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A bstract

We derive the existence of Hopf subalgebras generated by Green’s functions in the Hopf 
algebra of Feynman graphs of a quantum field theory. This means that the coproduct closes 
on these Green’s functions. It allows us for example to derive Dyson’s formulas in quantum 
electrodynamics relating the renormalized and bare proper functions via the renormalization 
constants and the analogous formulas for non-abelian gauge theories. In the latter case, we 
observe the crucial role played by Slavnov-Taylor identities.

1 Introduction

During the last decade much of the combinatorial structure of renormalization of perturbative 
quantum field theories has been understood in terms of Hopf algebras (starting with [10, 6]). 
Although this led to many insights in the process of renormalization one could argue tha t since 
the elements in the Hopf algebra are individual Feynman graphs, it is rather unphysical. Rather, 
one would like to describe the renormalization process on the level of the 1PI Green’s functions. 
Especially for (non-abelian) gauge theories, the graph-by-graph approach of for instance the 
BPHZ-procedure is usually replaced by more powerful methods based on BRST-symmetry and 
the Zinn-Justin equation (and its far reaching generalization: the Batalin-Vilkovisky formalism). 
They all involve the 1PI Green’s functions or even the full effective action tha t is generated by 
them.

The drawback of these latter methods, is that they rely heavily on functional integrals 
and are therefore completely formal. The good thing about BPHZ-renormalization was that 
if one accepts the perturbative series of Green’s function in terms of Feynman graphs as a 
starting point, the procedure is completely rigorous. Of course, this allowed the procedure to 
be described by a mathematical structure such as a Hopf algebra.

In this article, we address the question whether we can prove some of the results on Green’s 
functions starting with the Hopf algebra of Feynman graphs. We derive the existence of Hopf 
subalgebras generated by the 1PI Green’s functions. We do this by showing tha t the coproduct 
takes a closed form on these Green’s functions, thereby relying heavily on a formula tha t we 
have previously derived.

In [1] Hopf subalgebras were given for any connected graded Hopf algebra as solutions to 
Dyson-Schwinger equations. It turned out that there was a close relation with Hochschild 
cohomology. For quantum electrodynamics, certain Hopf subalgebras of planar binary tree 
expansions were considered in [2] (cf. also [3]). Via a noncommutative Hopf algebra of formal
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diffeomorphisms (see also [4]), the authors derived Dyson’s formulas relating the renormalized 
and unrenormalized proper functions. The case of non-abelian gauge theories was discussed by 
Kreimer in [12, 11] where it was claimed that the existence of Hopf subalgebras follows from 
the validity of the Slavnov-Taylor identities inside the Hopf algebra of (QCD) Feynman graphs. 
We now fully prove this claim by applying a formula for the coproduct on Green’s functions 
tha t we have derived before in [15]. In fact, that formula allowed us to prove compatibility of 
the Slavnov-Taylor identities with the Hopf algebra structure.

After recalling the preliminaries on Feynman graphs, Green’s functions and some combina
torial factors, we state the key formula for the coproduct on Green’s functions. We first consider 
a scalar field theory (04) and derive the well-known relations between the renormalized and bare 
proper functions and the renormalization constants (Eq. (7) below).

Then, we consider quantum electrodynamics, for which we derive Dyson’s formulas [7]:

r^en(e) =  S ren(e) =  ^ ( e o ) ,  n ren(e) =  Z3n(eo),

with e0 the bare electric charge and e the renormalized charge (this is Eq. (10) below).
Finally, we establish a Hopf subalgebra consisting of the Green’s functions in a non-abelian 

gauge theory. Here the Slavnov-Taylor identities turn  out to play a crucial role. Again, we have 
the well-known formulas for the renormalized and bare functions (Eq. (15) below).

Note tha t these formulas for the proper functions are not derived via the usual procedure 
of adding counterterms to the Lagrangian but follow from the Hopf algebraic structure in 
combination with the Fyenman rules.

