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Abstract. Security devices are vulnerable to side-channel attacks that
perform statistical analysis on data leaked from cryptographic computa-
tions. Higher-order (HO) attacks are a powerful approach to break pro-
tected implementations. They inherently demand multivariate statistics
because multiple aspects of signals have to be analyzed jointly. However,
all published works on HO attacks follow the approach to first apply a
pre-processing function to map the multivariate problem to a univariate
problem and then to apply established 1st order techniques. We propose
a novel and different approach to HO attacks, Multivariate Mutual Infor-
mation Analysis (MMIA), that allows to directly evaluate joint statistics
without pre-processing. While this approach can benefit from a good power
model, it also works without an assumption. A thorough empirical eval-
uation of MMIA and established HO attacks confirms the overwhelming
advantage of the new approach: MMIA is more efficient and less affected by
noise. Most important and opposed to all published approaches, MMIA’s
measurement cost grows sub-exponentially with the attack order. As a con-
sequence, the security provided by the masking countermeasure needs to
be reconsidered as 3rd and higher order attacks become very practical.

1 Introduction

Embedded devices such as smart cards, mobile phones, RFID tags are be-
coming increasingly pervasive. In order to secure the applications, these de-
vices execute cryptographic algorithms and protocols to authenticate data
and entities and to protect the confidentiality of sensitive data. An embed-
ded device is by definition physically accessible and it is very likely that the
device falls into the hands of a malicious user. The physical accessibility
has led to a number of very powerful attacks that include physical tam-
pering and side-channels. A typical example is Differential Power Analysis
(DPA) [10]. The technique explores weaknesses of implementations rather
than algorithms, allowing an attacker to extract the secret of a device by
monitoring its power dissipation, if no special countermeasures are taken.
A successful DPA attack is subject to two conditions: i) there exists an in-
termediate variable in the implementation that is correlated with the power
consumption and ii) this variable exclusively depends on the plaintext (or
ciphertext) and a small part of the key.



In order to protect devices against DPA, one can get rid of the second
condition by data randomization or masking [4]. The idea is to conceal
intermediate values through addition or multiplication with random values,
which makes it impossible to correctly predict the intermediate variable.

However, this so-called 1st order masking succumbs to higher-order DPA
attacks (HODPA) as originally proposed by Messerges [12] and Chari et
al. [2]. These HODPA attacks are based on the joint statistical properties
of multiple aspects of the signal, typically joint analysis of the power con-
sumption at two (or more) points in time. In this case one would think
of multivariate analysis but all established techniques [12, 2, 14, 19, 9] rely
on a pre-processing step to map the multivariate problem to a univariate
problem before attacking the result with a standard DPA attack.

HODPA attacks imply higher costs in terms of number of samples and
computational complexity. In addition, the identification of points in time
at which to take the signals is a hard problem. Another common issue is the
pre-processing step: while this problem has been studied by many authors,
finding the optimal transformation is still an open problem. Furthermore,
it is evident that none of the solutions is generic as each pre-processing is
tightly linked to a leakage model, that is not always met in practice [15].
Eventually, it is unclear how the pre-processing functions can be generalized
for attacks of order higher than two without accepting enormous drawbacks.

Our contribution solves all but one of the aforementioned problems. At
CHES 2008 a side-channel distinguisher called Mutual Information Anal-
ysis (MIA) was introduced [7]. This 1st order attack is effective without
any knowledge or assumption about the particular dependencies between
processed data and observable power consumption. Our proposal, multi-
variate MIA (MMIA), inherits this important property. Also the issue of
pre-processing unravels because MMIA is explicitly multivariate which fur-
thermore allows to easily adapt it to attacks of order higher than two. What
remains is the problem of identifying the points in time at which to take
the signals. Our theory is confirmed by an extensive empirical evaluation of
MMIA and established HODPA attacks against 1st and 2nd order masked
software implementations of a DES like mini-cipher.

