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Stab ility  of low-friction surface sliding of nanocrysta ls  w ith  rec tan g u la r  sy m m etry  and

app lication  to  W  on NaF(OOl)

Astrid S. de Wijn* and Annalisa Fasolino
Radboud University Nijmegen, Institute for  Molecules and Materials, 

Heyendaalseweg 135, 6525 A I  Nijmegen, The Netherlands

We investigate the stability of low-friction sliding of nanocrystal w ith rectangular atomic arrange
ment on rectangular lattices, for which analytical results can be obtained. We find th a t several 
incom m ensurate periodic orbits exist and are stable against therm al fluctuations and other p ertu r
bations. As incommensurate orientations lead to  low corrugation, and therefore low friction, such 
incom m ensurate periodic orbits are interesting for the study of nanotribology. The analytical results 
compare very well w ith simulations of W  nanocrystals on NaF(OOl). The geometry and high typical 
corrugation of substrates w ith square lattices increase the robustness compared to  typical hexagonal 
lattices, such as graphite.

PA C S n u m b ers: 68 .35.A f, 62 .20 .Q p, 81 .05 .uf, 05 .45 .-a

I. IN T R O D U C T IO N

Friction at the atomic scale is currently actively stud
ied [1], One of the goals of this research is to understand 
whether extremely low friction can be obtained by an 
appropriate choice of the sliding conditions. Commensu- 
rability between the sliding lattices is one of the elements 
that determine friction. For a purely incommensurate in
finite contact, theoretical arguments suggest that static 
friction should vanish [2]. However, very low friction 
has been measured also for finite incommensurate con
tacts at very low velocities [3, 4] and this effect has been 
called superlubricity [5-7]. The atomic force microscope 
(AFM) study [3, 4] found that the sliding of graphite 
flakes on graphite can occur with very low friction, de
pending strongly on the relative orientation. At the same 
time, rotation of the flake can lead to a rapid increase of 
friction and stick-slip motion, corresponding to a locking 
into a commensurate orientation. States of very different 
friction have also been observed to coexist in the sliding 
of nanoparticles [8] and have been attributed to contam
ination or amorphous surfaces.

This paper examines theoretically the sliding of 
nanocrystals and substrates which both have different, 
but regular rectangular lattices. By means of a simple, 
analytically soluble model, we show that stable orien
tations exist for any size nanocrystal, and derive some 
general properties, showing how the stability depends on 
the scan line. The stable orientations are independent of 
the velocity and nearly independent of the corrugation, 
but depend only on the geometry of the substrate and 
contact layer of the nanocrystal. We can also estimate 
the energy barriers necessary to rotate the nanocrystal 
from a given orientation to another.

We apply the results to W nanocrystals on an 
NaF(OOl) substrate. NaF has been studied extensively 
as a substrate in the context of nanotribology [10, 1 1 ]

* A.S.deWijn@science.ru.nl

and W is commonly used for AFM tips (see, for instance 
Ref. [3] ). Both materials have a bcc lattice structure and 
the (001) surfaces in contact can thus be described by one 
finite and one infinite square lattice. The lattice parame
ters of the two materials are very similar (0.31585 nm and 
0.32668 nm respectively), which ensures the existence 
of nearly commensurate orientations for small enough 
nanocrystal. For W, the corrugation on NaF(OOl) is of 
the order of 1 eV, a value typical for many substrate 
systems (see, for instance Ref. [10]).

In this paper, we apply a model previously introduced 
to study the dynamics of hexagonal flakes on hexago
nal lattices [6] to rectangular contact layers on substrates 
with rectangular lattices. One of the important results 
is that the inherent lack of robustness of the low friction 
motion found in the hexagonal graphite system for par
ticular scan lines is not present for rectangular lattices, 
which opens the possibility for practical applications of 
low-friction sliding. The analytical results of the simpli
fied model are supported by our numerical simulations of 
W nanocrystal on NaF.

In Sec. II we introduce the notation while briefly re
viewing the model used in Ref. [6] to describe the relation 
between the rotational dynamics and friction. In Sec. Ill, 
this model is applied to a general system consisting of a 
rectangular lattice and a nanocrystal with a rectangu
lar contact layer. The analytical results are compared 
to numerical simulations of W nanocrystal on NaF(OOl) 
in Sec. IV and finally the implications of our results are 
discussed in Sec. V.

