
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/84162

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16168625?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/84162

S ubm itted to th e In te rna tiona l Conference on R ew riting Techniques and A pp lica tions
h t tp : / / re w r it in g . lo r ia . f r / r ta /

P R O V I N G P R O D U C T I V I T Y IN I N F I N I T E D A T A S T R U C T U R E S

HANS ZANTEMA 1’2 AND MATTHIAS RAFFELSIEPER1

1 Department of Computer Science, TU Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Nether­
lands
E-mail address: H.Zantema@tue.nl
E-mail address: M.Raffelsieper@tue.nl

2 Institute for Computing and Information Sciences, Radboud University Nijmegen, P.O. Box 9010,
6500 GL Nijmegen, The Netherlands

A b s t r a c t . For a general class of infinite data structures including streams, binary trees,
and the combination of finite and infinite lists, we investigate a notion of productivity.
This generalizes stream productivity. We develop a general technique to prove productiv­
ity based on proving context-sensitive termination, by which the power of present termi­
nation tools can be exploited. For cases where the approach does not apply directly, we
develop transformations extending the power of the basic approach. We present a tool
combining all these ingredients that can prove productivity of a wide range of examples
fully automatically.

1. I n t r o d u c t i o n

Some co m puta tions go on forever potentially . A s tan d a rd exam ple is th e sieve of E r­
a tosthenes producing th e infinitely m any prim e num bers. T he result of such a co m p u ta tio n
th en is an infinite s tream of elem ents. A lthough th e co m p u ta tio n itself goes on forever,
th e re is a kind of te rm in a tio n involved th a t is called productivity: for every elem ent p ro ­
duced, th e nex t elem ent will be produced a fte r a finite num ber of steps. W e will consider
co m pu ta tions specified by a num ber of rew rite rules th a t are in te rp re ted as a lazy functional
p rogram . T hen p ro d u c tiv ity can be charac terized and investigated as a p ro p e rty of te rm
rew riting , as was investigated before in [4, 9, 3, 16].

S tream s can be seen as infinite term s. I t is n a tu ra l no t to re s tric t to stream s: in case th e
co m p u ta tio n possibly ends, th en th e resu lt is no t a s tream b u t a finite list. A nd w hen p ara l­
lelism is considered, n a tu ra lly infinite trees come in. In th is p ap er we develop techniques for
au to m atica lly proving p ro d u c tiv ity of specifications in all of these infinite d a ta s tructu res,
including stream specifications. E arlie r techniques only for s tream specifications were given
in [4, 3, 16]. A key idea of our approach is to prove p ro d u c tiv ity by proving te rm in a tio n
of context-sensitive rew riting [7], th a t is, rew riting in w hich rew riting is disallowed inside
p a rticu la r argum ents of p a rticu la r sym bols. As strong tools like A P roV E [6] and ^-T erm
[10] have been developed to prove te rm in a tio n of contex t-sensitive rew riting au tom atically ,
now th e power of these tools can be exploited to prove p ro d u c tiv ity au tom atically .

T hro u g h th is p ap e r we consider tw o kinds of term s: finite te rm s and infinite term s. As
th e elem ents of th e infinite d a ta s tru c tu re s we in tend to define are infinite term s, infinite

© H ans Z a n te m a an d M a tth ia s R affelsieper
C onfiden tial — s u b m itte d to RTA

http://rewriting.loria.fr/rta/
mailto:H.Zantema@tue.nl
mailto:M.Raffelsieper@tue.nl

2 HANS ZANTEMA AND MATTHIAS RAFFELSIEPER

te rm s are unavoidable here. O n th e o th er hand , te rm s occurring in our specifications are
finite. R ew riting has been investigated b o th for finite and infinite term s. B u t rew riting
finite te rm s is m uch easier and b e tte r u nderstood th a n in fin itary rew riting , and for m any
p roperties, like several varian ts of te rm in a tio n , th e re is strong too l su p p o rt to investigate
these properties. W e follow th e policy to use infinite term s only w here necessary, and exploit
und erstan d in g and too l su p p o rt for rew riting finite te rm s as m uch as possible. In th is way
we need th e concept of infinite term s, b u t no t of in fin itary rew riting . Following th is policy,
elem ents of infinite d a ta s tru c tu res over a d a ta set D are considered as infinite term s in
which elem ents of D ac t as constan ts , and for th e rest th e infinite te rm s are com posed from
a set C of co n stru c to r sym bols. In th is world of infinite term s we w ant to avoid th a t d a ta
elem ents are infinite te rm s them selves. For instance, in considering stream s over n a tu ra l
num bers as infinite term s, we w ant to be able to consider a s tream 0 : 1 : 2 : 3 : 4 : ••• ,
b u t we do no t w ant th e d a ta elem ents in such a s tream to be infinite te rm s like sTO(0).
W hen specifying elem ents of infinite d a ta s tru c tu re s over a d a ta set D , th e set D m ay be
described as th e set of (finite) g round norm al form s of som e rew riting system R d over d a ta
signatu re £ d. As an exam ple, for n a tu ra l num bers w ith + we can choose = {0, s, + } ,
and R d consists of th e rules 0 + x ^ x and s(x) + y ^ s(x + y). A p a rt from and R d th e
specification th en is given by a set R s of rew rite rules over C U U £ s , w here £ s consists
of co n stan ts and auxiliary operations to be defined. For instance, for defining th e above
m entioned stream nat = 0 : 1 : 2 : 3 : 4 : ••• we in troduce an aux iliary function f on stream s
th a t replaces each elem ent by its successor, and specify nat by choosing R s to consist of th e
tw o rules

nat ^ 0 : f(n a t), f(x : a) ^ s(x) : f (a) .
Here we have C = {:}, = {0, s}, R d = 0, Xs = {nat, f }, and x , a are variable sym bols of
ty p e d a ta and stream , respectively. In th is se tting p ro d u c tiv ity m eans th a t for every n th e
in itia l te rm can be rew ritten to a (finite) te rm in which all sym bols on d ep th less th a n n
are co n stru c to r sym bols. T his no tion of p ro d u c tiv ity is consisten t w ith s tream p ro d u c tiv ity
as in [4, 3, 16], form alizing th e sp irit of s tream p ro d u c tiv ity as in troduced in [12]. It is also
consisten t w ith p ro d u c tiv ity as defined in [9] for a se tting even m ore general th a n ours.

P roving p ro d u c tiv ity m ay be hard . For th e sieve of E ra to sth en es proving p ro d u c tiv ity
is beyond th e scope of fully au to m atic techniques as it depends on th e fact th a t th e re are
infinitely m any prim e num bers. M oreover, we can specify an e x tra stream by filtering ou t
every elem ent in th is s tream of prim e num bers th a t is d is tin c t from its predecessor plus 2.
T his yields a s tream specification, easily expressed in th e fo rm at of th is paper, of which
p ro d u c tiv ity is equivalent to th e existence of infinitely m any prim e tw ins: a well-known
open problem in num ber theory. As expected for such a fo rm at su itab le for expressing a
well-known open problem , p ro d u c tiv ity is an undecidable property . This has been proved
independen tly by several people; one p roof was given in [13].

