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1 Introduction

Protein-protein interaction (PPI) network inference htigaated interest of machine learning re-
searchers as a typical problem of structured data mininge link prediction in social networks,
PPI prediction can be solved using supervised network eénfsg approaches if one considers to
build a classifier whose input is a pair of nodes and outputpar value that codes for the pres-
ence of a physical interaction between two proteins. Thritrg data used for this task are usually
input feature vectors that represent information abouptbéeins and a given adjacency matrix that
codes for the known interactions. Among supervised linkljgteon approaches, let us cite pairwise
SVM based on tensor kernel [3], metric or kernel learning @dr&d [7, 8, 6] and local approaches
developed in [4]. In parallel, bioinformatics researchigase defined other strategies that consist,
for example, in mapping known interactions between a refeerganism onto a target organism
and this for the orthologous genes: this is called the pnegpedtein interologs approach [10]. As
far as PPl networks as well as the homology between protewesees are available for potential
reference organisms, this strategy sounds relevant if at@anot too noisy. In this work, we de-
fine a new task of link prediction, we call it "link transferthat resembles the interolog approach
while remaining in the supervised learning framework. Thdarlying idea of link transfer is to use
PPI networks of other species to constrain the training afpessised predictor of PPI in a target
species. Contrary to Kashima et al. [9], we do not assumetibat exists input information for the
additional species but only output information. This pégadthus differs from transfer learning or
multi-task learning [5, 2] but corresponds to a realistittisg of PPI network inference.

Building up upon previous works on Output Kernel Regres$ir8, 6] where an output kernel is
learned to build the classifier, we formulate the new taskénftamework of output kernel learning
and investigate how to incorporate the information avdédiom the reference species in order to
improve the performance of the output kernel regressor. iegse to use output kernel regression
twice, first to convert output feature vectors from a refesespecies to the target species and then
to learn the target network. The underlying idea of the cdevas to increase the training set of
the target species by converting the output space of theergfe species to the output space of the
target species. In Section 2 we describe the general frarkevi@utput kernel regression for PPI
network inference and its extension to link transfer. Int®ec3 we evaluate it empirically using
yeast as the target species.

2 Regularized Output Kernel Regression

Let us introduce the general framework of Output Kernel Bsgjion for protein-protein network
inference. We consider a single target species. (L éte the set of proteins in the target species.
During the training phase&?,, a subset of. proteins, andV,, the adjacency matrix given for the
interactions between the correspondingroteins are given. These available data are encoded into:



e An input Gram matrixKx, whose coefficients are supposed to be defined from some
positive definite kernel functionts < n,j <n, Kx,(i,7) = kx(0i,05).

e Another Gram matrixKy, that codes for the proximity of proteins as nodes in the inter
action graph only known for the proteins Bf,. We use here the diffusion kernel matrix
Ky, = exp(—fLy, ) whereLy, = D,, — W,, with IV, the adjacency matrix given for the
n proteins andD,, the corresponding degree matrix.

Let us imagine that we knowy : O x O — R, the positive definite kernel that encodes the
proximity of proteins in terms of nodes in the interactioapin of a target specie¥, the associated
feature space endowed with kermgl as a dot product angl-) : © — Y, the feature map such that
Vo,0, ky(0,0") = (y(o0),y(o")) and especially¥ 0;,0; € O,,, Ky (0;,0;) = Ky, (i, j). Letus call

f: O x0 — {0,1} aclassifier whose input is a pair of proteins features angutsia binary value
that indicates if there is a interaction or not between thpyséeins. Knowing<y we can define the
classifierf by thresholding the kernel fy (o, o') = sgn(k, (o, 0") — ¢). However, we do not know
ry but only the corresponding Gram mattixy, , defined for the proteins of the training set. In
the framework of output kernel regression, we propose tocqpatexy by using a dot product
between images of the single input functibn: O — Y, fg(0,0") = sgn({h(0), h(0')) — ).
Learning f reduces to learn, a function that uses the kernel trick in the output spacds maw
learning task has been referred as Output Kernel Regressiorevious works [7, 8, 6] and was
tackled by extending regression trees to output kernelifeaspace. In this work we focus on
Regularized Output Kernel Regression (ROKR), a recentippsed model [1] that shares the same
form as SVMs and Maximum Margin Robot [11]:

ha(0) = Z a;y(0i)kx (0;,0) . 1)
i=1
The model:, can be learned by minimizing a regularized least square loss
min Y || ha(0:) = y(os) I+ [l a ||, )
i=1

for which a closed-form solution exists:= (Ky, *(Kx, Kx, +\1 Kx,)) 'diag(Ky, K, ).Thus
we obtain in this case the following approximation foF:

Ry (0,0") = Z&i&jliy(Oi,Oj)lﬁx(Oi,0)/-6)((0]',0’) . 3)
@,

Link Transfer with ROKR

Let us now consider an additional species, call it speciés Ivhich we know the adjacency matrix
W1 that represents the physical interactions a set of protdius this reference species, we are
missing the associated input features of the proteins. Mexyee have the list of proteins (genes)
of the target species that have orthologs in the speciesrkake of simplicity, we will use the same
notations for a protein of the target species and its coomdipg ortholog in the reference species.
The link transfer task consists in adding the informationtamed in the PPI network of species 1
to help the prediction task for the target species. We ndtiaethe two adjacency matric&s of the
target species anid’; of the reference species define two different Hilbert spatesHilbert space
H spanned by the images 9fo;),7 = 1...n and the Hilbert spacél, spanned by the images of
y1(0;),7 = 1...p. In order to cope with these two different spaces, we use gubkernel regressor
hi1_ that converts for a given protein y; (o) into y(o).

