approach with Monte Carlo 

sampling techniques on several high-dimensional mod

els, they show that their procedure is remarkably fast 

and accurate.

The main objective of the current paper is to see 

whether we can improve upon the approach of Rue 

et al. (2009). Expectation propagation, a method for 

approximate inference developed and studied mainly 

in the machine learning community, is then an ob

vious candidate. It is well-known to yield approxi

mations that are more accurate than the Laplace ap

proximation (e.g. Minka, 2001; Kuss and Rasmussen, 

2005). Furthermore, expectation propagation can still 

be applied in cases where the Laplace approximation 

is doomed to fail, e.g., when the log-posterior is not 

twice-differentiable (Seeger, 2008). The typical price 

to be paid is that of higher computational complex

ity. However, we will see that, using a parallel instead 

of a sequential updating scheme, expectation propa
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gation is at most a (relatively small) constant factor 

slower than the Laplace approximation in applications 

on sparse Gaussian models with many latent variables. 

Moreover, along the way we will arrive at further ap

proximations (both for expectation propagation and 

the Laplace approximation) that yield an order of mag

nitude speed-up, with hardly any degradation of per

formance.

Section 1.1 specifies the model and introduces nota

tion, Section 2 introduces and compares several meth

ods for correcting marginals given a fixed setting of 

the hyper-parameters, Section 3 discusses the compu

tational complexity of these methods when applied to 

sparse models, and Section 4 treats integration over 

hyper-parameters.

1.1 Sparse latent Gaussian models

In this section we introduce notation and define 

the models under consideration. Let p (y|x, 0) 

be the conditional probability of the observations 

y =  (y i,... ,y „ )T given the latent variables x = 

(#1 , . . . ,  xn) and the hyper-parameters 0. We assume 

that this likelihood factorizes over the latent variables:

n

P (y|x, 0) =  p (yi|#i, 0) .
i= 1

The prior p (x|0) over the latent variables is Gaussian, 

e.g., a Gaussian process or a so-called thin plate spline 

mimicking prior on a two-dimensional grid (Rue et al., 

2009). We call such a model “sparse”, when the preci

sion (inverse covariance) matrix of the Gaussian prior 

is sparse. Furthermore, we assume that the number 

of hyper-parameters 0  is relatively small, say at most 

6 . We will omit p (y|x, 0)’s and p (x|0)’s dependence 

on 0  whenever it is not relevant, use p0 (x) as an alias 

of the prior p (x|0 ), and q (x) for an approximating 

Gaussian distribution.

2 Posterior marginals conditioned 

upon the hyper-parameters

2.1 G lobal approximations

In this section we will focus on approximating poste

rior marginal distributions given a fixed setting of the 

hyper-parameters 0 , which is omitted from the nota

tion. That is, our goal is to approximate

where we used shorthand notation ti (xi ) =  p(yi |xi ) 

and with normalization constant

Z  = i  dxpo(x) ^  ti(#i) , (2)

i

which in fact corresponds to the “evidence” p(y|0 ) 

that we need in order to compute the posterior p(0 |y). 

In the following we will describe several approximation 

procedures. Discussion of the corresponding computa

tional complexities is postponed until Section 3.

As a first step, we construct a global Gaussian ap

proximation q(x) of p(x), e.g., through expectation 

propagation (EP) or using Laplace’s method. The ap

proximation obtained through EP is of the form

q(x) =  ^ p o (x )  n ^ i(x i)  , (3)
Zq i

where i(xi) are so-called Gaussian term proxies and 

where Zq ensures proper normalization. A Gaussian 

term proxy has the form of a Gaussian, but need not 

be normalized nor normalizable, i.e., may have a neg

ative precision. Expectation propagation iteratively 

improves the term proxies one by one1 . When updat

ing the ith term proxy given all other term proxies, 

the new term proxy i i (xi ) is chosen such that

J  dxi {1 , Xi, x2 }q\i (xi)ti(xi) =

ƒ  dxi {1,xi,x2 }q\i (xi)ti(xi) , (4)

with the “cavity” distribution, the Gaussian approxi

mation with the ith term proxy left out,

q\i(x) po(x )n ^ (xj ) . 
j =i

That is, we choose the new term proxy ti (xi ) such 

that the moments (up to second order) of “cavity 

times term proxy” equal those of “cavity times actual 

term”. The solution of this “moment matching” oper

ation is typically found through numerical integration. 

