
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/84205

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Radboud Repository

https://core.ac.uk/display/16168668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/84205

U IT P 2010

N arrating Formal P ro o f (W ork in Progress)

Carst Tankink Herman Geuvers James M cKinna

In s titu te fo r C om puting and In fo rm a tio n Science
Radboud U niversity

N ijm egen, The N etherlands

A b strac t

B uild ing on existing w ork to proxy in te rac tio n w ith p roo f assistan ts, we have considered th e p roblem
of how to augm ent th is d a ta s tru c tu re to su p p o rt com m entary on form al p roof developm ent. In
th is se tting , we have stud ied ex trac tin g com m entary from an online te x t by P ierce e t al. [11].

Keywords: C oursebooks, P ro o f A ssistan ts, P ro o f C om m unication

1 Introduction

Much research in user interfaces for Proof Assistants (PAs) has gone into
facilitating the authoring of proof documents. However, the communication
of proof scripts to outsiders, such as mathematicians or students, has in our
view not received the attention it deserves.

In this paper we consider a m ethod and tools for enriching a proof docu­
ment for communication to such third parties. The enhancement of the docu­
ment consists of adding a marked-up narrative to the document and including
the PA responses for dynamic display.

As a running example, we consider the writing of coursebooks used in
teaching with a PA, especially the course notes of Pierce et al. on Software
Foundations [11]. From these course notes, we can extract the m arkup using
Coqdoc, and insert the PA responses using the concept of movies, introduced
by us in a recent paper [12]. In this setting, we briefly sketch how to add
editable exercise environments to proof documents.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

U R L : w w w .e lse v ie r.n l/ lo ca te/en tcs

http://www.elsevier.nl/locate/entcs

T a n k i n k , G e u v e r s , M c K in n a

2.1 Scenario

In this paper, we consider a scenario of communication: an author of a (formal)
proof document wants to communicate this to a reviewer, who might not
have prior experience in a PA and is definitely not an expert in the system.
This restriction on reviewer expertise means th a t for him to interpret a proof
document, one or more of the following should hold:

• the proof document is enriched with a high level narrative, explaining why
certain decisions (in design, representation, tactic invocation, etc.) were
taken and what their effect is;

• in the case of a tactic-based language, the proof document (a proof script
in this case) can be loaded in a PA, so the reviewer can evaluate the effects
of each tactic on the general proof state; or

• the proof language in which the document is w ritten mimics closely the
vernacular of informal mathematics.

To bring things into focus, we consider specific instances of author, reviewer
and PA here:

A u th o r The author in this paper will be an author writing a coursebook for
use in a computer science curriculum. The book does not necessarily have
to teach the use of a PA, but can present a formal model of (a slice of)
computer science th a t is verified by the PA.

R ev iew e r The reviewer then becomes the prime consumer of a coursebook:
a student taking the course. We assume the student has no prior experience
with the PA used to write the coursebook.

P A For concrete examples and tools, we choose Coq [13] as our PA: this choice
is motivated by local expertise in the Coq system and tools, and the exist­
ence of at least two coursebooks w ritten as a Coq script. These books are
“Software Foundations” by Pierce et al. [11] and “Certified Programming
with Dependent Types” by Chlipala [4]. Despite this choice, we believe tha t
the techniques illustrated here are also applicable to other PAs, especially
tactic-based ones.

Choosing a coursebook as a concrete proof document allows us to make
some assumptions about the content of such a document:

• The non-formal content of the document is structured in chapters, sections,
subsections and paragraphs.

• The formal content of the document is the underlying ‘spine’ of the docu­
ment, subservient to the to tal narrative of the book. At some points, the
tactics might be brought to the foreground to be explained or to serve as

2 Background

2

T a n k i n k , G e u v e r s , M c K in n a

an example or exercise, but the text explaining it is just as im portant as
the proof script.