In co n tra st to [4, 3], we focus on requiring p ro d u c tiv ity no t only for a single in itia l term ,
like nat in th e above exam ple, b u t for all g round term s. A n easy induction argum ent shows
th a t p ro d u c tiv ity holds for all g round te rm s if and only if every ground te rm rew rites to a
te rm of w hich th e roo t is a co n stru c to r sym bol. As in [16] th is ch arac te riza tio n is th e basis
of our p ro d u c tiv ity investigations, b u t now for m ore general infinite d a ta s tru c tu re s th a n
only stream s.

T he p ap er is organized as follows. In Section 2 we in troduce infinite te rm s and give
exam ples of several infinite d a ta s tru c tu re s consisting of infinite term s. In Section 3 we

PROVING PRODUCTIVITY IN INFINITE DATA STRUCTURES 3

in troduce our notions of p roper specifications and productiv ity . B eing in terested in de­
term in istic com putations, in p roper specifications we require th e rew rite system s to be
orthogonal. A first basic resu lt (T heorem 3.4) s ta tes th a t a specification is p roductive if
for all rules th e roo t of th e righ t hand side is a co n stru c to r sym bol. In Section 4 we re la te
p ro d u c tiv ity to contex t-sensitive rew riting . T he m ain resu lt (T heorem 4.1) s ta tes th a t a
specification is p roductive if contex t-sensitive te rm in a tio n holds for th e rules of th e specifi­
cation , w here rew riting is only allowed in th e d a ta argum ents of th e co n stru c to r sym bols,
and in all argum ents of th e o th e r sym bols. For cases w here these approaches fail, in Section
5 we investigate tran sfo rm atio n s th a t preserve productiv ity , m ore precisely, transfo rm ations
th a t tran sfo rm a p roper specification in to an o th er one such th a t p ro d u c tiv ity of th e original
specification can be concluded from p ro d u c tiv ity of th e transfo rm ed specification, th e la tte r
typ ically proved by th e basic techniques from th e earlier sections. T hro u g h these sections
we give several exam ples of specifications of s tream s and b in ary trees for w hich p ro d u c tiv ity
is proved, for m any of w hich th is could no t be proved by earlier techniques. In Section 6
we describe an im p lem entation of our techniques, by which p ro d u c tiv ity of all p roductive
exam ples presented in th is p ap e r can be proved fully au tom atically . W e conclude in Section
7.

2 . I n f i n i t e T e r m s

Intuitively , a te rm (b o th finite and infinite) is defined by saying w hich sym bol is on
which position . H ere a position p € N* is a sequence of n a tu ra l num bers. In order to be a
p ro p er term , som e requirem ents have to be satisfied as ind icated in th e following definition.
As we will consider infinite te rm s over a set C of construc to rs and a set D of d a ta (disjoint
from C), our te rm s will be tw o-sorted1: a so rt s for th e (infinite) te rm s to be defined, and a
sort d for th e d a ta . E very f € C is assum ed to be of ty p e dn x sm ^ s for som e n ,m € N .
We w rite ar(d, f) = n and ar(s, f) = m . We w rite L for undefined.

D e f in i t io n 2 .1 . A (possibly infinite) term over C, D is defined to be a m ap t : N* ^
C U D U {L} such th a t

• th e root t(e) of th e te rm t is a co n stru c to r sym bol, so t(e) € C , and
• for all p € N* and all i € N we have

t(p i) € D t(p) € C A 1 < i < ar(d ,t(p)), and

t(p i) € C t(p) € C A ar(d, t(p)) < i < ar(d, t(p)) + ar(s, t(p)).
So t(p i) = L for all p, i no t covered by th e above tw o cases.

We w rite T TO(C, D) for th e set of all te rm s over C, D.

A n a lte rn a tiv e equivalent definition of T TO(C, D) can be given based on co-algebra, b u t
for th e resu lts in th is p ap e r we do no t need th is co-algebraic view. A n o th er a lte rn a tiv e is
to see infinite te rm s as lim its of finite term s.

A position p € N* satisfying t(p) € C is called a position o f t of so rt s. A position
p € N* satisfying t(p) € D is called a position o f t of so rt d.

T he usual no tion of finite te rm coincides w ith a te rm in th is se tting having finitely
m any positions. In case ar(s, f) > 0 for all f € C th en no finite te rm s exist. T his holds for

1In [9], and in the forth-coming PhD thesis of its author, an arbitrary many-sorted setting is proposed.
Our approach easily generalizes to a more general many-sorted setting, but for notational convenience we
restrict to the two-sorted setting.

4 HANS ZANTEMA AND MATTHIAS RAFFELSIEPER

stream s. In case ar(d, f) = 0 for all f € C th en no position of so rt D exist, and term s do
not depend on D .

For f € C w ith ar(d, f) = n , ar(s, f) = m , n elem ents u i , . . . , u n € D and m term s
t i , . . . , t m we w rite f (u i , . . . , u n , t i , . . . , t m) for th e te rm t defined by t(e) = f , t(ip) = u for
every p € N* and i = 1 , . . . ,n , t(ip) = t i - n (p) for every p € N* and i = n + 1 , . . . , n + m ,
and t(ip) = L if i € { 1 , . . . , n + m }.

E x a m p le 2 .2 (S tream s). L et D be an a rb itra ry given non-em pty d a ta set, and let C = {:},
w ith a r (d ,:) = a r (s , :) = 1. T h en T TO(C, D) coincides w ith th e usual no tion of streams over
D, being functions from N to D . M ore precisely, a function f : N D gives rise to an
infinite te rm t defined by t(2 n) = : and t(2 n 1) = f (n) for every n € N , and t(w) = L for
all o th er strings w € N*. Conversely, every t : N* C U D satisfying th e requirem ents of
th e defin ition of a te rm is of th is shape. N ote th a t if # D = 1, th en th e re exists only one
such term .

In case D is finite, an a lte rn a tiv e approach is no t to consider th e b in ary co n stru c to r ‘:’,
b u t u n ary construc to rs for every elem ent of D . In th is approach D does no t p lay a role and
is irrelevant.

E x a m p le 2 .3 (F in ite and infinite lists). Let D be an a rb itra ry given non-em pty d a ta
set, and let C = {:, nil}, w ith a r (d ,:) = a r (s , :) = 1 and ar(d, nil) = ar(s, nil) = 0. T hen
T ro(C, D) covers b o th th e stream s over D as in E xam ple 2.2 and th e usual (finite) lists. As
in E xam ple 2.2, a function f : N D gives rise to an infinite te rm t defined by t(2 n) = :
and t(2 n 1) = f (n) for every n € N , and t(w) = L for all o th er strings w € N * . T he only
way nil can occur is w here t(2 n) = nil for some n > 0, t(2 l) = : and t(2*1) € D for every
i < n , and t(w) = L for all o th e r strings w € N *, in th is way represen ting a finite list of
length n . Conversely, every t : N* C U D satisfying th e requirem ents of th e defin ition of
a te rm is of one of these tw o shapes. In th e lite ra tu re th is com bination of finite and infinite
lists is som etim es called lazy lis ts .