II. TH E SIM PLIFIED M ODEL OF FR IC TIO N  
A N D  ROTATION

We wish to study the dynamics of small rigid nanocrys
tals of atoms arranged in a regular lattice on a regular 
substrate, as sketched in Fig. 1. The contact layer con
sists of one atomic plane and lies in the x —y  plane parallel 
to the periodic substrate. For matched lattice parame-
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FIG. 1. A schematic representation of a nanocrystal on a 
substrate. Only the bottom  layer (dark) of the nanocrystal 
interacts w ith the substrate.

ters, by changing the orientation <f> of the nanocrystal on 
the substrate, the contact layer can be either commensu
rate or incommensurate with the substrate atoms. The 
incommensurate states which produce low friction can be 
destroyed by rotations around the z axis that lead to a 
locking in a commensurate orientation [4].

Each atom of the contact layer is subjected to a pe
riodic potential due to the substrate and to an external 
load force which may be applied to the nanocrystal. Ad
ditionally the contact layer atoms experience a friction 
force due to dissipation of kinetic energy into phonon 
modes of the substrate crystal. The remaining nanocrys
tal atoms are further away from the substrate and we 
may therefore assume that they couple only to the other 
nanocrystal atoms. The AFM cantilever or a similar de
vice used to investigate friction can be modelled by cou
pling the centre of mass of the nanocrystal harmonically 
with a spring with force constant c to a support moving 
at constant velocity v s . The friction is given by the av
erage value of the lateral force Fs, exerted by the spring 
on the nanocrystal.

In three dimensions, a rigid nanocrystal is thus left 
with only 6 degrees of freedom: the coordinates of the 
centre of mass, and the orientation. Despite this, the sys
tem is still too complicated to perform the stability anal
ysis analytically. In Ref. [6] a simple model was proposed 
to describe the rotation of hexagonal graphite flakes on 
hexagonal graphite lattices and its consequences for low- 
friction sliding. We briefly summarise this model and 
some of the results of Ref. [6] here in a general context.

A possible simplification of the system is suggested by 
the nature of the dynamics. We are interested in the ro
tation around the z axis, which affects the commensura- 
bility, and therefore the friction. Hence, the two relevant 
degrees of freedom are the position of the centre of mass 
along the scan line, x, and the orientation, <f>. Conse
quently, instead of the full substrate potential V ( x ,  y, z),  
we introduce a potential V ( x ,  </>), one example of which 
is given in Fig. 2, where one can see that the corrugation 
felt by the nanocrystal as a whole decays quickly away 
from the commensurate orientations <f> = 0, 90°. Such a 
model is fully described by the initial support position 
x®, support velocity vs, mass M  and moment of inertia
I  of the nanocrystal, the effective potential V ( x ,  </>), and

90

x  (run)

FIG. 2. An example of the shape of V(x,<j>) as obtained 
from the potential V a(x ,v )  in Eq. (15) at constant y and z, 
summed over the atoms of a nanocrystal w ith square con
tac t layer of 4 x 4 unit cells (and therefore 5 x 5  atoms) with 
lattice param eter 0.31585 nm  on a square lattice w ith corru
gation Vi =  1 eV and Vo =  V3 =  17/2 and lattice param eter 
0.32668 nm. These param eters correspond to  W(001) and 
NaF(OOl).

the viscous friction coefficient 7  of a contact layer atom 
on the substrate. Altogether, this model is similar to 
the Tomlinson model [9], but with one additional degree 
of freedom which accounts for the rotational dynamics. 
The details of the substrate and contact layer lattice ge
ometry, choice of scan line, and the applied external load 
force are accounted for in V(x, <f>) [6].

We write the equations of motion of the simplified sys
tem as a dynamical system of first-order differential equa
tions for the position x, velocity vx , orientation </>, and 
angular velocity w,

i  =  vx , (1) 

M ît,, = --------f.* ’’ ^  — c(x  — t v s — x so ) — 'yM vx  , (2)
dx

4> =  u  ,

. d V (x, (p)
Iu> = ------ a * - - 7 / * .