This paper is organized as follows. In Sect. 2 we summarize related
work on MIA, the concept of masking and in particular HODPA attacks.
In Sect. 3 we discuss our motivation and formulate a generic 2nd order
attack problem, for which we present a sound solution in Sect. 4. Section 5
deals with the empirical evaluation of our proposal and HODPA attacks
and it gives empirical evidence for the advantage of MMIA in HO attack
scenarios. We conclude our work in Sect. 6.
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2 Related Work

2.1 Notation and Mutual Information Analysis

A device performs a cryptographic computation Ek(x) under some key k

from a keyspace K = {0, 1}m. Since the key is unknown it is modeled as
a random variable (RV) K on K with a priori uniform probability mass
function (PMF). The information leakage of the device, due to its physical
properties, is modeled by the side channel leakage function L. The values
of L depend on state transitions in the device which are created by a word
(w) being processed. Since the word of interest typically depends on k it is
a priori unknown and hence another RV Wk on a space W = {0, 1}n where
n is the word length of the device. As the input of L depends on the key, so
does the output and hence we model the values of the leakage function as
Lk on L = {0, ..., l} with l ≤ 2n. An adversary observes Lk by measuring
a physical observable (here power consumption) which is modeled as RV
O on a space O. To remind the reader that the observation O depends on
the actual key used in the device and on the device’s leakage function L we
write OL,k.

MIA is a generic but straight-forward variant of 1st order DPA. The
central problem is to decide whether two RVs with certain PMFs are corre-
lated (in a statistical sense). The RV OL,k is the measurement of the power
consumption. The other RV Lk is the leakage of a predictable intermediate
result of the computation that depends on a (small) part of the key. DPA
applies a statistical test T (OL,k,Lk′) for all key guesses k′ that measures
whether the RVs are correlated or not. The value of k′ that leads to the
highest correlation is an adversary’s best guess. In this context, statistical
tests are frequently called distinguishers in the literature [18].

MIA’s core is the mutual information based distinguisher. Let I(L′

k;OL,k)
denote the mutual information

I(Lk′ ;OL,k) = H(OL,k) − H(OL,k|Lk′), (1)

between L′

k and OL,k, where H(·) denotes Shannon entropy. MIA evaluates
I(Lk′ ;OL,k) for all key hypotheses k′ and the value of k′ that leads to the
highest mutual information is an adversary’s best guess.

Details. Typically the exact leakage behavior of the device, represented by
L, is unknown to the adversary and has to be estimated. In real-world sce-
narios, the PMFs of the RVs involved are unknown but have been sampled.
To estimate the PMFs we follow the approach of [7] and use histograms
with l bins. Typically the observations OL,k are power traces OL,k(t). The
above holds for the interesting point(s) in time t = τj at which the device
actually processes the targeted words (or correlated values).
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Simplifications. For most of this paper we make three (non-restrictive)
assumptions that simplify the analysis and allow us to keep the notation
simple, which helps the reader to focus on the content:

· The adversary can estimate the leakage function L reasonably well. This
allows us to continue writing L.

· The measurement channel is ideal, i.e. a bijective map Lk ⇔ OL,k. As
bijective maps are transparent to MIA [7], we can model the adversary
with direct access to Lk instead of the physical measurement.

· Sampling of PMFs is sufficient and entropy estimations are good. This
allows us to continue writing H.

Under these assumptions Eq. (1) becomes I(Lk′ ;Lk) = H(Lk)−H(Lk|Lk′).
Note that all assumptions are to the adversary’s advantage and security
observations therefore also hold for weaker adversaries. We revisit these
practical issues later in Sect. 4.

2.2 Masking

Masking is usually implemented by combining the intermediate values with
random data and by adapting the algorithm accordingly. The effect of mask-
ing is that each intermediate value that is predictable by an attacker is
pairwise uncorrelated to the masked intermediate values that are actually
processed. As the dynamic instantaneous power consumption of a device
depends on the data that it processes, it depends on the masked interme-
diate values and is thus uncorrelated to predictable (unmasked) values.

In the following we formalize these notions. Let X be the input of the
algorithm and M denote a RV with uniform PMF. Masking is implemented
by replacing the intermediate value Wk = fk(X) by Wk ◦ M = f ′

k(X,M)
where ◦ is a suitable operation. In masked block cipher implementations,
for example, one often uses the exclusive-or operation and replaces Wk by
Wk ⊕ M. An S-box table lookup S-box(Win

k ) can be implemented with a
recomputed S-box such that Wout

k = S-box’(Win
k ⊕M) = S-box(Win

k )⊕M.
If M is an RV with uniform PMF, intermediate results Wk predictable

by an adversary (i.e. k′ = k) are not correlated to computed intermediate
results Wk ◦ M. It follows that I(L(Wk); L(Wk ◦ M)) = 0.

