
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/84259

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16168722?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/84259

Order-Independence of Vector-Based Transition Systems

Matthias Raffelsieper∗, MohammadReza Mousavi∗, and Hans Zantema∗†

∗Department of Computer Science
TU Eindhoven, P.O. Box 513

5600 MB Eindhoven, The Netherlands
Email: {M.Raffelsieper,M.R.Mousavi,H.Zantema}@tue.nl

†Institute for Computing and Information Sciences
Radboud University Nijmegen, P.O. Box 9010

6500 GL Nijmegen, The Netherlands

Abstract—Semantics of many specification languages, par-
ticularly those used in the domain of hardware, is described in
terms of vector-based transition systems. In such a transition
system, each macro-step transition is labeled by a vector of
inputs. When performing a macro-step, several inputs may
potentially change. Each macro-step can thus be decomposed
in a number of micro-steps, taking one input change at a
time into account. This is akin to an interleaving semantics,
where a concurrent step is represented by an interleaving of
its constituting components. We present abstract criteria on
vector-based transition systems, which guarantee that the next
state computation is independent of the order in which these
micro-steps are executed. If our abstract criteria are satisfied
by the semantic definition of a certain specification, then its
state-space generation or exploration algorithm needs to only
consider one representative among all possible permutations
of such micro-steps. We demonstrate the applicability of our
abstract criteria to the specification of transistor netlists.

I. INTRODUCTION

Reactive systems specification usually concern the in-
teraction patterns for arbitrary input events, of which the
order of arrival is unknown: input events can occur in all
possible orders and even simultaneously. This principle also
applies to the specification of hardware systems, e.g., in
specifications given in languages such as Verilog, SystemC
and VHDL. The operational semantics of reactive systems
in general, and the above-mentioned languages in particular,
is usually specified in terms of Labeled Transition Systems
(LTSs). Popular types of LTSs used in the hardware domain
include Mealy- [1] and Moore machines [2]. In this paper,
we focus on the latter type, i.e., Moore machines or vector-
based transition systems, for presentation purposes. Vector-
based transition systems are transition systems in which
transitions represent a change in one or more inputs and
states represent collectively the current state and the output
of the system.

The operational semantics of the above-mentioned lan-
guages usually deals with simultaneous events in an inter-
leaving fashion, i.e., simultaneous input changes are pro-

cessed one by one. When analyzing the operational behavior
of specifications, this interleaving pattern leads to the well-
known combinatorial explosion of the state space. It is thus
customary to investigate only one (some) order of arrival
for input events, which is called confluence- or partial-
order reduction in the literature [3]. To ensure that the
neglected orders do not lead to any new state, called order-
independence in this paper, some sufficient conditions are
established and checked. In this paper, we study the problem
of proving order-independence for vector-based transition
systems and seek sufficient and necessary conditions for
order-independence.

Related work: In [4], we presented a method to check
whether the non-determinism caused by choosing an arbi-
trary order for evaluating inputs of User Defined Primitives
(UDPs) in the language Verilog [5], for which we defined
a formal semantics and already observed this possible non-
determinism in [6], does not affect the output value. Note
that the computation of a UDP’s output value is deterministic
as soon as the order of processing inputs is known. This
paper generalizes the result of [4] to arbitrary (thus, pos-
sibly non-deterministic) vector-based transition systems and
improves the order-independence criteria presented there.

The technique presented in this paper can be seen as
computing the independence relation that is sufficient to
perform partial order reduction [3]; but it goes beyond
ordinary independence relations by proving that, for this
particular type of transition systems, our criteria are also
necessary for partial order reduction, i.e., violating them
results in order dependent behavior leading to different
states.

In [7], an application of dynamic partial-order reduction
techniques is used to efficiently explore all possible execu-
tion runs of a test-suite (non-exhaustive analysis) for parallel
SystemC processes. To this end, the code of parallel Sys-
temC processes is analyzed and non-commutative transitions
are detected. Subsequently, all possible permutations of non-
commutative actions are considered. In [8], the approach

10th International Conference on Application of Concurrency to System Design

1550-4808/10 $26.00 © 2010 IEEE

DOI 10.1109/ACSD.2010.24

115

of [7] is enhanced with slicing techniques and combined
with static partial order reduction techniques. Neither of
the approaches reported in [7], [8] claim the minimality of
the generated set of orders (or in our terms, the necessity
of the order-independence criteria). Our approach, however,
guarantees that for each order dependency, it is possible to
reach different states from some initial state and thus, there
is a formal justification for including both orders.

Our analysis shares some basic ideas with the analysis of
confluence in the setting of term rewrite systems, see for
example [9], [10] for an introduction. Generally speaking, a
system is confluent if any two computations can be joined
again after an arbitrary number of steps. This relation has
already been observed in [11], where sufficient conditions
for confluence of general transition systems are given. In
contrast to our work, [11] requires the transition system to
be deterministic, whereas we also allow non-determinism,
i.e., multiple successor states that are labeled with the same
input pattern. However, we require deadlock-freedom for
every state and every input pattern, which is not required
globally in [11]. Furthermore, one should note that our
notion of order-independence is stronger than confluence;
confluence only requires the existence of a state in which
two computations can be re-joined, for order-independence
however it is required that the state reached after any of the
two computations is the same.

The rest of this paper is organized as follows: In Sec-
tion II, we introduce some formal definitions concerning
vector-based transition systems. In Section III, we present
our main results. First, we show that in our setting a
quadratic number of comparisons (in the number of inputs)
is sufficient to prove or disprove order-independence, i.e.,
whether the order of evaluating changing inputs affects the
computation. Second, we prove that different evaluations,
which have different restrictions on triggering input changes,
are equivalent when order-independence holds. Section IV
then applies this method to a target application, namely
transistor-level netlist descriptions. To illustrate the applica-
bility of our method in practice, we present a case study for
the transistor netlists of the Nangate Open Cell Library [12]
with promising results. We conclude the paper in Section V.