(3)

(4)

Some general properties of the potential energy V (x, </>) 
can be derived from the symmetries of the substrate lat
tice and contact layer. The translation symmetry of the 
substrate dictates that V (x, </>) must be periodic in x. A 
good representation of V (x, </>) is therefore given by

V (x, <f>) = U(4>) +  W (</>) cos , (5)

where U(<f>) and W (</>) are both smooth functions that 
represent the average value of the potential energy and 
the amplitude of the modulation respectively.

Furthermore, rotational symmetries of the substrate 
and contact layer lead to rotational symmetries of V (x, </>) 
of the form

V (x, (p) V{x, Asymmetry 7  </>) (6)
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where </>s y m m e t r y  is an angle of rotation under which the 
contact layer is symmetric.

These symmetries of the potential V(x, <p) further im
ply that

U {4*) —  U  ( A s y m m e t r y  T  4*) 

W (<p) = W  (Asymmetry +  <P)
(7)
(8)

For the case we consider here, square lattices, we show 
later in Sec. Ill A that also

u(4>) = u(-4>), 
w{4>) = w{-4>) . (9)

(10)

This also holds for some combinations of parameters of 
rectangular lattices. In turn, these equations imply that 
U and W  have extrema in <p = <pn =  0, Symmetry/2. Since 
the torque, given by Eq. (4), vanishes for u> = 0, <p = <pn 
these conditions define a two-dimensional invariant man
ifold of the dynamics. If the nanocrystal is on the man
ifold, it will remain there, and keep its orientation. In 
general, there may be more invariant manifolds at other 
orientations, if U and W  have additional extrema which 
coincide.

If the orientation of an invariant manifold is incom
mensurate, the corrugation is relatively small (see Fig. 2) 
and the friction force on the nanocrystal is small as well. 
Such incommensurate invariant manifolds are therefore 
interesting for the study of nanotribology.

In Fig. 3, the consequences for friction are shown for a 
typical system consisting of a W nanocrystal with (001) 
face on NaF(OOl) as described by simulations of the full 
two-dimensional system with the single-atom interaction 
potential of Eq. (15). The orientation of the nanocrystal 
remains nearly constant and the motion in the x  direc
tion exhibits stick-slip behaviour which is relatively mild 
for incommensurate orientations and corresponds to a 
relatively low average friction force.

The existence of incommensurate invariant manifolds 
does not necessarily mean that low friction can be ob
served under experimental conditions. The invariant 
manifolds may not be stable, namely, the nanocrystal 
may rotate away from it if it is at an orientation which 
deviates slightly from the invariant manifold. We must 
therefore investigate the stability and robustness of the 
invariant manifolds.

Consider a general potential V(x, <p) which has an in
variant manifold at <p = <pn, i.e.

dV(x, 4>)
dtp

0 (11)
0 —00

for all x. The growth rates of perturbations in <p and u> 
are equal to the associated Lyapunov exponents, which 
are [6]

d 2V(x, <p)
dtp2

(12)

200

f( ns)

f( ns)

FIG. 3. Typical sim ulated trajectories of a W  nanocrystal 
containing 4 x 4 x 4  unit cells (contact layer 5 x 5  atoms) on 
NaF(OOl) in the absence of therm al fluctuations, a t y  =  a /2 , 
being pulled in the x direction. The orientation remains 
nearly constant (a) and shows only small periodic fluctuations 
w ith period a / v s. Both the com mensurate and incommensu
rate  orientations display stick-slip behaviour in the position 
(b ), bu t the friction (c) is significantly higher in the commen
surate state. Further details of the simulations are described 
in Sec. IV

where ()t denotes the time average of a quantity on a typ
ical trajectory on the invariant manifold. If these growth 
rates are smaller than zero, the invariant manifold is sta
ble. This is the case if the time average of the potential 
energy is at a local minimum, i. e.,

d2V (x , tp)
d(p2

>  0 . (13)
0—0° / f

Using Eq. (5), Eq. (13) can be rewritten to read

d2U (</>) | d2W  (</>) 
d(p2 ^ dtp2 0=00 ( ¥ ) t,<fi— 0 0

> 0 .

(14)

The stability is thus determined by the functions U and 
W ,  and how much time the particle spends near the min
ima of the potential, where the cosine is negative.