2.3 Higher-Order Attacks

The mounting point for 2nd order attacks is the fact that the side channel
leakage L(Wk ◦ M) of a masked value depends on a predictable value Wk

and an unpredictable value M. The core idea is to jointly analyze the
leakage of the masked value and the mask (or a second masked value masked
with the same mask) to establish a relation to the predictable Wk. In the
example in Fig. 1 (left) one could combine the leakage L(Wk ◦M) at time
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Fig. 1. Left: Masked S-box lookup with recomputed S-box. Right: Schematic of 2nd order
DPA with pre-processing functions g and h that output correlated values

τ4 with the leakage at any other time, e.g. L(M) at time τ1 which is the
example we use from now on.

2nd order DPA requires a suitable pre-processing that combines leak-
ages of two masked RVs such that the leakage L(Wk) of the targeted and
unmasked intermediate result (or a function thereof) is revealed and can be
attacked with 1st order DPA. More formally that is: one looks for functions
g(Lτ1 ,Lτ4) and h(L(Wk)) that yield highly correlated values [13], see Fig. 1
(right). These values can be attacked with 1st order DPA.

Early proposals for the pre-processing did not consider the function h

but focused on a function g whose outputs are correlated with L(Wk) and
mentioned two essential options: the product of the two leaked values and
the absolute value of their difference.

The first work showing a practical higher-order attack to defeat the
masking countermeasure came from Messerges [12]. He assumed that the
device leaks the Hamming weight (HW) of intermediate values (i.e. L(·) =
HW(·)) and proposed to compute the absolute difference |HW(Wk ⊕M)−
HW(M)| in the pre-processing (abs-diff-DPA). Messerges showed that, when
focusing on a single bit,

|HW(Wk ⊕ M) − HW(M)| = HW(Wk ⊕ M ⊕ M) = HW(Wk) . (2)

Thus, the pre-processing reveals the unmasked HW(Wk) which can be
attacked with 1st order DPA. If one wants to attack more than a single bit
simultaneously Eq. (2) changes to

HW(Wk) = HW(Wk ⊕ M) + HW(M) − 2 · HW((Wk ⊕ M) ∧ M) (3)

where ∧ denotes bitwise AND. However, an adversary cannot evaluate this
function because Wk ⊕ M and M are unknown.

The Hamming weight assumption was also used by Oswald et al. in [14].
They showed that the idea of Eq. (2) can still be used to attack multiple
bits although the equality no longer holds. For 8-bit variables, the Pearson
correlation coefficient (ρ) between the predictable HW(Wk) and the output
of the abs-diff pre-processing decreases to 0.24.

Chari et al. [2] suggested to use the product HW(Wk ⊕ M) · HW(M)
in the pre-processing (product-DPA). Their technique does not require the
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ideal Hamming weight model but still makes some restrictive assumptions
about the leakage and power consumption behavior and is in practice more
vulnerable to deviations from the model. Waddle and Wagner [19] were
the first to clearly split higher-order attacks into pre-processing and attack
step as we present them here. They proposed a few variants of product-
DPA that differ in complexity. The work of Joye et al. [9] introduces a
more theoretical approach to 2nd order DPA. The authors analyzed single
bit 2nd order abs-diff-DPA in the Hamming weight model, as introduced
by Messerges, and in the Hamming distance model. They suggest to use
a power of the absolute difference in the pre-processing, which yields a
slightly higher coefficient ρ [14].

3 Motivation

An adversary faces three essential problems when mounting a HO-DPA:1

1. How to identify the points of interest τj when the interesting interme-
diate values leak?

2. How to model the power consumption at these points in time? This
question is particularly interesting as the power consumption model
need not be the same at several instants, e.g. while a random number
generator is active vs. during a table lookup.

3. How to choose the functions g and h for the pre-processing? This ques-
tion is particularly interesting because the answer is tightly linked to
the previous question.

In this paper we will not deal with the first problem but assume that
the instants τj are known.2 The same assumption is made in all related
literature except for [14].