• To improve a studen t’s understanding, the coursebook contains exercises.
We assume these exercises consist of proofs or definitions th a t have holes in
them, to be filled out by the reader.

A coursebook created as a Coq script generally exists in two different forms:

(i) A rendered version of the document, in which the narrative is displayed
together with the formal content. The rendering is meant to reinforce the
reader’s assimilation of the text, using bullet points, emphasis and other
markup.

(ii) The script itself, loaded in an interface to the PA such as CoqIDE (part of
the Coq distribution) or ProofGeneral [1]. This gives an interactive view
of the document, allowing the student to step through the tactics and see
their effects, as well as fill in holes in exercises. The version displayed in
the interface does not have the m arkup of the rendered version.

These two modes of display correspond to the first two ways of assisting
a reviewer in understanding a proof document: describing a proof using a
high-level narrative and reviewing the proof script dynamically, by loading it
in a PA and stepping through the tactics.

Switching between a rendering of a document and the script requires a
reader to switch contexts between the renderer and the PA: to our knowledge,
no interface to a PA actually renders the documentation of a proof document
in a nice way, and the rendering does not incorporate the PA output based on
reader focus. Additionally, installing and configuring a PA requires effort of
the reviewer, an effort th a t we have lightened by integrating script and output
in a single document, a proof m ovie.

2.2 Movies

A proof movie is a self-contained recording of the interaction between a user
and a PA (for further details, please see our recent manuscript [12]). The PA
responses can then later be retrieved from the movie without recomputation.
The movie can be used to communicate the contents of a proof script without
the reader needing to install and configure a PA, nor recompute the proof
state.

The movie data structure is a list of frames. In its most basic form, a
frame ties together the command sent to the PA and the response of the PA
to this command. We have implemented the movie as an XML file, with
frame, command and response as node types.

3

T a n k i n k , G e u v e r s , M c K in n a

W a tc h in g a m ovie
Watching a movie is done by viewing an HTML rendering of its contents.

The script responsible for transforming the XML into HTML is dubbed M o ­
v io la , after an editing tool for physical film. The page presents the command
part of each frame, creating a view th a t is similar to the proof script sent to
the PA. W hen the reviewer places his cursor on a command, the corresponding
response is obtained from the movie and shown to the reviewer.

Watching a movie requires no sophisticated tools: all th a t is needed is the
movie, the XSL script transforming the XML into HTML and a web browser.
Additionally, instead of publishing the XML together with an XSL file, a
stand-alone XSL processor can also be used to generate an HTML file. This
HTML file can then be loaded into the browser.

C o n s tru c t in g a m ovie
Construction of a movie can be done either as a post-processing step of a

proof script, or interactively.
The post-processing of a script is done by splitting up the script into

individual commands and sending these commands to the PA. The responses
are subsequently recorded into the frame.

Interactively constructing a movie is done by giving an author a view of
the unfinished movie. In this view, it is possible to insert new commands
and edit old ones, while the PA can insert responses to these commands,
which are shown to the author, if requested. In this way, the author and the
PA cooperate in constructing a movie, consisting of a proof script and the
responses to the tactics in the script.

The main benefit of the movie is th a t it cuts out the PAs computation
when a reader wants to see the response to a specific command, at the cost
of not having a certified answer. The resulting movies are just plain text,
however, not enhanced with the pretty rendering provided by tools such as
Coqdoc.

2.3 Adding narrative: Coqdoc and others

To create pretty-printed documentation for proof scripts, there are broadly
two categories: either one can use specific syntax to write documentation
inside the proof script (typically as comments), or one can write a higher-level
document from which both script and documentation can be extracted. The
la tter approach is also known as literate proving and allows the author to write
both documentation and proof in tandem.

Coqdoc is the Coq version of the first approach. D istributed together with
the Coq PA, the tool produces a rendered (in HTML or in LTEX) version
of a proof script. This rendered document contains both a pretty printed

4

T a n k i n k , G e u v e r s , M c K in n a

version of the commands, and extracts special comments from the document.
These comments are taken as a narrative, and rendered as documentation.
To provide some control over the appearance of the documentation, a light
(Wikipedia-like) syntax is provided for marking up the narrative.