2 H opf algebra o f G reen’s functions

We will prove the existence of a Hopf subalgebra in H  generated by the three 1PI Green’s 
functions relevant for renormalization of quantum field theories. In particular, we will consider 
Hopf subalgebras in the case of 04-theory, quantum electrodynamics (QED) and quantum chro
modynamics (QCD). We start by briefly recalling the relevant definitions and results from [15] 
while referring the reader to tha t paper for more details.

2.1 P relim inaries

Our starting point is a renormalizable quantum field theory, given for instance by a Lagrangian 
L. In perturbation theory, one usually associates to each term in the Lagrangian an edge or a 
vertex and starts to built Feynman diagrams from them. It is well-known tha t for the purpose 
of renormalization theory, it is enough to consider only one-particle irreducible (1PI) diagrams 
with external structure corresponding to each term in the Lagrangian. For example, in 04- 
theory, there is one vertex of valence 4 and one edge, and we consider only diagrams with 2 
and 4 external edges. In general, we will consider sums over all 1PI diagrams with the same 
external structure and this defines the 1PI Green’s functions

r  r
C v =  1 4 -  \  "  c e =   ̂ \  "^  Sym(r) ’ Sym(r) ’res(r)=v J W  res(r)=e J V '

with v a vertex and e and edge. Here res(r) is the residue of r  (i.e. the vertex/edge the graph 
r  corresponds to after collapsing all internal points), and the symmetry factor Sym(r) is the 
order of the automorphism group of the graph. It is extended to disjoint unions of graphs by 
setting

Sym (r U r ')  =  (n (r , r ')  +  1) Sym (r)Sym (r'),
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with n ( r ,  r ')  the number of connected components of r  that are isomorphic to r '

In [6], Connes and Kreimer defined a coproduct on Feynman diagrams. This encodes the 
procedure of renormalization in terms of a Hopf algebra (see the appendix for a quick overview of 
Hopf algebras). Let us briefly recall how the coproduct was defined. One considers the algebra 
H  generated by Feynman diagrams (for some quantum field theory), on which a coproduct 
A : H  ^  H  0  H  is defined by

A (r) =  r  »  1 +  1 »  r  +  ^  y 0  r  (1)
7c r

where the sum is over all subdiagrams y tha t are disjoint unions of 1PI diagrams. Moreover, a 
counit e : H  ^  C is defined as the algebra map that takes the value 1 on the identity and zero 
on any 1PI graph. The antipode S : H  ^  H  can be defined recursively by

s ( r )  =  - r  -  £  s ( 7 ) r / 7 .
7c r

It turned out that the BPHZ-procedure of recursively subtracting the divergent part of a Feyn
man amplitude U (r) (for a given graph r )  in order to give the renormalized amplitude R (r), is 
given by a convolution product in the space of maps from H  to some space of functions depend
ing on the regularization parameter. Indeed, the Feynman amplitude U can be understood as 
such a map: r  ^  U (r). The counterterms are given by the map C ,

C (X ) =  e (X ) -  T  [(C 0  U) ((id 0  (1 -  e))A (X ))] (2)

with T  a map tha t projects onto the part of the amplitude that diverges when the regularization 
parameter goes to 0 (or infinity in the case of a cutoff). Crucial in proving tha t C is an algebra 
map is the following multiplicative property T  ( X Y  ) =  T  (T (X  )Y  ) +  T  (X T (Y  )) -  T  (X  )T (Y  ), 
which motivated the study of so-called Rota-Baxter algebras within the context of renormaliza
tion (see [8] and references therein). In the case of dimensional regularization, the regularizing 
parameter is the complex number z (working in d -  z dimensions) and T  is the projection onto 
the pole part of the Laurent series in z which indeed satisfies the multiplicative property. The 
renormalized Feynman amplitude R is given as the convolution product:

R (X ) =  (C * U )(X ) := (C 0  U) (A (X )).

R e m a rk  1. That this indeed encodes the BPHZ-procedure can be seen as follows. Let r  be a 
1PI graph. Then, with the coproduct given by (1) we obtain

C (r)  =  - t  u (r)  +  £  C (7 ) u ( r / 7 )
7c r

R(T) = R(T) +  C(T)

= - T  [S(r)j

where R  is the so-called prepared amplitude. See [5, Sect. 5.3.2] for more details on the BPHZ- 
procedure.

