
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a preprint version which may differ from the publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/84331

 

 

 

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

http://hdl.handle.net/2066/84331


ar
X

iv
:1

00
2.

24
82

v2
 

[c
on

d-
m

at
.m

trl
-s

ci
] 

23 
Fe

b 
20

10
Ab init io  stu d y  o f in teracting  la ttice  v ibrations and stab ilization  o f th e  ,5-phase in 

N i-T i shape-m em ory alloy

Petros Souvatzis, 1 Dominik Legut,2,3 Olle Eriksson ,4 and Mikhail I. Katsnelson5
1 Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA 

2Department of Physics and Astronomy, Division of Materials Theory,
Uppsala University, Box 530, SE-75121, Uppsala, Sweden 

3Institute of Physics of Materials, Academy of Sciences of the Czech Republic, 
v.v.i., Zizkova 22, CZ-616 62 Brno, Czech Republic 

4Department of Physics and Astronomy, Division of Materials Theory Uppsala University, Box 530, SE-75121, Uppsala, Sweden 
5Institute for Molecules and Materials, Radboud University Nijmegen, NL-6525 ED Nijmegen, The Netherlands

(Dated: February 23, 2010)

Lattice dynamical methods used to predict phase-transformations in crystals typically evaluate 
the harmonic phonon spectra and therefore do not work in frequent and important situations where 
the crystal structure is unstable in the harmonic approximation, such as the fi structure when it 
appears as a high-temperature phase of the shape memory alloy (SMA) NiTi. Here it is shown by 
self consistent ab initio lattice dynamical calculations (SCAILD) that the critical temperature for 
the pre-martensitic R to fi phase-transformation in NiTi can be effectively calculated with good 
accuracy, and that the fi-phase is a result primarily of the stabilizing interaction between different 
lattice vibrations.

I. IN T R O D U C T IO N

Shape memory alloys (SMA) are compounds tha t after 
a mechanical deformation can, through heating, retain 
their original shape [1]. Due to their vast utilization in 
a broad spectrum of technologies, spanning areas such 
as medical applications to aerospace industry, there is 
an increased need for effective theoretical tools in the 
development and understanding of these alloys. Lately 
several theoretical studies have been made on one of the 
most commonly used SMA’s, NiTi (nitinol), focusing on 
the martensitic transformation path [2, 3] and on the 
shape memory behavior [4]. Here the theoretical study 
of NiTi will be continued by applying the recently devel­
oped self consistent ab initio lattice dynamical method 
(SCAILD)[5].

The shape memory effect in NiTi is related to a re­
versible martensitic phase transformation into a mono­
clinic structure (P 2i/m , space group 11, Pearson symbol 
mP4) also known as B19’ phase [6] at around 273 K [7-9]. 
This phase transformation is preceded by a transforma­
tion at about 338 K from the austenite cubic phase (also 
known as the B2 or ,0-phase, Pm3m, space group 221, 
Pearson symbol cP2) into the R-phase (P3, space group 
143) [10]. The mechanism behind the R  to  0  transforma­
tion has been ascribed to the suppression of Fermi surface 
nesting, resulting in a hardening of the T 2 A phonon mode 
at the wave vector (and also nesting vector) q =  (1 , 3 , 0 )
[11].

Here, by means of first principles calculations, an 
alternative picture of the mechanism behind this pre- 
martensitic phase transition will be provided. We will 
demonstrate tha t it is the interaction between different 
phonon modes tha t provides the main driving mechanism 
behind the stabilization of the 0 -phase relative to the

R-phase in NiTi. Since the 0-phase is dynamically un­
stable in the harmonic approximation over a large range 
of frequencies, not only at the wave vector q =  ( 1 , 3 ,0 ) 
[12, 13], it is absolutely necessary to include anharmonic 
effects in any type of theoretical consideration when try­
ing to understand the 0  to R  phase-transformation in 
NiTi.

A straightforward calculation using first-principles 
molecular dynamics (MD) [14] should in principle be able 
to reproduce the stability of the 0-phase for NiTi, since 
MD implicitly include anharmonic effects. However, MD 
suffers from tha t it is a computationally very demand­
ing task to obtain reliable free energies. Instead we will 
make use of the second order nature of the displacive 0  
to R  phase-transformation [10] and take the T 2 A phonon 
mode displacement at the wave vector q  =  [ 1 3 0 ] as an 
order parameter. This will enable us to  use the temper­
ature dependence of the phonon mode in order to deter­
mine the critical tem perature for phase-transformation.