As an example of the second approach, Aspinall, Lüth and Wolff [2] have
developed an extension to their PG kit architecture based on literate proving.
The extension is designed around a central document, th a t can be manipulated
by tools and the proof author. The tools can extract relevant information
from the text, and also insert information back into the document, through
the concept of backflow. Example tools are a PA, th a t takes tactics and can
insert proof state, or LTEX-related tools, th a t create PDF out of the narrative.
To insert PA data inside the narrative, an author can use a command to insert
a placeholder for the proof state, which is later replaced by the PA’s actual
output.

Both of these approaches could produce HTML pages, but the pages are
static renditions of the script, only containing pretty-printing to support com­
munication and teaching. In the next section, we investigate how we might
improve the Coqdoc-produced pages by adding a movie-reel to it.

Another interesting problem arises in both approaches when a new author
wants to narrate a script th a t is provided ‘read only’ : such a scenario, which
might occur when documenting a third-party library, is not supported by both
tools, although the PG kit approach might be adapted to support the scenario.

2.4 Course notes

We have decided to focus on coursebooks for education using a PA, and as
a specific case study, we will look at the course notes by Pierce et al. for a
course on Software Foundations taught at the University of Pennsylvania [11].
As the name implies, the course is not about proof assistants — although Coq
is introduced during the course, but about the m athem atical foundations of
software and the semantics of programs.

The coursebook is entirely w ritten as a set of Coq scripts, with the nar­
rative as Coqdoc comments. Beyond the structuring in separate files, one for
each chapter, the text is further structured in sections and subsections, by
giving Coqdoc headers at the appropriate locations. This allows us to see the
nesting of a single chapter as follows:

(i) At the highest level we find a separation in sections. Each section can
contain zero or more subsections.

(ii) At the deepest level of the document tree, the subsections have para­
graphs as leaves. These leaves can be either slices of proof script or
paragraphs in the narrative.

5

T a n k i n k , G e u v e r s , M c K in n a

(iii) The proof script forms a special structure outside the structure of the
text, th a t of a sequential set of commands interpretable by a PA.

Chlipala has also w ritten a coursebook, one on dependently typed pro­
gramming [4], but we do not focus on it here, beyond the observation th a t he
includes PA output as part of the narrative, reinforcing our belief tha t it is
desirable to perform the interleaving of movie and rendering.

We now show how we can overlay our movies, representing the command
structure of the proof script, on top of the Coqdoc-rendered document repres­
enting the narrative structure of the document.

3 Enhancing m ovies w ith com m entary

A movie is a sequential series of frames, which do not contain the pretty
rendering. This rendering, provided by Coqdoc, can easily be integrated in
the movies. To do so, we created a tool tha t takes the commands from the
frames and feeds these commands to Coqdoc. Coqdoc outputs an HTML tree
for the command, th a t contains more information about the intention of the
command. In particular the tree can have nodes of the following types:

• Documentation nodes, further structured in:
■ section headers, for different section levels,
■ narrative paragraphs, containing the text of the commentary.

• Code nodes. These nodes contain the tactics of the script.

The nodes produced by Coqdoc are added to the frame as additional data,
th a t can be used for several purposes.

3.1 Rendering enhanced movies

Instead of displaying the plain text of a movie, we can display the rendered text
as created by Coqdoc instead. This display is similar to the normal display
of Coqdoc HTML pages, with the exception th a t placing a cursor on the code
fragments dynamically displays the response to the command currently in
focus.

Due to its dynamic nature, the best way to see the results is through the
web, and we have provided a web page displaying the course notes dynamically.
The page can be found at h ttp ://m w s .c s .ru .n l/m o v io la /m o v ie s /c o q d o c .
Despite the obvious limitations of including static screenshots here in order to
illustrate a dynamic feature, Figure 1 displays the effect of placing the cursor
on a tactic.