E x a m p le 2 .4 (B inary trees). For infinite b in ary trees several varian ts fit in our form at.
We will m eet th e following:

• In fin ite b in ary trees w ith nodes labeled by D are ob ta ined by choosing C = {b}
w ith ar(d, b) = 1 and ar(s, b) = 2. In E xam ple 4.4 th e nodes are labeled by D x D,
ob ta in ed by choosing ar(d, b) = 2 instead .

• T he com bination of finite and infinite b in ary trees w ith nodes labeled by D is ob­
ta in ed by choosing C = { b , nil} w ith ar(d, b) = 1, ar(s, b) = 2 and ar(d, nil) =
ar(s, nil) = 0. In E xam ple 3.5 th e nodes are un labeled, ob ta in ed by choosing
ar(d, b) = 0 instead.

3 . S p e c i f i c a t i o n s a n d P r o d u c t i v i t y

Now we consider specifications in order to define elem ents of T TO(C, D). We do th is for
th e special case w here D consists of th e ground norm al form s of an o rthogonal te rm in atin g
T R S R d over a s ignatu re Xd. H ere all sym bols of are considered to be of sort dn ^ d for
som e n > 0. For defining elem ents of T TO(C, D) we in troduce a set Xs of defined sym bols of
sort s, all being of sort dn x s m s for some n ,m € N , ju s t like th e elem ents of C . T he
real specification is given by a set R s of rew rite rules of so rt s being of a special shape.

PROVING PRODUCTIVITY IN INFINITE DATA STRUCTURES 5

A lthough th e goal is to define elem ents of T TO(C, D), m ost tim es being infinite, all te rm s in
th e specification are finite, and rew riting here refers to fin ita ry rew riting.

D e f in i t io n 3 .1 . A proper specification (£ d, £ s , C ,R d, R s) consists of £ d, £ s , C ,R d as de­
scribed before and a T R S R s over £ U C U £ s consisting of rules of th e shape

f (u i , . . . , u n , ^ , . . . , tm) - t,

where
• f € £ s is of ty p e dn x sm — s,
• for every i = 1 , . . . ,m th e te rm ti is e ither

- a variable of sort s, or
- t i = g (d i , . . . ,d k , a i , . . . ,a i) for som e g € C w ith ar(d ,g) = k and a r(s ,g) = l,

w here a i , . . . ,a i are variables of sort s,
• t is a w ell-sorted te rm of sort s ,
• R s U R d is o rthogonal, and
• every te rm of th e shape f (u i , . . . , u n , t i , . . . , t m) for f € £ s , u i , . . . ,u n € D , and in

w hich every t i is of th e shape g (u [, . . . , u'n , t i , . . . , t'm) for g € C and u'i , . . . , u ' n € D,
m atches w ith th e left hand side of a rule from R s .

A pro p er specification is therefore a generalization of p ro p er s tream specifications as
given in [15, 16]. F ix ing C, D , typ ically a p roper specification will be given by R d, R s in
which th e arities of th e sym bols is left im plicit since th ey are im plied by th e term s occurring
in R d ,R s .

For a te rm t = f (•• •) we w rite roo t(t) = f ; th e sym bol f is called th e root of t.
A specification is called productive for a given ground te rm of sort s if every finite p a rt

of th e in tended resu lting infinite te rm can be com puted in finitely m any steps. As th e
in tended resu lting infinite te rm consists of co n stru c to r sym bols and d a ta elem ents, and all
g round term s of sort d rew rite to d a ta elem ents by assum ption , th is is equivalent to th e
following.

D e f in i t io n 3 .2 . A p roper specification (£ d, £ s , C , R d, R s) is productive for a g round te rm t
of sort s if for every k € N th ere is a reduction t —RsURd t for which every sym bol of sort
s in t ' on d ep th less th a n k is in C .

A n im p o rtan t consequence of p ro d u c tiv ity is w ell-definedness: th e te rm adm its a unique
in te rp re ta tio n as an infinite term . In tu itively , existence follows from tak ing th e lim it of th e
process of com puting a co n stru c to r on every level, and reduce d a ta term s to norm al form.
U niqueness follows form orthogonality . For an investigation of well-definedness of s tream
specifications we refer to [15].

In th is p ap e r we are in terested in p ro d u c tiv ity for all (finite) ground te rm s of so rt s
ra th e r th a n a single one. T he following p roposition s ta tes th a t for th is case reaching a
co n stru c to r on every a rb itra ry d ep th is equivalent to reaching a co n stru c to r a t th e root.
As th e la t te r ch arac te riza tio n is sim pler, th is is th e basis of all fu rth e r observations on
p ro d u c tiv ity in th is paper. In [9] and th e forth-com ing P h D thesis of its au th o r p ro d u c tiv ity
is also required for infinite term s, being often a s tronger restric tion th a n ours.

P r o p o s i t i o n 3 .3 . A specification (£ d, £ s , C ,R d, R s) is productive fo r all ground term s o f
sort s i f and only i f every ground term t o f sort s adm its a reduction t —RsURd t ' fo r which
ro o t(t') € C.

6 HANS ZANTEMA AND MATTHIAS RAFFELSIEPER

Proof. T h e “only if” d irec tion of th e p roposition is obvious. For th e “if” d irection , we prove
th e following claim by induction on k .

C la im . L et k € N , and for all g round term s t of sort s we have t —RsURd t'
w ith ro o t(t') € C. T hen t — RsURd t'' for a te rm t '' in w hich every sym bol of
so rt s on d ep th less th a n k is in C .

If k = 1, th en th e claim d irec tly holds by choosing t '' = t'.
O therw ise, we have t — RsURd t ' = f (u i , . . . , u n , t i , . . . , t m) w ith ro o t(t') = f € C , w ith

f of ty p e dn x sm — s. A pplying th e induction hypothesis to t i , . . . , t m yields t i — RsURd t '
for i = 1 , . . . , m . Now

t — RsURd f (u i, . . . , u n, t i , . . . , t m) — RaURd f (u i, . . . , u n, t i , . . . , I'm)
proves th e claim . ■

O u r first theo rem gives a sim ple syn tactic crite rion for productiv ity .

T h e o r e m 3 .4 . L et S = (£ d, £ s , C , R d, R s) be a proper specification in which fo r every £ — r
in R s the term r is no t a variable and roo t(r) € C . Then S is productive.

