
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/84144

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

http://hdl.handle.net/2066/84144

Privacy and Security Issues in e-T icketing
O ptim isation of Smart Card-based Attribute-proving

Jaap-Henk Hoepman1,2, Bart Jacobs1, and Pim Vullers1*

1 Institu te for Com puting and Inform ation Sciences,
Radboud University Nijmegen, The Netherlands.

{ jhh , b a r t , p .v u lle r s } @ c s .ru .n l
2 TNO Inform ation and Com munication Technology, The Netherlands.

jaap-henk.hoepm an@ tno.nl

A b stra ct This short note concentrates on an optim isation of the a t­
tribute-proving protocol by B atina et al. [1], and provides the improved
performance figures. The protocol relies on elliptic curve cryptography
w ith bilinear pairings. These pairings provide signatures th a t are stable
under m ultiplication w ith a blinding factor. In this way multiple proofs
are unlinkable, and thus provides a privacy-friendly solution.
The optim isation involves better exploitation of the (lim ited) elliptic
curve primitives th a t are available on the current generation of Java
C ard sm art cards. I t leads to a reduction of the on-card running times
(wrt. to [1]) of roughly a factor three. Total running tim es w ith this new
protocol are below one second. A further reduction w ith a factor two or
three is needed to achieve performance th a t is acceptable in practice.

K ey words: anonymous credentials, elliptic curve cryptography, sm art
card, bilinear pairing, attribu tes, blinding, protocols, Java C ard

1 Introduction

W ith e-ticketing, smart cards replace the use of paper tickets to prove the right
of the bearer to use the public transportation system.

Smart cards that are currently employed for e-ticketing in public transport
are typically memory cards with cryptographically protected access for reading
and writing. Cards have unique identifiers and most of the “intelligence” of the
whole system lies in the back office. Now tha t the cryptographic protection of the
most widely used sm art card for e-ticketing, the MIFARE Classic, is broken [2,3],
this back office plays a crucial role in fraud detection. Fraudulent cards can be
recognised using a shadow bookkeeping, and their use can be blocked on the
basis of their card-id.

This back office database with extensive logs of the movements of individ­
ual cards within the system, often linkable to individuals, is not only used for
fraud detection but also for capacity optimisation, division of revenues between

* Sponsored by Trans Link System s/O pen Ticketing.

mailto:jaap-henk.hoepman@tno.nl

different transport companies, law enforcement and direct marketing. W ith the
growing awareness of the privacy issues involved, the interest in more privacy-
friendly alternatives increases.

Anonymous credentials are the obvious privacy-friendly technique to use.
They allow travellers to use a smart card for e-ticketing in a way tha t is fairly
similar to paper tickets, namely as a way of proving access rights to public
transport, without revealing one’s identity. The main problem with anonymous
credentials in this context is tha t they involve computationally intensive proto­
cols. They require processor-based, instead of memory-based, smart cards, which
are generally more expensive. But even with the latest generation of processor
cards, processing speed is a mayor challenge. Typically in the mass transit sector
the transaction times should be below 300-400 milliseconds, in order to prevent
queues at entry/exit gates. In contrast, similar processor cards tha t are currently
used in e-passports don’t have such tight constraints. These e-passport protocols
easily take a few seconds to complete.

2 Elliptic Curve Background

For the broader context and more background information the reader is referred
to the original paper [1]. Here we only describe the basics about the underlying
elliptic curve (EC) primitives such tha t the notation in the optimised protocol
in Section 3.2 can be understood.

We shall use e(—, —) to denote a bilinear pairing on an elliptic curve. A private
key s is just a natural number (below some bound). A public key associated with
the private key s is the result of a scalar point multiplication s • Q, for some fixed
point Q. Suppose a card c has a public key P c. A signature on this key, for
instance corresponding to an attribute, created by multiplication with the secret
key, is thus a point s • P c. It may be given to the card upon initialisation.

The card c can now prove tha t it possesses a signed public key by showing a
point R, which is claimed to be s • P c. This can be verified on the terminal side
by checking the equality:

e(Pc, s • Q) = e(R, Q).

If R = s • Pc, then by bilinearity of e both sides are equal to e(Pc, Q)s .
One of the attractions of this kind of signature is tha t it is stable under

blinding. Instead of the pair (Pc,s • P c) the card can also present (b• P c,b • (s • P c)),
using th a t b• (s • P c) = s- (b P c), where b is the blinding factor. Hence the card can
present different looking credentials each time, making tracing impossible [4].