In the next sections, we would like to derive a closed form of the coproduct on Green’s 
functions. We do this using a formula tha t we have derived in [15] and have shown to imply 
compatibility of the above coproduct with Ward identities in quantum electrodynamics and 
Slavnov-Taylor identities in non-abelian gauge theories. It turned out that the corresponding
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Hopf algebras can be consistently quotiented by these identities, giving Hopf algebras tha t have 
them ‘built in’. From this, one can deduce tha t if the unrenormalized Feynman amplitudes 
satisfy the Ward or Slavnov-Taylor identities, then so do the renormalized ones as well as the 
counterterms.

Before stating the aforementioned formula, we introduce some notation. Let L (r) denote 
the number of loops of r  and r  | 7  the number of ways to insert 7  inside r .  Explicitly, the 
latter is given by

r lY =  n  ( Y ) C T  n  (Y )< j  ^ + j  -  0  ' <3>

Here Vi(r) is the number of vertices in r  of type i and Ij (r)  the number of internal edges in r  
of type j .  Moreover, n r (7 ) is the number of connected components of 7  with residue r  (r being 
a vertex or an edge). Indeed, then the binomial coefficients arises for each vertex v  since we are 
choosing nvi out of V whereas for an edge ej we choose n ej out of Ij with repetition because of 
multiple insertions of self-energy graphs on the same edge of r .  See for more details [15], where 
we have also derived the key formula for the coproduct on the 1PI Green’s functions:

* « ? ) = £  £  Sym(7 )Sym(r) (4)
Y r e s ( r ) = r  J  V U J V '

The sum is over all 7  which are disjoint unions of 1PI graphs, whereas r  is 1PI with the indicated 
residue r. Note tha t this formula holds for the 1PI Green’s functions for any quantum field 
theory, by simply allowing r  to be vertices and edges of different types (photon, electron, gluon, 
etc...).

E xam p le  2. We illustrate the combinatorial factors introduced above with the following exam
ple. Consider the graph

r  := —O —•

Then res(r) =  and S ym (r) =  2. Moreover, for the number of insertion places, we have for 
instance:

=  f  1 ) = 2  whereas

2.2 Scalar field th eory

As a warming-up for the next sections where we consider QED and QCD, we consider 04- 
theory. The Feynman diagrams are constructed from one type of vertex (of valence 4) and one 
type of edge. As mentioned above, we will consider only the 2 and 4 points Green’s functions 
Q(2) := Q -  and G (4) := G x .

We start by simplifying the expression r  | 7  a bit. Recall that nv(7 ) and n e(Y) denote the 
numbers that count the vertex and self-energy graphs in 7 , respectively. From the presence 
of only one vertex in the theory, one easily obtains the two formulas L  =  I  -  (V -  1) and 
4V =  E  +  2 I , relating the number of internal lines I , external lines E  and the number of 
vertices V  of r  to the loop number L =  L (r). Inserting the resulting expressions for I  and V
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(in terms of L and E) into Eq. (3) yields

r  | y =
nv

nv

(Y) ! (nvL(Y))n e (Y) ! (2L+£(Yj) 2) if r  is a vertex graPh,ne(Y)

(Y) ! (nLv̂ 1)) ne (Y) ! r + S  1 ) if r  is a self-energy graph .ne(Y)

Let us now consider the coproduct on the two Green’s functions G(2) and G(4) by inserting these 
expressions in Eq. (4). Clearly, we can split the sum over y in two parts: y v  and y e  containing 
only vertex and self-energy graphs respectively. This gives

a (q (2)) =  £  £
L=0 E(r)=2 

L(r)=L

a (Q(4)} =  £  £
L=0 E(r)=4 

L(r)=L

£  nv! f  L, +  1)
YV

yv

nv  J  Sym(Yv)

\ f 2L +  n E -  2 A yE
n E  J s y m ( 7 E )

I E

, / 2L +  n E -  yE
~ ^ n E \  n E /  Sym(7E

<2>
r

Sym (r) ’