II. PRELIMINARIES

A vector-based transition system over a domain M of
input values is represented by a 3-tuple T = (S, I, δ), where
S is an arbitrary set of states, I = Mm the set of input
vectors of a given and fixed size m, and δ : S × I → P(S)
is the transition function of T , with P(S) denoting the
power set of S. We do not consider any initial state,
instead we assume that an evaluation might start in any
arbitrary state. This is in line with the requirements of our
application domain, as a hardware system boots up from an
unknown state. Since we are only concerned with vector-
based transition systems, we refer to them just as transition

systems. A transition system is called deterministic, if for
all ~i ∈ I and all s ∈ S, |δ(s,~i)| = 1. Otherwise, it is called
non-deterministic. A transition system is called deadlock-
free if for all ~i ∈ I and all s ∈ S we have that |δ(s,~i)| ≥ 1.

We also write s
~i−→T s′ iff s′ ∈ δ(s,~i), and we leave out

the subscript T in case the transition system is clear from

the context. The composition of two transitions
~i1−→ and

~i2−→,

denoted by s0
~i1−→ ◦

~i2−→ s2 for states s0, s2 ∈ S, is defined

iff a state s1 ∈ S exists such that s0
~i1−→ s1

~i2−→ s2.
For a value v ∈M , we define a substitution σ = [a := v],

where 1 ≤ a ≤ m. Given a vector ~v ∈ Mk, such a substi-
tution is defined to be the mapping σ(~v) = (w1, . . . , wk),
where for i 6= a, we have wi = vi and wa = v. Instead of
σ(~v) we also write ~vσ. We leave out the opening and closing
parentheses of a vector when it causes no confusion.

The set Lk of all lists of numbers over the set K =
{j ∈ N | 1 ≤ j ≤ k} is defined as the smallest set such
that nil ∈ Lk and j : ` ∈ Lk for all 1 ≤ j ≤ k and all
` ∈ Lk. The function sort : Lk → Lk returns its argument
list sorted, i.e., for sort(`) = j1 : . . . jr : nil we have that
ja ≤ jb for all 1 ≤ a < b ≤ r. The length of a list ` ∈ Lk is
denoted |`| and defined as |nil| = 0 and |j : `| = 1 + |`|. To
denote whether an element is contained in a list, we allow
to interpret a list ` = j1 : · · · : jr : nil as a set and write
j ∈ ` iff j ∈ {j1, . . . , jr}. Finally, we define the set of
permutations Πk over the natural numbers between 1 and k
as Πk = {` ∈ Lk | j ∈ ` for all 1 ≤ j ≤ k and |`| = k}.

III. ORDER-INDEPENDENCE

As stated in the introduction, the order of arrival for
input events, i.e., new values for inputs, is arbitrary and
even several inputs may receive new values simultaneously.
In the interleaving semantics, however, simultaneous events
are considered one by one. Therefore, we interpret arbitrary
transition systems in an interleaving fashion by studying
their one-input restricted traces, defined below.

Definition 1. A (possibly infinite) trace s1
~i1−→ s2

~i2−→ s3
~i3−→

· · · is called one-input restricted, iff for all j ∈ N \ {0} we
have that ~ij+1 =~ij [k := v] for some 1 ≤ k ≤ m and some
value v ∈M .

The following example shows that, in general, all possible
interleavings of input changes can differ from changing all
inputs at the same time. This is because a one-input restricted
trace still sees some old input values and gradually updates
the state values.

Example 2. Let T = (S, I, δ) be the following deterministic
transition system, where S = B = {0, 1}, I = B2, and
the transition function δ is illustrated below (the transition
labeled B2 is a shorthand for the 4 transitions each with a
label in B2):

116

0 1(0,0) , (1,1)
(0,1) , (1,0)

B2

We consider the different traces when transitioning from
input vector (0, 0) to (1, 1):

(0)
(0,0)−−−→ (0)

(1,0)−−−→ (1)
(1,1)−−−→ (1)

(0)
(0,0)−−−→ (0)

(0,1)−−−→ (1)
(1,1)−−−→ (1)

(0)
(0,0)−−−→ (0)

(1,1)−−−→ (0)

Here, we see that both of the possible one-input restricted
traces lead to the same final state (1), whereas the trace
directly applying both of the new values results in a different
final state (0).

We confine ourselves to the interleaving semantics in the
remainder of this paper and hence, for each vector-based
transition system T , we define its interleaving interpretation
T I , which, by construction, triggers at most one input in
each step.

Definition 3. Let T = (S, I, δ) be a vector-based transition
system with I = Mm. We define a corresponding one-
input restricted vector-based transition system T I = (S ×
I, {1, . . . ,m}×M, δI), where we also denote (s,~i) ∈ S×I
by s;~i and where the transition function δI : (S × I) ×
{1, . . . ,m} ×M → P(S × I) is defined as δI(s;~i, j, v) =
{s′;~i[j := v] | s′ ∈ δ(s,~i[j := v])}. We denote by
s;~i

j−→ s′;~i′ that s′;~i′ ∈ δI(s;~i, j, v), where v = i′j for
~i′ = (i′1, . . . , i

′
m); note that by looking at the position j

in ~i and ~i′, we can recover the change in the input (second
component v of the label). Hence, we only show the position
on the label and leave out the actual value of the changing
input.

This definition allows us to represent a one-input restricted
trace in the form s1;~i1

j1−→ s2;~i2
j2−→ . . . , where the numbers

j1, j2, . . . indicate the triggered inputs in the corresponding
steps. Note that using the construction given above, any
one-input restricted trace of the transition system T can
be translated into a trace of T I and vice versa. Hence, we
will use transition system T and its corresponding one-input
restricted transition system T I interchangeably in the fol-
lowing. In the following example, we present the transition
system T I for the transition system T of Example 2.

