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A b s t r a c t .  For a general class of infinite data structures including streams, binary trees, 
and the combination of finite and infinite lists, we investigate a notion of productivity. 
This generalizes stream productivity. We develop a general technique to prove productiv­
ity based on proving context-sensitive termination, by which the power of present termi­
nation tools can be exploited. For cases where the approach does not apply directly, we 
develop transformations extending the power of the basic approach. We present a tool 
combining all these ingredients that can prove productivity of a wide range of examples 
fully automatically.

1. I n t r o d u c t i o n

Some co m puta tions go on forever potentially . A s tan d a rd  exam ple is th e  sieve of E r­
a tosthenes producing th e  infinitely m any prim e num bers. T he result of such a co m p u ta tio n  
th en  is an  infinite s tream  of elem ents. A lthough  th e  co m p u ta tio n  itself goes on forever, 
th e re  is a kind of te rm in a tio n  involved th a t  is called productivity: for every elem ent p ro ­
duced, th e  nex t elem ent will be produced  a fte r a finite num ber of steps. W e will consider 
co m pu ta tions specified by a num ber of rew rite  rules th a t  are in te rp re ted  as a lazy functional 
p rogram . T hen  p ro d u c tiv ity  can  be charac terized  and  investigated  as a p ro p e rty  of te rm  
rew riting , as was investigated  before in [4, 9, 3, 16].

S tream s can  be seen as infinite term s. I t  is n a tu ra l no t to  re s tric t to  stream s: in case th e  
co m p u ta tio n  possibly ends, th en  th e  resu lt is no t a s tream  b u t a finite list. A nd w hen p ara l­
lelism  is considered, n a tu ra lly  infinite trees come in. In  th is  p ap er we develop techniques for 
au to m atica lly  proving p ro d u c tiv ity  of specifications in all of these infinite d a ta  s tructu res, 
including stream  specifications. E arlie r techniques only for s tream  specifications were given 
in [4, 3, 16]. A  key idea of our approach  is to  prove p ro d u c tiv ity  by proving te rm in a tio n  
of context-sensitive rew riting  [7], th a t  is, rew riting  in w hich rew riting  is disallowed inside 
p a rticu la r argum ents of p a rticu la r sym bols. As strong  tools like A P roV E  [6] and  ^-T erm  
[10] have been developed to  prove te rm in a tio n  of contex t-sensitive rew riting  au tom atically , 
now th e  power of these tools can  be  exploited  to  prove p ro d u c tiv ity  au tom atically .

T hro u g h  th is  p ap e r we consider tw o kinds of term s: finite te rm s and  infinite term s. As 
th e  elem ents of th e  infinite d a ta  s tru c tu re s  we in tend  to  define are infinite term s, infinite
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2 HANS ZANTEMA AND MATTHIAS RAFFELSIEPER

te rm s are unavoidable here. O n  th e  o th er hand , te rm s occurring  in our specifications are 
finite. R ew riting  has been investigated  b o th  for finite and  infinite term s. B u t rew riting  
finite te rm s is m uch easier and  b e tte r  u nderstood  th a n  in fin itary  rew riting , and  for m any 
p roperties, like several varian ts of te rm in a tio n , th e re  is strong  too l su p p o rt to  investigate 
these properties. W e follow th e  policy to  use infinite term s only w here necessary, and  exploit 
und erstan d in g  and  too l su p p o rt for rew riting  finite te rm s as m uch as possible. In  th is  way 
we need th e  concept of infinite term s, b u t no t of in fin itary  rew riting . Following th is  policy, 
elem ents of infinite d a ta  s tru c tu res  over a d a ta  set D  are considered as infinite term s in 
which elem ents of D  ac t as constan ts , and  for th e  rest th e  infinite te rm s are com posed from  
a set C of co n stru c to r sym bols. In  th is  world of infinite term s we w ant to  avoid th a t  d a ta  
elem ents are infinite te rm s them selves. For instance, in considering stream s over n a tu ra l 
num bers as infinite term s, we w ant to  be able to  consider a s tream  0 : 1 : 2 : 3 : 4 : ••• , 
b u t we do no t w ant th e  d a ta  elem ents in such a s tream  to  be infinite te rm s like sTO(0). 
W hen  specifying elem ents of infinite d a ta  s tru c tu re s  over a d a ta  set D , th e  set D  m ay be 
described as th e  set of (finite) g round norm al form s of som e rew riting  system  R d over d a ta  
signatu re  £ d. As an  exam ple, for n a tu ra l num bers w ith  +  we can  choose =  {0, s, + } , 
and  R d consists of th e  rules 0 +  x  ^  x  and  s(x) +  y  ^  s(x  +  y). A p a rt from  and  R d th e  
specification th en  is given by a set R s of rew rite  rules over C U U £ s , w here £ s consists 
of co n stan ts  and  auxiliary  operations to  be  defined. For instance, for defining th e  above 
m entioned stream  nat =  0 : 1 : 2 : 3 : 4 : ••• we in troduce an  aux iliary  function  f on stream s 
th a t  replaces each elem ent by its successor, and  specify nat by choosing R s to  consist of th e  
tw o rules

nat ^  0 : f(n a t), f(x  : a )  ^  s(x) : f (a ) .
Here we have C =  {:}, =  {0, s}, R d =  0, Xs =  {nat, f }, and  x , a  are variable sym bols of 
ty p e  d a ta  and  stream , respectively. In  th is  se tting  p ro d u c tiv ity  m eans th a t  for every n  th e  
in itia l te rm  can  be rew ritten  to  a (finite) te rm  in which all sym bols on d ep th  less th a n  n  
are co n stru c to r sym bols. T his no tion  of p ro d u c tiv ity  is consisten t w ith  s tream  p ro d u c tiv ity  
as in [4, 3, 16], form alizing th e  sp irit of s tream  p ro d u c tiv ity  as in troduced  in [12]. It is also 
consisten t w ith  p ro d u c tiv ity  as defined in [9] for a se tting  even m ore general th a n  ours.

P roving  p ro d u c tiv ity  m ay be hard . For th e  sieve of E ra to sth en es proving p ro d u c tiv ity  
is beyond th e  scope of fully au to m atic  techniques as it depends on th e  fact th a t  th e re  are 
infinitely  m any prim e num bers. M oreover, we can  specify an  e x tra  stream  by filtering ou t 
every elem ent in th is  s tream  of prim e num bers th a t  is d is tin c t from  its predecessor plus 2. 
T his yields a s tream  specification, easily expressed in th e  fo rm at of th is  paper, of which 
p ro d u c tiv ity  is equivalent to  th e  existence of infinitely m any prim e tw ins: a well-known 
open  problem  in num ber theory. As expected  for such a fo rm at su itab le  for expressing a 
well-known open problem , p ro d u c tiv ity  is an  undecidable property . This has been proved 
independen tly  by several people; one p roof was given in [13].