0
r

S y m (r):

where we have used the shorthand notation n V := nv(YV) and n E := n e(YE). We will now 
evaluate each of the sums between square brackets. First, let us fix n V and restrict the sum 
over yV to graphs consisting of n V 1PI graphs. Then, 1

E  n v !
h0(YV )=nv

L \  ^  = y
I Svm (yta )

(

n v j  Sym(Yv ) h0(YV )=nv

\

E n(7v ,Yv ) +  1

Yv ,YV 
Yv YV —YV

n V
)

L \  Yv 
n y ’ 1 n y j  Sym(7„ ) ’

where we have simply inserted 1. Indeed, for fixed yV we have

n{7v,7t>) +  1 _  V " n ( j y , j v) _  
^  n v  ^  'Yv,YV 

Yv YV — YV
Yv n V

A glance back at the definition of Sym(Yv7V) yields for the above sum

£ Yv
Y Sym(Yv} , o(Y ) -,Yv h0(YV )=nV — 1

Y 7vL
n v j  Sym(7v) = (Q(4) -  1} £  (nv -  1}!

h0(YV )=nV — 1

7vL
n v /  Sym(7v) '

Iterating this argument n V times and summing over n V gives

L

YV ' ' ' " v ' ’ ' nV =0

Similarly, we derive

£ «E ! ( 2L +„"ƒ -  2)
YE

Ye

nE y Sym(YE) £
nE=0

2L +  nE -  2 
nE

1 -  G(2))
nE

(q (2))

1W e u se  th e  n o ta t io n  h 0(Y) for th e  n u m b e r  o f  c o n n e c te d  c o m p o n e n ts  o f a  g ra p h  y , in  a cc o rd an c e  w ith  th e  
u su a l n o ta t io n  for th e  B e tt i  n u m b ers .

L

1
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from which we obtain

In like manner, one can show

v J ù o  (g (2) )2L l

In other words, the coproduct closes on the proper 2 and 4-point functions in 04 and hence they 
form a Hopf subalgebra.

2.2.1 R en o rm alized  am p litu d e s  an d  c o u n te r te rm s

Via the Feynman rules one obtains the (unrenormalized) amplitudes -  denoted U (r) -  for a 
graph r .  By summing over all vertex and self-energy graphs and extending U by linearity, one 
defines the unrenormalized proper 2 and 4-point functions (in the presence of a regularization) 
by

r (n)(A) =  U (G (n)) , n  =  2,4.

We have explicitly denoted the dependence on the coupling constant A (as present in the orig
inal unrenormalized Lagrangian), but ignored for simplicity the momenta tha t are put on the 
external legs. The renormalized proper 2 and 4-point functions are given by

r<£>(A) =  R ( G (n)) , n  =  2,4.

Finally, the renormalization constants Z 1 and Z2 are defined by

Z  =  c ( g (4)) , Z  =  c ( g (2)) •

Recall tha t the maps R, C and U are related by the convolution product: R =  C * U . In 
combination with Equation (5) this implies the following relation between the unrenormalized 
and renormalized proper functions and the counterterms:

Z L
r^ (A ) = ( c * u )  (<g<2>) = £ ^ r (2)(A0),

L=0 Z2

where Ao := is the bare coupling constant. Indeed, contains L  powers of A, one for 
each vertex. A similar computation can be done for the proper 4-point function, leading to the 
well-known relations (cf. for instance Equation (8-100) in [9])

r(nn (A) =  Zn/2r (n)(A0); (n =  2, 4). (7)

2.3 Q uantum  electrodyn am ics

The three Green’s functions that are of interest in renormalization of quantum electrodynamics 
are G “<, G _  and G ~  and correspond to the vertex, electron edge and photon edge. As in the 
previous subsection, we would like to establish that the coproduct has a closed form on these 
Green’s functions. Let us start again by simplifying the expressions r  | y tha t appear in Eq.
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(4). Since also in QED there is only one vertex, one can derive the following equalities for the 
number of vertices and electron and proton edges in a graph r  at loop order L:

V =  2L +  E e +  Ep -  2;
Ie = 2L +  \E e + EP -  2, 
Ip = L  +  ^ Ee — 1.