II. M ETHOD

In order to describe properly the phase-transformation 
into the cubic phase for NiTi one must include the inter­
action between phonons [15]. As a result, phonon fre­
quencies turn  out to be tem perature dependent which 
we explore numerically in this study by means of the 
SCAILD method [5, 16].

The SCAILD method is based on the calculation of 
Hellman-Feynman forces on atoms in a supercell. The 
method can be viewed as an extension of the frozen 
phonon method [17], in which all phonons with wave 
vectors q  commensurate with the supercell are excited 
together in the same cell by displacing atoms situated at
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the undistorted positions R + b CT, according to R  +  b CT ^  
R  +  b a +  U r ct , where the displacements are given by r  x  m

i a f a e»q(R+bo- ) qs qs (i)

Here R  represents the N  Bravais lattice sites of the su­
percell, b CT the position of atom a  relative to this site, eqs 
are the phonon eigenvectors corresponding to the phonon 
mode, s, and the mode amplitude Aqs is calculated from 
the different phonon frequencies d qs through

A aAqs ±
2M a wks 2kB T ) ’

(2 )

where T  is the tem perature of the system. Here the 
phonon frequencies

qs
. F°

v  A qsM -

1/2
(3)

are obtained from the Fourier transform F£ of the forces 
acting on the atoms in the supercell.

Due to the simultaneous presence of all the commen­
surate phonons in the same force calculation, the inter­
action between different lattice vibrations is taken into 
account and the phonon frequencies given by Eqn. 3 are 
thus renormalized by the very same interaction.

By alternating between calculating the forces on the 
displaced atoms and calculating new phonon frequencies 
and new displacements through Eqn.1- 3 the phonon fre­
quencies are calculated in a self consistent manner. For 
more details on the SCAILD method we refer to Refs. 
[5, 16, 18].

It should be mentioned th a t we do not consider here 
the phonon decay processes (see, e.g., Ref. [19] and Refs. 
therein). Thus the question of how phonon line widths 
obtained within the SCAILD framework are related to 
experimentally observed line widths is still an open ques­
tion. In the present calculations thermal expansion ef­
fects have not been taken into account, and all calcula­
tions have been performed at the constant experimental 
lattice constant of 3.01 A [7, 20].

As regards the computational details of the force calcu­
lation we used the VASP package [21], within the gener­
alized gradient approximation (GGA). The PAW poten­
tials used required energy cutoffs of 300 eV. Methfessel- 
Paxton smearing of 0.2 eV was used together with a 
8 x 8 x 8 Monkhorst-Pack k-point grid. The supercell 
used was obtained by increasing the cubic primitive cell 
3 times along the 3 primitive lattice vectors, resulting 
in a 54 atom supercell. Furthermore, the frozen-phonon 
calculations were performed with 1 x 3 x 3 supercells uti­
lizing 45 x 15 x 15 Monkhorst-Pack k-point grids, whereas 
the Fermi surfaces and general susceptibilities were cal­
culated using a 100 x 100 x 100 Monkhorst-Pack mesh.

0 [X 0 0] 0

FIG. 1: (Color online) The phonon dispersions of ,0-NiTi cal­
culated at different temperatures together with experimen­
tal data measured at 400 K (black circles), at 338 K (empty 
circles) and at 423 K (crosses) [10]. Solid, dashed, dotted 
and dashed-dotted lines are the first principles self consistent 
phonon calculations.

III. RESULTS

Fig. 1 shows the calculated phonon dispersions in cubic 
NiTi for the tem peratures 0 K, 200 K, 220 K, 240 K, 260 
K, 280 K and 300 K. The phonon dispersion relation at 
T=0K  is very similar to  the previous calculation done 
in Ref.[12], including imaginary frequencies along both 
directions (i.e. [£,£,0] and [£,£,£]). The finite tem perature 
calculations predict the stability of the cubic phase of 
NiTi by promoting the frequencies of the phonons along 
the r  to R  symmetry line and around the M  symmetry 
point from imaginary to  real for tem peratures >  238 K.