Proof. A ccording to P ro p o sitio n 3.3 for every ground te rm t of so rt s we have to prove
th a t t —-*RsURd t for a te rm t ' satisfying ro o t(t ') € C . We do th is by induction on t. Let
t = f (u i , . . . ,u n , t i , . . . , t m) for m ,n > 0. If f € C we are done. So we m ay assum e
f € £ s . As being ground term s of sort d, all u rew rite to elem ents of D . B y th e induction
hypothesis, all ti rew rite to term s w ith roo t in C , and in w hich th e argum ents of sort d
rew rite to elem ents of D . Now by th e last requirem ent of properness, th e resu lting te rm
m atches w ith th e left hand side of a rule from R s . B y th e assum ption , by rew riting according
to th is rule a te rm is ob ta ined of w hich th e root is in C. ■

E x a m p le 3 .5 . Choose C = {b, nil} w ith ar(s, b) = 2 and ar(d, b) = ar(d, nil) = ar(s, nil) = 0
represen ting th e com bination of finite and infinite unlabeled b inary trees. T hen

c — b(b(nil, c), c)

is a p ro p er specification th a t is p roductive due to T heorem 3.4; th e sym bol c represen ts an
infinite tree in w hich th e num ber of nodes on d ep th n is exactly th e n - th F ibonacci num ber.
In th e sam e setting

p — b(f(p), nil)
f(b (x , y)) — b(f(y), b(nil, f(x)))

f(nil)) — nil
is a p ro p er specification th a t is p roductive due to T heorem 3.4. T he sym bol p represents
th e infinite tree of w hich th e in itia l p a r t un til d ep th 100 is shown in th e following picture,
in w hich th e roo t of th e tree is shown on to p left:

PROVING PRODUCTIVITY IN INFINITE DATA STRUCTURES 7

4 . P r o v i n g P r o d u c t i v i t y b y C o n t e x t - S e n s i t i v e T e r m i n a t i o n

As in tended for generating infinite term s, th e T R S R s U Rd will never be te rm inating .
However, w hen disallowing rew riting inside s-positions of co n stru c to r sym bols, it m ay be
te rm in atin g . T he m ain resu lt of th is section s ta tes th a t if th is is th e case, th en th e spec­
ification is productive . T h e varian t of rew riting w ith th e restric tion th a t rew riting inside
ce rta in positions of ce rta in sym bols is disallowed, is called context-sensitive rew riting [7].
In contex t-sensitive rew riting for every sym bol f th e set i (f) of positions of f is specified
inside w hich rew riting is allowed. M ore precisely, ^ -rew ritin g — r ^ w ith respect to a T R S
R is defined inductively by

• if i — r € R and p is a su b stitu tio n , th en ip - r ,^ rp;
• if i € n (f) and ti -R,^ ti and t j = t j for all j = i, th en f (t 1, . . . , t n) -R,^

f it 'l, . . . , t 'n) .
In our se tting we choose i by i (c) = { 1 , . . . , ar(d, c)} for all c € C , and i (f) =

{ 1 , . . . , a r (f)} for all f € £ d U £ s , w here we w rite a r (f) = ar(d, f) + ar(s, f) for f € £ s . In
th e rest of th is p ap e r th e only instance of contex t-sensitive rew riting we consider is w ith
respect to th is p articu la r i , which is left im plicit from now on. So in i-re w ritin g , rew riting
inside s-positions of co n stru c to r sym bols is disallowed, and is allowed in all o th er positions.
A T R S is called i - te r m in a tin g if i- re w ritin g is te rm in atin g .

T h e o r e m 4 .1 . Let (£ d, £ s , C ,R d, R s) be a proper specification fo r which R s U R d is i -
term ina ting fo r i as defined above. Then the specification is productive.

Proof. We define a ground i-n o rm a l form to be a g round te rm th a t can no t be rew ritten
by i- re w ritin g . We prove th e following claim by induction on th e shape of t:

8 HANS ZANTEMA AND MATTHIAS RAFFELSIEPER

C la im : If t is a g round ^ -n o rm al form of sort s, th en th e roo t(t) € C.
A ssum e roo t(t) € C . T hen t = f (u i , . . . , u n , t i , . . . , t m) for f € £ s , u i , . . . , u n are of sort
d, and t i , . . . , t m are of so rt s. Since f i (f) = { 1 , . . . , n + m }, th ey are all g round ^-no rm al
forms. So u i , . . . ,u n € D . B y th e induction hypothesis all t i have th e ir roo ts in C. Since U
is a ^ -no rm al form and th e positions of so rt d are in fi(c) for every c € C, th e argum ents of
t i of so rt d are all in D . D ue to th e shape of th e rules now a rule is applicable on t on th e
roo t level, so satisfies th e restric tion of ^ -rew riting , con trad ic ting th e assum ption th a t t is
a ^ -n o rm al form. T his concludes th e proof of th e claim .

According to P ro p o sitio n 3.3 for p ro d u c tiv ity we have to prove th a t every ground te rm t
of sort s rew rites to a te rm having its roo t in C. A pply ^-rew ritin g on t as long as possible.
D ue to ^ -te rm in a tio n th is will end in a te rm on w hich ^ -rew ritin g is no t possible, so a
g round ^ -n o rm al form. D ue to th e claim th is g round ^ -n o rm al form has its roo t in C . ■

E x a m p le 4 .2 . C onsider th e following s tream specification

P ro d u c tiv ity follows from T heorem 4.1: en tering th is rew rite system in th e too l A P roV E
[6] or i -T e rm [10] to g e th er w ith th e con tex t-sensitiv ity in form ation th a t rew riting is d isal­
lowed in th e second argum ent of ‘:’ fully au to m atica lly yields a proof of contex t-sensitive
te rm in atio n . A lternatively , by en tering th is specification in our too l yields exactly th e sam e
proof.

In th is specification f is th e s tream function th a t removes all zeros. So p ro d u c tiv ity
depends on th e fact th a t th e s tream of all zeros does no t occur as th e in te rp re ta tio n of a
su b term of any g round te rm in th is specification. For instance, by adding th e rule zeros —
0 : zeros th e specification is no t p roductive any m ore as f(zeros) does no t rew rite to a te rm
having a co n stru c to r as its root.

T his also shows th e difference betw een our requirem ent of p ro d u c tiv ity of all finite
g round te rm s and th e requirem ent in [9] of p ro d u c tiv ity of all term s, including infinite
term s. T here th is exam ple is no t p roductive on th e infinite te rm represen ting th e stream
of all zeros.

E x a m p le 4 .3 . We specify th e so rted s tream of H am m ing num bers: all positive n a tu ra l
num bers th a t are no t divisible by o th er prim e num bers th a n 2, 3 and 5. H ere D = {sn (0) |
n > 0}. For + and * we have th e s tan d a rd rules, we also need com parison cmp for which
cm p(n, m) yields 0 if n = m , s(0) if n > m and s(s(0)) if n < m . So R d consists of th e rules

For R s we need a function mul to m ultip ly a s tream elem ent-w ise by a num ber, a function
mer for m erging tw o sorted stream s, and an auxiliary function f . F ina lly we have a constan t
h for th e sorted s tream of H am m ing num bers. T he rules of R s read:

x + 0
x + s(y)

x * 0
x * s(y)

x
s(x + y)
0
(x * y) + x

cm p(0, 0)
cm p(s(x), 0)
cm p(0, s(x))

cm p(s(x), s(y))

0
s(0)
s(s(0))
cm p(x, y)

mul(x, y : a) — x * y : mul(x, a) f (0 ,x : a, y : t) — x : m er(a, t)
m er(x : a, y : t) — f (c m p (x ,y) ,x : a, y : t) f (s(0), a, y : t) — y : m er(a, t)

f (s (s (x)) ,y : a ,T) — y : m er(a, t)

h — s(0) : m er(m er(m ul(s2(0), h), mul(s3(0), h)), m ul(s5(0), h)))

PROVING PRODUCTIVITY IN INFINITE DATA STRUCTURES 9

Now we have a p roper s tream specification, being th e folklore functional p rogram for gen­
era ting H am m ing num bers, up to n o ta tio n a l details. P ro d u c tiv ity is proved fully a u to m a ti­
cally by our tool: i -T e rm [10] is called to g e th er w ith th e con tex t-sensitiv ity in form ation th a t
rew riting is disallowed in th e second argum ent of ‘:’, yielding a p roof of contex t-sensitive
te rm in atio n . So by T heorem 4.1 p ro d u c tiv ity can be concluded.

