-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Radboud Repository

Radboud Repository Radboud University Nijmegen ;@r

N\

PDF hosted at the Radboud Repository of the Radboud University
Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/84162

Please be advised that this information was generated on 2017-12-06 and may be subject to
change.

https://core.ac.uk/display/16168625?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/84162

Submitted to the International Conference on Rewriting Techniques and Applications
http://rewriting.loria.fr/rta/

PROVING PRODUCTIVITY IN INFINITE DATA STRUCTURES

HANS ZANTEMA 12 AND MATTHIAS RAFFELSIEPER!

! Department of Computer Science, TU Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Nether-
lands
FE-mail address: H.ZantenaQtue.nl
E-mail address: M.Raffelsieper@tue.nl

2 Institute for Computing and Information Sciences, Radboud University Nijmegen, P.O. Box 9010,
6500 GIL. Nijmegen, The Netherlands

ABSTRACT. For a general class of infinite data structures including streams, binary trees,
and the combination of finite and infinite lists, we investigate a notion of productivity.
This generalizes stream productivity. We develop a general technique to prove productiv-
ity based on proving context-sensitive termination, by which the power of present termi-
nation tools can be exploited. For cases where the approach does not apply directly, we
develop transformations extending the power of the basic approach. We present a tool
combining all these ingredients that can prove productivity of a wide range of examples
fully automatically.

1. Introduction

Some computations go on forever potentially. A standard example is the sieve of Er-
atosthenes producing the infinitely many prime numbers. The result of such a computation
then is an infinite stream of elements. Although the computation itself goes on forever,
there is a kind of termination involved that is called productivity. for every element pro-
duced, the next element will be produced after a finite number of steps. We will consider
computations specified by a number of rewrite rules that are interpreted as a lazy functional
program. Then productivity can be characterized and investigated as a property of term
rewriting, as was investigated before in [4, 9, 3, 16].

Streams can be seen as infinite terms. It is natural not to restrict to streams: in case the
computation possibly ends, then the result is not a stream but a finite list. And when paral-
lelism is considered, naturally infinite trees come in. In this paper we develop techniques for
automatically proving productivity of specifications in all of these infinite data structures,
including stream specifications. Earlier techniques only for stream specifications were given
in [4, 3, 16]. A key idea of our approach is to prove productivity by proving termination
of context-sensitive rewriting [7], that is, rewriting in which rewriting is disallowed inside
particular arguments of particular symbols. As strong tools like AProVE [6] and u-Term
[10] have been developed to prove termination of context-sensitive rewriting automatically,
now the power of these tools can be exploited to prove productivity automatically.

Through this paper we consider two kinds of terms: finite terms and infinite terms. As
the elements of the infinite data structures we intend to define are infinite terms, infinite

(© Hans Zantema and Matthias Raffelsieper
Confidential — submitted to RTA

http://rewriting.loria.fr/rta/
mailto:H.Zantema@tue.nl
mailto:M.Raffelsieper@tue.nl

2 HANS ZANTEMA AND MATTHIAS RAFFELSIEPER

terms are unavoidable here. On the other hand, terms occurring in our specifications are
finite. Rewriting has been investigated both for finite and infinite terms. But rewriting
finite terms is much easier and better understood than infinitary rewriting, and for many
properties, like several variants of termination, there is strong tool support to investigate
these properties. We follow the policy to use infinite terms only where necessary, and exploit
understanding and tool support for rewriting finite terms as much as possible. In this way
we need the concept of infinite terms, but not of infinitary rewriting. Following this policy,
elements of infinite data structures over a data set D are considered as infinite terms in
which elements of D act as constants, and for the rest the infinite terms are composed from
a set C of constructor symbols. In this world of infinite terms we want to avoid that data
elements are infinite terms themselves. For instance, in considering streams over natural
numbers as infinite terms, we want to be able to consider a stream 0 :1:2:3:4: ../
but we do not want the data elements in such a stream to be infinite terms like s*(0).
When specifying elements of infinite data structures over a data set D, the set D may be
described as the set of (finite) ground normal forms of some rewriting system Ry over data
signature 4. As an example, for natural numbers with + we can choose X3 = {0,s,+},
and Ry consists of the rules 0 + 2 — 2 and s(x) +y — s(x +y). Apart from X, and Ry the
specification then is given by a set R, of rewrite rules over C U X3 U X, where X¢ consists
of constants and auxiliary operations to be defined. For instance, for defining the above
mentioned stream nat =0:1:2:3:4: ... we introduce an auxiliary function f on streams
that replaces each element by its successor, and specify nat by choosing R, to consist of the
two rules
nat — 0 : f(nat), f(x:0)—s(z):f(o).

Here we have C = {:}, ¥4 = {0,s}, Rg = 0, X5 = {nat,f}, and x, ¢ are variable symbols of
type data and stream, respectively. In this setting productivity means that for every n the
initial term can be rewritten to a (finite) term in which all symbols on depth less than n
are constructor symbols. This notion of productivity is consistent with stream productivity
as in [4, 3, 16], formalizing the spirit of stream productivity as introduced in [12]. It is also
consistent with productivity as defined in [9] for a setting even more general than ours.

Proving productivity may be hard. For the sieve of Eratosthenes proving productivity
is beyond the scope of fully automatic techniques as it depends on the fact that there are
infinitely many prime numbers. Moreover, we can specify an extra stream by filtering out
every element in this stream of prime numbers that is distinct from its predecessor plus 2.
This yields a stream specification, eagily expressed in the format of this paper, of which
productivity is equivalent to the existence of infinitely many prime twins: a well-known
open problem in number theory. As expected for such a format suitable for expressing a
well-known open problem, productivity is an undecidable property. This has been proved
independently by several people; one proof was given in [13].