Furthermore, the calculated T=300K phonon disper­
sion is in good agreement with the experimental T=400K 
data (black circles), with the exception of the lowest lying 
acoustic branch along the r  to R  symmetry line.

Fig. 2 shows the calculated squared T 2A phonon fre­
quency at the wave vectors q =  (2 , 1 , 0 ) and (1 , 3 , 0 ) at 
different tem peratures together with experimental data. 
Here, as a result of a fourth order anharmonic interac­
tion, the expected linear dependence d 2 ~  T  [22], also

U r <T



3

T [ K]

FIG. 2: (Color online) The calculated temperature depen­
dence of the T2 A phonon frequency at q =  [ 3 3 0] (red squares) 
and at q =  [3 30] (black circles) in ,0-NiTi, here displayed to­
gether with experimental data for q =  (3, 3, 0) (empty blue 
circles) [10]. The width of the error bars are the square root of 
the mean square deviation of the last 10 SCAILD-iterations 
relative to the frequency of the 150th SCAILD-iteration.

suggested by experiment, is reproduced by the calcula­
tion.

The sudden jump in the calculated squared T 2A 
phonon frequencies at T ^  227 K (Fig. 2) can be re­
lated to the limited size of the supercell, since it overes­
timates the different phonon mode contributions to the 
atomic displacements ~  , especially in the temper­
ature range where u  is close to zero. Thus by increasing 
the size of the super cell, i.e increasing the number of 
commensurate phonons, this overestimation can at least 
in principle be avoided. Furthermore, in the calculated 
phonon dispersion (Fig. 1) the dip or singularity in the 
T 2A phonon frequency is shifted from the experimental 
position q =  (3 ,1 , 0) to q =  (1, 2, 0). This shift origi­
nates from the singularity being confined to a relatively 
small region of q-space which also cannot be described 
adequately by a small supercell [23]. However, increas­
ing the currently used 3 x 3 x 3 supercell to the smallest 
larger cell accommodating the q = ( | , 1 , 0 ) wave vector, 
would imply the use of a 6x6x6  cell which was not pur­
sued, due to computational reasons.

By using the phonon frequency of the T 2A mode at 
q =  (1, 3, 0) as an order param eter for the ft to R 
phase-transformation the critical tem perature, Tc, cor­
responding to the transformation can be estimated to ~  
227 K. However, if instead the T 2A phonon frequency 
at q =  (1 , 2 , 0) is used as a order param eter we have 
Tc ~  238 K. This should be compared to the experimen­
tal value of 338 K. Since Tc depend strongly on the alloy

FIG. 3: (Color online) Fermi surface of the ,0-NiTi. In (a) 
the Fermi surface in the T=0 case (i.e no phonon induced 
disorder). In (b) we show the cut through the Fermi sur­
face displayed in (a). The left most panel in (b) shows a cut 
through the red bowl shaped surface sheets in (a). The right 
most panel in (b) shows a cut through the turquoise sheets in 
(a). In (b) the nesting vector qn =  (3 , 3 , 0) interconnecting 
the nested parts of the Fermi surface is also shown. In (c) we 
show a cut through of the Fermi surface in (a) down-folded to 
the 1st Brillouin-zone of the undistorted 3 X 3 X 3 super cell. 
In (d) we show a cut through the Fermi surface calculated 
from four of the T=300K atomic configurations produced by 
the SCAILD scheme.

composition (a change from 50 at.% to 51 at.% Ni low­
ers Tc with up to 100 K) [24] and on oxygen and carbon 
impurities [25], the agreement must be viewed as good.