In stick-slip motion, the particle spends most of its 
time in the minima of the potential, i.e. where the cosine 
is smaller than zero (see Fig. 3). In extreme cases, (cos)t
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FIG. 4. A top  view of a general rectangular lattice (open 
circles) and contact layer (filled circles) w ith mismatch angle 
<p, lattice param eters a i , an,bi,bn,  contact layer size m , n ,  and 
the potential energy of a contact layer atom  on the substrate. 
If a contact layer atom  lies on top of a substrate atom, its 
potential energy is Vi. If it lies directly between an atom  and 
its nearest neighbour in the x or y direction, it has potential 
energy V> or V3 respectively. If it lies in the centre of a rect
angle, a t equal distance from four substrate atoms, w ithout 
loss of generality, we may set the potential energy to  0. The 
origin of the coordinate system is chosen to  lie on top of a 
substrate atom.

may be almost equal to —1. If the motion is truly super- 
lubric, then the particle spends about the same time in 
the minima as it does in the maxima. If the motion is 
nearly superlubric, then the particle spends most of its 
time in the minima. Hence, for realistic cases, (cos)t < 0.

If the offset of the potential, has a minimum at
4>o it contributes positively towards the stability. Simi
larly, if the amplitude W  (</>) is at a maximum at <f>n the 
stability is enhanced, because the second derivative is 
multiplied (cos)t, which is a negative number. A mini
mum of U and maximum of W  therefore always lead to 
stability, whereas a maximum of U and minimum of W  
always leads to instability. If both are at a maximum, or 
both are at a minimum at <f>n, then the stability is not 
directly obvious.

The representation of the potential used in this sec
tion not only gives qualitative understanding, but also 
allows for quantitative predictions about the dynamics, 
as is shown by comparison to full numerical simulations 
in Sec. IV.

III. U  A N D  W  FOR R E C T A N G U L A R  LATTICES

The functions U(<f>) and W (</>) determine the existence 
and stability of the low-friction states. We will now inves
tigate these functions for a range of commonly occurring 
substrate and lattice combinations with rectangular unit 
cells.

Consider a two-dimensional substrate consisting of a 
rectangular lattice, see Fig. 4. The potential energy of 
an atom of the contact layer at position (A", Y )  due to the 
presence of the substrate can be written in the general

form

Va(X,Y) =  

, V1 - V 2

V2 +  V3

X \  V1 - V 3 (  Y
cos [ 1-ÏÏ— M------------ cos 1-ÏÏ —

a \  )  2 \  a 2

V - V -  V3 cos ( 2tt—  ) — 1 
0 1J

cos ( 27t —— ) — X -5.)

Because the potential is periodic in X  with period 01, 
this can be rewritten in a form similar to Eq. (5),

Va(A, V) =  Ua(Y) + Re W A (V )exp  ( 27ri —  
a 1 (16)

with Ua (Y)  and WA (Y) the average potential energy and 
corrugation of a single atom travelling in the x  direction 
at constant y = Y . They can be determined from the 
potential Va(x, y) in Eq. (15),

Ua ( Y )

W a (Y)

IyA(0,y) + IyA(̂ ,y) 
v 1 +  v 2 +  v 3 ~

, V1 + V2 - V s  f 0 YH------------------- cos 27t —
4 V °2

iyA(o ,y)-IyA(̂ ,y)
V - V  +  V3

V l - y 2 - ^ 3  (n Y-------------------------  COS 27T —
4 V 02

(17)

(18)

(19)

(20)

The nanocrystal is rigid, rectangular and the contact 
layer consists of m x n  atoms. The total potential energy 
of the contact layer depends on the position (x ,y)  of the 
centre of mass and orientation </>, and can be expressed 
as a sum over the potential energies of the individual 
contact atoms,

m  n

V  (x , y, 4>) = VA (X jk ,Yj k ) (21)
j=1 fc=i

where (X jk,Y jk)  is the position of the atom in the j-th  
column and fc-th row of the contact layer. For a rectan
gular three-dimensional nanocrystal the centre of mass is 
directly above the centre of the contact layer, i. e.,

Ajfc \  _ f  x
Yjk )  U

cos 4> — sin 4> 
sin 4> cos 4>

bi  (j  
bo

(22 )

Let us write V  (x, y) in a form similar to that of Eq. (5),

V(x, y, 4>) = Uy(4>) +  Re 1,,/„W e x p ( H î ! ï ) .(23)

where Uy and W y are the average potential energy and 
corrugation of a contact layer at orientation <f> moving on
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a scan line along the x  direction for a specific y. They can be obtained from UA and WA as,

