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1 Introduction

Protein-protein interaction (PPI) network inference has attracted interest of machine learning re-
searchers as a typical problem of structured data mining. Like link prediction in social networks,
PPI prediction can be solved using supervised network inference approaches if one considers to
build a classifier whose input is a pair of nodes and output, a binary value that codes for the pres-
ence of a physical interaction between two proteins. The training data used for this task are usually
input feature vectors that represent information about theproteins and a given adjacency matrix that
codes for the known interactions. Among supervised link prediction approaches, let us cite pairwise
SVM based on tensor kernel [3], metric or kernel learning [12] and [7, 8, 6] and local approaches
developed in [4]. In parallel, bioinformatics researchershave defined other strategies that consist,
for example, in mapping known interactions between a reference organism onto a target organism
and this for the orthologous genes: this is called the protein-protein interologs approach [10]. As
far as PPI networks as well as the homology between protein sequences are available for potential
reference organisms, this strategy sounds relevant if dataare not too noisy. In this work, we de-
fine a new task of link prediction, we call it ”link transfer”,that resembles the interolog approach
while remaining in the supervised learning framework. The underlying idea of link transfer is to use
PPI networks of other species to constrain the training of a supervised predictor of PPI in a target
species. Contrary to Kashima et al. [9], we do not assume thatthere exists input information for the
additional species but only output information. This paradigm thus differs from transfer learning or
multi-task learning [5, 2] but corresponds to a realistic setting of PPI network inference.

Building up upon previous works on Output Kernel Regression[7, 8, 6] where an output kernel is
learned to build the classifier, we formulate the new task in the framework of output kernel learning
and investigate how to incorporate the information available from the reference species in order to
improve the performance of the output kernel regressor. We propose to use output kernel regression
twice, first to convert output feature vectors from a reference species to the target species and then
to learn the target network. The underlying idea of the converter is to increase the training set of
the target species by converting the output space of the reference species to the output space of the
target species. In Section 2 we describe the general framework of output kernel regression for PPI
network inference and its extension to link transfer. In Section 3 we evaluate it empirically using
yeast as the target species.

2 Regularized Output Kernel Regression

Let us introduce the general framework of Output Kernel Regression for protein-protein network
inference. We consider a single target species. LetO be the set of proteins in the target species.
During the training phase,On a subset ofn proteins, andWn the adjacency matrix given for the
interactions between the correspondingn proteins are given. These available data are encoded into:
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• An input Gram matrixKXn
whose coefficients are supposed to be defined from some

positive definite kernel function:∀ i ≤ n, j ≤ n, KXn
(i, j) = κX(oi, oj).

• Another Gram matrixKYn
that codes for the proximity of proteins as nodes in the inter-

action graph only known for the proteins ofVn. We use here the diffusion kernel matrix
KYn

= exp(−βLYn
) whereLYn

= Dn −Wn with Wn the adjacency matrix given for the
n proteins andDn the corresponding degree matrix.

Let us imagine that we knowκY : O × O → R, the positive definite kernel that encodes the
proximity of proteins in terms of nodes in the interaction graph of a target species,Y the associated
feature space endowed with kernelκY as a dot product andy(·) : O → Y, the feature map such that
∀ o, o′, κY (o, o′) = 〈y(o), y(o′)〉 and especially:∀ oi, oj ∈ On, κY (oi, oj) = KYn

(i, j). Let us call
f : O×O → {0, 1} a classifier whose input is a pair of proteins features and outputs a binary value
that indicates if there is a interaction or not between thoseproteins. KnowingκY we can define the
classifierf by thresholding the kernel :fθ(o, o

′) = sgn(κy(o, o′) − θ). However, we do not know
κY but only the corresponding Gram matrixKYn

, defined for the proteins of the training set. In
the framework of output kernel regression, we propose to approximateκY by using a dot product
between images of the single input functionh : O → Y , fθ(o, o

′) = sgn(〈h(o), h(o′)〉 − θ).
Learningf reduces to learnh, a function that uses the kernel trick in the output space. This new
learning task has been referred as Output Kernel Regressionin previous works [7, 8, 6] and was
tackled by extending regression trees to output kernel feature space. In this work we focus on
Regularized Output Kernel Regression (ROKR), a recently proposed model [1] that shares the same
form as SVMs and Maximum Margin Robot [11]:

ha(o) =
n∑

i=1

aiy(oi)κX(oi, o) . (1)

The modelha can be learned by minimizing a regularized least square loss:

min
n∑

i=1

‖ ha(oi)− y(oi) ‖
2 +λ1 ‖ a ‖2 , (2)

for which a closed-form solution exists:â = (KYn
∗(KXn

KXn
+λ1KXn

))−1diag(KYn
KXn

).Thus
we obtain in this case the following approximation forκY :

κ̂Y (o, o′) =
∑

i,j

âiâjκY (oi, oj)κX(oi, o)κX(oj , o
′) . (3)

Link Transfer with ROKR

Let us now consider an additional species, call it species 1,for which we know the adjacency matrix
W1 that represents the physical interactions a set of proteins. For this reference species, we are
missing the associated input features of the proteins. However, we have the list of proteins (genes)
of the target species that have orthologs in the species 1. For sake of simplicity, we will use the same
notations for a protein of the target species and its corresponding ortholog in the reference species.
The link transfer task consists in adding the information contained in the PPI network of species 1
to help the prediction task for the target species. We noticethat the two adjacency matricesW of the
target species andW1 of the reference species define two different Hilbert spaces: the Hilbert space
H spanned by the images ofy(oi), i = 1...n and the Hilbert spaceH1 spanned by the images of
y1(oi), i = 1...p. In order to cope with these two different spaces, we use an output kernel regressor
h1→t that converts for a given proteino, y1(o) into y(o).