In contrast to [4, 3], we focus on requiring productivity not only for a single initial term,
like nat in the above example, but for all ground terms. An easy induction argument shows
that productivity holds for all ground terms if and only if every ground term rewrites to a
term of which the root is a constructor symbol. As in [16] this characterization is the basis
of our productivity investigations, but now for more general infinite data structures than
only streams.

The paper is organized as follows. In Section 2 we introduce infinite terms and give
examples of several infinite data structures consisting of infinite terms. In Section 3 we

PROVING PRODUCTIVITY IN INFINITE DATA STRUCTURES 3

introduce our notions of proper specifications and productivity. Being interested in de-
terministic computations, in proper specifications we require the rewrite systems to be
orthogonal. A first basic result (Theorem 3.4) states that a specification is productive if
for all rules the root of the right hand side is a constructor symbol. In Section 4 we relate
productivity to context-sensitive rewriting. The main result (Theorem 4.1) states that a
specification is productive if context-sensitive termination holds for the rules of the specifi-
cation, where rewriting is only allowed in the data arguments of the constructor symbols,
and in all arguments of the other symbols. For cases where these approaches fail, in Section
5 we investigate transformations that preserve productivity, more precisely, transformations
that transform a proper specification into another one such that productivity of the original
specification can be concluded from productivity of the transformed specification, the latter
typically proved by the basic techniques from the earlier sections. Through these sections
we give several examples of specifications of streams and binary trees for which productivity
is proved, for many of which this could not be proved by earlier techniques. In Section 6
we describe an implementation of our techniques, by which productivity of all productive
examples presented in this paper can be proved fully automatically. We conclude in Section
7.

2. Infinite Terms

Intuitively, a term (both finite and infinite) is defined by saying which symbol is on
which position. Here a position p € N* is a sequence of natural numbers. In order to be a
proper term, some requirements have to be satisfied as indicated in the following definition.
As we will consider infinite terms over a set C of constructors and a set D of data (disjoint
from C), our terms will be two-sorted!: a sort s for the (infinite) terms to be defined, and a
sort d for the data. Every f € C is assumed to be of type d* x ™ — s for some n,m € N.
We write ar(d, f) =n and ar(s, f) = m. We write L for undefined.

Definition 2.1. A (possibly infinite) term over C,D is defined to be a map ¢t : N* —
CUDU{L} such that

e the root t(e) of the term ¢ is a constructor symbol, so t(¢) € C, and
e for all p € N* and all i € N we have

tpi) e D < t(p) eCA1<i<ar(d,t(p)), and
t(pi) €C <> t(p) € CNar(d,t(p)) <i<ar(d,t(p))+ar(s,t(p)).

So t(pi) = L for all p,i not covered by the above two cases.
We write T (C, D) for the set of all terms over C, D.

An alternative equivalent definition of T*(C, D) can be given based on co-algebra, but
for the results in this paper we do not need this co-algebraic view. Another alternative is
to see infinite terms as limits of finite terms.

A position p € N* satisfying t(p) € C is called a position of t of sort s. A position
p € N* satisfying t(p) € D is called a position of t of sort d.

The usual notion of finite term coincides with a term in this setting having finitely
many positions. In case ar(s, f) > 0 for all f € C then no finite terms exist. This holds for

n [9], and in the forth-coming PhD thesis of its author, an arbitrary many-sorted setting is proposed.
Our approach easily generalizes to a more general many-sorted setting, but for notational convenience we
restrict to the two-sorted setting.

4 HANS ZANTEMA AND MATTHIAS RAFFELSIEPER

streams. In case ar(d, f) = 0 for all f € C then no position of sort D exist, and terms do
not depend on D.

For f € C with ar(d, f) = n, ar(s, f) = m, n elements uq,...,u, € D and m terms
ti, ...y tm we write f(ui,...,Un,t1,...,tm) for the term ¢ defined by t(e) = f, t(ip) = u, for
every p € N*and i = 1,...,n, t(ip) = ti_n(p) forevery p e N* and i =n+1,...,n+m,
and t(ip) = Lifi ¢ {1,...,n+m}.

Example 2.2 (Streams). Let D be an arbitrary given non-empty data set, and let C = {:},
with ar(d,:) = ar(s,:) = 1. Then T*(C, D) coincides with the usual notion of streams over
D, being functions from N to D. More precisely, a function f : N — D gives rise to an
infinite term ¢ defined by #(2"") = : and #(2"1) = f(n) for every n € N, and t(w) = L for
all other strings w € N*. Conversely, every t : N* — C U D satisfying the requirements of
the definition of a term is of this shape. Note that if #D = 1, then there exists only one
such term.

In case D is finite, an alternative approach is not to consider the binary constructor ‘:’,
but unary constructors for every element of D. In this approach D does not play a role and
is irrelevant.

Example 2.3 (Finite and infinite lists). Let D be an arbitrary given non-empty data
set, and let C = {:,nil}, with ar(d,:) = ar(s,:) = 1 and ar(d,nil) = ar(s,nil) = 0. Then
T>°(C, D) covers both the streams over D as in Example 2.2 and the usual (finite) lists. As
in Example 2.2, a function f : N — D gives rise to an infinite term ¢ defined by ¢(2") =:
and t(2"1) = f(n) for every n € N, and t(w) = L for all other strings w € N*. The only
way nil can occur is where (27) = nil for some n > 0, t(2%) = : and t(2°1) € D for every
i <mn, and t(w) = L for all other strings w € N*, in this way representing a finite list of
length n. Conversely, every ¢ : N* — C U D satisfying the requirements of the definition of
a term is of one of these two shapes. In the literature this combination of finite and infinite
lists is sometimes called lazy lists.