We refer to (Minka, 2005; Kuss and Rasmussen, 2005; 

Seeger, 2008) for more information on (how to use) 

EP for approximate inference in Gaussian processes 

and other models.

The global Gaussian approximation based on 

Laplace’s method is obtained by first finding the 

mode m  =  argmaxx logp(x, y) , and then setting 

the covariance matrix to the negative inverse of the 

Hessian, H (x) =  dJddxT logp(x, y), evaluated at m.

1Below we will describe a parallel updating scheme 
which, for sparse models, is a lot faster than the standard 
sequential scheme.
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It is easy to see that this Hessian amounts to the 

(sparse) precision matrix from the prior p0 (x) plus 

diagonal terms corresponding to second derivatives of 

the log ti (xi ) terms. Consequently, also the Gaussian 

approximation resulting from Laplace’s method can 

be written in the form (3) and, if desired, the corre

sponding term proxies can be used for initialization of 

the EP algorithm. The marginal q(xi) of the global 

Gaussian approximation (3) can be considered our 

lowest order approximation of the posterior marginal 

distribution of interest. We will write p^p(xi ) for the 

Gaussian marginal following from the EP approxi

mation and p^A(xi ) for the marginal following from 

Laplace’s method. In the following, we will discuss 

how to improve upon these global approximations.

2.2 M arginal corrections

Given a global Gaussian approximation q(x) of the 

form (3) with corresponding term proxies, we can 

rewrite (1 ) as

/ I \ Zq (xi) f  7 / \ I I (xj
p (xi|y) =  v ^ -  dx\i q (x )HZ  ̂i \xi) J  . t j (xj

tj (xj )

Z  ti (xi)

Zq ti (xi ) 

Z  t i (xi )

z ,

j=i -j(xj )
(5) 

tj (xj ) 

Aj (xj )
q (xi) ƒ dx\i q (x\i|xi)

7 j=i 

z  r
=  -Z£i(xi)q(xiW  dx\i q (x\i|xi)JJ ej (xj) ,

7  j=i

where we defined ei (xi ) =  ti (xi )/t i (xi ).

Equation (5), which is still exact, shows that there are 

two corrections to the Gaussian approximation q(xi): 

one direct, local correction through ei (xi ) and one 

more indirect correction through the (weighted inte

gral over) ej (xj )’s for j  =  i. The direct, local cor

rection comes without additional cost and suggests a 

second approximation,

p(xi|y) «  ei(xi)q(xi) ,

which will be denoted p^p_L(xi ) and p^A_L(xi) for 

the approximations following the global EP and 

Laplace approximation, respectively. The approxima

tion pfp-L (xi ) is the marginal of EP’s “tilted” distri

bution qi (x) x  ti (xi )q\i(x) (e.g. Minka, 2001; Opper

et al., 2009).

To improve upon this approximation, we somehow 

have to get a handle on the indirect correction

ci(xi) =  dx\i q (z\i|xi)n ej(xj) .

J  j=i

(6)

The observation here is that, for each xi , we are in fact 

back to the form (2 ): we have to estimate the normal

ization constant of a sparse latent Gaussian model,

where q (x\i |x^ now plays the role of a sparse (n — 1 )- 

dimensional Gaussian prior and the ej (xj ) are terms 

depending on a single variable. The idea is to choose a 

grid of xi values, compute ci (xi ) for each value of xi us

ing our favorite method for computing normalization 

constants, and numerically interpolate between the re

sulting approximations. Running a complete proce

dure, be it EP or Laplace’s method, for each xi is often 

computationally too intensive and further approxima

tions are needed to reduce the computational burden.