Example 4. For the transition system T = (S, I, δ) of Ex-
ample 2, we have T I = (S×I, I, δI), where S×I = B×B2

and δI is defined as shown in Figure 1 (dashed and bold lines
are to be considered just like normal lines; we use them to
illustrate other concepts in the subsequent examples). For the
sake of brevity, we concatenate the input vector components.
Furthermore, it should be mentioned that a label such as 1, 2
does not denote a vector, but is a representation of the two
transitions labeled by 1 and 2, respectively.

0;01

0;00

0;10

0;11

1;01

1;00

1;10

1;11

1,2

1

21,2

1

2

1,2

1

2

1

2

1,2

1

2

1,2

1

2

1,21

2

1,2

1

2

1,2

Figure 1. Transition System T I for Example 2

To illustrate the construction that leads to the above graph,
we consider the state 0;00, which represents the state 0 in T
in which we arrived with the input vector 00. When we now
consider the successor states of this state when changing the
first input, then we have two possibilities, either setting it to
0 or to 1. When setting it to 0, we have the same input vector
00, and since 0 00−→T 0 we get the transition 0;00 1−→ 0;00
in T I . When setting the first input to 1, we obtain the input
vector 10 which implies in T I the transition 0;00 1−→ 1;10,
because in T we have the transition 0 10−→T 1.

Next, we combine one-step transitions of the interleaving
semantics to obtain different permutations of applying input.
Hence, the transition relation introduced below is labeled
with a permutation of positions to indicate the order in which
the inputs are triggered.

Definition 5. Let T = (S, I, δ) be a transition system,
s, s′ ∈ S, ~ip,~i ∈ I = Mm, and ` ∈ Πm with ~ip =
(ip1, . . . , i

p
m), ~i = (i1, . . . , im), and ` = j1 : . . . : jm : nil.

For the transition system T I , we define the transition relation
−→→ labeled by the permutation ` as s;~ip `−→→ s′;~i if and only
if there exist states s0;~i0, . . . , sm+1;~im+1 ∈ S × I and a
1 ≤ k ≤ m such that s0;~i0

k−→ s;~ip and s;~ip = s1;~i1
j1−→

s2;~i2
j2−→ . . .

jm−1−−−→ sm;~im
jm−−→ sm+1;~im+1 = s′;~i.

This is not the only way to define the combination of
considering input events; we could allow for applying a cer-
tain event zero or more times. We show in the remainder of
this section that all different variants of the above definition

117

lead to the same conclusion as far as order-independence is
concerned. Furthermore, it should be noted that the above
definition requires the existence of a predecessor state s0;~i0
that reaches the state s;~ip with the old input vector ~ip.
This requirement is added to rule out transient “boot-up”
states that can only occur once, without any possibility of
reaching them back again. Also, this requirement rules out
input vectors that could not have been used to arrive at some
state in a one-input restricted trace.

To illustrate the relation −→→, we consider the state 0;00
in the transition system T I of Example 4. We first observe
that the state 0;00 is reachable, for example by 0;00 1−→ 0;00.
Hence, we have 0;00 1:2:nil−−−→→ 1;11 due to the bold path in
Example 4. Furthermore, we also have 0;00 2:1:nil−−−→→ 1;11
because of the dashed path in Example 4. Hence, in this case
it does not matter in which order we evaluate the changing
inputs. In general, we want to determine this for all states
and all possible orders of input changes, i.e., whether the
state after applying a number of input changes is the same
regardless of the chosen order of their application. If this is
the case, we call the transition system order-independent.

Definition 6. Given a transition system T = (S, I, δ),
relation −→→ is called order-independent, iff `−→→ = `′−→→ for
all `, `′ ∈ Πm.

However, it can easily be seen that we do not have to
consider all pairs of lists, since by transitivity of equality
we can fix one list, e.g., to be the sorted list.

Lemma 7. For transition system T = (S, I, δ), relation −→→
is order-independent, iff `−→→ =

sort(`)−−−−→→ for all ` ∈ Πm.

Proof: Follows from the transitivity of equality.
Hence, one could check order-independence of −→→ by

constructing all of these m! relations and comparing them
for equality. However, following our basic idea in [4], we
would like to reduce this check to a quadratic number of
comparisons. The approach relies on the structure of the
computation, only treating one input change at a time, and
relying on two properties of the functions computing the next
output value when considering a single input as changed:
The first property is that when there is no change in the
considered input, then also the output of that evaluation
step remains unchanged. In other words, we require that
the twofold application of the same input vector results
in the same state as applying the input vector only once.
Expressing this formally, we require for a transition system
T the following property.

Fixed-Point Property. Let T = (S, I, δ) be a transition
system. T has the fixed-point property iff for all s1, s2, s3 ∈
S, all 1 ≤ j, k ≤ m, and all ~ip,~i ∈ I: If s1;~ip

j−→ s2;~i k−→
s3;~i, then s3 = s2.

The second (rather modest) property that we require in
order to check order-independence efficiently is deadlock
freedom. In our target application area of hardware de-
scriptions, this is very natural since a hardware circuit will
always compute some values from its inputs. For a deadlock-
free transition system satisfying the fixed-point property, we
have that order-independence is equivalent to checking the
equality of two specific relations for all pairs of inputs. This
is what we call the one-step reachable diamond property,
which is defined next.

Definition 8. Let T = (S, I, δ) be a vector-based transition
system with I = Mm.

Two inputs 1 ≤ j, k ≤ m with j 6= k are said to have
the one-step reachable diamond property, denoted j �� k, iff
s;~ip

j−→ ◦ k−→ s′;~i ⇐⇒ s;~ip k−→ ◦ j−→ s′;~i for all s;~ip, s′;~i ∈
S × I such that s0;~i0

b−→ s;~ip for some s0;~i0 ∈ S × I and
1 ≤ b ≤ m.

This property is similar to the diamond property in [4],
except that we also require one-step reachability of the
state that starts the diamond. Using the one-step reachable
diamond property we can now present our main theorem,
showing that the one-step reachable diamond property is
equivalent to order-independence of the relation −→→ for a
deadlock-free transition system. Hence, we can check the
global property of order-independence by only considering
a local property, namely the one-step reachable diamond
property.