In  co n tra st to  [4, 3], we focus on requiring p ro d u c tiv ity  no t only for a single in itia l term , 
like nat in th e  above exam ple, b u t for all g round term s. A n easy induction  argum ent shows 
th a t  p ro d u c tiv ity  holds for all g round te rm s if and  only if every ground te rm  rew rites to  a 
te rm  of w hich th e  roo t is a co n stru c to r sym bol. As in [16] th is  ch arac te riza tio n  is th e  basis 
of our p ro d u c tiv ity  investigations, b u t now for m ore general infinite d a ta  s tru c tu re s  th a n  
only stream s.

T he p ap er is organized as follows. In  Section 2 we in troduce infinite te rm s and  give 
exam ples of several infinite d a ta  s tru c tu re s  consisting of infinite term s. In  Section 3 we
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in troduce our notions of p roper specifications and  productiv ity . B eing in terested  in de­
term in istic  com putations, in p roper specifications we require th e  rew rite  system s to  be 
orthogonal. A first basic resu lt (T heorem  3.4) s ta tes  th a t  a specification is p roductive  if 
for all rules th e  roo t of th e  righ t hand  side is a co n stru c to r sym bol. In  Section 4 we re la te  
p ro d u c tiv ity  to  contex t-sensitive rew riting . T he m ain  resu lt (T heorem  4.1) s ta tes  th a t  a 
specification is p roductive if contex t-sensitive te rm in a tio n  holds for th e  rules of th e  specifi­
cation , w here rew riting  is only allowed in th e  d a ta  argum ents of th e  co n stru c to r sym bols, 
and  in all argum ents of th e  o th e r sym bols. For cases w here these approaches fail, in Section 
5 we investigate tran sfo rm atio n s th a t  preserve productiv ity , m ore precisely, transfo rm ations 
th a t  tran sfo rm  a p roper specification in to  an o th er one such th a t  p ro d u c tiv ity  of th e  original 
specification can  be  concluded from  p ro d u c tiv ity  of th e  transfo rm ed  specification, th e  la tte r  
typ ically  proved by th e  basic techniques from  th e  earlier sections. T hro u g h  these sections 
we give several exam ples of specifications of s tream s and  b in ary  trees for w hich p ro d u c tiv ity  
is proved, for m any of w hich th is  could no t be proved by earlier techniques. In  Section 6 
we describe an  im p lem entation  of our techniques, by which p ro d u c tiv ity  of all p roductive 
exam ples presented  in th is p ap e r can  be proved fully au tom atically . W e conclude in Section 
7.

2 . I n f i n i t e  T e r m s

Intuitively , a te rm  (b o th  finite and  infinite) is defined by saying w hich sym bol is on 
which position . H ere a position  p  €  N* is a sequence of n a tu ra l num bers. In  order to  be a 
p ro p er term , som e requirem ents have to  be satisfied as ind icated  in th e  following definition. 
As we will consider infinite te rm s over a set C of construc to rs  and  a set D  of d a ta  (disjoint 
from  C), our te rm s will be tw o-sorted1: a so rt s for th e  (infinite) te rm s to  be defined, and  a 
sort d for th e  d a ta . E very f  €  C is assum ed to  be of ty p e  dn x  sm ^  s for som e n ,m  €  N . 
We w rite  ar(d, f ) =  n  and  ar(s, f ) =  m . We w rite  L  for undefined.

D e f in i t io n  2 .1 . A (possibly infinite) term  over C, D  is defined to  be a m ap  t  : N* ^  
C U D U  {L} such th a t

•  th e  root t(e) of th e  te rm  t  is a co n stru c to r sym bol, so t(e) €  C , and
•  for all p €  N* and  all i €  N  we have

t(p i) €  D  t(p ) € C  A 1 <  i < ar(d ,t(p )), and 

t(p i) €  C t(p ) € C  A ar(d, t(p )) <  i < ar(d, t(p )) +  ar(s, t(p )).
So t(p i)  =  L  for all p, i no t covered by th e  above tw o cases.

We w rite  T TO(C, D ) for th e  set of all te rm s over C, D.

A n a lte rn a tiv e  equivalent definition of T TO(C, D) can  be given based on co-algebra, b u t 
for th e  resu lts in th is  p ap e r we do no t need th is  co-algebraic view. A n o th er a lte rn a tiv e  is 
to  see infinite te rm s as lim its of finite term s.

A position  p €  N* satisfying t(p) € C is called a position  o f t  of so rt s. A position  
p €  N* satisfying t(p) € D  is called a position  o f t  of so rt d.

T he usual no tion  of finite te rm  coincides w ith  a te rm  in th is  se tting  having finitely 
m any positions. In  case ar(s, f ) >  0 for all f  €  C th en  no finite te rm s exist. T his holds for

1In [9], and in the forth-coming PhD thesis of its author, an arbitrary many-sorted setting is proposed. 
Our approach easily generalizes to a more general many-sorted setting, but for notational convenience we 
restrict to the two-sorted setting.
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stream s. In  case ar(d, f ) =  0 for all f  €  C th en  no position  of so rt D  exist, and  term s do 
not depend  on D .

For f  €  C w ith  ar(d, f ) =  n , ar(s, f ) =  m , n  elem ents u i , . . . , u n €  D  and  m  term s 
t i , . . .  , t m we w rite  f  ( u i , . . . ,  u n , t i , . . . ,  t m ) for th e  te rm  t  defined by t(e) =  f , t(ip )  =  u  for 
every p €  N* and  i = 1 , . . .  ,n ,  t( ip )  =  t i - n (p) for every p €  N* and  i =  n  + 1 , . . .  , n  +  m , 
and  t( ip )  =  L  if i €  { 1 , . . .  , n  +  m }.

E x a m p le  2 .2  (S tream s). L et D  be an  a rb itra ry  given non-em pty  d a ta  set, and  let C =  {:}, 
w ith  a r (d ,:) =  a r ( s , :) =  1. T h en  T TO(C, D) coincides w ith  th e  usual no tion  of streams over
D, being functions from  N  to  D . M ore precisely, a function  f  : N  D  gives rise to  an  
infinite te rm  t  defined by t(2 n ) =  : and  t(2 n 1) =  f  (n) for every n  €  N , and  t(w ) =  L  for 
all o th er strings w €  N*. Conversely, every t  : N* C U D  satisfying th e  requirem ents of 
th e  defin ition  of a te rm  is of th is  shape. N ote th a t  if # D  =  1, th en  th e re  exists only one 
such term .

In  case D  is finite, an  a lte rn a tiv e  approach  is no t to  consider th e  b in ary  co n stru c to r ‘:’, 
b u t u n ary  construc to rs for every elem ent of D . In  th is  approach  D  does no t p lay a role and 
is irrelevant.