Example 2.4 (Binary trees). For infinite binary trees several variants fit in our format.
We will meet the following:

e Infinite binary trees with nodes labeled by D are obtained by choosing C = {b}
with ar(d,b) = 1 and ar(s,b) = 2. In Example 4.4 the nodes are labeled by D x D,
obtained by choosing ar(d, b) = 2 instead.

e The combination of finite and infinite binary trees with nodes labeled by D is ob-
tained by choosing C = {b,nil} with ar(d,b) = 1, ar(s,b) = 2 and ar(d,nil) =
ar(s,nil) = 0. In Example 3.5 the nodes are unlabeled, obtained by choosing
ar(d,b) = 0 instead.

3. Specifications and Productivity

Now we consider specifications in order to define elements of T*(C, D). We do this for
the special case where D consists of the ground normal forms of an orthogonal terminating
TRS R, over a signature Xy. Here all symbols of X4 are considered to be of sort d* — d for
some n > 0. For defining elements of T (C, D) we introduce a set X of defined symbols of
sort s, all being of sort d* x ™ — s for some n,m € N, just like the elements of C. The
real specification is given by a set Rg of rewrite rules of sort s being of a special shape.

PROVING PRODUCTIVITY IN INFINITE DATA STRUCTURES 5

Although the goal is to define elements of T>(C, D}, most times being infinite, all terms in
the specification are finite, and rewriting here refers to finitary rewriting.

Definition 3.1. A proper specification (Xq,%s,C, Rq, Rs) consists of Xgq, %, C, Rg as de-
scribed before and a TRS R; over X UC U X consisting of rules of the shape

flur, o tun, b1, tm) — 8,

where

feXgisof typed® x s — s,
for every i = 1,...,m the term {; is either
— a variable of sort s, or
—t; =gld1,...,dg,01,...,00) for some g € C with ar(d,g) = k and ar(s, g) =,
where o1, ...,0; are variables of sort s,
t is a well-sorted term of sort s,
R¢ U Ry is orthogonal, and
every term of the shape f(ui,...,un,t1,...,tm) for f € Xg, u1,...,u, € D, and in
which every ¢; is of the shape g(u},...,u,,t},..., 1) for g € C and u},...,u), € D,

PRl o B

matches with the left hand side of a rule from Rj.

A proper specification is therefore a generalization of proper stream specifications as
given in [15, 16]. Fixing C, D, typically a proper specification will be given by Ry, Rs in
which the arities of the symbols is left implicit since they are implied by the terms occurring
in Rd, Rs.

For a term ¢t = f(---) we write root(t) = f; the symbol f is called the root of t.

A specification is called productive for a given ground term of sort s if every finite part
of the intended resulting infinite term can be computed in finitely many steps. As the
intended resulting infinite term consists of constructor symbols and data elements, and all
ground terms of sort d rewrite to data elements by assumption, this is equivalent to the
following.

Definition 3.2. A proper specification (X4, X5, C, Rgq, Rs) is productive for a ground term ¢
of sort s if for every k € N there is a reduction ¢ =5 t' for which every symbol of sort
s in t' on depth less than k is in C.

An important consequence of productivity is well-definedness: the term admits a unique
interpretation as an infinite term. Intuitively, existence follows from taking the limit of the
process of computing a constructor on every level, and reduce data terms to normal form.
Uniqueness follows form orthogonality. For an investigation of well-definedness of stream
specifications we refer to [15].

In this paper we are interested in productivity for all (finite) ground terms of sort s
rather than a single one. The following proposition states that for this case reaching a
constructor on every arbitrary depth is equivalent to reaching a constructor at the root.
As the latter characterization is simpler, this is the basis of all further observations on
productivity in this paper. In [9] and the forth-coming PhD thesis of its author productivity
is also required for infinite terms, being often a stronger restriction than ours.

Proposition 3.3. A specification (X4, Xs,C, Rg, Rs) is productive for all ground terms of
sort s if and only if every ground term t of sort s admils a reduction t —p 5 t' for which
root(t') € C.

6 HANS ZANTEMA AND MATTHIAS RAFFELSIEPER

Proof. The “only if” direction of the proposition is obvious. For the “if” direction, we prove
the following claim by induction on k.

Claim. Let k € N, and for all ground terms ¢ of sort s we have t —% '

with root(t') € C. Then t —% g, t" for a term " in which every symbol of

sort s on depth less than k is in C.
If k =1, then the claim directly holds by choosing ¢ = t'.

Otherwise, we have t =5 g, t' = f(u1,...,Un,l1,. .., tm) With root(t') = f € C, with

[of type d® x s™ — 5. Applying the induction hypothesis to t1, ...ty yields t; =% g, 7
fori=1,...,m. Now

t—=haory JUL, Ut tn) —Rog, flun, . un,)

proves the claim. [
Our first theorem gives a simple syntactic criterion for productivity.

Theorem 3.4. Let S = (X4, X5, C, Ry, Rs) be a proper specification in which for every £ — r
in Rg the term r is not a variable and root(r) € C. Then S is productive.