For com pleteness we m ention th a t th e too l of [4, 3] also finds a p roof of p ro d u c tiv ity of
h in th is exam ple.

E x a m p le 4 .4 . T he C alkin-W ilf tree [2] is a b inary tree in w hich every node is labeled by a
p a ir of n a tu ra l num bers, in such a way th a t for every m ,n > 0 th a t are relatively prim e th e
p a ir (m , n) occurs exactly once as a label of a node, and no o th er pairs occur. So th e labels
of th e nodes represen t positive ra tio n a l num bers, and every positive ra tio n a l num ber m / n
occurs exactly once as a p a ir (m , n). T here is one co n stru c to r b w ith ar(d, b) = ar(s, b) = 2.
F rom E xam ple 4.3 we take th e d a ta set D consisting of th e n a tu ra l num bers, and also th e
sym bol + and its tw o rules. Now th e C alkin-W ilf tree c is defined by

c ^ f(s(0), s(0)), f (x , y) ^ b(x , y, f (x, x + y), f (x + y, y)).

O u r too l proves p ro d u c tiv ity of th is specification by calling i-T e rm [10] th a t proves con tex t-
sensitive te rm in a tio n , hence proving p ro d u c tiv ity by T heorem 4.1.

T heorem 4.1 can be seen as a s treng then ing of T heorem 3.4: if all roo ts of righ t hand
sides of rules from R s are in C th en R s U R d is ^ -te rm in a tin g , as is shown in th e following
proposition .

P r o p o s i t i o n 4 .5 . Let S = (£ d, £ s , C, R d, R s) be a proper specification in which fo r every
£ ^ r in R s the term r is no t a variable and roo t(r) € C . T hen R s U R d is i - te r m in a tin g .

Proof. A ssum e th ere exists an infinite ^ -reduction . For every te rm in th is reduction count
th e num ber of sym bols from £ s th a t are on allowed positions. D ue to th e assum ptions by
every Rd-step th is num ber rem ains th e sam e, while by every R s -step th is num ber decreases
by one. So th is reduction contains only finitely m any R s-steps. A fter these finitely m any R s-
steps an infinite R d -reduction rem ains, con trad ic ting th e assum ption th a t Rd is te rm inating .

■

T he reverse d irec tion of T heorem 4.1 does not hold, as is illu s tra ted in th e nex t exam ple.

E x a m p le 4 .6 . C onsider th e p ro p er (stream) specification (£ d, £ s , C ,R d, R s), w here £ d =
{0,1}, R d = 0, C = {:} w ith a r (d ,:) = a r (s , :) = 1, and R s being th e below TRS:

p ^ zip(alt, p)
alt ^ 0 : 1 : alt

zip(x : a , r) ^ x : z ip (r ,a)

T his specification is productive , as we will see la te r in E xam ple 5.2. However, it adm its
an infinite contex t-sensitive reduction p ^ zip(alt, p) w hich is continued by repeated ly
reducing th e redex p.

T he s tream p describes th e sequence of righ t and left tu rn s in th e dragon curve, ob ta ined
by p ap e r folding.

10 HANS ZANTEMA AND MATTHIAS RAFFELSIEPER

5 . P r o d u c t i v i t y P r e s e r v i n g T r a n s f o r m a t i o n s

To be able to handle exam ples like th e above, we in troduce productivity preserving
transform ations of such specifications. W henever p ro d u c tiv ity of a specification canno t be
determ ined , we app ly one of th e tran sfo rm atio n s and t ry to prove p ro d u c tiv ity of th e tra n s ­
form ed specification, instead . In case we can prove th e transfo rm ed specification productive,
th en because of p ro d u c tiv ity preservation also th e original specification is p roductive.

O ne such tran sfo rm atio n is th e reduction of righ t hand sides, th a t is, a rule £ — r of
R s is replaced by £ — r ' for a te rm r ' satisfying r — RsLiRd r ' . W rite R = R s U R d, and
w rite R ' for th e resu lt of th is replacem ent. T h en by co nstruc tion we have — r C — R,, and
— r C — r , ■ R , th a t is, every —R -step can be followed by zero or m ore —R -steps to
o b ta in a — R, -step . We present our theorem s in th is m ore general se ttin g such th a t th ey
are applicable m ore general th a n only for reduction of righ t h and sides.

T h e o r e m 5 .1 . Let S = (£ d, £ s , C, R d, R s) and S ' = (£ d, £ s , C, R d, R's) be proper specifica­
tions satisfying ——r , C — + fo r R = R s U R d and R ' = R's U R d. I f S ' is productive, then
S is productive, too.

Proof. L et S ' be productive , i.e., every g round te rm t of so rt s ad m its a reduction t — R, t'
for w hich ro o t(t') € C . T hen by — r , C — + we conclude t — R t', proving p ro d u c tiv ity of
S . ■

E x a m p le 5 .2 . We apply th is theo rem to E xam ple 4.6. O bserve th a t we can rew rite th e
right hand side of th e rule p — zip(alt, p) as follows:

p — zip(alt, p — zip(0 : 1 : alt, p) — 0 : zip(p, 1 : alt)

So we m ay tran sfo rm our specification by replacing Rs by th e T R S R s' consisting of th e
following rules:

p — 0 : zip(p, 1 : alt)
alt — 0 : 1 : alt

zip(x : a ,T) — x : zip(r, a)
Clearly, th is is a p ro p er specification th a t is p roductive due to T heorem 3.4. Now p ro d u c­
tiv ity of th e original specification follows from T heorem 5.1 and — R's C — R . O u r tool
finds exactly th is proof.

C oncluding p ro d u c tiv ity of th e original system from p ro d u c tiv ity of th e transfo rm ed
system is called soundness , th e converse is called com pleteness . T he following exam ple
shows th e incom pleteness of T heorem 5.1.

E x a m p le 5 .3 . C onsider th e tw o p roper (stream) specifications S and S ' defined by

R s: c — f (c) R's : c — f (c)
f (a) — 0 : a f (x : a) — 0 : x : a

Here C = {:}, R d = 0, £ d = {0}. Since c — r f(c) — r 0 : c and f (■ ■ ■) — r 0 : ■ ■ ■ we
conclude p ro d u c tiv ity of S , as c and f are th e only sym bols in £ s .