E x a m p le  2 .3  (F in ite  and  infinite lists). Let D  be an  a rb itra ry  given non-em pty  d a ta  
set, and  let C =  {:, nil}, w ith  a r (d ,:) =  a r ( s , :) =  1 and  ar(d, nil) =  ar(s, nil) =  0. T hen  
T ro(C, D ) covers b o th  th e  stream s  over D  as in E xam ple 2.2 and  th e  usual (finite) lists. As 
in E xam ple 2.2, a function  f  : N  D  gives rise to  an  infinite te rm  t  defined by t(2 n ) =  : 
and  t(2 n 1) =  f  (n) for every n  €  N , and  t(w ) =  L  for all o th er strings w €  N * . T he only 
way nil can  occur is w here t(2 n ) =  nil for some n  > 0, t(2 l) =  : and  t(2*1) €  D  for every 
i < n , and  t(w ) =  L  for all o th e r strings w €  N *, in th is  way represen ting  a finite list of 
length  n . Conversely, every t  : N* C U D  satisfying th e  requirem ents of th e  defin ition  of 
a te rm  is of one of these tw o shapes. In  th e  lite ra tu re  th is  com bination  of finite and  infinite 
lists is som etim es called lazy lis ts .

E x a m p le  2 .4  (B inary  trees). For infinite b in ary  trees several varian ts fit in our form at. 
We will m eet th e  following:

•  In fin ite b in ary  trees w ith  nodes labeled by D  are ob ta ined  by choosing C =  {b} 
w ith  ar(d, b) =  1 and  ar(s, b) =  2. In  E xam ple 4.4 th e  nodes are labeled by D  x  D, 
ob ta in ed  by choosing ar(d, b) =  2 instead .

•  T he com bination  of finite and  infinite b in ary  trees w ith  nodes labeled by D  is ob­
ta in ed  by choosing C =  { b , nil} w ith  ar(d, b) =  1, ar(s, b) =  2 and  ar(d, nil) =  
ar(s, nil) =  0. In  E xam ple 3.5 th e  nodes are un labeled, ob ta in ed  by choosing 
ar(d, b) =  0 instead.

3 . S p e c i f i c a t i o n s  a n d  P r o d u c t i v i t y

Now we consider specifications in order to  define elem ents of T TO(C, D ). We do th is  for 
th e  special case w here D  consists of th e  ground norm al form s of an  o rthogonal te rm in atin g  
T R S R d over a s ignatu re  Xd. H ere all sym bols of are considered to  be of sort dn ^  d for 
som e n  > 0. For defining elem ents of T TO(C, D ) we in troduce a set Xs of defined sym bols of 
sort s, all being of sort dn x  s m s for some n ,m  €  N , ju s t like th e  elem ents of C . T he 
real specification is given by a set R s  of rew rite  rules of so rt s being of a special shape.



PROVING PRODUCTIVITY IN INFINITE DATA STRUCTURES 5

A lthough  th e  goal is to  define elem ents of T TO(C, D ), m ost tim es being infinite, all te rm s in 
th e  specification are finite, and  rew riting  here refers to  fin ita ry  rew riting.

D e f in i t io n  3 .1 . A proper specification  ( £ d, £ s , C ,R d, R s) consists of £ d, £ s , C ,R d as de­
scribed before and  a T R S  R s over £  U C U  £ s consisting of rules of th e  shape

f  (u i , . . . , u n , ^ , . . . , tm ) - t,

where
•  f  €  £ s is of ty p e  dn x  sm —  s,
•  for every i = 1 , . . .  ,m  th e  te rm  ti is e ither

-  a variable of sort s, or
-  t i =  g (d i , . . .  ,d k , a i , . . .  ,a i)  for som e g €  C w ith  ar(d ,g ) =  k  and  a r(s ,g )  =  l, 

w here a i , . . .  ,a i are variables of sort s,
•  t  is a w ell-sorted te rm  of sort s ,
•  R s U R d is o rthogonal, and
•  every te rm  of th e  shape f  (u i , . . . ,  u n , t i , . . . ,  t m ) for f  €  £ s , u i , . . .  ,u n €  D , and  in 

w hich every t i is of th e  shape g (u [ , . . . ,  u'n , t i , . . . ,  t'm ) for g €  C and u'i , . . . , u ' n €  D, 
m atches w ith  th e  left hand  side of a rule from  R s .

A pro p er specification is therefore a generalization  of p ro p er s tream  specifications as 
given in [15, 16]. F ix ing  C, D , typ ically  a p roper specification will be given by R d, R s in 
which th e  arities of th e  sym bols is left im plicit since th ey  are im plied by th e  term s occurring  
in R d ,R s .

For a te rm  t  =  f  (•• •) we w rite  roo t(t) =  f ; th e  sym bol f  is called th e  root of t.
A specification is called productive  for a given ground te rm  of sort s if every finite p a rt 

of th e  in tended  resu lting  infinite te rm  can  be  com puted  in finitely  m any steps. As th e  
in tended  resu lting  infinite te rm  consists of co n stru c to r sym bols and  d a ta  elem ents, and  all 
g round term s of sort d rew rite  to  d a ta  elem ents by assum ption , th is  is equivalent to  th e  
following.

D e f in i t io n  3 .2 . A  p roper specification ( £ d, £ s , C , R d, R s) is productive  for a g round te rm  t 
of sort s if for every k  €  N  th ere  is a reduction  t  —RsURd t  for which every sym bol of sort 
s in t ' on d ep th  less th a n  k  is in C .

A n im p o rtan t consequence of p ro d u c tiv ity  is w ell-definedness: th e  te rm  adm its  a unique 
in te rp re ta tio n  as an  infinite term . In tu itively , existence follows from  tak ing  th e  lim it of th e  
process of com puting  a co n stru c to r on every level, and  reduce d a ta  term s to  norm al form. 
U niqueness follows form  orthogonality . For an  investigation  of well-definedness of s tream  
specifications we refer to  [15].

In  th is  p ap e r we are in terested  in p ro d u c tiv ity  for all (finite) ground te rm s of so rt s 
ra th e r  th a n  a single one. T he following p roposition  s ta tes  th a t  for th is  case reaching a 
co n stru c to r on every a rb itra ry  d ep th  is equivalent to  reaching a co n stru c to r a t th e  root. 
As th e  la t te r  ch arac te riza tio n  is sim pler, th is  is th e  basis of all fu rth e r observations on 
p ro d u c tiv ity  in th is  paper. In  [9] and  th e  forth-com ing P h D  thesis of its  au th o r p ro d u c tiv ity  
is also required  for infinite term s, being often  a s tronger restric tion  th a n  ours.

P r o p o s i t i o n  3 .3 . A  specification  ( £ d, £ s , C ,R d, R s) is productive fo r  all ground term s o f 
sort s i f  and only i f  every ground term  t  o f sort s adm its a reduction t  —RsURd t '  fo r  which 
ro o t(t')  €  C.
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Proof. T h e  “only if” d irec tion  of th e  p roposition  is obvious. For th e  “if” d irection , we prove 
th e  following claim  by induction  on k .

C la im . L et k  €  N , and  for all g round term s t  of sort s we have t  —RsURd t' 
w ith  ro o t(t')  €  C. T hen  t  — RsURd t'' for a te rm  t '' in w hich every sym bol of 
so rt s on d ep th  less th a n  k  is in C .