Uy(4>) = J 2 J 2 UA & )
j = i  k = i

" W )  =  E E  WA (Yj k )exp I 2-rri
3 = 1 fe=l

•

ai

(24) 

• (25)

Substituting Eq. (22) and explicitly performing the sums 
yields

Uy(</>) =  ran y
sin j' n n ^  cos </>̂ sin n̂ m ^  sin (pj

cos I 2ty—
a'2 )  sin ( 7T cos <p ) sin ( tt ̂  sin <p02

Wy(<P) =
V ~ V 2 + v3 sin (^m! t cos sin (nnafsin

 ̂ sin 7̂T cos <pj sin 7̂r ̂  sin (pj

, V1 - V 2 - V 3
COS ( 27T —  

a2

sin 7TO&2 s^ l \ z y a2 a i J sin 7TTO&! ( s * * ±  +1 \  a 1 a 2 J

sin n b o  (  _  m £ \  
z \  a 2 ai J sin b ( c o s t  s i n £ \  

1 \  a 1 a 2 J

(26)

(27)

where we have used that J2iZo exp{2*x[/ — (d — l) /2 ]} =  substrate with a square lattice (ai = a2 = a, V2 = V3). 
sin(cfe)/sin(x) For this case Eqs. (26) and (27) become

We consider the shape of these two functions U and 
W  for the important case of square lattices in the next
section. „ V  + 2V> /  v \

Uy{(p) = d ------------- h cos [2tt- J  w (4>) , (28)

A. Square contacts on square lattices W y((f>) — w((p) +  cos 2̂7T—j  w\((p) , (29)

Let us consider square contact layers (to =  n = d) of 
atoms arranged in a square lattice (61 =  b2 = b) on a with

V\ sin (ndA cos (p) sin (ndA sin (p) 
4 sin (n I  cos (p) sin (tt |  sin (p)wW = -T-èrrî— A • 5° • (3°)

V\ — 2V2 sin [7rd-  (cos (p — sin (p)\ sin [nd- (cos (p +  sin (p)\
W \ {(p) = -------------------------F—f--------------------------ï------- F— ------------------------ï— • (31)

4 sin ( c o s  (p — sin </>)] sin ( c o s  (p +  sin (p)\

These equations are symmetrical under the transforma
tion (p —>• —(p. The second term on the right hand side of 
Eq. (29), w \ (</>), is proportional to (V\ — 2V2) /4, which 
is generally small, and in many cases taken to be 0 (see, 
for instance, the substrate potentials used in Refs. [10]). 
We therefore initially neglect the second term and focus 
on the first term and write

The function w((p) then completely determines U and W  
for all scan lines, and therefore the invariant manifolds 
as well as their stability. As the first term of Uy((p) is 
constant, the extrema of Uy coincide approximately with 
the maxima of \ W y \, leading to invariant manifolds at the 
corresponding orientations,

Wy((P)=w((P) . (32)
dw((p)

d(p (33)
0  =  00
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FIG. 5. The function w((j>) which determ ines Uy and W y 
(see Eqs. (28) and (32), and thus the invariant manifolds 
and their stability, is p lotted for various values of d and 
b/a =  0.96685, corresponding to  a. W  nanocrystal w ith its 
(001) face on NaF(OOl). The num ber of extrem a increases 
w ith d. The maximum size of the extrem a for d —v oc is also 
plotted. In general, if d is even, w((j>) has a minimum at 0, 
and if d is odd a maximum. For d =  5, besides the maxima at 
<t> =  0° and <t> =  45°, w(<f>) has m inim a at <f> «  16.95°, 36.25°, 
and a maximum at ~  28.32“ . For d =  10, besides the 
minimum at =  0“ and the maximum =  45“ , «>(</>) has 
m inima at <j> ~  14.33'1, 22.98'1, 32.56'1,40.86“ and m axim a at 
4> ~  8.39°, 19.51°, 27.69°, 36.34°. Each of the extrem a corre
sponds to  an invariant manifold.

In Fig. 5 examples of w(4>) are plotted for W on NaF(OOl) 
for several values of d.