If we insert these expressions in Eq. (3), then Eq. (4) implies

A (G-< ) = £
L=0

,  /^2L +  1 ^  7 v

^ U V \  n v  J s y m ( 7 v
I f 2L +  n E -  A  YV
V n E  J s y m (7E

!
L Y P

(8)

L  +  np -  1 \ 7y 
n P )  Sym(7p <8> GLx

A ( G - ) =  E
L=0

!

A (g ~  ) =  £
L=0

YV

£
YV

nv !

2 M  7 v
n y /  S y m (7 y

2 L \ Yv

n v /  Sym(Yv

V""' i / 2L +  n E -  2\  TE
V «Æ / S y m ( 7EYE

^  /L  +  np  -  A  yp 
L̂ n P V « P  / S y m ( 7 p

I / 2L +  n E -  lA ye

V «fi / S y m ( 7 EYE

V""' , f L  +  n P -  2\  YPnp J Sym(7p

GL

YP

where n V := nv(YV), n E ; =  n e(YE) and n P := np(YP) for vertex, electron self-energy and vacuum 
polarization graphs.

A computation very similar to that of the previous section allows one to rewrite the terms 
in brackets as powers of G “^ G  and G . Explicitly, we obtain for the three 1PI Green’s 
functions: ( )

(G -<)2L+1

L=0
X

(G -  )2L (G ~  )L
<8> G ~<

A (G _ ) = E 7 7 7 d
G

~< 2L

L=0
x

(G — )2L—1 (G ~ ) L

G
~< 2L

=0 ( g _ )2L ( g ^ - 1

G

G

(9)

L=0
Hence, also in the case of quantum electrodynamics the coproduct closes on the 1PI Green’s 
functions thereby generating a Hopf subalgebra.

R e m a rk  3. From these formulas, the mentioned compatibility of the coproduct with the Ward
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identities G =  G is now an easy consequence. Indeed,

X (^  2L
A (G -  G - )  = y -----------------------  (g) [G£< -  G£~]

Ù o  (G _ ) (G ~ )
x  (^  2L

+ E  iG -  G ~] — ~2T^------r ® Gl *,
h  ( G  ~ ) 2L ( G  ~ ) L L '

from which it follows at once that the ideal I  generated by G^  — G™  (L =  1,2, ■ ■ ■ ) is a Hopf 
ideal (see the appendix). Consequently, the Hopf algebra H  can be quotiented by I  to give again 
a Hopf algebra H  which has the Ward identities built in.

2.3.1 D y so n ’s fo rm ula

In [7] Dyson derived formulas relating the unrenormalized and renormalized proper functions 
and counterterms for quantum electrodynamics; they are the analogue of Eq. (7) above. In this 
section, we will derive them using the above closed form of the coproduct on the 1PI Green’s 
functions, while never referring to the Lagrangian.

As before, the Feynman rules give rise to amplitudes U (r) for each QED Feynman diagram 
r .  At the level of Green’s functions, we define the unrenormalized proper vertex function, 
electron self-energy and vacuum polarization by the identities (adopting also the notation that 
is common in the physics literature):

r^(e) =  U (G ”*) , £(e) =  U (G _ ) , n ^ v(e) =  U (G ~ )  .

We have explicitly indicated the dependence on the electric charge e, but ignored for sim
plicity the momenta that are put on the external legs. The renormalized proper functions 
Tren(e), £ ren(e) and nen(e) are defined by replacing U by R in the above formulas. Finally, the 
three corresponding renormalization constants are defined by

Z  =  C (G ”< ) ,  Z2 =  C (G _ ) , Z3 =  C (G ~ ) .

Dyson’s formulas can now easily be derived by applying R =  C * U to G ^ G  -  and G 
thereby using Eq. (9). Recall that the bare electric charge e0 is related to e via the usual 
formula: eo =  Zlf/2. A simple counting of the powers of e (i.e. the number of vertices) in the

Z2 Z3
proper functions at loop order L then gives

x  Z 2L+1
r u e )  =  £  - ^ L  r L(e) =  Z 2z l /2T^eo),Z ZL=0 2 3 

x  Z 2L
S ren(e) =  V 2 L -1  ^ ( e) =  ^ 2^(eo), (10)

L=0 Z2 Z3L
x  Z 2L

n » )  = E  = ZsU ^eo).
L=0 Z2 Z3

R e m a rk  4. Let us come back once more to the Ward identities. Suppose we have chosen a 
regularization which respects the Ward identities, so that U satisfies them in the physical sense:2

r ^  — £  =  0.

