
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a preprint version which may differ from the publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/83983

 

 

 

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16168446?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/83983


Sparse Preference Learning

Evgeni Tsivtsivadze and Tom Heskes
Institute for Computing and Information Sciences 
Radboud University Nijmegen, The Netherlands
{evgeni,t.heskes}@science.ru.nl

Abstract
We propose a novel sparse preference learning/ranking algorithm. Our algorithm 
approximates the true utility function by a weighted sum of basis functions using 
the squared loss on pairs of data points, and is a generalization of the matching 
pursuit method. It can operate both in a supervised and a semi-supervised setting 
and allows efficient search for multiple, near-optimal solutions. In our experi
ments we demonstrate that the proposed algorithm outperforms several state-of- 
the-art learning methods when taking into account unlabeled data and performs 
comparably in a supervised learning scenario, while providing sparser solution.

1 Introduction
Learning preference relations involves prediction of ordering of the data points rather than prediction 
of a single numerical value as in the case of regression or a class label as in the case of a classification 
task. The ranking problem can be considered as a special case of preference learning when a strict 
order is defined over all data points. Despite notable progress in the development and application of 
preference learning/ranking algorithms (e.g. [5]), so far the emphasis was mainly on improving the 
learning performance of the method (e.g. [2,1]) and much less is known about the models that focus 
in addition on interpretability and sparseness of the ranking solution. Besides interpretability, sparse 
models also lead to notably faster prediction times (that is an absolute necessity for a wide range 
of applications such as e.g. search engines), compared to the non-sparse counterparts. A ranking 
method that can lead to sparse solutions is RankSVM [6]. However, in RankSVM sparsity control 
is not explicit and the produced models are usually far from being interpretable. Also note, that 
frequently ranking algorithms are not directly applicable to more general preference learning task or 
can become computationally expensive.
In this paper we propose a sparse preference learning/ranking algorithm. Our method is a general
ization of the (kernel) matching pursuit algorithm [9] and it approximates true utility function by a 
weighted sum of basis functions using squared loss on pairs of data points. Unlike existing methods 
our algorithm allows explicit control over sparsity of the model and can be applied to ranking and 
preference learning problems. Furthermore, an extension of the algorithm allows us to efficiently 
search for several near-optimal solutions instead of a single one. We show that our algorithm can op
erate in supervised or semi-supervised setting, leads to sparse solutions, and improved performance 
compared to several baseline methods.

2 Problem Setting
Let X be a set of instances and Y be a set of labels. We consider the label ranking task [5, 3] namely, 
we want to predict for any instance x  e  X a preference relation P x C Y x Y  among the set of labels 
Y . We assume that the true preference relation P x is transitive and asymmetric for each instance x  e  
X . Our training set {(q i; si)}™= i contains the data points (qi; s¿) =  ((x i; y¿), s¿) e  (X x Y ) x R

1



that are an instance-label tuple q¿ =  (xi; yi) e  X x Y and its score s¿ e  R. We define the pair of 
data points ((x, y), s) and ((x', y'), s') to be relevant, iff x  =  x' and irrelevant otherwise.
As an example, consider an information retrieval task where every query is associated with the 
set of retrieved documents. The intersection of the retrieved documents associated with different 
queries can be either empty or non-empty. We are usually interested in ranking the documents that 
are associated with a single query (the one that has retrieved the documents). Thus, ranks between 
documents retrieved by different queries are not relevant for this task, whereas those documents 
retrieved by the same query are relevant.
Given a relevant pair ((x, y), s) and ((x, y'), s'), we say that instance x  prefers label y to y', iff 
s >  s'. If s =  s', the labels are called tied. Accordingly, we write y ¡̂ x y' if s >  s' and y ^ x y' if 
s =  s'. Finally, we define our training set T  =  (Q, s, W ), where Q =  (q1, . . . ,  qn ) 4 e  (X x Y )n is 
the vector of instance-label training tuples and s =  (s1;. . . ,  s„)¡ e  Rn is the corresponding vector 
of scores. The W matrix defines a preference graph and incorporates information about relevance 
of a particular data point to the task, e.g. [W]¿ j =  1 , if (qi; q j), 1  <  i, j  <  n, i =  j, are relevant 
and is 0  otherwise.
Informally, the goal of our ranking task is to find a label ranking function such that the ranking 
P f,x C Y x Y induced by the function for any instance x  e  X is a good “prediction” of the true 
preference relation P x C Y x Y . Formally, we search for the function ƒ : X x Y ^  R mapping 
each instance-label tuple (x, y) to a real value representing the (predicted) relevance of the label y 
with respect to the instance x. To measure how well a hypothesis ƒ is able to predict the preference 
relations P x for all instances x  e  X , we consider the following cost function (disagreement error) 
that captures the amount of incorrectly predicted pairs of relevant training data points: d(f, T) =  
2 £ " , j = 1  [W]i:j I sign(s¿ -  Sj) -  sign(f (q¿) -  f  (qj)) I, where sign(-) denotes the signum function.