Theorem 9. Let T = (S, I, δ) be a deadlock-free vector-
based transition system having the fixed-point property, and
let I = Mm. Then the transition relation −→→ is order-
independent, iff j �� k for all 1 ≤ j < k ≤ m.

Proof: To show the “if”-direction, we assume that j �� k
holds for each pair 1 ≤ j < k ≤ m and prove that the
property of Lemma 7 holds, i.e., that `−→→ =

sort(`)−−−−→→ for
each ` ∈ Πm. To this end, let ` = j1 : · · · : jm : nil. We
proceed with an induction on the number of swaps required
in the Bubble-Sort algorithm to sort list `.

If no swaps are required, then ` = sort(`) and therefore
the theorem vacuously holds.

Otherwise, let `′ = j1 : · · · : jr+1 : jr : · · · : jm : nil
be the list obtained after the first swap performed by the
Bubble-Sort algorithm. Using the one-step reachable dia-
mond property, we obtain for all one-step reachable states

jr−→ ◦ jr+1−−−→ =
jr+1−−−→ ◦ jr−→. (1)

Let s1;~ip `−→→ s2;~i for some s1;~ip, s2;~i ∈ S × I . This is
by Definition 5 equivalent to the existence of a state s0;~i0 ∈
S×I and a 1 ≤ b ≤ m such that s0;~i0

b−→ s1;~ip and s1;~ip
j1−→

◦ · · · ◦ jm−−→ s2;~i. To this trace we apply (1), showing the

118

following equivalences:

s1;~ip `−→→ s2;~i

⇐⇒ s1;~ip
j1−→ ◦ · · · ◦ jr−→ ◦ jr+1−−−→ ◦ · · · ◦ jm−−→ s2;~i

(1)⇐⇒ s1;~ip
j1−→ ◦ · · · ◦ jr+1−−−→ ◦ jr−→ ◦ · · · ◦ jm−−→ s2;~i

⇐⇒ s1;~ip `′−→→ s2;~i

Therefore, we have `−→→ = `′−→→. Applying the induction

hypothesis to `′ gives us `′−→→ =
sort(`′)−−−−→→, and since

sort(`) = sort(`′) we have proven `−→→ =
sort(`)−−−−→→ as

required.

To show the “only-if”-direction, assume towards a con-
tradiction for some 1 ≤ j < k ≤ m we have j 6�� k,
i.e., there exist some s0;~i0 , s;~ip , s1;~i ∈ S × I and some
1 ≤ b ≤ m such that s0;~i0

b−→ s;~ip, s;~ip
j−→ ◦ k−→ s1;~i,

and not s;~ip k−→ ◦ j−→ s1;~i (or vice versa, but that case is
symmetric to the considered one by exchanging the indices
j and k).

Define lists ` = j : k : `tl and `′ = k : j : `tl, where
`tl = 1 : · · · : j − 1 : j + 1 : · · · : k − 1 : k + 1 : · · · : m :
nil. Then, both ` and `′ are permutations by construction.
Because the transition system is deadlock-free, there exists
a state s′1;~i ∈ S × I such that s;~ip `−→→ s′1;~i, i.e., s;~ip

j−→
◦ k−→ s1;~i `tl−→ s′1;~i, where we abbreviate the relation 1−→
◦ · · · ◦ j−1−−→ ◦ j+1−−→ ◦ · · · ◦ k−1−−→ ◦ k+1−−→ ◦ · · · ◦ m−→ with
`tl−→. We can apply the fixed-point property repeatedly for

the steps of `tl−→ and therefore get that s1 = s′1. Assume
s;~ip `′−→→ s1;~i. Then there exist states s′0;~i′0 , s2;~i ∈ S × I
and 1 ≤ b′ ≤ m with s′0;~i′0

b′−→ s;~ip and s;~ip k−→ ◦ j−→
s2;~i `tl−→ s1;~i. Applying the fixed-point property repeatedly
to this trace gives us s2 = s1. This however contradicts the
assumption that s;~ip k−→ ◦ j−→ s1;~i does not hold, which was
to be proven.

Note that the proof, unlike the corresponding proof in [4],
requires only deadlock-freedom and the fixed-point property,
it does not need the property that a new input value, for
an input that is not currently considered, does not change
the computation. This is the case because we do not use
completely new input vectors but only change the old
vector at the positions of the currently considered pair in
Definition 8 of the one-step reachable diamond property.

Both deadlock-freedom and the fixed-point property are
only needed in the “only-if”-direction of the proof, i.e., the
“if”-direction holds for arbitrary non-deterministic transition
systems. This is expressed in the following corollary.

Corollary 10. Given a transition system T = (S, I, δ) with
I = Mm, the relation −→→ is order-independent, if j �� k for
all 1 ≤ j < k ≤ m.

Proof: Follows from the proof of Theorem 9.

Next, we give counter-examples witnessing that deadlock-
freedom and the fixed-point property are required for the
“only-if”-direction of Theorem 9. We start with a counter-
example for dropping deadlock-freedom.

Example 11. Let T = (B2,B3, δ) be the transition system
whose transition function δ is depicted below, where we
concatenate the components of the state and input vectors.

00 01 10 11

000 001 011

This transition system satisfies the fixed-point property, since
in any state an input vector leading to that state cannot be
applied again. Furthermore, it is order-independent, since
there is no path of length 4 and hence any trace starting in
a one-step reachable state will deadlock. However, 2 �� 3 is
not satisfied: For example, in state 01 together with the input
vector 000 we have that 00;001 3−→ 01;000 and 01;000 3−→
10;001 2−→ 11;011. However, no state s;~i ∈ S×I exists such
that 01;000 2−→ s;~i, hence the requirement of Definition 8 is
not satisfied.

Note that for the above example, it is crucial to have I =
B3 and not I = B2 by removing the first input component.
This is because if I = B2 was used, Definition 5 would only
require paths of length 3 (the initial step and two changes
of the inputs), hence the above would be a counterexample
to order-independence.