W hat the terminal needs to check in this scenario is tha t P c really is a public
key of the card c. It can check using some standard challenge-response mechanism
that c possesses the corresponding private key. This is what is done in [1], using
some separate protocol steps, see Section 3.1.

The optimisation tha t is presented in Section 3.2 involves an integration of a
different challenge-response mechanism in the attribute verification steps. This

makes the protocol shorter and more efficient, especially because it has fewer
messages and can be implemented entirely using calls tha t are part of the Java
card API. The earlier version in [1] had to rely on our own (slow) multiplication
algorithm for blinding, implemented in Java Card on the card.

3 Protocols for A ttribute-proving

This section describes the optimised version of the elementary protocol designed
by Batina et al [1]. We describe how a card c demonstrates in a secure and
privacy friendly manner th a t it possesses some attribute(s) a. This attribute is
just a number, with certain meaning tha t we abstract away.

3.1 S k etch o f th e O rig in al P r o to c o l

F igu re 1. Sketch of the protocol

Figure 1 sketches the basic protocol for proving an attribute tha t was used
in [1]. To start, the terminal requests the card to show its credentials (1). The
card responds (3) with its attribute, certificate and public key. The terminal can
verify th a t the card actually possesses this attribute by verifying the certificate
(4) which links the attribute to the public key. Finally, in steps (5) to (8), the
terminal verifies, using a standard challenge-response mechanism, tha t the card
actually knows the private key corresponding to the public key. These two parts
can be combined to reduce the amount of messages sent.

W hat makes this protocol privacy friendly is the blinding of the card specific,
and thus identifying, values, performed in step (2). By using a fresh blinding for
each run the terminal will be unable to link a protocol run to a previous, or
future, one.

3.2 The Optimised Protocol

We will now present our optimised version of the above protocol.

System Setup The scheme provider has a public fixed point Q and a finite set of
attributes. For each attribute a a secret key sa and public key Q a = sa ■ Q are
generated. The associated pairs (a, Qa) of attributes and public keys are publicly
known, and stored in all terminals together with the fixed point Q.

A card c generates a key pair kc, P c = kc ■ P where P is a fixed system wide
generator. The private key kc of the card is assumed to be stored in a protected
manner such th a t it cannot leave the card. Upon personalisation the card receives
its attribute a together with a corresponding certificate C a = sa ■ P c linking its
public key Pc to the attribute a. The attribute a corresponds to a product that
the owner of the card has bought.

kc, Pc = kc ■ P , a, Ca = Sa ■ Pc P , Q, (a, Qa)

F igu re 2. Optimised protocol for proving self-blindable attribu tes

Protocol Description The protocol for proving self-blindable attributes, as de­
picted in Figure 2, is initiated by a terminal which sends a request, together
with a point representation of the nonce n ■ P , to the card. The card generates
a fresh blinding factor b to blind its key pair and the certificate. It responds by
sending a signature b ■ kc ■ (n ■ P) of the received nonce, which is created using
its blinded private key b ■ kc, and the blinded values (b ■ P c and b ■ Ca) together
with the attribute a stored on the card.

The terminal can now perform a pairing signature verification, as discussed
in Section 2, using the card’s response, the a ttribu te’s public key Qa and the
fixed point Q. Note tha t the terminal can select the correct public key Qa to use
by matching the attribute returned by the card. Finally the terminal verifies the
signature using the blinded public key and the scalar nonce value n. When the
verification succeeds the card has proved possession of the requested attribute.

3.3 The Implementation

Java Card Applet In [1] the practical limitations of Java Cards have been de­
scribed th a t have to be taken into account while programming the card. The
actual operations tha t the card needs to perform are scalar multiplication of
points. In the end the applet performs the required steps of the protocol in the
following way.

The difficulty in the Java Card applet is the blinding of the private key. This
problem has been circumvented by (ab)using the EC key generation operation
to generate the blinding factor. This function generates a random number which
it multiplies with the generator point of the elliptic curve. By setting the nonce,
received from the terminal, as the generator this function produces a private key
(the blinding factor b) and a public key (the blinded nonce (b ■ (n ■ P)) which we
can use for the remaining calculations.

Two EC Diffie-Hellman (ECDH) key agreement operations (effectively two
scalar point multiplications) are performed with this generated private key to
calculate the blinded public key, and the blinded certificate. A third ECDH
key agreement is performed using the generated public key, the blinded nonce,
together with the cards private key to generate the signature.

Both operations, key generation and key agreement, use the cryptographic
coprocessor to perform the necessary calculations. This improves performance
since there are no longer calculations which have to be done in software, which
was the drawback from the original implementation.