2A g a in  we ig n o re  th e  e x te rn a l  m o m e n ta  fo r th e  sake  o f sim p lic ity ; t h a t  th is  c a n  b e  d o n e  w as in  fac t sh o w n  in  
[14].
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As a consequence, U vanishes on the ideal I  (since it is generated by Q _  G ~ )  and is thus 
defined on the quotient H  =  H / I . Now, since I  is a Hopf ideal (cf. Remark 3) it is shown in [6] 
that C is again a map of Hopf algebras so that C vanishes on I  as well. Since R  =  C  * U, we also 
have that R (I) =  0 so that both the renormalized proper functions as well as the counterterms 
satisfy the Ward identities, leading in particular to the well-known expression Z i =  Z2 [16].

2.4 Q uantum  chrom odynam ics

We next consider the case of a non-abelian gauge theory. In order to be as concrete as possible, 
we consider quantum chromodynamics. There are the quark, ghost and gluon propagators, 
denoted

----------  , ..............  , \JOOOOOOOj ,

respectively, and four vertices:

030007.

Y
G

T
G _  Q ; 0*

Q < Q  ^ _  Q ' 0*

Q -<Q -< - Q ‘* Q -  =  0.

Corresponding to these edges and vertices, we define the following 7 1PI Green’s functions:

r  _ rGe = 1 _  \  " . fiv _  i i \  "
^Sym(r)’ Sym(r) ’

In [15] we have shown that the Slavnov-Taylor identities define an ideal in the Hopf algebra 
H  of QCD Feynman graphs. More precisely, the coproduct is compatible with the following 
identities,

G ^ G ^ k _g  IK g  — __o*

( ii )

Hence, the quotient H  of H  by this ideal is still a Hopf algebra. In establishing a Hopf subalgebra 
for QCD, it is essential to work with H  instead of H . Indeed, the Slavnov-Taylor identities are 
a crucial ingredient for a closed form of the coproduct on Green’s functions.

Unfortunately, there is no simple expression for the number of insertion places r  | 7  in 
QCD. This is due to the fact that there are many different vertices. Nevertheless, there are the 
following relations between the numbers of vertices, lines and loop number of a fixed graph r  
[15, Lemma 22]

I  — V  +  1 =  L; (a) Vs f  = I f  +  \ ^ f ] (b)
V3 +  2V4 — E  +  2 =  2 L; (c) V3 g  =  I g  +  \ E g -  (d)

The notation is as follows:

I  =  I f  +  Ig  +  Iym  =  number of internal quark, ghost and gluon lines 
E  =  +  E g +  =  number of external quark, ghost and gluon lines
V =  V3 +  V4

=  V3F +  V3G +  V3Ym +  V4 =  number of quark-, ghost-, cubic and quartic gluon vertices

9



We can use these expressions to simplify the coproduct on the Green’s function corresponding 
to the vertex/edge r. Indeed, as in the previous sections, one can rewrite formula (4) as

A (Qr ) =  £  £
(q  (q  -< ) v“° (g  (q  X)V3 Y M \ V4

L=0 res(r)=r
L(r)=L

= G G

( Q - ) lF (Q 

£ £

\ I q
G

\ I y m

r
Sym(r)

(12)

1  771

2 G

l=o r

V3 F -Q < -

G — G ...