The connection between the target and the reference speciesis a set of ortholog proteins, i.e., a subset
of O has a one-to-one correspondence with a subset ofO1. LetO = {o1, . . . op} ∪ {op+1, . . . on}
andO1 = {o1

1, . . . o
1
p} ∪ {o

1
p+1, . . . o

1
n1
} then

o1 ←→ o1
1 , . . . , op ←→ o1

p .

The transfer learning is based on a converter function from the reference species to the target species.
The idea is to increase the training information on which themappingh is learned by incorporating
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the data from the reference species. LetOtrain be the set of orthologs whose absence/presence of
links in the target species is known (orthologs in the train set) andOtransfer be the set of orthologs
whose absence/presence of links in the target species is notknown (orthologs in the transfer set).
The mappingh is learned by solving the following optimization problem which leads to a closed
form solution as the problem in Equation (2):

argmin
a

∑

i

||y(oi)− h(oi)||
2
Y + λ||a||2

+ λtransfer

∑

i∈Otransfer

||h1→t(y1(oi))− h(oi)||
2
Y , (4)

with the last term transferring the information from the reference to the target species and
λtransfer ≥ 0 . The converterh1→t maps the output space of the reference species (Y1) to the
output space of the target species (Y). This converter function is learned on the set of orthologs
whose links are known both in the target and in the reference species, i.e., the orthologs from the
training set:

argmin
h1→t

∑

i∈Otrain

||y(oi)− h1→t(y1(oi))||
2
Y + λconverter||b||

2 ,

h1→t(y1(o)) =
∑

j∈Otrain

bjy(oj) 〈y1(o), y1(oj)〉Y1

. (5)

This idea can be extended to include the information from multiple reference species by adding extra
terms in the optimization from Equation (4), each extra termcorresponding to one reference species.

3 Empirical Evaluation

In this section we evaluate empirically the transfer learning approach for PPI prediction.

Data. We considered the baker’s yeast (Saccharomyces cerevisiae) as the target organism. We
used the yeast PPI network data of high-confidence physical protein-protein interactions also used
in [12, 4, 6]. It consists of 2438 interactions that link 984 proteins. Each protein was associated with
its gene expression, its location and its phylogenetic profile which was used to construct the input
kernel. The following species were considered as referencespecies:Schizosaccharomyces pombe
–fission yeast,Mus musculus –house mouse,Arabidopsis thaliana –plant. The PPI networks of the
reference species were extracted from the String.db database (http://string-db.org/). This database
has 7 types of interactions between proteins (neighborhood, fusion, occurrence, coexpression, ex-
periments, database, textmining) from which we consideredonly the interactions which come from
experiments. The set of orthologs between the target species and each of the reference species
was obtained from the Inparanoid database (http://inparanoid.sbc.su.se/). The fission yeast has 271
orthologs with the target species, the mouse has 147 orthologs and the plant has 120 orthologs.

Protocol. We conducted experiments on the data set described above to determine whether the
extra term (or terms for multiple reference species) in the optimization from Equation (4) improves
the performance. The performance was evaluated as a function of the parameterλtransfer. We
fixed the other parameters of the model exceptλtransfer to its optimal values determined in the
no-transfer case, i.e.,σ = 4, β = 3 andλ = 0.0001 and we also fixedλconverter = 0.0001.
Further, the data set was randomly split 10 times into training and testing with different percentage
for the size of the training data10%, 15% and20%. The model was learned on the training set for
λtransfer ∈ 0 : 0.1 : 1 and the performance was measured using area under the ROC curve (AUC)
computed on the testing set.

Results. Figure 1 plots the AUC values as a function of the parameterλtransfer. The three plots
on the left side correspond to three sizes of the training data,10%, 15% and20% and one reference
species, the fission yeast. The error bars give the standard deviation to the mean for the 10 runs.
The optimal valueλtransfer > 0 suggests that the information from the reference species improves
the performance. The improvement is bigger for a small size of the training set and decreases as the
training set gets bigger, which is a behavior observed in most of the multi-task learning situations.
The plots on the right-hand side are an extension of the threeplots from the left-hand side to multiple
reference species: results for one reference species (fission yeast) are plotted with solid lines, results
for two reference species (fission yeast and plant) are plotted with dashed lines, and results for three
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reference species (fission yeast, plant and house mouse) areplotted with dotted lines. The plots
suggests that including multiple reference species as multiple sources of information increases the
performance.
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Figure 1:Plots of the AUC values as a function of the parameterλtransfer. Left: The three plots correspond
to three sizes of the training data,10%, 15% and20%, the error bars give the standard deviation to the mean
for the 10 runs. Right: The plots are an extension of the three plots from theleft-hand side to multiple reference
species: the solid lines are the results obtained one reference species (fission yeast), the dashed lines are the
results obtained with two reference species (fission yeast and plant), and the dotted lines are the results for three
reference species (fission yeast, plant and house mouse).
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