2.2.1 EP corrections

Let us write tj (xj ; xi ) for the term proxy of ej (xj ) in 

the context of approximating ci (xi ). A full run of EP 

for each xi may be way too expensive, so instead we 

propose to make just one parallel step. Since the term 

proxies of the global EP approximation are tuned to 

make tj (xj ) close to tj (xj ), it makes sense to initial

ize tj (xj ; xi ) to 1. Following the same procedure as 

in (4), computing the new term proxy for term j  then 

amounts to choosing tj (xj ; xi) such that 

/ dx> {1’xj 'x j l , ( x  w t j  (x ; x,) =

ƒ  dxj {1 ,xj , xj }q(xj |xi)ej (xj ) . (7)

Replacing the terms ej (xj ) in (6 ) by their term prox

ies tj (xj ; xi ) yields an estimate for ci (xi ). The corre

sponding approximation

p(xi|y) «  ei(xi)q(xi) ƒ  dx\i q (x\i|xi) ^  tj (x j; xi)

j =i
(8)

is referred to as p^p_1STEP(xi ). 

2.2.2 Laplace corrections

In our setting, the approximation proposed by Rue 

et al. (2009) can be understood as follows. In principle, 

one could, following Tierney and Kadane (1986), run 

a Laplace approximation on

ƒ  (x\i; xi) =  q (x\i |xi) ej (xj ) .

j =i

To do this, one would need to compute, for each value 

of xi , the mode of ƒ  (x\i ; xi) as well as (the deter

minant of minus) the Hessian of log ƒ  (x\i ; xi ), evalu

ated at this mode. We will refer to the corresponding 

approximation as p^A_TK(xi ). Because finding the op

timum of ƒ  (x\i ; xi ) is computationally rather expen

sive, Rue et al. (2009) propose to replace the mode of 

ƒ  (x\i ; xi ) by the mode of q(x\i|xi ), i.e., the conditional 

mean of the Laplace approximation, and to evaluate 

the Hessian at this conditional mean. The correspond

ing approximation, which we will refer to as p^A_CM(xi),
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Posterior marginal of the com ponent x1 Posterior marginal of the com ponent x1 Posterior marginal of the component x1

Posterior marginal of the com ponent x1 Posterior marginal of the component x1

Figure 1: Various marginal corrections for a probit model with ti (xi) = $ (4xi) and identical variances and correlations 
in the prior p0, using expectation propagation (top row) and Laplace-type approximations (bottom row). The panels show 
the corrections for a three-dimensional model with prior variances and correlations (v, c) = (1, 0.25) (left), (v, c) = (4, 0.9) 
(middle) and for a 32-dimensional model (v,c) = (4, 0.95) (right).
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is of the form (8), where now (xj; xi ) follows from a 

second-order Taylor expansion of log ej (x j) around the 

mode (and thus mean) of q(xj|xi ).

In order to further reduce computational effort, Rue 

et al. (2009) suggest additional approximations that, 

because they can only be expected to reduce the accu

racy of the final approximation, will not be considered 

in our experiments in Sections 2.3 and 4.

2.2.3 Bounds and factorized approximations

As we will discuss below, the computational bottle

neck in the above procedures for approximating the 

correction ci (xi) is not computing appropriate approx

imations of the terms ej (xj), either through EP or 

using Laplace’s method, but instead computing the 

normalization of the resulting Gaussian form which 

boils down to the computation of the determinant of a 

sparse matrix. Here we propose a simplification, which 

we motivate through its connection to bounds on the 

marginal correction ci (xi ).

Using Jensen’s inequality, we obtain the lower bound

bound:

cj(xj) > exp q(xj |xi) log ej (xj ) =  ci (xi) .

(xi) <n / q(xj |xi)eJ (xj )n 1

1/(n-1)

=  ciu(xi ).