In our view previous work discusses 2nd and HODPA in specific contexts
and under restrictive assumptions, that are not always met in practice [14,
15] but the drawbacks have been accepted. In particular we point out that
most contributions assume i) the linear Hamming weight or distance model
and implicitly require them for the attack to work, due to the choice of g

(and h where applicable); and ii) that the leakage functions associated to
the computation of different intermediate results, where different parts of
the device may be active, are the same or very similar.

It is surprising that, while DPA and its higher-order variants have been
published more than 10 years ago, the problem of finding an optimal pre-
processing (even for a specific context) remains unsolved. To the best of
our knowledge, the practitioner’s choice is Messerges’ abs-diff-DPA either
targeting a single bit, which is sound in the pre-processing but has to deal

1 Note that, concerning items two and three, Messerges’ “absolute difference” pre-
processing is sound, i.e. flawless, for 1-bit values.

2 Some advice can be found in Appendix A.
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with algorithmic noise, or targeting multiple bits, where algorithmic noise
is reduced but the pre-processing suboptimal.

A weakness of earlier work is that tight link between leakage model(s)
and pre-processing. It is evident that a pre-processing tailored to specific
leakage functions looses all meaning if the leakage models are not met. Note
that such practical issues were even mentioned in original papers [2] and
the authors suggest pre-pre-processing steps to attempt to fix them.

The only works that relax the above mentioned assumptions or that
could be accordingly adapted [1, 13] deal with variants of template at-
tacks [3], which consider an adversary who is able to characterize the leak-
age function(s) of the target device and the implementation as well as the
electrical properties of the measurement setup. The adversarial context of
a profiled attack is, however, beyond the scope of this paper.

3.1 Problem Statement

We formulate a generic 2nd order DPA problem that relaxes all (but one) of
the above mentioned assumptions and requirements. Informally speaking,
we ask “what is possible” if i) the power models at the two (known) instants
are unknown and possibly substantially different, which implies ii) that the
best choice for g and h in the pre-processing is a priori unknown. Further,
the sought method should naturally extend to attacks of order greater than
2. A sound solution would be a powerful tool that allows successful HO
attacks in a range of scenarios otherwise resistant or inaccessible to standard
attacks due to intrinsic errors introduced in the pre-processing [15, 12, 2, 14,
19, 9].

Formally, let Lτ1(M) denote the leakage at time τ1 and Lτ2(Wk ◦M) de-
note the leakage at instant τ2. Further, let Lτ1 and Lτ2 be arbitrary surjective
mappings. Given leakage (Lτ1(M) , Lτ2(Wk ◦ M)) determine k with non-
negligible advantage over a random guess. Note that solving the problem
does not necessarily require a transformation step (i.e. a pre-processing).

4 Extending MIA to Multivariate Analysis

It is natural to look for methods that can solve the above stated problems
without making possibly wrong assumptions. In [7] Gierlichs et al. showed
that MIA is a 1st order attack that works without (restrictive) assumptions
about the leakage function. We can thus use MIA to solve the problem of
unknown leakage functions Lτ1 and Lτ2 . Since MIA is well suited to exploit
dependencies between RVs without making an assumption about how the
random variables are related, it appears natural to also use this technique to
solve the second problem, i.e. joining the information contained in Lτ1(M)
and Lτ2(Wk ◦ M).
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The extension of MIA to a multivariate scenario is straight forward: one
merely computes the mutual information of three RVs

I(L(Wk′); Lτ2(Wk ◦ M); Lτ1(M)) . (4)

In [11, 6, 5] it is shown that

I(X;Y;Z) = I(X;Y) − I(X;Y|Z) . (5)

Depending on the source, Eq. (5) is either called multivariate mutual
information or mutual interaction. It is clear that Eq. (5) can have positive
and negative values depending on the relation between the arguments. For
example, if X and Y are independent but possibly related through Z as in
our context, then

I(X;Y;Z) = I(X;Y) − I(X;Y|Z) = 0 − I(X;Y|Z) ≤ 0

and one says that Z explains the correlation between X and Y. Note that
the choice of how to substitute the arguments is arbitrary, any combination
works. The MMIA key recovery attack decides for the key hypothesis k′

that minimizes expression (4). For the more general case of nth order MIA
attacks one computes

I(X1; . . . ;XN+1) = I(X1; . . . ;XN ) − I(X1; . . . ;XN |XN+1) .