The extrema of U and W  give the invariant manifolds. 
One of the invariant manifolds is at <f> = 0, while the 
others are at incommensurate orientations, which do not 
depend on the scan line y. Additionally, the nodes in 
the amplitude (W y(<f>) =  0) all occur at the same value 
of Uy{4>) = d2( \ i +  2V2)/4. The number of such nodes 
can be determined from the number of zeros of the nu
merator, and in the range of <f> G (0°,45°) for a = b, this 
number is in general equal to d — 1, except when the ze
ros coincide, which occurs for instance when d2 can be 
written as the sum of the squares of two integers.

As iu(4>) is independent of the position y of the scan 
line, the orientations at which invariant manifolds oc
cur are independent of the scan line while their stability 
is controlled entirely by the prefactor c o s ( 2 7 ty /a)  in Uy. 
The requirement of stability, Eq. (14), implies that each 
minimum of Uy(<f>) leads to a stable invariant manifold, 
which in turn means that there are at least (d — l) /2  
stable incommensurate periodic orbits if a = b. If the 
scan line changes and the prefactor c o s ( 2 7 ty /a)  becomes 
small, the amplitude term of W  in Eq. (13) becomes 
dominant, and the invariant manifolds at the maxima 
of U become stable as well. If the prefactor c o s ( 2 7 ty /a) 
changes sign, Uy changes sign, so that the maxima of U 
becoming minima and the minima maxima. The invari
ant manifolds which are stable for c o s ( 2 7 ty /a) > 0 then 
become unstable for c o s ( 2 7 ty/a)  < 0, and those which

were unstable become stable. Depending on the sign and 
size of c o s ( 2 7 ty/a),  there are therefore generally between 
(d— 1 )/2  and d — 1 stable incommensurate periodic orbits. 
In cases of very strong stick-slip behaviour, the centre of 
mass spends most of the time in the potential minimum 
and (cos)t is almost equal to —1. In this case, the invari
ant manifold is stable for nearly all scan lines.

When d becomes large, the numerator in w(4>) oscil
lates rapidly. However, the denominator is independent 
of d and determines the size of the maxima and minima 
(see Fig. 5),

m axV Y ' ) —  , - l b  i \  • /  b ■ i \  ' v >
4  sm (7T  ̂cos <p) sm sin <p)

This function therefore estimates the robustness of the 
incommensurate orientations, i. e. the typical energy bar
rier that must be overcome to rotate from one to another 
nearby stable orientation,

A E(4>) «  wmax(</>) • (35)

In the case of the graphite flakes on graphite, it was 
found that the incommensurate orientations are not very 
robust [6]. However, graphite has a very small corru
gation (around 25 meV, comparable to k ^ T  at room 
temperature) compared to NaF(OOl), which has a cor
rugation of around 1 eV. The typical energy barrier for 
W on NaF(OOl) is around 0.4 eV even at 45°. Conse
quently, the low-friction incommensurate states of this 
system are robust against thermal fluctuations at room 
temperature. Additionally, due to the much larger mass 
of the W atoms and large M  and I, the incommensurate 
states are also more robust against low support velocities 
than in graphite.

B. A note on hexagonal lattices

The results presented here can be applied to determine 
U and W  for a graphite flake subject to the potential 
of Ref. [4], which consists of a sum of two rectangular 
lattices, while a hexagonal flake can be written as the 
sum of several rectangular flakes.

Similar behaviour, including the existence of the tran
sition scan line where c o s ( 2 7 ty/a) = 0 was observed 
for hexagonal flakes of different sizes on a hexagonal 
lattice[6]. The diameter for hexagonal flakes is 2 y /N/6,  
and the total number of invariant manifolds is 2 y /N /6 + l .  
It should be noted, however, that in hexagonal lattices, 
due to the symmetry, the corrugation vanishes for some 
scan lines, whereas this does not generally happen for 
square lattices. This low W y in hexagonal lattices tends 
to occur at scan lines where the minimum in Uy at 
the incommensurate orientation is not very pronounced, 
causing the incommensurate states to become only very 
weakly stable [6] and not robust.
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IV. W  NANO CRYSTALS ON NAF(OOl)

The results of the previous section are applicable to 
many systems that present square lattices, like the (001) 
surfaces of fee and bcc materials. In this work, as a rep
resentative system, we have chosen a substrate which has 
been widely studied experimentally, NaF(001)[ll]. Due 
to the bcc structure of the NaF, the surface atoms of the 
substrate are arranged in a square lattice with lattice 
parameter 0.32668 nm. Additionally, the corrugation of 
NaF, around 1 eV, is typical for many substrate systems. 
Unless otherwise mentioned, in this work corrugation pa
rameters of Vf = 2Vó =  2V3 =  1 eV will be used.