The next example shows that also the fixed-point property
is needed for the “only-if”-direction of Theorem 9.

Example 12. Let T = (B3,B3, δ) be the transition system
whose transition function δ is defined as illustrated below:

000 001

010

011

100

101

110 111
B3

001

010

B3 \ {001, 010}

B3

B3

B3

B3

B3

B3

This transition system is deterministic and hence
deadlock-free, however it does not satisfy the fixed-point
property, since for example 010;001 1−→ 100;001 2−→
110;001 and 100 6= 110. Furthermore, relation −→→ is order-
independent:

• For any state s ∈ B3\{(000), (111)}, any input vectors
~ip,~i ∈ B3, and any permutation ` ∈ Π3 we have that
s;~ip `−→→ 110;~i.

• For any state s ∈ B3, any input vectors ~ip,~i ∈ B3,
and any permutation ` ∈ Π3 we have 000;~ip 6 `−→→ s;~i,

119

since no s′;~i′ ∈ B6 and no 1 ≤ b ≤ m exist such that
s′;~i′ b−→ 000;~ip.

• For any input vectors ~ip,~i ∈ B3 and any permutation
` ∈ Π3 we have 111;~ip `−→→ 111;~i.

However, for the state 001 ∈ B3 we see that 000;001 3−→
001;000 and 001;000 1−→ 010;001 2−→ 100;011, whereas
001;000 2−→ 011;010 1−→ 101;011, which shows 1 6�� 2.

Definition 5 restricts the lists indicating the order of
triggering inputs to permutations of the natural numbers
from 1 to m. A natural generalization is therefore to also
allow inputs to be triggered more than once. This can be
generalized even further by only requiring those inputs to be
triggered at least once, whose values in the initial and the
final input vectors are different. Both of these generalizations
are formally defined below.

Definition 13. Let T = (S, I, δ) be a transition system with
I = Mm, s;~i , s′;~i′ ∈ S× I , and ` = j1 : · · · : jk : nil ∈ Lm

with j ∈ ` for all 1 ≤ j ≤ m.
We define relation −→→′ for the transition system T I as

s;~i `−→→′ s′;~i′ iff a state s0;~i0 ∈ S × I and 1 ≤ b ≤ m exist
such that s0;~i0

b−→ s;~i and s;~i
j1−→ ◦ · · · ◦ jk−→ s′;~i′.

Relation −→→′ is called order-independent, iff `−→→′ = `′−→→′
for all `, `′ ∈ Lm with j ∈ ` for all 1 ≤ j ≤ m and `′ being
a permutation of `.

Definition 14. Let T = (S, I, δ) be a transition system with
I = Mm, let s;~i , s′;~i′ ∈ S × I where ~i = (i1, . . . , im) and
~i′ = (i′1, . . . , i

′
m), and let ` = j1 : · · · : jk : nil ∈ Lm with

{1 ≤ j ≤ m | ij 6= i′j} ⊆ `.
Relation −→→′′ is defined as s;~i `−→→′′ s′;~i′ iff a state s0;~i0 ∈

S × I and 1 ≤ b ≤ m exist such that s0;~i0
b−→ s;~i and

s;~i
j1−→ ◦ · · · ◦ jk−→ s′;~i′.

The relation −→→′′ is called order-independent, iff `−→→′′ =
`′−→→′′ for all `, `′ ∈ Lm with {1 ≤ j ≤ m | ij 6= i′j} ⊆ ` and
`′ being a permutation of `.

It can easily be seen from the above definitions that −→→ ⊆
−→→′ ⊆ −→→′′. To illustrate these two more general relations,
we have for instance in Example 4 that 0;00 1:2:2:nil−−−−−→→′ 1;11
and 0;00 1:2:2:nil−−−−−→→′′ 1;11, whereas 0;00 61:2:2:nil−−−−−→→ 1;11 since
|1 : 2 : 2 : nil| = 3 6= 2. Furthermore, 0;00 1:nil−−→→′′ 1;10 but
0;00 61:nil−−→→′ 1;10, since |1 : nil| = 1 < 2.

We also want to to check order-independence of these two
generalized relations. Here, we again note that it suffices to
consider only a single list and compare it to its correspond-
ing sorted list, as was already observed for the relation −→→
in Lemma 7.

Lemma 15. Relation −→→′ is order-independent, iff `−→→′ =
sort(`)−−−−→→′ for all ` ∈ Lm with j ∈ ` for all 1 ≤ j ≤ m.

Relation −→→′′ is order-independent, iff `−→→′′ =
sort(`)−−−−→→′′

for all ` ∈ Lm with {1 ≤ j ≤ m | ij 6= i′j} ⊆ `.

Proof: Follows from transitivity of equality.
Again, we want to use the one-step reachable diamond

property given in Definition 8 to check whether these two
generalized relations are order-independent or not. Since
−→→ ⊆ −→→′ ⊆ −→→′′, we observe that the “only-if” direction in
the proof of Theorem 9 holds directly. Furthermore, the “if”
direction of that proof does not make use of the restriction
to permutations, hence it also holds for the relations −→→′ and
−→→′′. This allows us to conclude that if one of the transition
relations is order-independent, then all are, provided the
transition system is deadlock-free and satisfies the the fixed-
point property. This is formally expressed in the lemma
below. There and in the following we also denote the
relations −→→, −→→′, and −→→′′ with −→→(0), −→→(1), and −→→(2),
respectively, to be able to quantify over the three different
relations.

Lemma 16. For a deadlock-free transition system T =
(S, I, δ) that satisfies the fixed-point property, relation −→→(a)

with 0 ≤ a ≤ 2 is order-independent, iff a 0 ≤ b ≤ 2 exists
such that −→→(b) is order-independent.

Proof: The “only-if” direction holds trivially. For the
“if” direction, assume −→→(b) is order-independent. Then
j

�� k holds for all 1 ≤ j < k ≤ m, otherwise we
would have a counterexample to order-independence of −→→
due to the “only-if” direction of Theorem 9. This however
also results in a counterexample for −→→′ and −→→′′, since
−→→ ⊆ −→→′ ⊆ −→→′′. Hence, since the proof of the “if” direc-
tion of Theorem 9 does not make use of the requirements
imposed onto list ` we have order-independence of −→→(a).