We want to emphasize that our proposal has one clear advantage: there
is no need to assume leakage functions neither to choose the functions g and
h for the pre-processing. This makes it generic and applicable in virtually
any scenario as long as their exist a chain of information channels all the
way from a processed word down to the physical observable.

4.1 Further Applications

MMIA can also perform nth order attacks using more than n side-channel
signals. The simplest example is a 1st order attack using two or more in-
stants τj simultaneously. Since each intermediate value of a cryptographic
computation leaks at least twice (first it is computed, then it is used at least
once), joint analysis of the corresponding instants τj is an advantage. This
idea corresponds directly to using multiple points of interest in template
attacks [3].

4.2 Relaxing Assumptions

Before we test our theory in practice, we need to address the simplifying
assumptions, formulated in Sect. 2, that we made up to now.
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The idealized measurement channel. Following [7] we assume that,
given the values of the leakage functions Lτ1 and Lτ2 , the link between
leaked values and measurement of the observables OLτ1,M

and OLτ2,k
can

be approximated as a bijective relation. In practice this relation is possibly
disturbed by the impact of noise and inaccuracy of the measurement, which
implies a loss of information. Shannon’s noisy-channel coding theorem [16,
17] suggests that the loss be canceled by repeated observation.

The hypothetical leakage function(s). We assumed that the adversary
can estimate the leakage function(s) well. In some cases this might be diffi-
cult and our solution should not rely on a good estimation. By assumption,
the leakage behavior is a deterministic map L : W 7→ L. Following [7] we
assume all L to be bijective maps as this guarantees that no information
is lost, possibly at the cost of a limited decrease in efficiency. We denote a
hypothetical leakage function by L

′ and its output by L′. Estimating L
′ well

improves the performance of the attack because not only is no information
lost but also the information is exploited more efficiently.

Sampling of PMFs. We cannot guarantee a sufficient sampling quality
and good entropy estimators. The reader be reminded that, in the remain-
der of the paper, all information theoretic quantities I and H are estimates.
We chose not to introduce a new symbol (e.g. Ĩ) to keep the notation clear.
Using Eq. (5) and substituting the leakage with the respective observation,
expression (4) becomes

I(L′

k′ ;O(τ1);O(τ2)) = I(O(τ1);O(τ2)) − I(O(τ1);O(τ2)|L
′

k′) . (6)

5 Reality Check

We study our approach and confront its performance with established
HODPA attacks in three scenarios with varying level of difficulty. In each
scenario, we apply MMIA with and without the assumption of a Hamming
weight leakage function as well as abs-diff-DPA (targeting one and multiple
bits) and product-DPA targeting multiple bits.

We consider a Boolean masking scheme as for example described in [8]
for DES or triple-DES. For simplicity we focus on a representative mini-
cipher consisting of data masking, key addition and a single S-box lookup of
the first S-box (S1). This reflects the setting depicted in Fig. 1. In practice,
we pre-compute the values M = mi and Wk ◦ M = S1(xi ⊕ k) ⊕ mi

for each encryption i on a desktop computer and send them to the card,
which successively moves the values over its data-bus at τ1 and τ2. The
data bus is reset to 0x00 before and after each memory access. All attacks
are provided with the physical measurements O(τ1) and O(τ2). Note that
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unmasked values are never processed by the card and that M as well as
Wk ◦ M exist on {0, 1}4.

For our experiments we use an 8-bit RISC microcontroller based smart-
card. The power measurements represent the voltage drop over a 10Ω resis-
tor inserted in the smart-card’s GND. We developed implementations for
three different scenarios: A) 1st order masking exactly as described above;
B) 1st order masking where the side-channel leakage is affected by un-
predictable algorithmic noise; C) 2nd order masking (without algorithmic
noise).

Following the recent advances concerning the comparison of univariate
side-channel distinguishers [18] we apply the first-order success rate to as-
sess the performance of the attacks. The first-order success rate expresses
the probability that, given n measurements, the attack’s best guess is the
correct key. For each scenario, we acquired a set of 100 000 power curves
using random masks and plaintexts. To evaluate one scenario, we split the
set into 100 packs vi (i = 1, . . . , 100) of 1000 curves and do the following:

for n := 25 to 1000
counter ← 0
(a) for i := 1 to 100

i. select the first n curves from set vi

ii. run the attack for k′ ∈ {0, 1}6

iii. increase counter if attack successful

(b) compute success rate for n curves as counter/100

For MMIA the best key guess minimizes Eq. (6). For all other methods the
best key guess gives rise to the highest correlation coefficient (in absolute
terms).