Proof. According to Proposition 3.3 for every ground term t of sort s we have to prove
that ¢ =% g, t’ for a term t' satisfying root(t') € C. We do this by induction on t. Let
t = fluy,...,Un,t1,...,tm) for myn > 0. If f € C we are done. So we may assume
f € X, As being ground terms of sort d, all u; rewrite to elements of D. By the induction
hypothesis, all ¢; rewrite to terms with root in C, and in which the arguments of sort d
rewrite to elements of D. Now by the last requirement of properness, the resulting term
matches with the left hand side of a rule from R,. By the assumption, by rewriting according
to this rule a term is obtained of which the root is in C. [

Example 3.5. Choose C = {b, nil} with ar(s,b) = 2 and ar(d, b) = ar(d, nil) = ar(s, nil) = 0
representing the combination of finite and infinite unlabeled binary trees. Then

¢ — b(b(nil,c),c)

is a proper specification that is productive due to Theorem 3.4; the symbol ¢ represents an
infinite tree in which the number of nodes on depth n is exactly the n-th Fibonacci number.
In the same setting
p — b(f(p),nil
) = bif(y), binil, f(x)))

f(nil)) — nil
is a proper specification that is productive due to Theorem 3.4. The symbol p represents
the infinite tree of which the initial part until depth 100 is shown in the following picture,
in which the root of the tree is shown on top left:

PROVING PRODUCTIVITY IN INFINITE DATA STRUCTURES 7

4. Proving Productivity by Context-Sensitive Termination

As intended for generating infinite terms, the TRS R U Ry will never be terminating.
However, when disallowing rewriting inside s-positions of constructor symbols, it may be
terminating. The main result of this section states that if this is the case, then the spec-
ification is productive. The variant of rewriting with the restriction that rewriting inside
certain positions of certain symbols is disallowed, is called context-sensitive rewriting 7).
In context-sensitive rewriting for every symbol f the set u(f) of positions of f is specified
inside which rewriting is allowed. More precisely, y-rewriting — g, with respect to a TRS
R is defined inductively by

e if { = rc R and pis a substitution, then £p —pg , rp;
o if i € p(f) and t; —p, t; and t; = t; for all § # i, then f(t1,...,tn) —ry
s t).

In our setting we choose p by wp(c) = {1,...,ar(d,c)} for all ¢ € C, and u(f) =
{1,...,ar(f)} for all f € 33U X, where we write ar(f) = ar(d, f) + ar(s, f) for f € X;. In
the rest of this paper the only instance of context-sensitive rewriting we consider is with
respect to this particular g, which is left implicit from now on. So in g-rewriting, rewriting
inside s-positions of constructor symbols is disallowed, and is allowed in all other positions.
A TRS is called p-terminating if y-rewriting is terminating.

Theorem 4.1. Let (X4,%,C, Rq, Rs) be a proper specification for which RsU Rg is p-
terminating for v as defined above. Then the specification is productive.

Proof. We define a ground p-normal form to be a ground term that can not be rewritten
by p-rewriting. We prove the following claim by induction on the shape of ¢:

8 HANS ZANTEMA AND MATTHIAS RAFFELSIEPER

Claim: If £ is a ground p-normal form of sort s, then the root(t) € C.

Assume root(t) € C. Then t = f(ug,...,Un,t1,...,tm) for f € Xg, uq,...,u, are of sort
d, and tq,...,t,, are of sort s. Since u(f) = {1,...,n+ m}, they are all ground p-normal
forms. So uq,...,u, € D. By the induction hypothesis all {; have their roots in C. Since {;
is a g-normal form and the positions of sort d are in p(c) for every ¢ € C, the arguments of
t; of sort d are all in D. Due to the shape of the rules now a rule is applicable on ¢ on the
root level, so satisfies the restriction of y-rewriting, contradicting the assumption that ¢ is
a p-normal form. This concludes the proof of the claim.

According to Proposition 3.3 for productivity we have to prove that every ground term ¢
of sort s rewrites to a term having its root in C. Apply p-rewriting on t as long as possible.
Due to p-termination this will end in a term on which p-rewriting is not possible, so a
ground g-normal form. Due to the claim this ground g-normal form has its root in C. =

Example 4.2. Consider the following stream specification

ones — 1 :ones f(0:0) — f(o)
f(l:0) — 1:f(0)
Productivity follows from Theorem 4.1: entering this rewrite system in the tool AProVE
[6] or u-Term [10] together with the context-sensitivity information that rewriting is disal-
lowed in the second argument of .’ fully automatically yields a proof of context-sensitive
termination. Alternatively, by entering this specification in our tool yields exactly the same
proof.

In this specification f is the stream function that removes all zeros. So productivity
depends on the fact that the stream of all zeros does not occur as the interpretation of a
subterm of any ground term in this specification. For instance, by adding the rule zeros —
0 : zeros the specification is not productive any more as f(zeros) does not rewrite to a term
having a constructor as its root.

This also shows the difference between our requirement of productivity of all finite
ground terms and the requirement in [9] of productivity of all terms, including infinite
terms. There this example is not productive on the infinite term representing the stream
of all zeros.

Example 4.3. We specify the sorted stream of Hamming numbers: all positive natural
numbers that are not divisible by other prime numbers than 2, 3 and 5. Here D = {s"*(0) |
n > 0}. For + and % we have the standard rules, we also need comparison cmp for which
cmp(n, m) yields 0 if n = m, s(0) if n > m and s(s(0)) if n < m. So Ryq consists of the rules

x+0 — = cmp(0,0) — 0
r+sly) — s@+y) cmp(s(x),0) — s(0)

xx0 — 0 cmp(0,s(x)) — s(s(0))
rrs(y) — (wxy)tu cmp(s(x),s(y)) — cmp(x,y)

For R, we need a function mul to multiply a stream element-wise by a number, a function
mer for merging two sorted streams, and an auxiliary function f. Finally we have a constant
h for the sorted stream of Hamming numbers. The rules of R, read:

mul(z,y:0) — zxy:mul(z,o0) f(0,x:0,y:7) — x:mer(o,T1)
mer(z: o,y :7) — flempl(a,y),x:0,y:7) f(s(0),0,y:7) — y:mer(o,7)
f(s(s(x)),y:0,7) — y:mer(o,T)

h — s(0) : mer(mer(mul(s2(0), h), mul(s*(0), h)), mul(s®(0), h)))

PROVING PRODUCTIVITY IN INFINITE DATA STRUCTURES 9

Now we have a proper stream specification, being the folklore functional program for gen-
erating Hamming numbers, up to notational details. Productivity is proved fully automati-
cally by our tool: p-Term [10] is called together with the context-sensitivity information that
rewriting is disallowed in the second argument of *.’, yielding a proof of context-sensitive
termination. So by Theorem 4.1 productivity can be concluded.