V3g
G

V V3YM
G

\V4

G
\1ym <2>

r
Sym(r)

where in going to the second line, we have applied the above equation (b) and (d). We have also 
understood the notation E  =  E ( r ) ,E F =  E f ( r ) , . . .  We now insert the three Slavnov-Taylor 
identities in the following form:

G G G G G
G -  Q G G G

= G

and express everything in terms of the quartic gluon vertex function and gluon propagator. If 
we then apply the relations (a) and (c), we finally obtain

A(Gr ) =  (G - ) ï Ef (G ...) ï Eg (G ~ ) \ e ym £
L=0

\fG  
G “

2L+E-2

(13)

Of course, the coefficients E, E F , . . .  are completely determined by the vertex/edge r* together 
with the factor \  they are precisely what one would expect from wave function renormalization. 
In the next subsection, we will see that the above equation allows us to derive the well-known 
relations between unrenormalized, renormalized amplitudes and counterterms in QCD.

R e m a rk  5. The above argument also allows us to re-derive compatibility of the Slavnov-Taylor 
identities with the coproduct. In fact, the ideal I  (generated by the left hand sides of Eq. (11) 
defines a Hopf ideal. For this, observe that i f  we define X  and Y  by

X  =
G
Q -

Y =
G
G

we can replace X n (with n  =  V3F to lighten notation) in Eq. (12) by Yn after addition of 
X n _  Y n . Now, by induction it follows that

X n _  y n =  (X _  Y )Pol(X, Y) (14)

which is an element in I  and similar arguments apply to the other terms. Thus, at the cost 
of adding extra terms with elements in I  on the first leg of the tensor product, one obtains 
the above formula (13). When applied to the generators of I , one then easily obtains that 
A (I) c  I  ® H  +  H  ® I .

2

2.4.1 R en o rm alized  am p litu d e s  an d  c o u n te r te rm s

Once again, the QCD Feynman rules induces a map U from H  to the algebra of functions in 
the regularization parameter. We extend this map linearly and obtain the following self-energy 
functions:

s(g ) =  u ( q - ) ,  n(g) =  u ( g ...) ,  (g) =  u ( q ~ ) ,
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for the quark, ghost and gluon, respectively, as well as the three proper vertex functions:

r^(g) =  U ( q  ^ ) , q m(g) =  u  ( q  (g) =  u  ( g ^  , r ^ VCTp(g) =  u  ( q  k ) .

We have adopted the notation of [13] and explicitly indicated the dependence on the strong 
coupling constant g. Again, due to the Slavnov-Taylor identities between the above self-energy 
and vertex functions, the map U vanishes on the ideal I  and thus factorizes over I  to give a 
map on H . Moreover, the renormalized self-energy and proper vertex functions are obtained by 
adding a subscript ‘ren’ on the lhs and replacing U by R on the rhs of the above equations. 

The renormalization constants are defined in terms of the counterterm map C of Eq. (2):

ZiF =  C ( q  , Zi =  C ( q  , ZlYM =  C ( q  ,

Z2F =  C ( q  - )  , Z3YM =  C ( q  “ ) , Z3 =  C ( g  ...) , Z5 =  C ( q  x ) .

Since C is an algebra map from H  to functions on the regularization parameter, it vanishes on the 
ideal I . Hence, we deduce the well-known Slavnov-Taylor identities between the renormalization 
constants (cf. for instance Eq. (III.59) in [13]):

Z sY M  _  Z%_ _  Z 2 F  _  Z\YM  
Z1YM Z  Z 1F Z5

Let us now apply R =  C * U to Equation (13) to derive the well-known formula relating the 
renormalized and unrenormalized self-energy and vertex functions. First, recall the following 
formulas (cf. [13, Eq. (III.55)]) for the bare coupling constants

g0F =  Z1F Z3YMZ2Fg, g0 =  Z 1Z5 1Z3 Y Mg, 

g0YM =  Z1YM Z3YMg, g05 =  Z5/ Z3YMg ,

corresponding to the quark-gluon and ghost-gluon interaction and the cubic and quartic gluon 
self-interaction. We then obtain from Eq. (13)

£ren(g) =  Z2F ̂ gO ^ IIren(g) =  Z3n  (go), =  Z3YM (g0),

r?e»(9) =  Z2F 4 /2m r^(90), Gün(g) =  Z ^ m  r"(go), (15)

r ; r  (g) = Z33Y2m (go), r< erp(g) = Z |sm r ^ v»p(9o).