For th e T R S R's we have th a t — r ,s C — + , since any step w ith th e rule
f(x : a) — 0 : x : a of R's can also be done w ith th e rule f (a) — 0 : a of R s . How­
ever, S ' is no t productive , as th e only reduction s ta rtin g in c is

c — f (c) — f (f (c)) — ■ ■ ■

in w hich th e roo t is never in .

PROVING PRODUCTIVITY IN INFINITE DATA STRUCTURES 11

N ext we prove th a t w ith th e ex tra requirem ent — r C — r , ■ ^ R , as holds for reduction
of righ t hand sides, we have b o th soundness and com pleteness.

T h e o r e m 5 .4 . Let S = (£ d, £ s , C, R d, R s) and S ' = (£ d, S s , C, R d, R's) be proper specifica­
tions satisfying — R, C — + and — r C — r , ■ ^ R fo r R = R s U R d and R ' = R's U R d.

T hen S is productive i f and only i f S ' is productive.

Proof. T h e “if” d irec tion follows from T heorem 5.1.
For th e “only-if” d irec tion first we prove th e following claim :

C la im : If t — r t ' and t — R t ' ' , th en th ere exists a te rm v satisfying t ' — R v
and t '' — R, v.

L et t — r t ' be an app lica tion of th e rule £ — r in R, so t = C[£p] and t ' = C [rp] for
som e C, p. According to th e P ara lle l Moves Lem m a ([14], Lem m a 4.3.3, page 101), we can
w rite t'' = C ''[£ p \,. . . ,£pn], and t', t '' have a com m on R -reduct C ''[rp1, . . . , rpn]. D ue to
£pi — r rpi and — r C — r , ■ ^ R th e re exist ti satisfying £pi — r , ti and rpi — R ti, for all
i = 1 , . . . ,n . Now choosing v = C ''[t1, . . . , t n] proves th e claim .

Using th is claim , by induction on th e num ber of — R -steps from t to t ' one proves th e
generalized claim : If t — R t ' and t — R t'', th en th e re exists a te rm v satisfying t ' — R v and
t '' v. t — R' v ■

L et t be an a rb itra ry g round te rm of sort s . D ue to p ro d u c tiv ity of S th e re exists t '
satisfying t — R t ' and roo t(t ') € C . A pplying th e generalized claim for t '' = t yields a te rm
v satisfying t ' — R v and t — R, v. Since ro o t(t') € C and t ' — R v we o b ta in root(v) € C.
Now t — R, v im plies p ro d u c tiv ity of S '. ■

E xam ple 5.3 generalizes to a general app lica tion of T heorem 5.1 o th e r th a n rew riting
right hand sides as follows. A ssum e a rule from R s in a p ro p er tran sfo rm atio n contains an s-
variable a in th e left han d side being an argum ent of th e roo t. T hen th is rule m ay be replaced
by th e # C instances of th e sam e rule, in w hich a is replaced by c (x i , . . . , x n , a 1, . . . , a m), for
all c € C , w here ar(d, c) = n , a r(s ,c) = m . T hen th e resu lt is again a p ro p er specification,
and also th e requirem ents of T heorem 5.1 hold, even — r C — r , .

E x a m p le 5 .5 . We w ant to analyze p ro d u c tiv ity of th e following varian t of E xam ple 4.6,
in w hich p has been replaced by a s tream function , and R s is th e below TRS:

p (a) — zip(a, p (a))
alt — 0 : 1 : alt

zip(x : a ,T) — x : zip(r, a)

P roving p ro d u c tiv ity by T heorem 3.4 fails. Also proving p ro d u c tiv ity w ith th e tech ­
nique of T heorem 4.1 fails, since th ere exists th e infinite contex t-sensitive reduction

p(alt) — zip(alt, p(alt)) —

F u rtherm ore , reducing th e righ t hand side of p (a) — zip(a, p (a)) can only be done by
applying th e first rule, no t creating a co n stru c to r as th e roo t of th e righ t h and side. W h a t
blocks rew riting using th e zip rule is th e variable a in th e first argum ent of zip. Therefore,
we app ly T heorem 5.1 as sketched above and replace th e rule p (a) — zip(a, p (a)) by th e rule
p(x : a) — zip(x : a, p(x : a)) to o b ta in th e T R S R's . T his now allows us to rew rite th e new
right hand side by th e zip rule, replacing th e previous rule by p(x : a) — x : zip(p(x : a), a),

12 HANS ZANTEMA AND MATTHIAS RAFFELSIEPER

i.e., we o b ta in th e T R S R '' consisting of th e following rules:

p(x : a) — x : zip(p(x : a) , a)
alt — 0 : 1 : alt

zip(x : a ,T) — x : zip(T, a)

P ro d u c tiv ity of R '' follows T heorem 3.4. T his im plies p ro d u c tiv ity of R 's due to T h e­
orem 5.1 w hich in tu rn im plies p ro d u c tiv ity of our in itia l specification S , again due to
T heorem 5.1. O u r too l finds exactly th e p roof as given here.

E x a m p le 5 .6 . For s tream co m puta tions it is often n a tu ra l also to use finite lists. T he
d a ta s tru c tu re com bining stream s and finite lists is ob ta ined by choosing C = {:, nil}, w ith
a r (d ,:) = a r (s , :) = 1 and ar(d, nil) = ar(s, nil) = 0, as m entioned in E xam ple 2.3. An
exam ple using th is is defining th e s tream p = 1 : 2 : 2 : 3 : 3 : 3 : 4 : ■■■ of n a tu ra l
num bers, w hich is sorted , and in w hich n occurs exactly n tim es for every n € N 2. As
auxiliary functions we use conc for concatenation , copy for which copy(k, n) is th e finite list
of k copies of n , for k , n € N , and a function f for generating p = f (0). Taking D to be th e
set of g round term s over {0, s} and R d = 0, we choose R s to consist of th e following rules:

p — f (0) f (x) — conc(copy(x, x), f (s(x)))
copy(s(x),y) — y : copy(x ,y) conc(n il,a) — a

copy(0 , x) — nil conc(x : a, T) — x : conc(a, T)

N ote th a t p ro d u c tiv ity of th is system is no t triv ial: if th e rule for f is replaced by f(x) —
conc(copy(x, x), f(x)), th en th e system is no t productive.

P ro d u c tiv ity canno t be proved d irec tly by T heorem 3.4 or T heorem 4.1; con tex t-
sensitive te rm in a tio n does not even hold for th e single f rule. However by replacing th e
f rule by th e tw o instances

f (0) — conc(copy(0,0), f(s(0))) and f(s(x)) — conc(copy(s(x), s(x)), f(s(s (x)))),

and th e n app ly rew riting righ t hand sides by which these tw o rules are replaced by

f (0) — f(s(0)) and f(s(x)) — s(x) : conc(copy(x, s (x)) ,f (s (s (x))))

yields a p roper specification for w hich contex t-sensitive te rm in a tio n is proved by A P roV E
[6] or ^ -T erm [10], proving p ro d u c tiv ity of th e original exam ple by T heorem 5.1 and T h e­
orem 4.1. O u r too l finds a sim ilar proof as given here: righ t hand sides were slightly m ore
rew ritten .