For the nanocrystal, we have used W, which is also 
common in experiments as a tip material. W has a bcc 
structure and the (001) contact layer consists of a square 
lattice, with lattice parameter 0.31585 nm. As the lattice 
parameters of the contact layer and substrate are very 
similar, there exist orientations at which the two lattices 
are nearly commensurate, as long as the contact layer is 
small.

This system is thus extremely suitable for studying 
the effects of commensurability on the friction of small 
nanocrystals. As the W atoms are quite heavy, the to
tal mass and moment of inertia are large, and the mo
tion of the nanocrystal should behave approximately one- 
dimensionally and the simple model described in Secs. II 
and III is applicable. The function w(4>) (Eq. 31), plotted 
for several cases in Fig. 5 determines the stable orienta
tions. These orientations are mentioned in the caption 
for d = 5 and d = 10.

A. sim ulations

We have performed molecular dynamics simulations of 
rigid W nanocrystals on NaF(OOl) based on the full po
tential Va(A", Y )  in Eq. (15). The nanocrystals were cou
pled harmonically (spring constant c =  10 N/m) to a sup
port moving at constant velocity vs = 32.668 mm/s (or 
0.1 o/ps) in the positive x  direction at constant y  =  y s . 
Note that this is several orders of magnitude larger than 
the velocities typically used in AFM experiments, which 
are of the order of 1 yit/s. These values were chosen for 
computational reasons, but the dynamics of the system 
at lower velocities are represented well, as the time scales 
associated with the interaction between the substrate and 
nanocrystal are still much shorter than the time it takes 
the support to traverse one unit cell. For the viscous 
friction parameter of the substrate we have chosen the 
typical value of 7  =  1/ps. For simplicity we have re
stricted ourselves to cubic nanocrystals.

In Fig. 3, several examples are shown of simulated tra
jectories for d = 5. The orientations are nearly constant, 
but may fluctuate periodically with a period equal to the 
time it takes the support to move one lattice spacing. 
These fluctuations are due to the motion in the y direc
tion.

0 0.1 0.2 0.3 0.4 0.5

ys (a)

FIG. 6 . A bifurcation diagram  for a cubic W  nanocrystal 
w ith a 5 X 5 contact layer on NaF(OOl) at support velocity 
vs =  32.668 m m /s. Simulations were run  starting  from initial 
conditions x  = —a / 4 , y  =  ys, v x = vB,v y = 0,co =  0 and 
a range of initial orientations between 0 and 45“ , w ith 0.5“ 
intervals. The final angle is p lotted in black. The set of initial 
angles which converge to  the various periodic orbits, i.e. cross 
sections of the basins of attraction , are p lotted in different 
colours for each stable orientation. A part from =  0“ , 45“ , 
stable orientations occur at 4> ~  16.95“ , 28.32“ , 36.25“ , which 
correspond exactly to  the extrem a of «>(</>) for this system, 
shown in Fig. 5.
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FIG. 7. A bifurcation diagram  and basins of a ttrac
tion of a system similar to  the one of Fig. 6 apart 
from the size of the W  nanocrystal, which is still cu
bic, bu t has a 10 x 10 atom  contact layer. A part 
from =  0“ , 45“ , stable orientations occur at ~  
8.39“ , 14.33“ , 19.51“ , 22.98“ , 27.69“ , 32.56“ , 36.34“ , 40.86“ .

In Fig. 6 the results of 11739 simulations of the same 
system for different initial conditions and ys are shown. 
The final angles is plotted as a function of the scan line 
and initial angle, demonstrating the existence and stabil
ity of the periodic orbits at specific orientations. These 
orientations correspond exactly to the extrema of w(4>) 
for this system, shown in Fig. 5.