6

http://mws.cs.ru.nl/moviola/movies/coqdoc

T a n k i n k , G e u v e r s , M c K in n a

I Morilla Fîr*fo<
£ile Edit yiew ttstory Bootonarw Dials üetp

tÍT ♦ nej^wie/cafsopf0íectsrtr<)w.ci^-f«<iwsfoppco(íc)xrtx8r»vei«85*<s-pp.xmi - ‘ 1- *1
o.He-^wnetar i^toiKS-fifxxrrf ;> -

Tü prove such facts - Indeed, to prove most Interesting facts about numbers, lists, and other inductively defined sets - we need a more powerful reasoning
principle- induction.

Recall (from high school) the principle of induction over natural numbers; If P{n) is some proposition involving a natural number n and we want to show
that P bolds for ALL numbers n, we can reason like this:

• show that pio: holds;
• show that, for any n', if Pi n' j holds, then so does pi s it);
• conclude that Pin) holds for all n.

In Coq, the steps are the same but the order Is backwards: we begin with the goal of proving p : n) for all n and break It down (by applying the i n d u c t io n
tactic) into two separate subgoals first showing p< o i and then showing f>{ n • : > P (s fi •). Here's how this works for the theorem we are trying to prove at
the moment

Tbeoren p lu s 6 r : f o r a l l r u n a t , p lu s n © = n .
P roo f.

in t ro s r». ïrtöuctiofi ri as [| i '] .
Cas« '«i - • * . reflexlvitjr
Case * n ^ S n " . s in p l . r e w r ite •> IHn - r e f l e x iv i ty . Qed

Like lest rue t, the ii doc tic i tactic takes an clause that specifies the no mes of the variables to be introduced m the subgoaJs In the first branch, n is
replaced by £ and the goal becomes plus e * 3, which follows by simplification. In the second, n Is replaced by s n and the assumption p.us n' £ n •
is added to the context (with the name I wn , i,e . the Induction Hypothesis for n), The goal in this case becomes i lus <S n 1 & - S n . which simplifies to ••
(plus n* ») = s n', which In turn follows from the Induction hypothesis.

Theoren m n u s d iag : f o r a l l n ,
«1«VS n « - •

P ro o f. A d ta tte d .
Li.en.be: 1 star (bask .indue tltfii)

TT*ore»i unit 0 r : forali r»:rat,
nuit n 9 - e.

P ro o f. Chitted
Theoren p lu s n Sn : f o r a l l n n : n a t ,

S (plus n n) - plus n ($ •) .
P ro o f . A d n itted .
Th»r«> plus <cm : forall n n - ra t,

p lu s n n = p lu s n n .
P ro o f. Admitted.

Form al vs. in form al p ro o f
The question of what, exactly, constitutes a "proof* of a mathematical claim has challenqed phüosophers for mülenta. A rough and ready definition, though, v
to'«

Figure 1. A screenshot of th e movie

3.2 Scenes

These rendered pages do not have the structure associated with the narrative
of a coursebook built in: it still is just a sequence of frames, only now rendered
prettily. For further analysis and better structuring, we can group a set of
frames into a scene.

A scene in a movie mirrors the section of an article. As such, it can contain
the following data:

T e x t Text is just that: the narrative of the document. It can be rich text,
including HTML m arkup and Unicode characters, but has no interactivity
or structuring.

S cenes To further structure the movie, a scene can contain sub-scenes, just
as sections can contain subsections for further structuring.

C o d e fram es Beyond the normal text, a scene can contain frames. Each
frame contains a single command from the proof script and the correspond­
ing response from the PA. The display of the response is dynamic: only the
commands are shown, and when a reviewer places the cursor on a command,
the response is shown.