If k  =  1, th en  th e  claim  d irec tly  holds by choosing t '' =  t'.
O therw ise, we have t  — RsURd t '  =  f  (u i , . . . ,  u n , t i , . . . ,  t m ) w ith  ro o t(t')  =  f  €  C , w ith  

f  of ty p e  dn x  sm —  s. A pplying th e  induction  hypothesis to  t i , . . .  , t m yields t i — RsURd t '  
for i =  1 , . . . , m . Now

t  — RsURd f  (u i, . . . , u n, t i , . . . , t m ) — RaURd f  (u i, . . . , u n, t i ,  . . . , I'm)
proves th e  claim . ■

O u r first theo rem  gives a sim ple syn tactic  crite rion  for productiv ity .

T h e o r e m  3 .4 . L et S  =  ( £ d, £ s , C , R d, R s) be a proper specification in  which fo r  every £ —  r 
in  R s the term  r is no t a variable and  roo t(r) €  C . Then S  is productive.

Proof. A ccording to  P ro p o sitio n  3.3 for every ground te rm  t  of so rt s we have to  prove 
th a t  t  —-*RsURd t  for a te rm  t ' satisfying ro o t(t ')  €  C . We do th is  by induction  on t. Let 
t  =  f ( u i , . . .  ,u n , t i , . . .  , t m ) for m ,n  > 0. If f  €  C we are done. So we m ay assum e 
f  €  £ s . As being ground term s of sort d, all u  rew rite  to  elem ents of D . B y th e  induction  
hypothesis, all ti rew rite  to  term s w ith  roo t in C , and  in w hich th e  argum ents of sort d 
rew rite  to  elem ents of D . Now by th e  last requirem ent of properness, th e  resu lting  te rm  
m atches w ith  th e  left hand  side of a rule from  R s . B y th e  assum ption , by rew riting  according 
to  th is rule a te rm  is ob ta ined  of w hich th e  root is in C. ■

E x a m p le  3 .5 . Choose C =  {b, nil} w ith  ar(s, b) =  2 and  ar(d, b) =  ar(d, nil) =  ar(s, nil) =  0 
represen ting  th e  com bination  of finite and  infinite unlabeled  b inary  trees. T hen

c — b(b(nil, c), c)

is a p ro p er specification th a t  is p roductive due to  T heorem  3.4; th e  sym bol c represen ts an  
infinite tree  in w hich th e  num ber of nodes on d ep th  n  is exactly  th e  n - th  F ibonacci num ber. 
In  th e  sam e setting

p — b(f(p), nil)
f(b (x , y)) — b(f(y), b(nil, f(x ))) 

f(nil)) —  nil
is a p ro p er specification th a t  is p roductive  due to  T heorem  3.4. T he sym bol p represents 
th e  infinite tree  of w hich th e  in itia l p a r t un til d ep th  100 is shown in th e  following picture, 
in w hich th e  roo t of th e  tree  is shown on to p  left:



PROVING PRODUCTIVITY IN INFINITE DATA STRUCTURES 7

4 . P r o v i n g  P r o d u c t i v i t y  b y  C o n t e x t - S e n s i t i v e  T e r m i n a t i o n

As in tended  for generating  infinite term s, th e  T R S R s U Rd  will never be te rm inating . 
However, w hen disallowing rew riting  inside s-positions of co n stru c to r sym bols, it m ay be 
te rm in atin g . T he m ain  resu lt of th is  section s ta tes  th a t  if th is  is th e  case, th en  th e  spec­
ification is productive . T h e  varian t of rew riting  w ith  th e  restric tion  th a t  rew riting  inside 
ce rta in  positions of ce rta in  sym bols is disallowed, is called context-sensitive rew riting  [7]. 
In  contex t-sensitive rew riting  for every sym bol f  th e  set i ( f  ) of positions of f  is specified 
inside w hich rew riting  is allowed. M ore precisely, ^ -rew ritin g  — r ^  w ith  respect to  a T R S 
R  is defined inductively  by

•  if i  —  r €  R  and  p is a su b stitu tio n , th en  ip  - r ,^ rp;
•  if i €  n ( f ) and  ti -R,^ ti and  t j  =  t j  for all j  =  i, th en  f ( t 1, . . . , t n ) -R,^

f  it 'l, . . . , t 'n) .
In  our se tting  we choose i  by i ( c )  =  { 1 , . . . ,  ar(d, c)} for all c €  C , and  i ( f  ) =  

{ 1 , . . . ,  a r ( f )} for all f  €  £ d U £ s , w here we w rite  a r ( f ) =  ar(d, f  ) +  ar(s, f  ) for f  €  £ s . In  
th e  rest of th is  p ap e r th e  only instance of contex t-sensitive rew riting  we consider is w ith  
respect to  th is  p articu la r i ,  which is left im plicit from  now on. So in i-re w ritin g , rew riting  
inside s-positions of co n stru c to r sym bols is disallowed, and  is allowed in all o th er positions. 
A  T R S  is called i - te r m in a tin g  if i- re w ritin g  is te rm in atin g .

T h e o r e m  4 .1 . Let ( £ d, £ s , C ,R d, R s) be a proper specification fo r  which R s U R d is i -  
term ina ting  fo r  i  as defined above. Then  the specification is productive.

Proof. We define a ground i-n o rm a l form  to  be a g round te rm  th a t  can  no t be rew ritten  
by i- re w ritin g . We prove th e  following claim  by induction  on th e  shape of t:
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C la im : If t  is a g round ^ -n o rm al form  of sort s, th en  th e  roo t(t) €  C.
A ssum e roo t(t) €  C . T hen  t  =  f  ( u i , . . . ,  u n , t i , . . . ,  t m ) for f  €  £ s , u i , . . . , u n are of sort 
d, and  t i , . . .  , t m are of so rt s. Since f i ( f ) =  { 1 , . . .  , n  +  m }, th ey  are all g round ^-no rm al 
forms. So u i , . . .  ,u n €  D . B y th e  induction  hypothesis all t i have th e ir  roo ts in C. Since U 
is a ^ -no rm al form  and  th e  positions of so rt d are in fi(c) for every c €  C, th e  argum ents of 
t i of so rt d are all in D . D ue to  th e  shape of th e  rules now a rule is applicable on t  on th e  
roo t level, so satisfies th e  restric tion  of ^ -rew riting , con trad ic ting  th e  assum ption  th a t  t  is 
a ^ -n o rm al form. T his concludes th e  proof of th e  claim .

According to  P ro p o sitio n  3.3 for p ro d u c tiv ity  we have to  prove th a t  every ground te rm  t 
of sort s rew rites to  a te rm  having its  roo t in C. A pply  ^-rew ritin g  on t  as long as possible. 
D ue to  ^ -te rm in a tio n  th is will end in a te rm  on w hich ^ -rew ritin g  is no t possible, so a 
g round ^ -n o rm al form. D ue to  th e  claim  th is  g round ^ -n o rm al form  has its  roo t in C . ■

E x a m p le  4 .2 . C onsider th e  following s tream  specification

P ro d u c tiv ity  follows from  T heorem  4.1: en tering  th is  rew rite  system  in th e  too l A P roV E  
[6] or i -T e rm  [10] to g e th er w ith  th e  con tex t-sensitiv ity  in form ation  th a t  rew riting  is d isal­
lowed in th e  second argum ent of ‘:’ fully au to m atica lly  yields a proof of contex t-sensitive 
te rm in atio n . A lternatively , by en tering  th is  specification in our too l yields exactly  th e  sam e 
proof.