We presented in Example 12 that the fixed-point property
is necessary for order-independence of −→→. This example
still applies to −→→′. For relation −→→′′ however, this is not a
valid counterexample, since we cannot assume that a trace
has a certain (minimal) length, hence the traces showing
that the one-step reachable diamond property is violated in
Example 12 is also a counterexample to order-independence
of −→→′′. Indeed, the following Lemma shows that order-
independence of −→→′′ only requires deadlock-freedom and
the one-step reachable diamond property, i.e., the fixed-point
property is not required.

Lemma 17. For a deadlock-free transition system T =
(S, I, δ) with I = Mm the relation −→→′′ is order-
independent, iff j �� k holds for all 1 ≤ j < k ≤ m.

Proof: The “if” direction follows from Corollary 10.
To show the “only-if” direction, assume s;~ip

j:k:nil−−−→→′′ s1;~i
and not s;~ip

k:j:nil−−−→→′′ s1;~i for some s, s1 ∈ S, ~ip =
(ip1, . . . , i

p
m),~i = (i1, . . . , im) ∈ I . By Definition 13 and

Definition 3 we have ~i = ~ip[j := ij , k := ik] and therefore

120

{1 ≤ j ≤ m | ipj 6= ij} = {j, k}. Hence, we have a
counterexample to order-independence of −→→′′.

However, in case the transition system is deadlock-free
and satisfies the fixed-point property, then the relations −→→(a)

with 0 ≤ a ≤ 2 are all equivalent to the relation 1:···:m:nil−−−−−−→→
as we will show in the theorem below.

Theorem 18. Let T = (S, I, δ) be a deadlock-free transition
system with I = Mm satisfying the fixed-point property.

If −→→(b) is order-independent for some 0 ≤ b ≤ 2, then
`−→→(a) = 1:···:m:nil−−−−−−→→ for all 0 ≤ a ≤ 2 and all lists ` ∈ Lm

satisfying the requirements of `−→→(a).

Proof: Let −→→(b) be order-independent for some 0 ≤
b ≤ 2. Due to Lemma 16, all relations −→→(a) are order-
independent, i.e., `−→→(a) =

sort(`)−−−−→→(a) for all lists ` ∈ Lm

that satisfy the requirements of −→→(a). Hence, for a = 0 the
theorem holds trivially.

For the remaining cases, let ` = j1 : · · · : j|`| : nil be
an arbitrary list satisfying the requirements of −→→(a). We
define `′ = j1 : · · · : j|`| : j|`|+1 : · · · : j|`|+k : nil such
that j ∈ `′ for all 1 ≤ j ≤ m. By requirement on the list `,
we have {1 ≤ j ≤ m | ij 6= ipj} ⊆ `, thus ij|`|+r

= ipj|`|+r

for all 1 ≤ r ≤ k. Furthermore, for any s;~i ∈ S × I we
have due to deadlock-freedom that a s′;~i′ ∈ S × I exists
such that s;~i

j|`|+r−−−→ s′;~i′ for all 1 ≤ r ≤ k. Hence, because
ij|`|+r

= ipj|`|+r
and the state s was reachable with input ~i,

we have that ~i′ =~i and therefore can apply the fixed-point
property, yielding s′ = s. Applying this for all 1 ≤ r ≤ k,
we get `′−→→(a) = `−→→(a).

Because −→→(a) is order-independent, we have that
`′−→→(a) =

sort(`′)−−−−→→(a). Note that `′, and therefore also
sort(`′), might contain duplicates. However, for any com-
putation sequence of the form s;~i

j−→ s′;~i′
j−→ s′′;~i′′ that

occurs as part of
sort(`′)−−−−→→(a), we have that ~i′ = ~i′′, thus we

can again apply the fixed-point property which gives us that
s′ = s′′. Thus, we can remove all duplicates from sort(`′),
which results in the list 1 : · · · : m : nil. Hence, we have
proven the theorem, as now `−→→(a) = `′−→→(a) =

sort(`′)−−−−→→(a) =
1:···:m:nil−−−−−−→→(a) = 1:···:m:nil−−−−−−→→.

To evaluate a deadlock-free transition system satisfying
the fixed-point property with an order-independent transition
relation −→→(a) for a ∈ {0, 1, 2} and possibly changing lists `,
it therefore suffices to only evaluate with the single relation
1:···:m:nil−−−−−−→→. This especially allows to reduce evaluations with

lists of arbitrary length to evaluation with the fixed length
m. If the relation is also allowed to depend on the input
values, then it even suffices to only consider the changed
inputs once, as the unchanged ones do not affect the final
state.

Corollary 19. Let T = (S, I, δ) be a transition system with
I = Mm, s, s′ ∈ S,~ip = (ip1, . . . , i

p
m),~i = (i1, . . . , im) ∈ I ,

and 0 ≤ a ≤ 2. Define `c = j1 : · · · : jk : nil, where
{j1, . . . , jk} = {1 ≤ j ≤ m | ipj 6= ij}.

Then for all lists ` ∈ Lm satisfying the requirements of
`−→→(a), s;~ip `−→→(a) s′;~i, iff s;~ip `c−→→′′ s′;~i.

Proof: Follows from Theorem 18, since `−→→(a) =
1:···:m:nil−−−−−−→→ = `c−→→′′ for all lists ` ∈ Lm that satisfy the

requirements of `−→→(a).

IV. APPLICATION TO NETLISTS

Cell Libraries are collections of logic cores used to
construct larger chip designs and consist of combinational
cells (e.g., nand and xor) and sequential cells (e.g., latches
and flip-flops). These cells are commonly described both
as transistor netlists, specifying the implementation that is
finally used for production, and as functional description
in a hardware definition language, e.g., Verilog. For the
subset of Verilog that is usually found in cell libraries we
have defined a formal semantics in [6] and described in [4]
how to check order-independence. In the remainder of this
section, we present how the generic theory developed in the
present paper can be used to also check order-independence
of transistor netlist descriptions.