E x a m p le 5 .7 . We conclude th is section by an exam ple in b in ary trees, in which th e nodes
are labeled by n a tu ra l num bers, so th e re is one co n stru c to r b : d x s 2 — s and D consists
of g round te rm s over {0, s}. T he rules are

c — b(0, f (g(0), left(c)), g(0)) left(b(x, x s , y s)) — x s
g(x) — b(x, g (s(x)) , g (s(x))) f(b (x , x s , y s) ,z s) — b (x ,y s , f (z s ,x s))

To get an im pression of th e hardness of th is exam ple, observe th a t f and left are sim ilar to
zip and tail for stream s, respectively, and th e recursion in th e rule for c has th e flavor of
c — 0 : zip(- ■ ■ , tail(c)). O u r too l proves p ro d u c tiv ity by T heorem 5.1 and T heorem 4.1, by
first rew riting righ t hand sides and th en prove contex t-sensitive te rm ination .

2
The same stream is easily defined by a specification not involving finite lists, but here we want to

illustrate this extended data structure, and the use of standard operations like conc.

PROVING PRODUCTIVITY IN INFINITE DATA STRUCTURES 13

6 . I m p l e m e n t a t i o n

We have im plem ented a too l to check p ro d u c tiv ity of p roper specifications using th e
techniques presen ted in th is paper. I t is accessible v ia th e w eb-interface

h t t p : / / p c l i n 1 5 0 .w i n . t u e .n l : 8 0 8 0 / p r o d u c t i v i t y .
T he in p u t fo rm at requires th e following ingredients:

• th e variables,
• th e op era tio n sym bols w ith th e ir types,
• th e rew rite rules.

D etails of th e fo rm at can be seen from th e exam ples th a t are available. All o th e r inform a­
tion , like w hich sym bols are in C is ex trac ted by th e too l from these ingredients.

As a first step , th e too l checks th a t th e in p u t is indeed a p roper specification. Checking
syn tactic requirem ents like no function sym bol re tu rn in g so rt d has an argum ent of sort s ,
th e T R S is 2-sorted and orthogonal, and th e left hand sides have th e required shape, are all
stra igh tfo rw ard . However, to verify th e last requirem ent of a p ro p er specification, nam ely
th a t th e T R S is exhaustive, is a hard jo b if we allow D to be th e set of g round norm al forms
of any te rm in a tin g o rthogonal R d. In stead we re s tric t to th e class of p roper specifications
in which D consists of th e co n stru c to r g round term s of so rt d, i.e., th e te rm s in D do not
con tain sym bols occurring as roo t sym bol in a left hand side of a rule in Rd. To check
w hether th is is th e case, we use an ti-m atch ing as described in [11]. I t can easily be shown
th a t th e norm al form s of ground te rm s w .r.t. Rd are only co n stru c to r term s if and only if
th e re is no an ti-m atch ing te rm th a t has a defined sym bol as roo t and only te rm s bu ilt from
construc to rs and variables as argum ents. T he idea of th e proof is th a t such a te rm could be
in s tan tia ted to a g round te rm , w hich is a norm al form due to th e an ti-m atch ing property .
T hen , checking exhaustiveness of R s has to only consider co n stru c to r term s for b o th d a ta
and s tru c tu re argum ents.

To analyze p ro d u c tiv ity of a given p ro p er specification, th e too l first investigates w hether
T heorem 3.4 can be applied directly : it checks w hether th e roo ts of all right hand sides are
construc to rs. If th is sim ple crite rion does no t hold, th en it tries to show contex t-sensitive
te rm in a tio n using th e existing te rm in a tio n prover ^-T erm , by w hich p ro d u c tiv ity will follow
by T heorem 4.1.

If b o th of these first a tte m p ts fail th en th e too l tries to tran sfo rm th e given specifi­
ca tion . Since rew riting of righ t hand sides is b o th sound and com plete, as was shown in
Section 5, a p roductive specification can never be transfo rm ed in to an unproductive one
by th is technique. Therefore, th is is th e first tran sfo rm atio n to try . However, large right
hand sides often m ake it h a rd er for te rm in a tio n tools to prove contex t-sensitive te rm in a ­
tion . Therefore, th e too l tries to only rew rite positions on righ t hand sides th a t ap p ear to
be needed to o b ta in a co n stru c to r prefix tree of a certain , ad ju stab le d ep th . T his is done
by traversing th e te rm in an o u term ost fashion and only try in g to rew rite argum ents if th e
possibly m atching rules require a co n stru c to r for th a t p a rticu la r argum ent. If a t least one
right h and side could be rew ritten , a new specification w ith th e rew ritten righ t hand sides
is created . Since rew riting of right hand sides is no t g u aran teed to te rm in a te , we lim it th e
m axim al num ber of rew riting steps. A fter rew riting th e righ t hand sides in th is way, th e
too l again tries to prove p ro d u c tiv ity of th e transfo rm ed T R S using our basic techniques.

As shown in E xam ples 5.5 and 5.6, it can be helpful to replace a variable by all con­
s tru c to rs of its sort applied to variables. Therefore, in case p ro d u c tiv ity could not be shown
so far, it is tr ied to in s tan tia te a variable on a position of a righ t hand side th a t is required

http://pclin150.win.tue.nl:8080/productivity

14 HANS ZANTEMA AND MATTHIAS RAFFELSIEPER

by th e rules for th e defined sym bol d irec tly above it. T hen th e in s tan tia ted righ t hand sides
are rew ritten again to o b ta in new specifications for w hich p ro d u c tiv ity is analyzed fu rther.

T he described tran sfo rm atio n s are applied in th e order of th e ir p resen ta tio n a num ber
of tim es. If a set lim it of applications of transfo rm ations is reached, th e too l finally tries to
rew rite to deeper context-prefixes on righ t han d sides and does a final check for productiv ity ,
using a larger tim eou t value.

Using these heuristics th e too l is able to au to m atica lly prove p ro d u c tiv ity of all p ro ­
ductive exam ples presented in th is paper. T his especially includes th e exam ple of a s tream
specification given in th e following section, w hich could no t be proved to be p roductive by
any o th er au to m ated technique we are aw are of.