Here the argument g0 on the rhs indicates that the regularized functions are computed using the 
Feynman rules involving the bare coupling constants g0F ,go,g0YM and g05. That the factors of 
'/ Z if Z s Y M  can indeed be absorbed in the bare coupling constants follows from the fact that 
due to the above Equation (c), the power of g that appear in the Green’s function at loop order 
L  is precisely 2L +  E  _  2.
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A H opf algebras

For convenience, let us briefly recall the definition of a (commutative) Hopf algebra. It is the 
dual object to a group and, in fact, there is a one-to-one correspondence between groups and 
commutative Hopf algebras.

Let Q be a group with product, inverse and identity element. We consider the algebra 
of representative functions H  =  F  (Q). This class of functions is such that F  (G x Q) ~  
F  (Q) 0 F  (Q). For instance, if Q is a (complex) matrix group, then F  (Q) could be the algebra 
generated by the coordinate functions X j so tha t X j(g) =  g j  € C are just the (i, j ) ’th  entries 
of the matrix g.

Let us see what happens with the product, inverse and identity of the group on the level 
of the algebra H  =  F (Q). The multiplication of the group can be seen as a map Q x Q ^  Q, 
given by (g, h) ^  gh. Since dualization reverses arrows, this becomes a map A : H  ^  H  0  H  
called the coproduct and given for ƒ € H  by

A (f  )(g ,h) =  f  (gh )- 
The property of associativity on G becomes coassociativity on H:

(A 0  id) o A =  (id 0  A) o A,

stating simplfy tha t ƒ ((gh)fc) =  f(g(hfc)).
The unit e € Q gives rise to a counit, as a map e : H  ^  C, given by e( f ) 

property eg =  ge =  g becomes on the algebra level

(id 0  e) o A =  id =  (e 0  id) o A, (A2)

which reads explicitly ƒ (ge) =  ƒ (eg) =  ƒ (g).
The inverse map g ^  g-1 , becomes the antipode S : H  ^  H , defined by S (ƒ)(g) =  ƒ (g-1 ). 

The property gg-1  =  g -1g =  e, becomes on the algebra level:

m (S 0  id) o A =  m(id 0  S ) o A =  1He, (A3)

where m : H  0  H  ^  H  denotes pointwise multiplication of functions in H .
From this example, we can now abstract the conditions tha t define a general Hopf algebra.

D efin ition  6 . A Hopf algebra H  is an algebra H , together with two algebra maps A : H  0  H  ^  
H  (coproduct), e : H  ^  C (counit), and a bijective C-linear map S : H  ^  H  (antipode), such 
that equations (A1)- (A3) are satisfied.

If the Hopf algebra H  is commutative, we can conversely construct a (complex) group from 
it as follows. Consider the collection Q of multiplicative linear maps from H  to C. We will 
show tha t Q is a group. Indeed, we have the convolution product between two such maps 0, ^  
defined as the dual of the coproduct: (0 * ^ ) (X ) =  (0 0  ^ )(A (X )) for X  € H . One can easily 
check that coassociativity of the coproduct (Eq. (A1)) implies associativity of the convolution 
product: (0 * ^ ) * x  =  0 * (^  * x). Naturally, the counit defines the unit e by e(X ) =  e(X ). 
Clearly e * 0 =  0 =  0 * e follows at once from Eq. (A2). Finally, the inverse is constructed from 
the antipode by setting 0- 1(X ) =  0(S (X )) for which the relations 0-1  * 0 =  0 * 0-1  =  e follow 
directly from Equation (A3).

W ith the above explicit correspondence between groups and commutative Hopf algebras, 
one can translate practically all concepts in group theory to Hopf algebras. For instance, a 
subgroup Q' c  Q corresponds to a Hopf ideal I  c  F (Q) in tha t F (Q ') ~  F (G )/I  and viceversa. 
The conditions for being a subgroup can then be translated to give the following three conditions 
defining a Hopf ideal I  in a commutative Hopf algebra H

A (I ) c  I  0  H  +  H  0  I, e(I ) =  0, S (I  ) C I.

(A1)

=  ƒ (e) and the
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