For completeness we mention that the tool of [4, 3] also finds a proof of productivity of
h in this example.

Example 4.4. The Calkin-Wilf tree [2] is a binary tree in which every node is labeled by a
pair of natural numbers, in such a way that for every m,n > 0 that are relatively prime the
pair (m,n) occurs exactly once as a label of a node, and no other pairs occur. So the labels
of the nodes represent positive rational numbers, and every positive rational number m/n
occurs exactly once as a pair (m,n). There is one constructor b with ar(d,b) = ar(s,b) = 2.
From Example 4.3 we take the data set D consisting of the natural numbers, and also the
symbol + and its two rules. Now the Calkin-Wilf tree ¢ is defined by

¢ — f(s(0),s(0)), fl@,y) — bla,y,fla,x+y)fa+yy)
Our tool proves productivity of this specification by calling g-Term [10] that proves context-
sensitive termination, hence proving productivity by Theorem 4.1.

Theorem 4.1 can be seen as a strengthening of Theorem 3.4: if all roots of right hand
sides of rules from Rg are in C then R; U Ry is p-terminating, as is shown in the following
proposition.

Proposition 4.5. Let S = (X4,%5,C, Rq, Rs) be a proper specification in which for every
L — rin Rg the term r is not a variable and root(r) € C. Then Rs U Ry is p-terminating.

Proof. Assume there exists an infinite p-reduction. For every term in this reduction count
the number of symbols from 2 that are on allowed positions. Due to the assumptions by
every Rg-step this number remains the same, while by every Rgs-step this number decreases
by one. So this reduction contains only finitely many Rs-steps. After these finitely many Rs-
steps an infinite Rg-reduction remains, contradicting the assumption that Rg is terminating.

[

The reverse direction of Theorem 4.1 does not hold, as is illustrated in the next example.

Example 4.6. Consider the proper (stream) specification (X4, Xs,C, Ry, Rs), where X; =
{0,1}, Ry =0, C = {:} with ar(d,:) = ar(s,:) = 1, and R, being the below TRS:

p — zip(alt,p)
alt — 0:1:alt

zip(x 1 0,7) — 2 :zip(T,0)

This specification is productive, as we will see later in Example 5.2. However, it admits
an infinite context-sensitive reduction p — zip(alt,p) which is continued by repeatedly
reducing the redex p.

The stream p describes the sequence of right and left turns in the dragon curve, obtained
by paper folding.

10 HANS ZANTEMA AND MATTHIAS RAFFELSIEPER

5. Productivity Preserving Transformations

To be able to handle examples like the above, we introduce productivity preserving
transformations of such specifications. Whenever productivity of a specification cannot be
determined, we apply one of the transformations and try to prove productivity of the trans-
formed specification, instead. In case we can prove the transformed specification productive,
then because of productivity preservation also the original specification is productive.

One such transformation is the reduction of right hand sides, that is, a rule £ — r of
Rs is replaced by £ — ¢’ for a term 7' satisfying r —% g, 7. Write R = Rs U Rq, and
write R’ for the result of this replacement. Then by construction we have —g C —>§/, and
—gr € —pg - g, that is, every —g-step can be followed by zero or more — g-steps to
obtain a —p-step. We present our theorems in this more general setting such that they
are applicable more general than only for reduction of right hand sides.

Theorem 5.1. Let S = (X4, %4,C, Ry, Rs) and 8’ = (X4, 35,C, Ry, R} be proper specifica-
tions satisfying —p C —§ for R= RsU Ry and R’ = R, U Ry. If 8" is productive, then
S is productive, too.

Proof. Let 8’ be productive, i.e., every ground term ¢ of sort s admits a reduction ¢ —%, ¢/
for which root(t') € C. Then by —r € —, we conclude ¢ —% ', proving productivity of
S. [

Example 5.2. We apply this theorem to Example 4.6. Observe that we can rewrite the
right hand side of the rule p — zip(alt, p) as follows:

p — zip(alt,p — zip(0: 1 : alt,p) — 0 : zip(p, 1 : alt)

So we may transform our specification by replacing Rs by the TRS R, consisting of the
following rules:
p — 0:zip(p,1:alt)
alt — 0:1:alt
zip(x 1 0,7) — 2 :zip(T,0)

Clearly, this is a proper specification that is productive due to Theorem 3.4. Now produc-
tivity of the original specification follows from Theorem 5.1 and —g C —>§s. Our tool
finds exactly this proof.

Concluding productivity of the original system from productivity of the transformed
system is called soundness, the converse is called completeness. The following example
shows the incompleteness of Theorem 5.1.

Example 5.3. Consider the two proper (stream) specifications $ and &’ defined by

Ry: c — f(o) R: c — f(o)
flo) — 0:0 flx:o) — 0:2:0
Here C = {:}, Rg = 0, ¥4 = {0}. Sincec —p f(c) g O0:cand f(---) - 0: -+ we

conclude productivity of S, as ¢ and f are the only symbols in X;.