7 . C o n c l u s i o n s a n d R e l a t e d W o r k

In th is p ap e r we presented new techniques to prove p ro d u c tiv ity of specifications of
infinite ob jects like stream s. U ntil now several techniques were developed for proving p ro­
d u c tiv ity of s tream specifications, b u t no t for o th er d a ta infinite d a ta s tru c tu re s like infinite
trees and com bination of stream s and finite lists. In th is p ap e r we gave several exam ples
of applying our techniques to these infinite d a ta stru c tu res . We im plem ented a too l by
which p ro d u c tiv ity of all of these exam ples could be proved fully au tom atically . For th e
non-stream exam ples th e re are hard ly o th e r techniques to com pare. For stream s th ere are
exam ples w here our technique ou tperfo rm s all earlier techniques. For instance, th e tech ­
niques from [4, 3] fail to prove p ro d u c tiv ity of E xam ple 4.2. For th is exam ple th e technique
from [16] succeeds, b u t th is technique fails as soon b in ary stream operations come in like
zip. To our knowledge our technique is th e first th a t can deal w ith p ro d u c tiv ity of th e spec­
ification consisting of th e com bination of E xam ple 4.6 (describing th e p ap e r folding stream)
and th e tw o rules f (0 : a) ^ f (a) , f (1 : a) ^ 1 : f (a) . O ur too l first perform s rew riting of
th e righ t hand side of th e p-rule and th en proves contex t-sensitive te rm in a tio n by ^-T erm .
N ote th e su b tle ty in th is exam ple: as soon as a g round te rm t can be com posed of which
th e in te rp re ta tio n as a s tream contains only finitely m any ones, th en th e system will no t be
p roductive for f(t) . So as a consequence we conclude th a t th e stream represen ted by any
ground te rm of so rt s in th is specification, including th e p ap e r folding s tream p, contains
infinitely m any ones.

Some ideas in th is p ap e r are re la ted to earlier observations. In [8] th e observation was
m ade th a t if righ t hand sides of s tream definitions have ‘:’ as its roo t, th en well-definedness
can be concluded, com parab le to w ha t we did by T heorem 3.4. A sim ilar observation can be
m ade ab o u t process algebra, w here a recursive specification is called guarded if righ t hand
sides can be rew ritten to a choice am ong term s all having a co n stru c to r on top , see e.g. [1],
Section 5.5. In th a t se ttin g every specification has a t least one solution, while guardedness
also im plies th e re is a t m ost one so lution ([1], T heorem 5.5.11). So guardedness im plies
well-definedness, being of th e flavor of com bining T heorem 3.4 w ith rew riting righ t hand
sides. B o th these observations conclude well-definedness, w hich is a slightly weaker no tion
th a n productiv ity . A n investigation of well-definedness for s tream specifications based on
te rm in a tio n was m ade in [15]. We w ant to stress th a t p ro d u c tiv ity is s tric tly stronger th a n
well-definedness, which is shown by th e s tream specification c ^ f(c), f(x : a) ^ 0 : c,
being well-defined b u t no t productive.

As far as we know th e re la tionsh ip of p ro d u c tiv ity w ith contex t-sensitive te rm in a tio n
as expressed in T heorem 4.1 is new. Some germ s of th is re la tionsh ip were given before in

PROVING PRODUCTIVITY IN INFINITE DATA STRUCTURES 15

[16] w here p ro d u c tiv ity was re la ted to o u term ost te rm in a tio n and in [5] w here ou term ost
te rm in a tio n was re la ted to contex t-sensitive te rm in atio n .

R e f e r e n c e s

[1] J. C. M. Baeten, T. Basten, and M. A. Reniers. Process Algebra: Equational Theories of Communicating
Processes, volume 50 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
Cambridge, UK, 2009.

[2] N. Calkin and H. Wilf. Recounting the rationals. American Mathematical Monthly, 107(4):360-363,
2000.

[3] J. Endrullis, C. Grabmayer, and D. Hendriks. Data-oblivious stream productivity. In Proceedings of
the 11th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR ’08), volume 5330 of Lecture Notes in Computer Science, pages 79-96. Springer-Verlag, 2008.
Web interface tool: h ttp :/ / in f in ity .fe w .v u .n l/p ro d u c tiv ity /.

[4] J. Endrullis, C. Grabmayer, D. Hendriks, A. Isihara, and J.W. Klop. Productivity of stream definitions.
In Proceedings of the Conference on Fundamentals of Computation Theory (FCT ’07), volume 4639 of
Lecture Notes in Computer Science, pages 274-287. Springer-Verlag, 2007.

[5] J. Endrullis and D. Hendriks. From Outermost to Context-Sensitive Rewriting. In Proceedings of the
20th International Conference on Rewriting Techniques and Applications (RTA ’09), volume 5595 of
Lecture Notes in Computer Science, pages 305-319. Springer-Verlag, 2009.

[6] J. Giesl et al. AProVE. Web interface and download: http ://aprove.inform atik .rw th-aachen .de.
[7] J. Giesl and A. Middeldorp. Transformation techniques for context-sensitive rewrite systems. Journal

of Functional Programming, 14:329-427, 2004.
[8] R. Hinze. Functional pearl: streams and unique fixed points. In ICFP ’08: Proceeding of the 13th ACM

SIGPLAN international conference on Functional programming, pages 189-200. ACM, 2008.
[9] A. Isihara. Productivity of algorithmic systems. In SCSS 2008, volume 08-08 of RISC-Linz Report,

pages 81-95, 2008.
[10] S. Lucas et al. ^-Term. Web interface and download: h ttp ://zenon.dsic.upv.es/m uterm /.
[11] M. Raffelsieper and H. Zantema. A transformational approach to prove outermost termination auto­

matically. In Proceedings of the 8th International Workshop in Reduction Strategies in Rewriting and
Programming (WRS ’08), volume 237 of Electronic Notes in Theoretical Computer Science, pages 3-21.
Elsevier Science Publishers B. V. (North-Holland), 2009.

[12] B. A. Sijtsma. On the Productivity of Recursive List Definitions. ACM Transactions on Programming
Languages and Systems, 11(4):633-649, 1989.

[13] J. G. Simonsen. The ^-completeness of most of the properties of rewriting systems you care about
(and productivity). In R. Treinen, editor, Proceedings of the 20th Conference on Rewriting Techniques
and Applications (RTA), Lecture Notes in Computer Science. Springer, 2009.

[14] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, Cambridge, UK, 2003.

[15] H. Zantema. Well-definedness of Streams by Termination. In Proceedings of the 20th International Con­
ference on Rewriting Techniques and Applications (RTA ’09), volume 5595 of Lecture Notes in Computer
Science, pages 164-178. Springer-Verlag, 2009.

[16] H. Zantema and M. Raffelsieper. Stream productivity by outermost termination. In Proceedings of the
9th International Workshop in Reduction Strategies in Rewriting and Programming (WRS ’09), Elec­
tronic Proceedings in Theoretical Computer Science, 2009. To appear, a preprint version is available at
h ttp://w w w .w in.tue.nl/~m raffels/.

If ac c e p te d for p u b lica tion by RTA, th is w ork will be licensed u nder th e C rea tive C o m m o n s A ttrib u tio n -N o D e riv s
L icense. T o v iew a copy o f th is license, v is it h t t p : / / c r e a t i v e c o m m o n s . o r g / l i c e n s e s / b y - n d / 3 - 0 / .

http://infinity.few.vu.nl/productivity/
http://aprove.informatik.rwth-aachen.de
http://zenon.dsic.upv.es/muterm/
http://www.win.tue.nl/~mraffels/
http://creativecommons.org/licenses/by-nd/3-0/