To investigate the relative importance between two of 
the possible processes involved in stabilizing the T 2A 
mode at q =  (1, 3 , 0): (1) destruction of Fermi surface 
nesting through the thermal smearing related to elec-



4

FIG. 4: (Color online) The calculated susceptibility as a func­
tion of q =  (£, £, 0) in S-NiTi. The full black curve is the 
susceptibility for the T = 0 K case (i.e no phonon induced 
disorder). The dashed red curve is the mean susceptibility 
calculated from four of the T=300K atomic configurations 
produced by the SCAILD scheme. Here the width of the er­
ror bars correspond to the standard deviation of the T=300K 
susceptibility distribution. The susceptibilities are calculated 
within a 3 x 3 x 3 supercell, resulting in a shift of the suscepti­
bility peaks from £ =  |  to £ ~  0.177, due to the down-folding 
of the bands into the 1st Brillouin zone of a 3 x 3 x 3 cell.

tronic excitations (used by Zhao et al [11] to illustrate 
the effect of nesting suppression), or, (2) phonon-phonon 
interactions, a series of additional first principles elec­
tronic structure calculations were performed. First, the 
frequency of the T 2A-mode was calculated at different 
thermal smearings of the electronic subsystem, through 
a series of frozen phonon calculations [17]. The results 
of these calculations revealed tha t tem peratures above 
1000 K, i.e. much higher than the observed transition 
tem perature, were required if thermal smearing was to 
be the only effect responsible for the stabilization of the 
the T 2A phonon mode.

In the second step a series of Fermi surface calculations 
were performed for the fi-NiTi phase for different phonon 
excited geometries. In Fig. 3(a) the Fermi surface of fi­
NiTi with no phonon induced atomic disorder is shown. 
In Fig 3(b) a cut, in the plane kz =  0, through the same 
Fermi surface as in Fig. 3(a) is shown, illustrating the 
nesting features. The Fermi Surface of the undistorted 
fi-structure was also calculated within a 3 x 3 x 3 super­
cell, the result is displayed in Fig. 3(c). In Fig. 3(d) 
a cut through the Fermi surface is shown tha t has been 
calculated from four of the atomic configurations pro­
duced by the SCAILD scheme at T=300 K. This cut was 
taken through the surface (E(k)} =  (E p}, where (E (k)} 
and (E p } are the arithmetical mean values of the Kohn- 
Sham eigenvalues, E (k), and Fermi levels, E p , calculated

from the atomic configurations produced by the SCAILD 
scheme at T=300 K. Here k  denotes a point in the space 
of k-points.

Due to the down-folding of the bands in Fig. 3(c- 
d), the nesting vector qn =  (1 , 1 , 0 ) is shifted to q =  
(0.177,0.177,0). Fig. 3(c-d) shows an apparent change of 
the Fermi surface topology as the phonon induced atomic 
disorder is introduced. However, to properly gauge the 
effect of atomic disorder upon the nesting features of fi­
NiTi, the susceptibility [23]

x(q) =  E E
k n,m

f  [En (k +  q)] -  f  [Em(k)] 
E „(k  +  q) -  Em(k)

(4)

was also calculated for the same atomic configurations 
as was used in the Fermi surface calculations. Here 
f  (E ) is the Fermi-Dirac distribution function given by

E  — E f
f  ( E ) =  1/(e kBT + 1 ). In Fig. 4 the results of these cal­
culations are displayed, showing the suppression of the 
susceptibility peak as the phonon induced atomic dis­
order is introduced. It should be noted tha t the sup­
pression of the peak in x(q) is quite pronounced. This 
demonstrates tha t the basic electronic structure of NiTi 
is drastically different when the finite tem perature excites 
collective lattice vibrations, compared to  a T =0 calcula­
tion. Hence, it is this change in the electronic structure 
and the accompanying modification of the force constant 
matrix which is primarily responsible for the stabilization 
of the beta-phase. This explanation is hence somewhat 
more intricate and complex than the conventional model, 
of a smearing of a rigid electronic structure due to tem­
perature effects of the Fermi-Dirac distribution function.

IV. CONCLUSION

To summarize, by first principles SCAILD calculations, 
the cubic fi phase in NiTi has been shown to be stabi­
lized by phonon-phonon interactions. Also, in the case of 
the unstable T 2 A phonon mode at q = (3 , 3 , 0) this inter­
action has been shown to be mediated through thermal 
disorder induced suppression of Fermi surface nesting.

Furthermore, the SCAILD method has been proven an 
accurate and effective theoretical tool by predicting the 
critical tem perature between 227 K < Tc < 238 K for 
the fi to R  pre-martensitic phase-transformation, which 
is comparable with the experimental value of Tc ~  338 
K. [10]
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