For MMIA we assume Lτ1 and Lτ2 to be bijective mappings (in our
setting 4bit to 4bit). This choice affects the number of bins that one should
use for the histograms because it defines the size of the spaces Lτ1 and Lτ2

exist on. As we assume that L ⇔ O holds at both time instants, we use
16 bins for the histograms of O(τ1) and O(τ2). We also use 16 bins for the
histograms of the leakage L′

k′ of the predictable (unmasked) S-box output
S1(xi ⊕ k). For MMIA using the Hamming weight assumption, we have
Lτj

(·) = HW(·) and we use 5 bins for all of the histograms.
For all other attacks with explicit pre-processing we assume the linear

Hamming weight model at both instants. The pre-processing functions are
Ŏ = g(O(τ1),O(τ2)) = |O(τ1) − O(τ2)| abs-diff-DPA

Ŏ = g(O(τ1),O(τ2)) = O(τ1) · O(τ2) product-DPA .
All attacks target the same unmasked intermediate result Wk = S1(X⊕k)
which does not give rise to 1st order leakage. For abs-diff-DPA targeting
a single bit we predict only the least significant bit of Wk. The attacks
evaluate ρ(Ŏ, HW(Wk′)).

In scenario A the leakage of the device at τ1 and τ2 is very close to the
linear Hamming weight model. Given the mask values mi, we obtain at τ1
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and τ2 a Pearson ρ > 0.99. Figure 2 shows the results for the five attacks
in scenario A.

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Number of samples

F
irs

t o
rd

er
 s

uc
ce

ss
 r

at
e

Fig. 2. First order success rates, 2nd order DPA: abs-diff-DPA (solid), 1-bit abs-diff-
DPA (dashed), product-DPA (dotted), generic MMIA (dash-dotted), MMIA with HW
assumption (solid and ◦)

We can see that abs-diff-DPA (solid) performs well in this scenario.
About 80 curves suffice to achieve a success rate of 50% and starting from
about 275 curves the attack reveals the correct key with success rate 1.
Single-bit abs-diff-DPA (dashed) and in particular product-DPA (dotted)
perform much worse. The success rates stay well below 50% even when using
1000 measurements. Generic MMIA (dash-dotted) is, as one can expect, less
efficient than abs-diff-DPA in this scenario but eventually reaches success
rate 1 using 630 curves. About 220 curves are required to achieve 50%
success. MMIA using the HW assumption (solid and ◦) outperforms all
other attacks. The attack needs about 35 curves to achieve 50% success
rate, about 80 curves to achieve success rates > 95% and just like abs-diff-
DPA about 275 curves to be reliable. This attack is particularly interesting
as it takes uncertainty about the leakage functions out of the equation and
shows the impact of sound joint statistics. Both attacks, this variant of
MMIA and abs-diff-DPA, use the corret power model. The advantage of
MMIA is entirely due to the way it combines the side-channel information.
We conclude that the attack that uses the correct power model and sound
joint statistics is most efficient. However, we remind that scenario A is a
somewhat easy target.

In Appendix B we present results of 2nd order attacks in the slightly
more challenging scenario B.

In scenario C we wanted to find out how MMIA scales with respect
to attacks of order greater than 2 and extended scenario A to 2nd order
masking. The S-box output values are concealed by two independent ran-
dom masks M1 and M2. The masks leak at τ1 and τ2, the double-masked
S-box output at τ3. The attack approach remains mostly the same and we
compute I(L′

k′ ;O(τ1);O(τ2);O(τ3)).
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Note, the leakage behavior of the card is again very close to the Ham-
ming weight model, which allows us to compare our results to simulation
based results3 of 3rd order DPA attacks in the literature. We also present
experimental results for 3rd order product-DPA while for abs-diff-DPA we
could not even find a reference on how to compute it.4

Figure 3 shows our experimental results for generic MMIA, MMIA using
the Hamming weight assumption, and product-DPA. We can observe that
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Fig. 3. First order success rates for 3rd order MMIA: generic MMIA (dash-dotted),
MMIA with HW assumption (solid and ◦), product-DPA(dotted, permanently at 0)

both MMIA variants require less than 1000 measurements to reach a success
rate 1 while the success rate of product-DPA is permanently 0. The figure
shows the clear advantage of MMIA in this challenging scenario. We also
tested product-DPA using all 100 000 measurements for scenario C, but the
attack did not detect the correct value of the key.