For the TRS R, we have that —p C —>Es, since any step with the rule
flx : 0) = 0: 2 : 0 of R, can also be done with the rule f(o) — 0 : ¢ of Rs. How-
ever, 8’ is not productive, as the only reduction starting in c¢ is

¢ —flc) = f(f(c)) — -

in which the root is never in C.

PROVING PRODUCTIVITY IN INFINITE DATA STRUCTURES 11

Next we prove that with the extra requirement —r € — g/ - <75, as holds for reduction
of right hand sides, we have both soundness and completeness.

Theorem 5.4. Let S = (X4, %5,C, Ry, Rs) and 8’ = (X4, %5,C, Ry, R} be proper specifica-
tions satisfying —r C —} and —r C —g - <% for R= RsU Ry and R' = R, U Ry.
Then S is productive if and only if S’ is productive.

Proof. The “if” direction follows from Theorem 5.1.
For the “only-if” direction first we prove the following claim:
Claim: If t —p t' and ¢t —7 t”, then there exists a term v satisfying t' —% v
and t" =75 v.
Let t —p t' be an application of the rule £ — r in R, so t = C[fp] and ' = CJrp| for
some C, p. According to the Parallel Moves Lemma ([14], Lemma 4.3.3, page 101), we can

write 7 = C"[lp1,...,Lpy], and ¢, 1" have a common R-reduct C"[rpy,...,rpy]. Due to
Lp; =r rp; and —g € —pg - <7 there exist ¢; satisfying £p; — g t; and rp; —7% s, for all
i=1,...,n. Now choosing v = C"[t1, ..., 1, proves the claim.

Using this claim, by induction on the number of — g-steps from ¢ to ¢’ one proves the
generalized claim: If t —% ¢ and ¢ —% ¢, then there exists a term v satisfying ¢ —% v and
1" =5 .

Let ¢t be an arbitrary ground term of sort s. Due to productivity of S there exists ¢/
satisfying ¢ —7% ¢’ and root(t’) € C. Applying the generalized claim for ¢ = ¢ yields a term
v satisfying ¢ —% v and ¢ —%, v. Since root(t') € C and t' —7 v we obtain root(v) € C.
Now t —%, v implies productivity of S'. n

Example 5.3 generalizes to a general application of Theorem 5.1 other than rewriting
right hand sides as follows. Assume a rule from R, in a proper transformation contains an s-
variable ¢ in the left hand side being an argument of the root. Then this rule may be replaced
by the #C instances of the same rule, in which ¢ is replaced by ¢(x1, ..., 2n, 01,...,0m), for
all ¢ € C, where ar(d,c) = n,ar(s,c) = m. Then the result is again a proper specification,
and also the requirements of Theorem 5.1 hold, even —p C —p/.

Example 5.5. We want to analyze productivity of the following variant of Example 4.6,
in which p has been replaced by a stream function, and Ry is the below TRS:
plo) — zip(o,plo))
alt — 0:1:alt
zip(x 1 0,7) — 2 :zip(T,0)
Proving productivity by Theorem 3.4 fails. Also proving productivity with the tech-
nigue of Theorem 4.1 fails, since there exists the infinite context-sensitive reduction

p(alt) — zip(alt, p(alt)) —
——

Furthermore, reducing the right hand side of p(o) — zip(o, p(c)) can only be done by
applying the first rule, not creating a constructor as the root of the right hand side. What
blocks rewriting using the zip rule is the variable ¢ in the first argument of zip. Therefore,
we apply Theorem 5.1 as sketched above and replace the rule p(o) — zip(o, p(o)) by the rule
p(x : o) — zip(x : o,p(x : o)) to obtain the TRS R.. This now allows us to rewrite the new
right hand side by the zip rule, replacing the previous rule by p(x : o) — x : zip(p(x : 0}, 0),

12 HANS ZANTEMA AND MATTHIAS RAFFELSIEPER

i.e., we obtain the TRS R consisting of the following rules:

px:o) — x:zip(plx:0o),0)
at — 0:1:alt
zip(x 1 0,7) — 2 :zip(T,0)

Productivity of R follows Theorem 3.4. This implies productivity of R, due to The-
orem 5.1 which in turn implies productivity of our initial specification S, again due to
Theorem 5.1. Our tool finds exactly the proof as given here.

Example 5.6. For stream computations it is often natural also to use finite lists. The
data structure combining streams and finite lists is obtained by choosing C = {:, nil}, with
ar(d,:) = ar(s,:) = 1 and ar(d,nil) = ar(s,nil) = 0, as mentioned in Example 2.3. An
example using this is defining the stream p =1 :2 :2 :3 :3:3:4: ... of natural
numbers, which is sorted, and in which n occurs exactly n times for every n € N2 As
auxiliary functions we use conc for concatenation, copy for which copy(k,n) is the finite list
of k copies of n, for k,n € N, and a function f for generating p = f(0). Taking D to be the
set of ground terms over {0,s} and Ry =), we choose Rs to consist of the following rules:

p — f(0) f(x) — conc(copy(,x), f(s(x)))
copy(s(x),y) — y:copy(,y) conc(nil,o) — o
copy(0,2) — nil conc(z :o,7) — x:conc(o,T)

Note that productivity of this system is not trivial: if the rule for f is replaced by f(x) —
conc(copy(x, z),f(x)), then the system is not productive.