In  th is  specification f is th e  s tream  function  th a t  removes all zeros. So p ro d u c tiv ity  
depends on th e  fact th a t  th e  s tream  of all zeros does no t occur as th e  in te rp re ta tio n  of a 
su b term  of any g round te rm  in th is  specification. For instance, by adding  th e  rule zeros —
0 : zeros th e  specification is no t p roductive  any m ore as f(zeros) does no t rew rite  to  a te rm  
having a co n stru c to r as its root.

T his also shows th e  difference betw een our requirem ent of p ro d u c tiv ity  of all finite 
g round te rm s and  th e  requirem ent in [9] of p ro d u c tiv ity  of all term s, including infinite 
term s. T here  th is  exam ple is no t p roductive  on th e  infinite te rm  represen ting  th e  stream  
of all zeros.

E x a m p le  4 .3 . We specify th e  so rted  s tream  of H am m ing num bers: all positive n a tu ra l 
num bers th a t  are no t divisible by o th er prim e num bers th a n  2, 3 and  5. H ere D  =  {sn (0) | 
n  > 0}. For +  and  * we have th e  s tan d a rd  rules, we also need com parison cmp for which 
cm p(n, m ) yields 0 if n  =  m , s(0) if n  > m  and  s(s(0)) if n  < m . So R d consists of th e  rules

For R s we need a function  mul to  m ultip ly  a s tream  elem ent-w ise by a num ber, a function  
mer for m erging tw o sorted  stream s, and  an  auxiliary  function  f . F ina lly  we have a constan t 
h for th e  sorted  s tream  of H am m ing num bers. T he rules of R s read:

x  +  0 
x  +  s(y) 

x  * 0 
x  * s(y)

x
s(x  +  y)
0
(x  * y) +  x

cm p(0, 0)
cm p(s(x), 0) 
cm p(0, s(x)) 

cm p(s(x), s(y))

0
s(0) 
s(s(0)) 
cm p(x, y)

mul(x, y  : a )  —  x  * y  : mul(x, a )  f (0 ,x  : a, y  : t ) — x  : m er(a, t )
m er(x : a, y  : t ) — f (c m p (x ,y ) ,x  : a, y  : t ) f (s(0), a, y  : t ) — y  : m er(a, t )

f ( s ( s ( x ) ) ,y  : a ,T ) — y  : m er(a, t )

h — s(0) : m er(m er(m ul(s2(0), h), mul(s3(0), h)), m ul(s5(0), h)))
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Now we have a p roper s tream  specification, being th e  folklore functional p rogram  for gen­
era ting  H am m ing num bers, up  to  n o ta tio n a l details. P ro d u c tiv ity  is proved fully a u to m a ti­
cally by our tool: i -T e rm  [10] is called to g e th er w ith  th e  con tex t-sensitiv ity  in form ation  th a t  
rew riting  is disallowed in th e  second argum ent of ‘:’, yielding a p roof of contex t-sensitive 
te rm in atio n . So by T heorem  4.1 p ro d u c tiv ity  can  be concluded.

For com pleteness we m ention  th a t  th e  too l of [4, 3] also finds a p roof of p ro d u c tiv ity  of 
h in th is  exam ple.

E x a m p le  4 .4 . T he C alkin-W ilf tree  [2] is a b inary  tree  in w hich every node is labeled by a 
p a ir of n a tu ra l num bers, in such a way th a t  for every m ,n  > 0 th a t  are relatively  prim e th e  
p a ir (m , n) occurs exactly  once as a label of a node, and  no o th er pairs occur. So th e  labels 
of th e  nodes represen t positive ra tio n a l num bers, and  every positive ra tio n a l num ber m / n  
occurs exactly  once as a p a ir (m , n ). T here  is one co n stru c to r b w ith  ar(d, b) =  ar(s, b) =  2. 
F rom  E xam ple 4.3 we take th e  d a ta  set D  consisting of th e  n a tu ra l num bers, and  also th e  
sym bol +  and  its tw o rules. Now th e  C alkin-W ilf tree  c is defined by

c ^  f(s(0), s(0)), f (x , y) ^  b(x , y, f (x, x  +  y), f (x  +  y, y )).

O u r too l proves p ro d u c tiv ity  of th is  specification by calling i-T e rm  [10] th a t  proves con tex t- 
sensitive te rm in a tio n , hence proving p ro d u c tiv ity  by T heorem  4.1.

T heorem  4.1 can  be seen as a s treng then ing  of T heorem  3.4: if all roo ts of righ t hand  
sides of rules from  R s are in C th en  R s U R d is ^ -te rm in a tin g , as is shown in th e  following 
proposition .

P r o p o s i t i o n  4 .5 . Let S  =  ( £ d, £ s , C, R d, R s) be a proper specification in  which fo r  every 
£ ^  r in  R s the term  r is no t a variable and  roo t(r) €  C . T hen  R s U R d is i - te r m in a tin g .

Proof. A ssum e th ere  exists an  infinite ^ -reduction . For every te rm  in th is  reduction  count 
th e  num ber of sym bols from  £ s th a t  are on allowed positions. D ue to  th e  assum ptions by 
every Rd-step  th is  num ber rem ains th e  sam e, while by every R s -step  th is  num ber decreases 
by one. So th is  reduction  contains only finitely  m any R s-steps. A fter these finitely m any R s- 
steps an  infinite R d -reduction  rem ains, con trad ic ting  th e  assum ption  th a t  Rd is te rm inating .

■

T he reverse d irec tion  of T heorem  4.1 does not hold, as is illu s tra ted  in th e  nex t exam ple.

E x a m p le  4 .6 . C onsider th e  p ro p er (stream ) specification ( £ d, £ s , C ,R d, R s), w here £ d =  
{0,1}, R d =  0, C =  {:} w ith  a r (d ,:) =  a r ( s , :) =  1, and  R s being th e  below TRS:

p ^  zip(alt, p) 
alt ^  0 : 1 :  alt 

zip(x : a , r ) ^  x  : z ip (r ,a )

T his specification is productive , as we will see la te r  in E xam ple 5.2. However, it adm its 
an  infinite contex t-sensitive reduction  p ^  zip(alt, p) w hich is continued by repeated ly  
reducing th e  redex p.

T he s tream  p describes th e  sequence of righ t and  left tu rn s  in th e  dragon curve, ob ta ined  
by p ap e r folding.
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5 . P r o d u c t i v i t y  P r e s e r v i n g  T r a n s f o r m a t i o n s

To be able to  handle exam ples like th e  above, we in troduce productivity preserving  
transform ations  of such specifications. W henever p ro d u c tiv ity  of a specification canno t be 
determ ined , we app ly  one of th e  tran sfo rm atio n s and  t ry  to  prove p ro d u c tiv ity  of th e  tra n s ­
form ed specification, instead . In  case we can  prove th e  transfo rm ed  specification productive, 
th en  because of p ro d u c tiv ity  preservation  also th e  original specification is p roductive.