7

2 subqwls

Ü U *n • O’* : S tr i rig .« tru ig

0*0- Ofotft
Sut̂ Ml 2 ii:
S n 1 -» 0 ■ S n'

T a n k i n k , G e u v e r s , M c K in n a

SceneElement

A
Subscene Scene Frame

F igure 2. C lass d iag ram of a scene

The architecture of a scene is an instantiation of the Composite pattern,
its class diagram is displayed in Figure 2.

Because explanation within the narrative can refer to future or previous
sections and recapitulate, or abstract from, previous fragments, it seems de­
sirable th a t scenes can refer to other scenes freely, beyond the rigid structure
noted above.

Structuring a movie into scenes can be done automatically, based on the
Coqdoc output. We already mentioned tha t Coqdoc sorts nodes into code and
documentation nodes, and th a t documentation nodes can be both paragraphs
and section headers.

The headers can be used to group the paragraphs and frames following
it, up to the next header. If this header is of a ‘lower’ level (for instance: a
subsection header following a section header), the frames following the sub­
header is a sub-scene of the scene being built, and if it is of the same or ‘higher’
level, we go up to this higher level, finishing all the scenes of a lower level.

W ith the sketched recursive algorithm, we can simply group the frames
of the movie into a nested structure mimicking the structure of the docu­
ment. Additionally, it seems useful to group subsequent sequences of com­
mand frames into their own scene. More specifically, grouping the proof of a
lemma or theorem into a scene seems the most logical, but this requires look­
ing at the text of the commands itself, instead of the data on the structure of
the HTML tree.

4 A dding C om m entary to a P roof

For rendering, a scene is a minimal addition, making the output to web pages
a bit easier, but the real advantage for having scenes is in post-processing data:
a scene forms a logical entity within the narrative, th a t might be enriched with
specific m etadata or be edited further. In particular, writing commentary after
the script has been made can be supported by first grouping a set of frames
into a scene, and then describing this scene as a whole.

To write such a c o m m e n ta ry tr a c k for a movie, an author needs the
following:

8

T a n k i n k , G e u v e r s , M c K in n a

• A movie created from a proof script.
• An interface through which she can write the commentary track, and tie it

to the frames.

We are still experimenting with the interface for writing the commentary
track, but based on the data structure and an initial prototype, we observe
th a t the interface should provide for the following activities:

• W riting the actual text.
• Grouping code frames and text into scenes.
• Interleaving text and code to obtain a narrative.

W riting the actual text can be done in either a WYSIWYG editor or with
some light m arkup language (as used in W ikipedia and Coqdoc), and does not
introduce new HCI problems.

The first design decision to be made is how to allow an author to group
text into frames. As the resulting document structure is a tree, a tree editor
could be used for adding scenes to the document, or to select scenes for further
editing. The main advantage of this approach is th a t the structure can be seen
at a glance, and edited easily.

On the other hand, inferring the movie’s structure when the author inserts
a header might provide a faster editing workflow, as adding a new scene does
not require her to switch to a different menu or editor.

These two approaches could be combined, inferring the document structure
from commands typed in the editor and explicitly allowing an author to insert
scenes or move scenes in a structure editor, actions which get translated to
modifications of the text in the editor.

How to interleave the text and code is not yet clear to us. To make the
scenes as flexible as possible, we decided th a t the relation between frames and
scenes should be many-to-many: code and narrative are equally im portant,
and it is not unlikely th a t the narrative refers to a previous definition or skips
forward to a proof or lemma. It proves difficult to design an interface tha t
allows creating this many-to-many relation without forcing the author to a
specific workflow.

The state-of-the-art in programming environments might be useful to bor­
row ideas from, but approaches like Javadoc [10] are normally used to doc­
ument programs on the level of classes, methods and interfaces. In a proof
setting, this would translate to documenting a lemma instead of describing
chunks of commands.