Productivity cannot be proved directly by Theorem 3.4 or Theorem 4.1; context-
sengitive termination does not even hold for the single f rule. However by replacing the
f rule by the two instances

f(0) — conc(copy(0,0),f(s(0))) and f(s(x)) — conc(copy(s(x),s(x)),f(s(s(x)))),
and then apply rewriting right hand sides by which these two rules are replaced by

f(0) — f(s(0)) and f(s(x)) — s(a) : conc(copy(x,s(x)), f(s(s(x))))
yields a proper specification for which context-gsensitive termination is proved by AProVE
[6] or u-Term [10], proving productivity of the original example by Theorem 5.1 and The-
orem 4.1. Our tool finds a similar proof as given here: right hand sides were slightly more
rewritten.

Example 5.7. We conclude this section by an example in binary trees, in which the nodes
are labeled by natural numbers, so there is one constructor b : d x 2 — s and D consists
of ground terms over {0,s}. The rules are

c — b(0,f(g(0),left(c)),g(0)) left(b(x, xs,ys)) — as
glw) — blz,gls(x)),gls(x))) f(b(x, s,ys),25) — bla,ys,f(zs,25))
To get an impression of the hardness of this example, observe that f and left are similar to
zip and tail for streams, respectively, and the recursion in the rule for ¢ has the flavor of

¢ — 0:zip(---,tail(c)). Our tool proves productivity by Theorem 5.1 and Theorem 4.1, by
first rewriting right hand sides and then prove context-sensitive termination.

2The same stream is easily defined by a specification not involving finite lists, but here we want to
illustrate this extended data structure, and the use of standard operations like conc.

PROVING PRODUCTIVITY IN INFINITE DATA STRUCTURES 13

6. Implementation

We have implemented a tool to check productivity of proper specifications using the
techniques presented in this paper. It is accessible via the web-interface

http://pclinil50.win.tue.nl:8080/productivity.
The input format requires the following ingredients:

e the variables,
e the operation symbols with their types,
e the rewrite rules.

Details of the format can be seen from the examples that are available. All other informa-
tion, like which symbols are in C is extracted by the tool from these ingredients.

As a first step, the tool checks that the input is indeed a proper specification. Checking
syntactic requirements like no function symbol returning sort d has an argument of sort s,
the TRS is 2-sorted and orthogonal, and the left hand sides have the required shape, are all
straightforward. However, to verify the last requirement of a proper specification, namely
that the TRS is exhaustive, is a hard job if we allow D to be the set of ground normal forms
of any terminating orthogonal R4. Instead we restrict to the class of proper specifications
in which D consists of the constructor ground terms of sort d, i.e., the terms in D do not
contain symbols occurring as root symbol in a left hand side of a rule in RBq. To check
whether this is the case, we use anti-matching as described in [11]. It can easily be shown
that the normal forms of ground terms w.r.t. Rg are only constructor terms if and only if
there is no anti-matching term that has a defined symbol as root and only terms built from
constructors and variables as arguments. The idea of the proof is that such a term could be
instantiated to a ground term, which is a normal form due to the anti-matching property.
Then, checking exhaustiveness of Rg has to only consider constructor terms for both data
and structure arguments.

To analyze productivity of a given proper specification, the tool first investigates whether
Theorem 3.4 can be applied directly: it checks whether the roots of all right hand sides are
constructors. If this simple criterion does not hold, then it tries to show context-sensitive
termination using the existing termination prover y-Term, by which productivity will follow
by Theorem 4.1.

If both of these first attempts fail then the tool tries to transform the given specifi-
cation. Since rewriting of right hand sides is both sound and complete, as was shown in
Section b, a productive specification can never be transformed into an unproductive one
by this technique. Therefore, this is the first transformation to try. However, large right
hand sides often make it harder for termination tools to prove context-sensitive termina-
tion. Therefore, the tool tries to only rewrite positions on right hand sides that appear to
be needed to obtain a constructor prefix tree of a certain, adjustable depth. This is done
by traversing the term in an outermost fashion and only trying to rewrite arguments if the
possibly matching rules require a constructor for that particular argument. If at least one
right hand side could be rewritten, a new specification with the rewritten right hand sides
is created. Since rewriting of right hand sides is not guaranteed to terminate, we limit the
maximal number of rewriting steps. After rewriting the right hand sides in this way, the
tool again tries to prove productivity of the transformed TRS using our basic techniques.

As shown in Examples 5.5 and 5.6, it can be helpful to replace a variable by all con-
structors of its sort applied to variables. Therefore, in case productivity could not be shown
so far, it is tried to instantiate a variable on a position of a right hand side that is required

http://pclin150.win.tue.nl:8080/productivity

14 HANS ZANTEMA AND MATTHIAS RAFFELSIEPER

by the rules for the defined symbol directly above it. Then the instantiated right hand sides
are rewritten again to obtain new specifications for which productivity is analyzed further.

The described transformations are applied in the order of their presentation a number
of times. If a set limit of applications of transformations is reached, the tool finally tries to
rewrite to deeper context-prefixes on right hand sides and does a final check for productivity,
using a larger timeout value.

Using these heuristics the tool is able to automatically prove productivity of all pro-
ductive examples presented in this paper. This especially includes the example of a stream
specification given in the following section, which could not be proved to be productive by
any other automated technique we are aware of.

7. Conclusions and Related Work

In this paper we presented new techniques to prove productivity of specifications of
infinite objects like streams. Until now several techniques were developed for proving pro-
ductivity of stream specifications, but not for other data infinite data structures like infinite
trees and combination of streams and finite lists. In this paper we gave several examples
of applying our techniques to these infinite data structures. We implemented a tool by
which productivity of all of these examples could be proved fully automatically. For the
non-stream examples there are hardly other techniques to compare. For streams there are
examples where our technique outperforms all earlier techniques. For instance, the tech-
niques from [4, 3| fail to prove productivity of Example 4.2. For this example the technique
from [16] succeeds, but this technique fails as soon binary stream operations come in like
zip. To our knowledge our technique is the first that can deal with productivity of the spec-
ification consisting of the combination of Example 4.6 (describing the paper folding stream)
and the two rules f(0: o) — f(o), f(1:0) — 1:f(c). Our tool first performs rewriting of
the right hand side of the p-rule and then proves context-sensitive termination by u-Term.
Note the subtlety in this example: as soon as a ground term ¢ can be composed of which
the interpretation as a stream contains only finitely many ones, then the system will not be
productive for f(£). So as a consequence we conclude that the stream represented by any
ground term of sort s in this specification, including the paper folding stream p, contains
infinitely many ones.