The connection between the target and the reference sjeaisst of ortholog proteins, i.e., a subset
of O has a one-to-one correspondence with a subs@&yofLet O = {o1,...0,} U {0p+1,...0,}
andO; = {o},...0,} U{0p,1,...0,, } then

01 <—>0%,...,0p<—>011).

The transfer learning is based on a converter function fiemeference species to the target species.
The idea is to increase the training information on whichrttegpingh is learned by incorporating



the data from the reference species. Ogt,;,, be the set of orthologs whose absence/presence of
links in the target species is known (orthologs in the trait) andOy,.., e be the set of orthologs
whose absence/presence of links in the target species knowain (orthologs in the transfer set).
The mappingh is learned by solving the following optimization problem ialn leads to a closed
form solution as the problem in Equation (2):

argminz lly(o;) — h(Oz)Hé + Allal?

+ Atransfer Z Hh1—>t(y1 (01)) - h(01)||§; ) (4)

1€ O0¢ransfer

with the last term transferring the information from theemeince to the target species and
Atransfer > 0. The converterh; ., maps the output space of the reference spegigstp the
output space of the target specig@d.( This converter function is learned on the set of orthologs
whose links are known both in the target and in the referepeeiss, i.e., the orthologs from the
training set:

argmm Z Hil/ 02 hl—»t(yl (O’L))Hii + )\converter||b||2 )
hi—e 1€O0¢train

hi—+(y1(o Z bjy(0;) (y1(o )yl(OJ)> . (5)
3€0¢rain

This idea can be extended to include the information frontiplelreference species by adding extra
terms in the optimization from Equation (4), each extra teamesponding to one reference species.

3 Empirical Evaluation

In this section we evaluate empirically the transfer leagrapproach for PPI prediction.

Data. We considered the baker's yeaSa¢charomyces cerevisiae) as the target organism. We
used the yeast PPI network data of high-confidence physiogip-protein interactions also used
in[12, 4, 6]. It consists of 2438 interactions that link 984teins. Each protein was associated with
its gene expression, its location and its phylogenetic ler@fhich was used to construct the input
kernel. The following species were considered as referepeeies:Schizosaccharomyces pombe
—fission yeastivius musculus —house mouseirabidopsis thaliana —plant. The PPI networks of the
reference species were extracted from the String.db degafatdp://string-db.org/). This database
has 7 types of interactions between proteins (neighborhfostbn, occurrence, coexpression, ex-
periments, database, textmining) from which we considerdy the interactions which come from
experiments. The set of orthologs between the target specid each of the reference species
was obtained from the Inparanoid databagp(//inparanoid.sbc.su.se/). The fission yeast has 271
orthologs with the target species, the mouse has 147 oghelod the plant has 120 orthologs.

Protocol. We conducted experiments on the data set described abowetdorine whether the
extra term (or terms for multiple reference species) in thnaization from Equation (4) improves
the performance. The performance was evaluated as a fonatithe parameteh;,q,sfer. We
fixed the other parameters of the model except,,s ., t0 its optimal values determined in the
no-transfer case, i.eq; = 4, # = 3 and A = 0.0001 and we also fixed\.onverter = 0.0001.
Further, the data set was randomly split 10 times into tnairsind testing with different percentage
for the size of the training date0%, 15% and20%. The model was learned on the training set for
Atransfer € 0 : 0.1 : 1 and the performance was measured using area under the R@&(ALC)
computed on the testing set.

Results. Figure 1 plots the AUC values as a function of the paramgtgy,s ... The three plots
on the left side correspond to three sizes of the training,dat, 15% and20% and one reference
species, the fission yeast. The error bars give the stan@arfdtidn to the mean for the 10 runs.
The optimal value\;,..,sfer > 0 suggests that the information from the reference specipsoives
the performance. The improvement is bigger for a small sizeeotraining set and decreases as the
training set gets bigger, which is a behavior observed intrbthe multi-task learning situations.
The plots on the right-hand side are an extension of the filote from the left-hand side to multiple
reference species: results for one reference species(figsast) are plotted with solid lines, results
for two reference species (fission yeast and plant) aregoletith dashed lines, and results for three



reference species (fission yeast, plant and house mouse)atieed with dotted lines. The plots

suggests that including multiple reference species aspteikources of information increases the
performance.
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Figure 1:Plots of the AUC values as a function of the paramegs .. ... Left: The three plots correspond
to three sizes of the training date)%, 15% and20%, the error bars give the standard deviation to the mean
for the 10 runs. Right: The plots are an extension of the three plots froteftHeand side to multiple reference
species: the solid lines are the results obtained one reference spessies (fieast), the dashed lines are the
results obtained with two reference species (fission yeast and plashthedotted lines are the results for three
reference species (fission yeast, plant and house mouse).
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