To check order-independence of a transistor netlist, we use
their representation in terms of a set of fixed-point equations,
using the method of [13]. To give a formal description
of fixed-point equations, let VS and VI be two disjoint
sets of variables, whose values are in some domain M .
Furthermore, let n,m ∈ N, ~sv = (sv

1, . . . , s
v
n) ∈ V n

S with
sv

j 6= sv
k for all 1 ≤ j < k ≤ n, and~iv = (iv1, . . . , i

v
m) ∈ V m

I

with ivj 6= ivk for all 1 ≤ j < k ≤ m. Then a set
E = {sv

1 ≡ f1(~iv, ~sv), . . . , sv
n ≡ fn(~iv, ~sv)}, with functions

fj : Mm × Mn → M for 1 ≤ j ≤ n is called a set
of fixed-point equations, iff all of these functions satisfy
the following local fixed-point property, requiring for all
1 ≤ j ≤ n, all ~i ∈Mm, and all ~s ∈Mn that

fj(~i, ~s) = fj(~i, (f1(~i, ~s), . . . , fn(~i, ~s))).

We interpret such a set of fixed-point equations as a

transition system T (E) = (Mn,Mm, δ), where ~s
~i−→T (E) ~s′,

with ~s′ = (s′1, . . . , s
′
n), iff s′j = fj(~i, ~s) for all 1 ≤ j ≤ n.

Again we leave out the subscript T (E) if the set of fixed-
point equations is clear from the context. Note that T (E) is
deterministic, i.e., for every ~s and every~i there exists exactly

one ~s′ such that ~s
~i−→ ~s′.

As an example, the set of fixed-point equations extracted
from the transistor netlist of a D flip-flop is presented below.

121

00

01

10

11

00, 10, 11
01

00
01

10, 11
00

01, 10, 1100
01

10, 11

Figure 2. D flip-flop as a transition system

Example 20. We consider the following set of fixed-point
equations modeling a D flip-flop, where VS = {iq, q} and
VI = {ck,d}.

iq ≡ ¬ck∧ d ∨ ck∧ iq
q ≡ ck∧ iq ∨ ¬ck∧ q

These equations describe the transition system depicted in
Figure 2, where the state variables are concatenated in the
order iq, q and the inputs in the order ck,d.
We observe that this transition system is deterministic,
hence deadlock-free, and satisfies the fixed-point property.
Furthermore, it is order-dependent: for example, in state 00
we have that 00;10 1−→ 00;00 and 00;00 2−→ 10;01 1−→ 11;11,
whereas 00;00 1−→ 00;10 2−→ 00;11. This shows that it matters
for a flip-flop whether first the data input d changes and then
the clock ck, which corresponds to the first trace and sets the
output q to the new value of input d, or vice versa, which
corresponds to the second trace and sets the output q to the
old value of input d.

For the special case of a transition system that stems from
a set of fixed-point equations, the required global fixed-point
property always holds as we will show next.

Lemma 21. Every set of fixed-point equations has the fixed-
point property.

Proof: Let E = {sv
1 ≡ f1(~iv, ~sv), . . . , sv

n ≡ fn(~iv, ~sv)}
be a set of fixed-point equations and let ~s1;~ip

j−→ ~s2;~i k−→ ~s3;~i.
Assume that ~s2 = (s2,1, . . . , s2,n) 6= (s3,1, . . . , s3,n) = ~s3.
Then 1 ≤ j ≤ n exists such that s2,j 6= s3,j .

By definition, we have that ~s2 = (f1(~i, ~s1), . . . , fn(~i, ~s1)).
Since E is a set of fixed-point equations, we furthermore
have the following for the j-th component:

s2,j = fj(~i, ~s1)
= fj(~i, (f1(~i, ~s1), . . . , fn(~i, ~s1))) = fj(~i, ~s2)

Also by definition, we have s3,j = fj(~i, ~s2) and hence
s3,j = s2,j . This is a contradiction to our initial assumption,
which proves the lemma.

To apply the method to such a set of fixed-point equations,
we encode the domain M , which is usually either the set of
Booleans or the set of Booleans with an unknown value X, as
Boolean vectors. Then we construct for each pair of inputs

a pair of BDDs representing the two sides of the one-step
reachable diamond property that are given in Definition 8.
If all such pairs of BDDs are equal we have proved order-
independence due to Theorem 9. Otherwise, we have found
a set of counterexample states, which can be obtained by
computing the XOR of the unequal BDDs. Particularly,
for this application we found that including the one-step
reachability into the requirement removes many spurious
counterexamples, which were due to certain dependencies of
the internal signals on the input signals. This corresponds to
a stabilization of the netlist before applying the first input
vector, i.e., all transistors are evaluated w.r.t. the previous
input vector until there are no more changes.

However, usually some of the reported order-dependencies
are expected and should not be deemed an error. Therefore,
we allow the designer to rule out certain combinations of
input patterns. For this purpose, we again use the format
of Verilog timing checks, as in [4]. These timing checks
describe behavior that is considered illegal, hence we re-
move counterexamples that contradict one of the timing
checks specified for the currently investigated cell. This
is implemented by constructing a BDD that describes all
states violating one of the timing checks and then taking the
conjunction of the counterexample states with the negation
of this BDD. Thereby, we obtain another BDD that describes
all counterexample states not violating any of the timing
constraints, which are reported to the user. Note that this
new BDD might describe an empty set of counterexample
states; in this case, the only counterexamples that were found
previously were in conflict with at least one timing check
and therefore considered superfluous, i.e., the netlist is order-
independent for all traces that respect the timing checks.