O ne such tran sfo rm atio n  is th e  reduction  of righ t hand  sides, th a t  is, a rule £ —  r  of 
R s is replaced by £ —  r ' for a te rm  r ' satisfying r — RsLiRd r ' . W rite  R  =  R s U R d, and 
w rite  R ' for th e  resu lt of th is  replacem ent. T h en  by co nstruc tion  we have — r  C — R,, and 
— r  C — r , ■ R , th a t  is, every —R -step can  be followed by zero or m ore —R -steps to  
o b ta in  a — R, -step . We present our theorem s in th is  m ore general se ttin g  such th a t  th ey  
are applicable m ore general th a n  only for reduction  of righ t h and  sides.

T h e o r e m  5 .1 . Let S  =  ( £ d, £ s , C, R d, R s) and S ' =  ( £ d, £ s , C, R d, R's) be proper specifica­
tions satisfying  ——r , C — + fo r  R  =  R s U R d and R ' =  R's U R d. I f  S ' is productive, then  
S  is productive, too.

Proof. L et S '  be productive , i.e., every g round te rm  t  of so rt s ad m its  a reduction  t  — R, t' 
for w hich ro o t(t')  €  C . T hen  by — r , C — + we conclude t  — R t', proving p ro d u c tiv ity  of
S . ■

E x a m p le  5 .2 . We apply  th is  theo rem  to  E xam ple 4.6. O bserve th a t  we can  rew rite  th e  
right hand  side of th e  rule p — zip(alt, p) as follows:

p — zip(alt, p — zip(0 : 1 : alt, p) — 0 : zip(p, 1 : alt)

So we m ay tran sfo rm  our specification by replacing Rs by th e  T R S  R s' consisting of th e  
following rules:

p — 0 : zip(p, 1 : alt) 
alt —  0 : 1 : alt 

zip(x : a ,T ) — x  : zip(r, a)
Clearly, th is  is a p ro p er specification th a t  is p roductive due to  T heorem  3.4. Now p ro d u c­
tiv ity  of th e  original specification follows from  T heorem  5.1 and  — R's C — R . O u r tool 
finds exactly  th is  proof.

C oncluding p ro d u c tiv ity  of th e  original system  from  p ro d u c tiv ity  of th e  transfo rm ed  
system  is called soundness , th e  converse is called com pleteness . T he following exam ple 
shows th e  incom pleteness of T heorem  5.1.

E x a m p le  5 .3 . C onsider th e  tw o p roper (stream ) specifications S  and  S '  defined by

R s: c — f (c) R's : c — f (c)
f (a) —  0 : a  f (x : a) —  0 : x  : a

Here C =  {:}, R d =  0, £ d =  {0}. Since c — r  f(c) — r  0 : c and f (■ ■ ■) — r  0 : ■ ■ ■ we 
conclude p ro d u c tiv ity  of S , as c and  f are th e  only sym bols in £ s .

For th e  T R S R's we have th a t  — r ,s C — + , since any step  w ith  th e  rule 
f(x  : a )  — 0 : x  : a  of R's can  also be done w ith  th e  rule f (a )  — 0 : a  of R s . How­
ever, S ' is no t productive , as th e  only reduction  s ta rtin g  in c is

c — f (c) — f (f (c)) — ■ ■ ■

in w hich th e  roo t is never in .
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N ext we prove th a t  w ith  th e  ex tra  requirem ent — r  C — r , ■ ^ R ,  as holds for reduction  
of righ t hand  sides, we have b o th  soundness and  com pleteness.

T h e o r e m  5 .4 . Let S  =  ( £ d, £ s , C, R d, R s) and S ' =  ( £ d, S s , C, R d, R's) be proper specifica­
tions satisfying — R,  C — + and — r  C — r , ■ ^ R  fo r  R  =  R s U R d and R ' =  R's U R d.

T hen  S  is productive i f  and only i f  S ' is productive.

Proof. T h e  “if” d irec tion  follows from  T heorem  5.1.
For th e  “only-if” d irec tion  first we prove th e  following claim :

C la im : If t  — r  t ' and  t  — R t ' ' , th en  th ere  exists a te rm  v  satisfying t '  — R v 
and  t '' — R, v.

L et t  — r  t ' be an  app lica tion  of th e  rule £ —  r  in R, so t  =  C[£p] and  t '  =  C [rp] for 
som e C, p. According to  th e  P ara lle l Moves Lem m a ([14], Lem m a 4.3.3, page 101), we can 
w rite  t'' =  C ''[£ p \,. . .  ,£pn ], and t', t '' have a com m on R -reduct C ''[rp1, . . . ,  rpn ]. D ue to  
£pi — r  rpi and  — r  C — r , ■ ^ R  th e re  exist ti  satisfying £pi — r , ti and  rpi — R ti, for all 
i =  1 , . . .  ,n .  Now choosing v  =  C  ''[t1, . . . ,  t n] proves th e  claim .

Using th is  claim , by induction  on th e  num ber of — R -steps from  t  to  t '  one proves th e  
generalized claim : If t  — R t ' and  t  — R t'', th en  th e re  exists a te rm  v  satisfying t ' — R v  and 
t '' v. t  — R' v ■

L et t  be an  a rb itra ry  g round te rm  of sort s . D ue to  p ro d u c tiv ity  of S  th e re  exists t ' 
satisfying t  — R t ' and  roo t(t ' ) € C . A pplying th e  generalized claim  for t '' =  t  yields a te rm  
v  satisfying t ' — R v  and  t  — R, v. Since ro o t(t')  €  C and  t ' — R v  we o b ta in  root(v) €  C. 
Now t  — R, v  im plies p ro d u c tiv ity  of S '.  ■

E xam ple 5.3 generalizes to  a general app lica tion  of T heorem  5.1 o th e r th a n  rew riting  
right hand  sides as follows. A ssum e a rule from  R s in a p ro p er tran sfo rm atio n  contains an  s- 
variable a  in th e  left han d  side being an argum ent of th e  roo t. T hen  th is rule m ay be replaced 
by th e  # C  instances of th e  sam e rule, in w hich a  is replaced by c ( x i , . . . ,  x n , a 1, . . . ,  a m ), for 
all c €  C , w here ar(d, c) =  n , a r(s ,c ) =  m . T hen  th e  resu lt is again  a p ro p er specification, 
and  also th e  requirem ents of T heorem  5.1 hold, even — r  C — r , .

E x a m p le  5 .5 . We w ant to  analyze p ro d u c tiv ity  of th e  following varian t of E xam ple 4.6, 
in w hich p has been replaced by a s tream  function , and  R s is th e  below TRS:

p (a) — zip(a, p (a )) 
alt —  0 : 1 : alt 

zip(x : a ,T ) — x  : zip(r, a)

P roving  p ro d u c tiv ity  by T heorem  3.4 fails. Also proving p ro d u c tiv ity  w ith  th e  tech ­
nique of T heorem  4.1 fails, since th ere  exists th e  infinite contex t-sensitive reduction

p(alt) — zip(alt, p(alt)) — . . . .