This upper bound will in many cases be useless because 

the integral does not exist. The lower bound, which 

corresponds to a mean-field-type approximation, does 

not have this problem, but may still be somewhat con

servative. We therefore propose the general family of 

approximations

(xi ) =  n ƒ q(xj |xi)ej (xj )c(a) (Xi) =

1/a

(9)

j =i

It is easy to show that

ci(xi ) < c(a)(xi ) < cU(xi) V 0 < a < n — 1 ,

where a =  0 is interpreted as the limit a  ^  0. The 

choice a = 1  makes the most sense: it gives exact re

sults for n =  2 as well as when all x j’s (indeed) happen 

to be conditionally independent given xi . We refer to

the corresponding approximation as p 5 r(x

Using (7), it is easy to see that pfp-FACT(xj) corresponds 

to pfp-1STEP(xj) if in (8) we would replace q(x\j|xj) by 

the factorization q(xj |xj), i.e., as if the variables 

Xj in the global Gaussian approximation are condition

ally independent given x*. The same replacement in 

the Laplace approximation yields the approximation

Following Minka (2005), we can also get an upper referred to as p1A-FACT(xj

a
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Posterior marginal of the com ponent x1 Posterior marginal of the com ponent xp Posterior marginal of the component Xj

Figure 2: Marginal corrections for a three-dimensional model with p (yi|xi ,A) = Ae A|yi Xi|/2 (A = 0.25, [y1,y2,y3\ = 
[-3, 0,1]) and identical variances and correlations in p0, corresponding to a prior variance and correlation (v, c) = (9, 0.9).

2.2.4 Taylor expansions

To make the connection to the earlier work in (Op

per et al., 2009), we expand the exact ci (xi ) of (6) in 

ej (x j) — 1 for all j  =  i. Keeping only lowest order 

terms, we obtain

Ci(xi) «  1 + ^  ƒ  dxjq(xj |xi) [ej(xj) — 1] =  cTAYLOR(xi).

which coincides with the Taylor expansion of c(a)(xi ) 

of (9) for any a. An obvious approximation would be

Pi(xi) «  qi (xi )ei (xi )ctAYLOR(xi ) . (10)

The approximation proposed in (Opper et al., 2009) 

goes one step further by Taylor expanding not only 

ej (x j) for j  =  i, but also ei (xi ) up to the same order, 

which boils down to

pi(xi) «  q(xi) [ei(xi) + cTAYLOR(xi) — 1] =  pf-°pw(xi) .

(11)

Computing p^p_opw(xi ) is as expensive as computing 

pEp-FACT(xi ). Where p^p_opw(xi ) can yield negative 

probabilities, pEp-FACT(xi) is nonnegative by construc

tion. Furthermore, pEp-FACT(xi ) appears to be more 

accurate (see below), if only because it prevents the 

unnecessary step from (10) to (11).

2.3 Comparisons on toy models

To illustrate the correction methods, we take a probit 

model with t (xi ) =  $  (4xi ), with $  the Gaussian cu

mulative density function, and a zero-mean prior po 

with covariance matrix Q  1 =  v[(1 — c)I + c11T ]. 

The left and middle panels in Figure 1 show the 

marginal corrections of the first component for a three

dimensional model with (v,c) =  (1,0.25) and (v, c) = 

(4, 0.9), respectively. The bars, in this and all other 

figures, correspond to a large number of Monte Carlo 

samples, either obtained through Gibbs or Metropolis

sampling, and are supposed to represent the gold stan

dard. The local correction EP-L yields sufficiently ac

curate approximations when the correlations are weak 

(left-top), but is clearly insufficient when they are 

strong (middle-top). The corrections EP-1STEP and 

EP-FACT yield accurate estimates and are almost indis

tinguishable even for strong prior correlations. Only 

when we increase the number of dimensions (here from 

3 to 32) and with strong correlations (v, c) =  (4, 0.95), 

we can see small differences (right-top). As we can see 

on Figure 1, EP-OPW does slightly worse than EP-FACT 

and can indeed go negative.