The sets of initial angles which converge towards these 
stable orientations are also indicated in Fig. 6. It can be 
seen that the orientations at 16.95° and 36.35° are more
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FIG. 8 . The functions w((j>) and u>i(</>) are plotted for b/a  =  
0.96685, corresponding to  a system of W(001) on NaF(OOl) 
for d =  5 and V> = Vl/3. «'(</>) is the same as in Fig. 5, 
bu t W y((j>) is no longer equal to  it. Besides the maximum 
at =  0“ and minimum at =  45“, W y ((j>) has minim a at 
4> ~  11.73“, 23.83“, and m axim a at 4> ~  17.63' ', 32.39' '.

stable at ys = 0, as expected from minima of w(4>), while 
0°, 28.32°, and 45°, which correspond to maxima, are, as 
expected, more stable at ys = a/2.

In Fig. 7, the same plot is repeated for d = 10. There 
are more stable orientations, and these correspond ex
actly to the extrema of w(4>) for d = 10, shown in Fig. 5. 
Their behaviour near ys = 0 and ys = a/2  is also exactly 
as expected from w(4>).

The orbit at <f> = 36.35° in Fig. 6 breaks down for 
some 0 < ys < a/4. For these scan lines the theoretical 
approach described in this paper predicts that this ori
entation is stable. However, it is impossible to explore 
all possible sets of initial conditions in simulations, and 
thus the bifurcation diagrams are necessarily incomplete. 
At these scan lines, the range of initial conditions chosen 
for the simulations does not intersect with the basin of 
attraction of the stable periodic orbit at <f> = 36.35°.

The comparison of these numerical simulations to the 
predictions of the analytical model is exceedingly good, 
including the important feature that several incommen
surate orbits are stable for all scan lines.

B. T h e  case V2 =  V3 /  1 1/2

Though in most cases of square lattices V> =  V\/2  
(see, for instance Ref. [10]), this may not always be true. 
We therefore briefly consider the implications of V> =  
V3 7̂  Vi/2, where, in Eq. (29), the second term can no 
longer be neglected. In Fig. 8 w(4>) and «.’1 (</>), which 
determine Uy(<f>) and W y(<f>) through Eqs. (28) and (29) 
are plotted. These two functions together determine the 
invariant manifolds and their stability. The extrema of U 
and W  no longer coincide exactly, and so the location of 
the invariant manifolds is much less trivial than before.

In Fig. 9, the plot of Fig. 6 is repeated for V> =  Vi/3.

0 0.1 0.2 0.3 0.4 0.5

ys (a)

FIG. 9. The plot of Fig. 6 repeated w ith V> =  Vi/3. 
Besides at =  0“ , 45“ , stable orientations occur at ~  
16.89“ , 27.9“ , 36.59“ .

As both iu(4>) and W y(<f>) still have an extremum near 
4> «  17°, the orbit at that orientation persists, but is 
changed slightly. The orbits near 28° and 36° also still 
exist, in distorted form, because the second term in W y, 
determined by w i (</>) oc (V i — V > )/V 2 , is relatively small 
compared to Uy(<f>), so that Uy(<f>) is the dominant contri
bution to the stability, regardless of the scan line. This is 
in general the case, unless V> deviates very strongly from 
Vi/2.

V. CONCLUSIONS

We have analytically investigated the driven nonlinear 
dynamics of general rectangular nanocrystals on rectan
gular lattices and their relation to sliding friction. We 
have formulated an approximate analytical model, which 
gives the conditions for the existence and stability of in
commensurate sliding states with low friction. We show 
that the number of incommensurate orbits grows linearly 
with the diameter of the nanocrystal and that for realis
tic systems, several states can be robust against thermal 
fluctuations, change of scan line, and driving velocity. 
The geometry and high typical corrugation of substrates 
with square lattices increase the robustness compared to 
typical hexagonal lattices, such as graphite. Moreover, 
unlike hexagonal lattices, square lattices do not have a 
scan line where the stability becomes extremely weak. 
This has implications for experiments where many dif
ferent scan lines are explored, and thus a nanocrystal at 
a stable orientation for one scan line would be forced to 
rotate when the apparatus switches to another scan line, 
as was noted for the specific case of graphite flakes on 
graphite in Ref. [6].

Together with the increased moment of inertia for a 
nanocrystal, our results suggest that it should be easier to 
experimentally observe incommensurate sliding for three- 
dimensional nanocrystals with bcc or fee structure than 
for hexagonal graphite flakes.
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