F u rtherm ore , reducing th e  righ t hand  side of p (a) — zip(a, p (a )) can  only be done by 
applying th e  first rule, no t creating  a co n stru c to r as th e  roo t of th e  righ t h and  side. W h a t 
blocks rew riting  using th e  zip rule is th e  variable a  in th e  first argum ent of zip. Therefore, 
we app ly  T heorem  5.1 as sketched above and  replace th e  rule p (a ) — zip(a, p (a )) by th e  rule 
p(x : a )  — zip(x : a, p(x : a ) )  to  o b ta in  th e  T R S R's . T his now allows us to  rew rite  th e  new 
right hand  side by th e  zip rule, replacing th e  previous rule by p(x  : a ) —  x  : zip(p(x  : a), a ),
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i.e., we o b ta in  th e  T R S  R '' consisting of th e  following rules:

p(x : a ) — x  : zip(p(x : a ) , a )  
alt —  0 : 1 : alt 

zip(x : a ,T ) — x  : zip(T, a)

P ro d u c tiv ity  of R '' follows T heorem  3.4. T his im plies p ro d u c tiv ity  of R 's due to  T h e­
orem  5.1 w hich in tu rn  im plies p ro d u c tiv ity  of our in itia l specification S , again due to  
T heorem  5.1. O u r too l finds exactly  th e  p roof as given here.

E x a m p le  5 .6 . For s tream  co m puta tions it is often n a tu ra l also to  use finite lists. T he 
d a ta  s tru c tu re  com bining stream s and  finite lists is ob ta ined  by choosing C =  {:, nil}, w ith  
a r (d ,:) =  a r ( s , :) =  1 and  ar(d, nil) =  ar(s, nil) =  0, as m entioned in E xam ple 2.3. An 
exam ple using th is  is defining th e  s tream  p  =  1 : 2 : 2 : 3 : 3 : 3 : 4 :  ■■■ of n a tu ra l 
num bers, w hich is sorted , and  in w hich n  occurs exactly  n  tim es for every n  €  N 2. As 
auxiliary  functions we use conc for concatenation , copy for which copy(k, n) is th e  finite list 
of k  copies of n , for k , n  €  N , and  a function  f for generating  p =  f (0). Taking D  to  be th e  
set of g round term s over {0, s} and  R d =  0, we choose R s to  consist of th e  following rules:

p — f (0) f (x) — conc(copy(x, x ), f (s(x)))
copy(s(x ),y ) — y  : copy(x ,y) conc(n il,a) — a

copy(0 , x ) —  nil conc(x  : a, T) —  x  : conc(a, T )

N ote th a t  p ro d u c tiv ity  of th is  system  is no t triv ial: if th e  rule for f is replaced by f(x ) —  
conc(copy(x, x ), f(x )), th en  th e  system  is no t productive.

P ro d u c tiv ity  canno t be proved d irec tly  by T heorem  3.4 or T heorem  4.1; con tex t- 
sensitive te rm in a tio n  does not even hold for th e  single f rule. However by replacing th e  
f rule by th e  tw o instances

f (0) — conc(copy(0,0), f(s(0 ))) and  f(s(x )) — conc(copy(s(x), s(x)), f(s(s (x )))),

and  th e n  app ly  rew riting  righ t hand  sides by which these tw o rules are replaced by

f (0) — f(s(0)) and  f(s(x )) — s(x) : conc(copy(x, s (x )) ,f (s (s (x )) ))

yields a p roper specification for w hich contex t-sensitive te rm in a tio n  is proved by A P roV E  
[6] or ^ -T erm  [10], proving p ro d u c tiv ity  of th e  original exam ple by T heorem  5.1 and  T h e­
orem  4.1. O u r too l finds a sim ilar proof as given here: righ t hand  sides were slightly  m ore 
rew ritten .

E x a m p le  5 .7 . We conclude th is  section by an  exam ple in b in ary  trees, in which th e  nodes 
are labeled by n a tu ra l num bers, so th e re  is one co n stru c to r b : d x  s 2 —  s and  D  consists 
of g round te rm s over {0, s}. T he rules are

c — b(0, f (g(0), left(c)), g(0)) left(b(x, x s , y s ))  —  x s
g(x) — b(x, g (s(x ) ) , g (s(x ))) f(b (x , x s , y s ) ,z s )  —  b (x ,y s ,  f ( z s ,x s ) )

To get an  im pression of th e  hardness of th is  exam ple, observe th a t  f and  left are sim ilar to  
zip and  tail for stream s, respectively, and  th e  recursion in th e  rule for c has th e  flavor of 
c — 0 : zip(- ■ ■ , tail(c)). O u r too l proves p ro d u c tiv ity  by T heorem  5.1 and  T heorem  4.1, by 
first rew riting  righ t hand  sides and  th en  prove contex t-sensitive te rm ination .

2
The same stream is easily defined by a specification not involving finite lists, but here we want to 

illustrate this extended data structure, and the use of standard operations like conc.
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6 . I m p l e m e n t a t i o n

We have im plem ented a too l to  check p ro d u c tiv ity  of p roper specifications using th e  
techniques presen ted  in th is  paper. I t  is accessible v ia th e  w eb-interface 

h t t p : / / p c l i n 1 5 0 .w i n . t u e .n l : 8 0 8 0 / p r o d u c t i v i t y .
T he in p u t fo rm at requires th e  following ingredients:

•  th e  variables,
•  th e  op era tio n  sym bols w ith  th e ir  types,
•  th e  rew rite  rules.

D etails of th e  fo rm at can  be seen from  th e  exam ples th a t  are available. All o th e r inform a­
tion , like w hich sym bols are in C is ex trac ted  by th e  too l from  these ingredients.

As a first step , th e  too l checks th a t  th e  in p u t is indeed a p roper specification. Checking 
syn tactic  requirem ents like no function  sym bol re tu rn in g  so rt d has an  argum ent of sort s , 
th e  T R S  is 2-sorted and  orthogonal, and  th e  left hand  sides have th e  required  shape, are all 
stra igh tfo rw ard . However, to  verify th e  last requirem ent of a p ro p er specification, nam ely 
th a t  th e  T R S is exhaustive, is a hard  jo b  if we allow D  to  be th e  set of g round norm al forms 
of any te rm in a tin g  o rthogonal R d. In stead  we re s tric t to  th e  class of p roper specifications 
in which D  consists of th e  co n stru c to r g round term s of so rt d, i.e., th e  te rm s in D  do not 
con tain  sym bols occurring as roo t sym bol in a left hand  side of a rule in Rd. To check 
w hether th is  is th e  case, we use an ti-m atch ing  as described in [11]. I t can  easily be shown 
th a t  th e  norm al form s of ground te rm s w .r.t. Rd are only co n stru c to r term s if and  only if 
th e re  is no an ti-m atch ing  te rm  th a t  has a defined sym bol as roo t and  only te rm s bu ilt from  
construc to rs and  variables as argum ents. T he idea of th e  proof is th a t  such a te rm  could be 
in s tan tia ted  to  a g round te rm , w hich is a norm al form  due to  th e  an ti-m atch ing  property . 
T hen , checking exhaustiveness of R s  has to  only consider co n stru c to r term s for b o th  d a ta  
and  s tru c tu re  argum ents.