It is known that the Laplace-type approximations does 

not perform well on this model (e.g. Kuss and Ras

mussen, 2005). The approximations tend to be accept

able for weak correlations (bottom-left), with LA-CM 

and LA-FACT clearly outperforming LA and LA-L, but 

are far off when the correlations are strong (bottom- 

middle). The Laplace corrections suffer from essen

tially the same problems as the global Gaussian ap

proximation based on Laplace’s method: the mode and 

the inverse Hessian badly represent the mean and the 

covariance and fail to sufficiently improve it.

Expectation propagation can still be applied when the 

Laplace approximation is doomed to fail. An example 

is Bayesian linear regression with a double-exponential 

prior (Seeger, 2008). Direct application of the Laplace 

approximation makes no sense, because there is no lo

cal curvature information available that properly rep

resents the behavior of the function |x|. Figure 2 de

scribes a toy model with the same characteristics. It 

can be seen that the lowest order (Gaussian) EP ap

proximation gets the mass right, but not the shape. 

Local corrections already help a lot, and both factor- 

ized and one-step EP corrections are practically indis

tinguishable from the sampling results.

We compared the various methods on several other 

toy models (not shown due to lack of space), leading 

to similar observations. It is relatively easy to come
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up with models on which (all) Laplace-type approx

imations fail and expectation propagation, in partic

ular e p - 1 s te p  and e p - f a c t  are still fine. It is a lot 

harder to find cases where the factorized approxima

tions e p - f a c t  and l a - f a c t  give quite different results 

than the non-factorized and computationally more ex

pensive e p - 1 s te p  and LA-CM: for this we really need 

to go to high dimensions and strong correlations.

3 Inference in sparse models

In this section we review the computational complex

ities of the Laplace approximation and expectation 

propagation when applied to sparse Gaussian models, 

i.e., models for which the n-dimensional precision ma

trix Q  of the Gaussian prior is sparse. Is expectation 

propagation indeed orders of magnitude slower as sug

gested in (Rue et al., 2009)?

3.1 G lobal approximations

The computational complexity for the Gaussian ap

proximation based on both Laplace’s method and ex

pectation propagation is dominated by several opera

tions. 1) Computing the Cholesky factor, say L of a 

matrix Q, e.g., corresponding to the posterior approx

imation p Ep or p LA, with the same sparsity structure as 

the prior precision matrix Q. The computational com

plexity, denoted cchoi, in the worst case scales with n3, 

but typically with nnzeros(Q)2/n, with nnzeros(Q) 

the number of non-zeros in the precision matrix Q. 

2) Computing the diagonal elements of the inverse of 

Q. For sparse matrices, these can be computed effi

ciently by solving the Takahashi equations (e.g. Eris- 

man and Tinney, 1975; Rue et al., 2009), which take 

the Cholesky factor L as input. The computational 

complexity, denoted ctaka, in the worst case scales with 

n3, but typically scales with nnzeros(L ) 2 /n. In prac

tice, we experienced that it is significantly more expen

sive than the Cholesky factorization, possibly due to 

our implementation2. 3) Solving a triangular system of 

the form La =  b, with corresponding computational 

complexity ctria x  nnzeros(L).

To keep the number of non-zeros in the Cholesky fac

tor to a minimum, we apply the approximate min

imum degree reordering algorithm (Amestoy et al., 

1996), which is claimed to have the best average per

formance (Ingram, 2006). Since the sparsity structure 

is fixed, this reordering algorithm has to be run only 

once, prior to running any other algorithm.

Laplace’s method. The maximum a-posteriori so

2We used the Matlab implementation of the sparse 
Cholesky factorization and a C implementation for solv
ing the Takahashi equations.

lution required for Laplace’s method can be found, 

for example, through a Newton method. Each New

ton step requires one Cholesky factorization and the 

solution of two triangular systems. To arrive at the 

lowest-order marginals p1A for all nodes i, we need the 

diagonal elements of the covariance matrix, which can 

be computed by solving the Takahashi equations us

ing the Cholesky factor from the last Newton step. 

So, in total, computing the lowest order marginals 

P1A for all nodes i using Laplace’s method scales with

nsteps°n X (cchol + 2 X Ctria) + ctaka.