We have experimented with an interface th a t has a tree editor for adding
scenes to a movie (only one level deep) and a rich text editor for writing the
narrative. To link this text with the code of the command, a third pane gives
the author a view on the movie’s commands and the responses, and allowing

9

T a n k i n k , G e u v e r s , M c K in n a

F igure 3. A screenshot of th e com m entary too l

her to toggle scene inclusion by a click on the desired scenes. A screenshot is
shown in Figure 3.

This interface forces the user in a rather restricted workflow: she would
first need to add a scene, then alternate between typing and choosing the
code to be included. Furthermore, it does not allow her to interleave the
code within the narrative. For now, improving the user interface for writing
commentary is left as an open issue.

5 Interactive m ovie elem ents

Although we have added dynamic content to Coqdoc documents, this does
not make a proof document really interactive : the content of the movie does
not change in response to a reader’s actions, only its display does. We now
consider how we can add interactive scenes to a movie, w ithout having to give
the reviewer full access to the proof script or requiring him to load a PA.

In our chosen context of course notes, the main way of providing an inter­
active version these notes is by providing exercises: a given set of theorems and
definitions th a t still have holes in them th a t the reader can fill in. An actual

10

T a n k i n k , G e u v e r s , M c K in n a

PA supports doing exercises unsupervised by checking a proof once it is done,
and by providing the state after each command, which helps in progressing
through the proof.

These holes are intended to be filled in by the student, leading to a fully
checked proof document. On the other hand, the explanation in a text for
students should not have to be edited by those students. To allow the dis­
tinction between exercises and text, we would like to have e d ita b le scenes
in the movie. In this section, we propose an as of yet unimplemented design
for such scenes.

5.1 Writing Editable scenes

An editable scene is a scene th a t can be edited by the reader after the movie
is published. Adding such a feature requires:

• an interface option for the author through which she can m ark which scenes
can be edited later, and which should remain locked, and

• a PA processing the commands the reader types in an exercise scene.

Note tha t the author of a proof movie determines which scenes are editable
and which scenes are locked: this can be done while she prepares a movie,
by setting a property of the scene, comparable to making a file read-only in
the file system. How the property is set depends on the editor style chosen:
a WYSIWYG editor might provide it as an option in a context menu, while
a m arkup language could allow some meta-command for setting the attribu te
of a scene.

5.2 Interacting with Editable Scenes

Once we have integrated the notion of an editable scene within the movie’s
data structure, the display of the movie needs to accommodate for editing
these scenes. This would include marking the scene as editable, for example
by providing an edit button next to the scene, and by including a PA-backed
editor for filling out the exercise.

We have not attem pted to design such an editor, but we would prefer it
to be very light-weight: the workflow of reading the document should not be
disrupted too much by doing the exercise. Because of this, we do not want
the student to switch to another page for filling out an exercise. This means
we would like the following use case to be fulfilled by the editor:

(i) The student clicks the ‘edit b u tto n ’ .

(ii) The movie’s server brings a PA into the state necessary for doing the
exercise

(iii) The editor is shown to the student, including the PA’s state (context and

11

T a n k i n k , G e u v e r s , M c K in n a

goals) for the exercise.
(iv) In the editor, the student types commands, which update the PA’s state.
(v) If the student solves the exercise, it is stored, if he abandons it, the

exercise gets abandoned.

To implement the communication with a PA, we would use the ProofWeb
system [7], developed at Nijmegen. ProofWeb is a client-server architecture
for doing formal proof over the web. At the server side, PAs are installed,
th a t can be communicated with through a JavaScript client. Instead of the
provided UI, we could build our own lightweight editor, and connect th a t to
the ProofWeb server.

The main open problem is handling the PA state: before the editor is
shown, quite some computation is necessary to bring the PA into the right
state. How to handle this computation remains an open question, but we have
some ideas on how to tackle it:

• At the moment the document is shown to the student, also feed it to the PA
as a background process, stopping at the first exercise. This is a naive, but
probably easily implemented solution, th a t does not account for exercises
being skipped or abandoned.