To analyze p ro d u c tiv ity  of a given p ro p er specification, th e  too l first investigates w hether 
T heorem  3.4 can  be applied directly : it checks w hether th e  roo ts  of all right hand  sides are 
construc to rs. If th is  sim ple crite rion  does no t hold, th en  it tries  to  show contex t-sensitive 
te rm in a tio n  using th e  existing te rm in a tio n  prover ^-T erm , by w hich p ro d u c tiv ity  will follow 
by T heorem  4.1.

If b o th  of these first a tte m p ts  fail th en  th e  too l tries to  tran sfo rm  th e  given specifi­
ca tion . Since rew riting  of righ t hand  sides is b o th  sound and  com plete, as was shown in 
Section 5, a p roductive  specification can  never be transfo rm ed  in to  an  unproductive  one 
by th is technique. Therefore, th is  is th e  first tran sfo rm atio n  to  try . However, large right 
hand  sides often m ake it h a rd er for te rm in a tio n  tools to  prove contex t-sensitive te rm in a ­
tion . Therefore, th e  too l tries to  only rew rite  positions on righ t hand  sides th a t  ap p ear to  
be  needed to  o b ta in  a co n stru c to r prefix tree  of a certain , ad ju stab le  d ep th . T his is done 
by traversing  th e  te rm  in an  o u term ost fashion and  only try in g  to  rew rite  argum ents if th e  
possibly m atching  rules require a co n stru c to r for th a t  p a rticu la r argum ent. If a t least one 
right h and  side could be rew ritten , a new specification w ith  th e  rew ritten  righ t hand  sides 
is created . Since rew riting  of right hand  sides is no t g u aran teed  to  te rm in a te , we lim it th e  
m axim al num ber of rew riting  steps. A fter rew riting  th e  righ t hand  sides in th is  way, th e  
too l again  tries  to  prove p ro d u c tiv ity  of th e  transfo rm ed  T R S  using our basic techniques.

As shown in E xam ples 5.5 and  5.6, it can  be helpful to  replace a variable by all con­
s tru c to rs  of its sort applied  to  variables. Therefore, in case p ro d u c tiv ity  could not be shown 
so far, it is tr ied  to  in s tan tia te  a variable on a position  of a righ t hand  side th a t  is required

http://pclin150.win.tue.nl:8080/productivity
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by th e  rules for th e  defined sym bol d irec tly  above it. T hen  th e  in s tan tia ted  righ t hand  sides 
are rew ritten  again  to  o b ta in  new specifications for w hich p ro d u c tiv ity  is analyzed fu rther.

T he described tran sfo rm atio n s are applied in th e  order of th e ir  p resen ta tio n  a num ber 
of tim es. If a set lim it of applications of transfo rm ations is reached, th e  too l finally tries to  
rew rite  to  deeper context-prefixes on righ t han d  sides and  does a final check for productiv ity , 
using a larger tim eou t value.

Using these heuristics th e  too l is able to  au to m atica lly  prove p ro d u c tiv ity  of all p ro ­
ductive exam ples presented  in th is  paper. T his especially includes th e  exam ple of a s tream  
specification given in th e  following section, w hich could no t be proved to  be p roductive  by 
any o th er au to m ated  technique we are aw are of.

7 . C o n c l u s i o n s  a n d  R e l a t e d  W o r k

In th is  p ap e r we presented  new techniques to  prove p ro d u c tiv ity  of specifications of 
infinite ob jects like stream s. U ntil now several techniques were developed for proving p ro­
d u c tiv ity  of s tream  specifications, b u t no t for o th er d a ta  infinite d a ta  s tru c tu re s  like infinite 
trees and  com bination  of stream s and  finite lists. In  th is  p ap e r we gave several exam ples 
of applying our techniques to  these infinite d a ta  stru c tu res . We im plem ented a too l by 
which p ro d u c tiv ity  of all of these exam ples could be proved fully au tom atically . For th e  
non-stream  exam ples th e re  are hard ly  o th e r techniques to  com pare. For stream s th ere  are 
exam ples w here our technique ou tperfo rm s all earlier techniques. For instance, th e  tech ­
niques from  [4, 3] fail to  prove p ro d u c tiv ity  of E xam ple 4.2. For th is exam ple th e  technique 
from  [16] succeeds, b u t th is  technique fails as soon b in ary  stream  operations come in like 
zip. To our knowledge our technique is th e  first th a t  can  deal w ith  p ro d u c tiv ity  of th e  spec­
ification consisting of th e  com bination  of E xam ple 4.6 (describing th e  p ap e r folding stream ) 
and  th e  tw o rules f (0 : a )  ^  f ( a ) ,  f (1 : a )  ^  1 : f ( a ) .  O ur too l first perform s rew riting  of 
th e  righ t hand  side of th e  p-rule and  th en  proves contex t-sensitive te rm in a tio n  by ^-T erm . 
N ote th e  su b tle ty  in th is  exam ple: as soon as a g round te rm  t  can  be com posed of which 
th e  in te rp re ta tio n  as a s tream  contains only finitely  m any ones, th en  th e  system  will no t be 
p roductive  for f( t) . So as a consequence we conclude th a t  th e  stream  represen ted  by any 
ground te rm  of so rt s in th is  specification, including th e  p ap e r folding s tream  p, contains 
infinitely  m any ones.

Some ideas in th is  p ap e r are re la ted  to  earlier observations. In  [8] th e  observation  was 
m ade th a t  if righ t hand  sides of s tream  definitions have ‘:’ as its roo t, th en  well-definedness 
can  be concluded, com parab le to  w ha t we did  by T heorem  3.4. A  sim ilar observation  can  be 
m ade ab o u t process algebra, w here a recursive specification is called guarded if righ t hand  
sides can  be rew ritten  to  a choice am ong term s all having a co n stru c to r on top , see e.g. [1], 
Section 5.5. In  th a t  se ttin g  every specification has a t least one solution, while guardedness 
also im plies th e re  is a t m ost one so lution ([1], T heorem  5.5.11). So guardedness im plies 
well-definedness, being of th e  flavor of com bining T heorem  3.4 w ith  rew riting  righ t hand  
sides. B o th  these observations conclude well-definedness, w hich is a slightly  weaker no tion  
th a n  productiv ity . A n investigation  of well-definedness for s tream  specifications based on 
te rm in a tio n  was m ade in [15]. We w ant to  stress th a t  p ro d u c tiv ity  is s tric tly  stronger th a n  
well-definedness, which is shown by th e  s tream  specification c ^  f(c), f(x  : a )  ^  0 : c, 
being well-defined b u t no t productive.

As far as we know th e  re la tionsh ip  of p ro d u c tiv ity  w ith  contex t-sensitive te rm in a tio n  
as expressed in T heorem  4.1 is new. Some germ s of th is  re la tionsh ip  were given before in



PROVING PRODUCTIVITY IN INFINITE DATA STRUCTURES 15

[16] w here p ro d u c tiv ity  was re la ted  to  o u term ost te rm in a tio n  and  in [5] w here ou term ost 
te rm in a tio n  was re la ted  to  contex t-sensitive te rm in atio n .
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