Expectation propagation. To update a term ap

proximation ij (x*) according to Equation (4), we com

pute q\* (x*) «  q (x*) /tj (x*) using the marginals q (x*) 

from the current global approximation q (x) and re

estimate the normalization constant and the first two 

moments of t* (x*) q\* (x*). In standard practice, term 

approximations t* are updated sequentially and all 

marginal means and variances are recomputed using 

rank one updates after term each update. Instead, 

we adopt a parallel strategy, that is, we recompute 

marginal means and variances only after we have up

dated all term approximations t*, i =  1 ,..., n.

A parallel EP step boils down to: 1) compute the 

Cholesky factorization of the current precision ma

trix, 2) solve two triangular systems to compute the 

current posterior mean and solve the Takahashi equa

tions to compute the diagonal elements of the covari

ance matrix, and 3) if necessary, use univariate Gauss- 

Hermite numerical quadrature with nquad nodes to 

compute the quantities in Equation (4). This adds 

up to a computational complexity that scales with

nsteps X (cchol + 2 X ctria + ctaka + n X nquad). After
convergence, EP yields the lowest order marginals pEP 

for all nodes i.

Summarizing, because of the parallel scheme, we 

use exactly the same computational tricks as with 

Laplace’s method (Cholesky, Takahashi). Initializing 

the term approximations in EP from the Laplace so

lution and then doing a few EP steps to obtain better 

estimates of the probability mass, makes EP just a 

(small) constant factor slower than Laplace.

3.2 M arginal corrections

After running the global approximation, we are left 

with some Gaussian q (x) with known precision ma

trix, a corresponding Cholesky factor and single-node 

marginals q(x*). We now consider the complexity of 

computing a corrected marginal through the various 

methods for a single node i, using ngrid grid points 

(see the summary in Table 1).

The local corrections p^A_L and pEP-L we get more or 

less for free. All other correction methods require
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steps \ methods l a -c m l a -f a c t e p -1s t e p e p -f a c t

q (x j |xi)

e (xj  ; x i ) 

Norm . or det.-s

ctria + n  x n grid

n  x ngrid

ctria +  n  x n grid

cchol x n grid

n  x n grid 

n  x n grid

ctria +  n  x n grid 

n  x n grid x n quad

ctria +  n  x n grid

n  x n grid x n quad

cchol x n grid n  x n grid

Table 1: Computational complexities of the steps for computing an improved marginal approximation for a particular 
node i using the various methods. The frames highlight the complexities that typically dominate the computational 
time. ctria, cchoi, and ctaka refer to solving a sparse triangular system, a Cholesky factorization, and Takahashi equations, 
respectively. ngrid refers to the number of grid points for xi and nqUad to the number of quadrature points for Xj.

the computation of the conditional densities q (xj |xi), 

which amounts to solving two sparse triangular sys

tems and (n — 1) x ngrid evaluations. To arrive at the 

term approximations e (xj; xi ), we need to compute 

second order derivatives for the Laplace approxima

tion and numerical quadratures for EP, which is about 

nquad times more expensive. For l a - f a c t ,  e p - fa c t ,  

and e p - o p w , we then simply have to compute a prod

uct/sum of n normalization terms. For LA-TK, la - c m  

and e p - 1 s te p , we need to compute the determinant 

of an (n — 1 )-dimensional sparse matrix, which costs a 

Cholesky factorization.

4 Inference of the hyper-parameters

Until now, we considered estimating single-node 

marginals conditioned upon the hyper-parameters. In 

this section, we consider the estimation of the pos

terior marginals that follow by integrating over the 

hyper-parameters. For this we need the posterior of 

the hyper-parameters given the observations, which is 

approximated by p (0 |y) x  p (y|0 )p (0 ), where p (y|0 ) 

is the marginal likelihood approximation provided by 

Laplace’s method or expectation propagation.