According to [15] 3rd order product-DPA requires more than 400 000
measurements in noise free and Hamming weight model based simulations
and more than 3.5 million measurements in more realistic simulations.
These values were, however, derived for attacks against 8-bit intermedi-
ate results. According to our own simulation of scenario C (no noise and
Hamming weight model) 3rd order product-DPA requires more than 50 000
measurement samples to reach success rate 1. Our observations go along
with the prevailing opinion that, with respect to HODPA attacks, the mea-
surement cost grows exponentially with the order of the attack [15, 2, 14].
Concerning MMIA this is clearly not the case.

6 Conclusion

Confronted with a new problem, one typically first tries to transform it into
another problem for which one knows the solution. HODPA attacks seem to

3 We are not aware of published experimental results for 3rd order attacks, suggestions
by the reviewers are most welcome.

4 Again, suggestions by the reviewers are most welcome.
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be such a problem. They inherently demand multivariate statistics because
multiple aspects of signals have to be analyzed jointly. However, all publi-
cations on HO-attacks follow the approach to first apply a pre-processing
function to map the multivariate problem to a univariate problem and then
to apply established 1st order DPA techniques. All proposed pre-processing
functions have drawbacks that are accepted at the price of an exponential
growth of the measurement cost with the attack order. We propose a novel
and different approach for HO attacks that does not suffer from intrin-
sic errors. The empirical evidence confirms the overwhelming advantage of
MMIA over established HODPA attacks in easy and more challenging 2nd

order attack scenarios but particularly concerning attacks of order greater
than 2. MMIA’s measurement cost grows sub-exponentially with the attack
order. As a consequence, the security provided by the masking countermea-
sure needs to be reconsidered as 3rd and higher-order attacks become very
practical. The typically implemented combination of masking and temporal
randomization should render MMIA attacks more difficult.

A Identifying the Points of Interest

One approach towards identifying these instants may be to examine the
empirical variance of several power traces obtained during processing of
constant input data. In this case, the variance in the power traces is mostly
caused by the masking and thus reveals the points in time when masked
values are processed. Another approach is to select a small time window
based on an educated guess and to perform an exhaustive search over all
pairs of time instants [14].

B A slightly more Challenging 2nd Order Attack Scenario

Scenario B is slightly more challenging than scenario A as the side-channel
leakage is affected by unpredictable algorithmic noise. Still, the predictable
leakage follows the Hamming weight model reasonably well. Given the mask
values mi we obtain at τ1 and τ2 a Pearson ρ ∼ 0.75. Figure 4 shows the
results for the five attacks in scenario B. We can see that the performance
of all attacks is affected by the noise. In particular, the success rates of all
2nd order attacks with pre-processing decreases drastically. None of them
reaches a success rate of 10% even when using 1000 measurements. This
decrease is caused by the deviation from the HW model. Comparing the
performance of both MMIA variants to scenario A, we make a couple of ob-
servations. MMIA using the HW assumption is more affected than generic
MMIA. The amount of measurments required for it to reach a success rate
of 1 is almost doubled (≈ 275 →≈ 450). This is a direct consequence of the
Hamming weight assumption, which is no longer valid. Still, the assump-
tion is meaningful to some extent and this attack remains the most efficient.
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Fig. 4. First order success rates: DPA with abs. diff. (solid), DPA with prod. (dotted),
1-bit DPA with abs. diff. (dashed), generic second-order MIA (dash-dotted), second-order
MIA with HW (solid and ◦)

Generic multivariate MIA is less affected. The number of measurements re-
quired to reach a success rate 1 increases by roughly 30% from ≈ 630 to
≈ 830. This decrease can not be caused by a wrong model assumption and
we thus assign it to the algorithmic noise in the measurements.
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