• To handle a student skipping an exercise, we could tacitly insert an A dm itted
command for every exercise. Once a student has solved it, we then remove
the admission. This would work for Coq, but we do not know if all PAs
support an Admitted-like construct. Apart tha t, the computation to get to
the focused exercise might become too slow, as the student might start with
the last exercise, requiring the entire chapter to be sent to the PA in order
to start the exercise.

• We could be sm arter about the inter-proof dependencies: most PAs interpret
the script as a linear sequence, each command depending on all of the
previous. This is not always the case, however, especially for exercises,
where the proof structure resembles a tree, with the exercise being leaves
depending on the content of the explanation above it. We could exploit
this structure by only checking the path to the leaf th a t is focused, instead
of all subtrees. To actually make this work, either the PA needs to be
more permissive about the proof structure, or our tool support could build
a sequence of commands from the path to the selected leaf.

• Finally, we observe tha t a large part of the proof does not change when a
student starts an exercise: the proof script th a t is part of the explanation
is locked by the author, and would not need to be rechecked each time an
exercise is attem pted. So, we could ‘restore’ a proof session starting at the
exercise, but to our knowledge, no PA supports this behaviour, and getting
this behaviour with external tools seems difficult.

12

T a n k i n k , G e u v e r s , M c K in n a

6 R elated work

Leading up to this paper, we have created a dynamic version of the Soft­
ware Foundations course notes [11]. We have applied our techniques to create
handouts for a PA and type theory course Geuvers teaches at the Eindhoven
University of Technology. Other documents th a t we could transform are the
Coq tutorial by Huet et al. [6] and the tutorial by Bertot [3].

Several approaches exist based around a central document for formal proof,
similar to our movie, of which we have already mentioned the PG kit ap­
proach by Aspinall, Luth and Wolff [2]. Additionally, Mamane and Geuvers
have experimented with a document-oriented Coq plugin for TeXmacs [5], and
lhs2TeX [8] allows writing literal proof documents, from which both Coq code
and LTEX documentation can be extracted. These approaches are mainly
used for writing proof and documentation together, while our movie allows an
author to first write a proof script, and then create a dynamic presentation of
this script. The presentation can then be used in a narration of the proof.

Nordstrom has suggested [9] using dependent type theory to enforce syn­
tactic wellformedness of books and articles, ‘live’ documents, programs, and
formal proofs in a unified way. Especially his notion of typed placeholders
could be used to represent exercises in a online coursebook.

7 C onclusions

We have shown how we can make on-line coursebooks using a PA more dy­
namic: by adding the PA ’s output to the document and showing it when re­
quested by the student reading the book. Constructing these dynamic books is
the result of combining two techniques: our previous work on creating movies
out of a proof script, and the addition of markup and commentary to a proof
document using tools such as Coqdoc.

We have further sketched how dynamic documents could be created from
a proof script when the script itself cannot be modified, and how to add
interactive elements to these documents.

The techniques for creating the dynamic, non-interactive documents have
been applied to the course notes for a “Software Foundations” course and
have been received with great enthusiasm by the authors of these notes. This
shows th a t the documents we create with the described tooling add value
to the Coqdoc output, and gives motivation for improving the workflow and
output.

13

T a n k i n k , G e u v e r s , M c K in n a

[1] A spinall, D ., P. C allaghan , S. Berghofer, P. C ourtieu , C. Raffalli and M. W enzel, P roof general,
W eb page, available a t h t t p : / / p r o o f g e n e r a l . i n f . e d . a c .u k / m a i n .

[2] A spinall, D ., C. L u th and B. Wolff, A ssisted proof docum ent authoring, in: M athem atical
K nowledge M anagem ent M K M 2005, L N A I 3863 (2006), pp. 65-80.

[3] B e rto t, Y ., Coq in a hurry, N otes, available a t h t t p : / / c e l . a r c h i v e s - o u v e r t e s . f r /
in r ia -0 0 0 0 1 1 7 3 (2010).