Terminal Application The implementation of the terminal application is not
significantly different from the original version. It only contains minor modifi­
cations to incorporate the integration of the challenge-response part in the first
messages and the new signature check.

3.4 T h e R e su lts

Using the same parameters as Batina et al. [1] we have tested the performance of
our optimised version of the protocol. The results of these tests can be found in
Table 1. The results of the original protocol have been included, for comparison,
in Table 2. Note th a t we no longer use different blinding lengths since we now
use the key generator for this, which just uses the elliptic curve parameters.

T able 1. Test results of the optimised protocol for various key lengths

key length
(bits)

a ttr ib u te & signature
(ms)

verification
(ms)

protocol to ta l
(ms)

communication
(bytes)

192 787 116 904 155

160 645 102 747 135

128 535 82 617 115

Table 2. Test results of the original protocol for various key and blinding lengths

key blinding attribu te & signature verification protocol communication
(bits) (bits) (ms) (ms) (ms) (bytes)

192 2748 143 2891
192 96 1884 136 2020 168

48 1451 130 1582

160 1860 126 1987
160 80 1355 133 1489 152

40 1113 127 1240

128 1599 91 1691
128 64 1143 93 1237 136

32 927 86 1014

It can be seen tha t there is a significant increase in performance with respect
to the running times on the card from the original implementation. The smaller
amount of data which has to be exchanged during communication allowed us to
combine the protocol in a single command-response APDU pair, thus reducing
the amount of messages sent which also has a positive effect on the processing
overhead.

To get some more information about how the running time is spent on the
card we measured how long it takes to perform the individual operations. The
results of these measurements can be found in Table 3. The columns indicate
the time needed to perform a single operation. The processing overhead is de­
termined by subtracting one key generation and three key agreements from the
running time on the card.

T able 3. Test results for the A PI primitives

key length key generation key agreement processing overhead
(bits) (ms) (ms) (ms)

192 379 98 114

160 307 78 104

128 242 62 107

On the one hand, performing a scalar point multiplication (a key agree­
ment) is quite efficient, using less then 100 ms for the calculation. On the other
hand, performing a scalar point multiplication, combined with generating a ran­
dom value, (a key generation) is disappointing, taking more than a factor three
longer than just the multiplication. A possible explanation is a different calcula­

tion which explains the fact tha t a key generation can return a complete point,
whereas a key agreement can only return the x-coordinate.

4 Conclusions

This short note presents another small step on the way to making anonymous cre­
dentials usable in the context of public transport with its tight performance chal­
lenges. Further optimisations are still needed to meet the requirements. These
improvements could result from (a combination of):

— faster sm art card hardware;
— access to the crypto-coprocessor through a full-fledged crypto-API tha t gives

access to exactly the functions one needs;
— lower level implementations, not using Java as implementation language,

but some machine language for more direct access to the processor and
cryptographic coprocessor on the card.

The third step is the most obvious one, but means tha t one has to give up the
high-level card-independent feature of Java Card. Another hindrance is that card
producers do not easily give direct access to the card hardware, or only under
very severe non-disclosure agreements (NDAs) tha t make it difficult to publish
any results.

References

1. B atina, L., Hoepman, J.H., Jacobs, B., Mostowski, W., Vullers, P.: Developing ef­
ficient blinded attribu te certificates on sm art cards via pairings. In: Gollmann, D.,
Lanet, J.L. (eds.) Sm art Card Research and Advanced Applications, 9th IF IP WG
8.8/11.2 International Conference, CARDIS 2010, Passau, Germany, April 13-16,
2010. Proceedings. LNCS, vol. 6035, pp. 209-222. Springer (2010)

2. Garcia, F.D ., de Koning Gans, G., Muijrers, R., van Rossum, P., Verdult, R., Wich-
ers Schreur, R., Jacobs, B.: D ismantling MIFARE Classic. In: Jajodia, S., Lopez,
J. (eds.) 13th European Symposium on Research in Com puter Security (ESORICS
2008). LNCS, vol. 5283, pp. 97-114. Springer (2008)

3. Garcia, F.D ., van Rossum, P., Verdult, R., Wichers Schreur, R.: Wirelessly pick­
pocketing a Mifare Classic card. In: IEEE Symposium on Security and Privacy
(S&P ’09). pp. 3-15. IEEE (2009)

4. Verheul, E.: Self-blindable credential certificates from the Weil pairing. In: Boyd, C.
(ed.) Advances in Cryptology - ASIACRYPT 2001. LNCS, vol. 2248, pp. 533-550.
Springer (2001)