We have applied the method to the transistor netlists
of the 12 sequential cells in the Nangate Open Cell Li-
brary [12], whose corresponding functional descriptions
were used in [4]. For each of the cells we used the timing
checks that were given in the corresponding Verilog module.
With these timing checks ruling out illegal behavior, we were
able to prove ten of these cells order independent, when
considering the inputs to be binary. For two cells however,
namely the cells DFFRS and SDFFRS, a counterexample
was found. This counterexample is the same that was found
for the Verilog implementation in [4]: there is no timing
check specified for the deactivation of the set and reset
inputs, hence when deactivating both at almost the same time
the output value depends on whether the set is deactivated
first leaving the reset still active, or whether the reset is de-
activated first leaving the set still active. This problem might
therefore really cause non-deterministic behavior, which is
undesired. It can be solved by adding a timing check that
disallows simultaneous disabling of both the set and reset
input, then also our technique does not report any further
order-dependencies.

122

For each of the 12 transistor netlists, checking order-
independence took less than 0.25 seconds on a computer
with an Intel Pentium 4 processor with 3.0 GHz and 1 GB
memory. Therefore, it can for example be used as a fast
preprocessing step to compute the independence relation
needed for partial order reduction [3], which allows to
reduce the state space that has to be explored when checking
other properties.

V. CONCLUSION

In this paper, we presented a method to efficiently
check order-independence of non-deterministic vector-based
transition systems that are deadlock-free and that satisfy
the fixed-point property, i.e., repeated application of the
same input pattern does not change the current state. If
a transition system is order-independent, then evaluations
that change at most one input in each step are independent
of the order of applying the input changes. Furthermore,
if order-independence holds for a transition system, then
an evaluation triggering multiple inputs for the same input
vector a number of times is equivalent to the evaluation
triggering only the changed inputs exactly once. We have
applied our techniques to transistor-level descriptions of
hardware cells and our experimental results show that this
method can be used to identify problematic situations in the
implementation. Finally, we would like to remark that the
presented technique is also useful to check other (temporal)
properties of a given transition system, as it computes
the independence relation needed to perform partial order
reduction [3].

We would like to further restrict our technique to consider
only those states that represent the steady-state behavior
of the hardware cell, i.e., to exclude the transient start-up
phase of the circuit. A possibility is to restrict the analysis
to the terminal strongly connected components (SCCs) of
the transition system, i.e., SCCs that are minimal w.r.t.
the reachability relation. Ideally, we would like to combine
symbolic techniques for the computation of SCCs, e.g., the
algorithm of [14], with our technique.

ACKNOWLEDGMENT

The original research question for this paper was posed by
Fenix DA and in particular, by Chris Strolenberg, to whom
we are most thankful. Also, we would like to thank the
anonymous reviewers for making several fruitful remarks,
especially suggesting the elegant proof of Theorem 18.

REFERENCES

[1] G. H. Mealy, “A Method for Synthesizing Sequential Cir-
cuits,” Bell Systems Technical Journal, vol. 34, pp. 1045–
1079, 1955.

[2] E. F. Moore, “Gedanken-Experiments on Sequential Ma-
chines,” Annals of Mathematical Studies, vol. 34, pp. 129–
153, 1956.

[3] D. Peled, “Ten Years of Partial Order Reduction,” in Proceed-
ings of the 10th International Conference on Computer Aided
Verification (CAV 1998), ser. Lecture Notes in Computer
Science, vol. 1427. Springer-Verlag, 1998, pp. 17–28.

[4] M. Raffelsieper, M. R. Mousavi, J.-W. Roorda, C. Strolen-
berg, and H. Zantema, “Formal Analysis of Non-Determinism
in Verilog Cell Library Simulation Models,” in Proceedings
of 14th International Workshop on Formal Methods for In-
dustrial Critical Systems (FMICS 2009), ser. Lecture Notes
in Computer Science, vol. 5825. Springer-Verlag, 2009, pp.
133–148.

[5] “IEEE Std 1364-2005: IEEE Standard for Verilog Hardware
Description Language,” IEEE Computer Society Press, 2006.

[6] M. Raffelsieper, J.-W. Roorda, and M. R. Mousavi, “Model
Checking Verilog Descriptions of Cell Libraries,” in Proceed-
ings of the Ninth International Conference on Application
of Concurrency to System Design (ACSD 2009). IEEE
Computer Society Press, 2009, pp. 128–137.

[7] C. Helmstetter, F. Maraninchi, L. Maillet-Contoz, and
M. Moy, “Automatic Generation of Schedulings for Improv-
ing the Test Coverage of Systems-on-a-Chip,” in Proceedings
of the 6th International Conference on Formal Methods in
Computer Aided Design (FMCAD 2006). IEEE Computer
Society Press, 2006, pp. 171–178.

[8] S. Kundu, M. Ganai, and R. Gupta, “Partial order reduction
for scalable testing of SystemC TLM designs,” in Proceedings
of the 45th annual Design Automation Conference (DAC
2008). ACM Press, 2008, pp. 936–941.

[9] F. Baader and T. Nipkow, Term Rewriting and All That.
Cambridge University Press, 1998.

[10] Terese, Term Rewriting Systems. Cambridge University
Press, 2003.

[11] R. M. Keller, “A fundamental theorem of asynchronous paral-
lel computation,” in Proceedings of the Sagamore Computer
Conference, ser. Lecture Notes in Computer Science, vol. 24.
Springer-Verlag, 1975, pp. 102–112.

[12] Nangate Inc., “Open Cell Library v2008 10 SP1,” 2008,
downloadable from http://www.nangate.com/openlibrary/.

[13] R. Bryant, “Boolean Analysis of MOS Circuits,” IEEE Trans-
actions on Computer-aided Design, vol. 6, no. 4, pp. 634–649,
1987.

[14] R. Bloem, H. N. Gabow, and F. Somenzi, “An Algorithm for
Strongly Connected Component Analysis in n log n Symbolic
Steps,” in Proceedings of the Third International Conference
on Formal Methods in Computer-Aided Design (FMCAD
2000), ser. Lecture Notes in Computer Science, vol. 1954.
Springer-Verlag, 2000, pp. 56–73.

123