[4] C hlipala , A ., Certified program m ing w ith dependent types, D ra ft tex tb o o k , online a t h t t p :
/ / a d a m .c h l i p a l a .n e t / c p d t / (2010).

[5] G euvers, H. and L. M am ane, A docum ent-oriented Coq plugin fo r TeX m acs, in: P. L ibbrecht,
ed ito r, M athU I workshop, M K M 2006 conference, W orkingham , UK, h ttp :/ /w w w .a c tiv e m a th .
o rg /~ p a u l/M a th U I0 6 /, 2006.

[6] H uet, G ., G. K ah n and C. Paulin -M ohring , The coq proof assistan t - a tutorial, W eb page,
available a t h t t p : / / c o q . i n r i a . f r / g e t t i n g - s t a r t e d . (2007).

[7] K aliszyk, C., Web in terfaces fo r proo f assistants, in: S. A u tex ier and C. B enzm üller, editors,
Proceedings o fth e F L oC W orkshop on User In terfaces fo r Theorem Provers (U IT P ’06), Seattle,
E lectron ic N otes in T heo re tica l C om pu ter Science 174[2], 2007, pp. 49-61.
U R L h ttp : / /w w w 4 .in . tu m .d e /~ k a l is z y k /d o c s /c e k _ p 2 .p d f

[8] Lüh, A., lhs2TeX, W eb page, available a t h t t p : / / p e o p l e . c s . u u . n l / a n d r e s / l h s 2 t e x / (2009).

[9] N ordstrom , B ., Towards a theory o f docum ent structure, in: Y. B erto t, G. H uet, J .-J . Levy
and G. P lo tk in , ed ito rs, From Sem an tics to C om puter Science: E ssays in H onor o f Gilles
K ahn, C am bridge U niversity P ress, 2008 pp. 265-279, available a t h t tp : / /w w w .c s .c h a lm e rs .
s e /~ b e n g t .

[10] O racle C o rpo ra tion , Javadoc tool homepage, W eb page, available a t h t t p : / / j a v a . s u n .c o m /
j2 s e / j a v a d o c / (2010).

[11] P ierce, B. C ., C. C asinghino and M. G reenberg , Softw are foundations, C ourse notes, online a t
h t t p : / /w w w .c is .u p e n n .e d u /~ b c p ie r c e / s f / (2010).

[12] T ankink , C., H. G euvers, J. M cK inna and F. W iedijk , A M oviola fo r proo f re-anim ation,
S u b m itted to th e 9 th In te rn a tio n a l Conference on M ath em atica l K nowledge M anagem ent
(M KM 2010) (2010), available th ro u g h h t t p : / / c s . r u . n l / ~ c a r s t / f i l e s / m o v i o l a . p d f .

[13] T h e C oq D evelopm ent Team , The Coq proof assistant, W eb page, o b ta ined from h t t p : / / c o q .
i n r i a . f r on O ctober 5, 2009.

R eferences

14

http://proofgeneral.inf.ed.ac.uk/main
http://cel.archives-ouvertes.fr/inria-00001173
http://cel.archives-ouvertes.fr/inria-00001173
http://adam.chlipala.net/cpdt/
http://adam.chlipala.net/cpdt/
http://www.activemath.org/~paul/MathUI06/
http://www.activemath.org/~paul/MathUI06/
http://coq.inria.fr/getting-started
http://www4.in.tum.de/~kaliszyk/docs/cek_p2.pdf
http://people.cs.uu.nl/andres/lhs2tex/
http://www.cs.chalmers.se/~bengt
http://www.cs.chalmers.se/~bengt
http://java.sun.com/j2se/javadoc/
http://java.sun.com/j2se/javadoc/
http://www.cis.upenn.edu/~bcpierce/sf/
http://cs.ru.nl/~carst/files/moviola.pdf
http://coq.inria.fr
http://coq.inria.fr