Some ideas in this paper are related to earlier observations. In [8] the observation was
made that if right hand sides of stream definitions have ‘" as its root, then well-definedness
can be concluded, comparable to what we did by Theorem 3.4. A similar observation can be
made about process algebra, where a recursive specification is called guarded if right hand
sides can be rewritten to a choice among terms all having a constructor on top, see e.g. [1],
Section 5.5. In that setting every specification has at least one solution, while guardedness
also implies there is at most one solution ([1], Theorem 5.5.11). So guardedness implies
well-definedness, being of the flavor of combining Theorem 3.4 with rewriting right hand
sides. Both these observations conclude well-definedness, which is a slightly weaker notion
than productivity. An investigation of well-definedness for stream specifications based on
termination was made in [15]. We want to stress that productivity is strictly stronger than
well-definedness, which is shown by the stream specification ¢ — f(c), f(x :0) — 0 : ¢,
being well-defined but not productive.

As far as we know the relationship of productivity with context-sensitive termination
as expressed in Theorem 4.1 is new. Some germs of this relationship were given before in

PROVING PRODUCTIVITY IN INFINITE DATA STRUCTURES 15

[16] where productivity was related to outermost termination and in [5] where outermost
termination was related to context-sensitive termination.

References

1]

2]

[12]

[13]

[14]

[15]

16]

J. C. M. Baeten, T. Basten, and M. A. Reniers. Process Algebra: Equational Theories of Communicating
Processes, volume 50 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
Cambridge, UK, 2009.

N. Calkin and H. Wilf. Recounting the rationals. American Mathematical Monthly, 107(4):360-363,
2000.

J. Endrullis, C. Grabmayer, and D. Hendriks. Data-oblivious stream productivity. In Proceedings of
the 11th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR’08), volume 5330 of Lecture Notes in Computer Science, pages 79-96. Springer-Verlag, 2008.
Web interface tool: http://infinity.few.vu.nl/productivity/.

J. Endrullis, C. Grabmayer, D. Hendriks, A. Isihara, and J.W. Klop. Productivity of stream definitions.
In Proceedings of the Conference on Fundamentals of Computation Theory (FCT '07), volume 4639 of
Lecture Notes in Computer Science, pages 274—287. Springer-Verlag, 2007.

J. Endrullis and D. Hendriks. From Outermost to Context-Sensitive Rewriting. In Proceedings of the
20th International Conference on Rewriting Techniques and Applications (RTA’09), volume 5595 of
Lecture Notes in Computer Science, pages 305-319. Springer-Verlag, 2009.

J. Giesl et al. AProVE. Web interface and download: http://aprove.informatik.rwth-aachen.de.
J. Giesl and A. Middeldorp. Transformation techniques for context-sensitive rewrite systems. Journal
of Functional Programming, 14:329-427, 2004.

R. Hinze. Functional pearl: streams and unique fixed points. In ICFP ’08: Proceeding of the 13th ACM
SIGPLAN international conference on Functional programming, pages 189-200. ACM, 2008.

A. Isihara. Productivity of algorithmic systems. In SCSS 2008, volume 08-08 of RISC-Linz Report,
pages 81-95, 2008.

S. Lucas et al. p-Term. Web interface and download: http://zenon.dsic.upv.es/mutern/.

M. Raffelsieper and H. Zantema. A transformational approach to prove outermost termination auto-
matically. In Proceedings of the Sth International Workshop in Reduction Strategies in Rewriting and
Programming (WRS’08), volume 237 of Electronic Notes in Theoretical Computer Science, pages 3-21.
Elsevier Science Publishers B. V. (North-Holland), 2009.

B. A. Sijtsma. On the Productivity of Recursive List Definitions. ACM Transactions on Programming
Languages and Systems, 11(4):633-649, 1989.

J. @&. Simonsen. The IT9-completeness of most of the properties of rewriting systems you care about
(and productivity). In R. Treinen, editor, Proceedings of the 20th Conference on Rewriting Techniques
and Applications (RTA), Lecture Notes in Computer Science. Springer, 2009.

Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, Cambridge, UK, 2003.

H. Zantema. Well-definedness of Streams by Termination. In Proceedings of the 20th International Con-
ference on Rewriting Techniques and Applications (RTA’09), volume 5595 of Lecture Notes in Computer
Science, pages 164—178. Springer-Verlag, 2009.

H. Zantema and M. Raffelsieper. Stream productivity by outermost termination. In Proceedings of the
9th International Workshop in Reduction Strategies in Rewriting and Programming (WRS’09), Elec-
tronic Proceedings in Theoretical Computer Science, 2009. To appear, a preprint version is available at
http://www.win.tue.nl/~mraffels/.

If accepted for publication by RTA, this work will be licensed under the Creative Commons Attribution-NoDerivs
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

http://infinity.few.vu.nl/productivity/
http://aprove.informatik.rwth-aachen.de
http://zenon.dsic.upv.es/muterm/
http://www.win.tue.nl/~mraffels/
http://creativecommons.org/licenses/by-nd/3-0/