The basic idea is to compute the posterior mode of 

p (0|y) as well as the Hessian at this mode (using fi

nite differences), select a set of uniformly spaced grid 

points along the scaled eigenvectors of this Hessian, 

and use these to perform numerical quadrature using 

the rectangle rule. We implemented a slight modifica

tion of the method used by Rue et al. (2009), which 

selects the grid points more efficiently (details to be 

given in an expanded report).

Example. As an example for a sparse Gaussian model 

we implemented the stochastic volatility model pre

sented in (Rue et al., 2009). The data set consists 

of 945 samples of the daily difference of the pound- 

dollar exchange rate from October 1st, 1981, to June 

28th, 1995. Similarly to Rue et al. (2009), we used 

the first 50 observations. The observations yt given 

the latent variables nt are taken to be distributed 

independently according to p (yt|nt) =  N  (yt|0, ent).

The latent field nt is assumed to be the sum nt = 

ƒ  + u of a first-order auto-regressive Gaussian process 

p ( ƒ | ƒ t— 1 , $, t ) =  N  (A ^ A - i, 1 /t), with |$| < 1, and 
an additional Gaussian bias term p (u) =  N  (u|0, 1). 

The prior on the hyper-parameter t  is taken to be 

p ( t ) =  r  (t|1,10) and a Gaussian prior N  (0, 3) is 

taken over $  =  log ( ( 1  + $ ) / ( 1  — $)).

The results are shown in Figure 3. The Laplace and 

EP approximation of the evidence are nearly indistin

guishable (left), as are the posterior marginals of the 

hyper-parameters (middle-left). Here EP is about a 

factor 5 slower than Laplace. The posterior marginals 

of ƒ5 0 and u obtained using the more involved meth

ods (right half, bottom row) are practically indistin

guishable from each other and the gold (sampling) 

standard. This is not the case for the cheaper vari

ants LA, ep , and LA-L, but is the case for ep-L (right 

half, top row): apparently to obtain excellent posterior 

marginals on this model, there is no need for (compu

tationally expensive) higher-order corrections, but it 

suffices to compute a single global EP approximation 

per hyper-parameter setting and correct this for the 

(non-Gaussian) local term.

5 Discussion

There are many options for further improvement, in 

particular w.r.t. efficiency. The ideas behind the sim

plified Laplace approximation of (Rue et al., 2009), 

which aims to prevent the expensive computation of 

a determinant for each xi, may well be applicable to 

expectation propagation. However, if this indeed dom

inates the computation times, the factorized approx

imation proposed in this paper may well be a better 

alternative. Incorporation of linear constraints on the 

latent variables, although not considered in this paper, 

should be relatively straightforward.

One of the main problems of expectation propagation 

is that it is not guaranteed to converge and may run 

into numerical problems. EP converged fine on the 

problems considered in this paper, but even when it 

does not, it can still be beneficial to start from the
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Figure 3: Plots of the posteriors for the stochastic volatility model in Section 4. The logarithm of posterior approximation 
of the hyper-parameters with EP and Laplace’s method (left), their marginals (middle-left) and the posterior marginal 
approximations of and p (right half) when integrated over the corresponding approximations of the hyper-parameters’ 
posterior. Dots show the hyper-parameters used for numerical integration; ellipses visualize the Hessian at the posterior 
mode.

Laplace solution and make just a few steps to get a 

better grip on the probability mass instead of relying 

on the mode and the curvature.

For models with weak correlations and smooth non

linearities, any approximation method gives decent re

sults. It may well be possible to come up with cases 

(strong correlations, hard nonlinearities), where any 

deterministic approximation method fails. Most in

teresting problems are somewhere in between, and for 

those we can hardly tell how advanced and computa

tionally intensive approximation method we need. The 

heuristic suggested in (Rue et al., 2009), systematically 

increase the complexity and stop when you do not ob

tain further changes, appears risky. In particular when 

going from the factorized to the non-factorized approx

imations, it is often hard to see changes, but still both 

approximations can be pretty far off. It would be in

teresting to obtain a better theoretical understanding 

of the (asymptotic) approximation errors implied by 

the different approaches.
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