3 Ranking Pursuit
In this section we tailor the kernel matching pursuit algorithm [9] to the specific setting of preference 
learning/ranking problem. Considering the training set T  =  (Q, s, W ) and a dictionary of functions 
D =  {k 1 , . . . , k N}, where N  is number of functions in the dictionary, we are interested in finding 
sparse approximation of the prediction function f P(q) =  P=1 apkYp (q) using the basis functions
{k1, . . . ,  k P} C D and the coefficients { a1, . . . ,  aP} e  R P. The order of the dictionary functions 
as they appear in the expansion is given by a set of indices {y1, . . . ,  yp }, where 7  e  { 1 , . . . ,  N }. 
We note that basis functions in our case are the kernel functions, similar to [9]. We will use notation 
fP =  (f P (q 1 ) , . ,  f P (qn )) to represent the n-dimensional vector that corresponds to the evaluation 
of the function on the training points. We also define r =  s - f P to be the residue. The basis functions 
and the corresponding coefficients are to be chosen such that they minimize an approximation of the
disagreement error: c( f p, T) =  1 E ? , j = 1  [W]i,j ((s¿ -  Sj) -  ( f p (q¿) -  f p (qj))) , which in matrix
form can be written as c(fP, T) =  (s -  fP )4L(s -  fP ), where L  is the Laplacian matrix of the graph 
W.
The ranking pursuit starts at stage 0, with f0, and recursively appends functions to an initially empty 
basis, at each stage of training to reduce the approximation of the ranking error. Given fp we build
fp+1 (a, y) =  fp +  akY, by searching for 7  e  { 1 , . . . ,  N } and a e  R such that at every step (the 
residue of) the error is minimized:

J  (a, 7 ) =  c(fp+1 (a ,7 ), T) =  (s -  fp+1 (a, y ))‘L(s -  fp+1 (a ,7 )) =  (rp -  ak7  )‘L(rp -  ak7  ),

where we use a notation kYi =  k(qY, q¿ ) and kY =  (kY1, . . . ,  k7„ )i . The a that minimizes J  (a, 7 ) 
for a given 7  reads a =  (k^LkY)- 1 k^Lrp. The set of basis functions and coefficients obtained at 
every iteration of the algorithm is suboptimal. This can be corrected by back-fitting procedure using 
a least-squares approximation of the disagreement error. The optimal value of parameter N , that can 
be considered as a "regularization" parameter of the algorithm, is estimated using a cross-validation 
procedure.

2



Learning Multiple Near-Optimal Solutions
In this subsection we formulate extension of the ranking pursuit algorithm that can efficiently use 
unscored data to improve performance of the algorithm. The main idea behind our approach is to 
construct multiple, near-optimal, "sparse" ranking functions that give a small error on the scored 
data and whose predictions agree on the unscored part.
Let us consider M  different feature spaces H i , , H M that can be constructed from different data 
point descriptions (i.e., different features) or by using different kernel functions. Similar to [9] we 
consider H to be a RKHS. In addition to the training set T  =  (Q, s, W ) originating from a set 
{(q i; si)}n=i of data points with scoring information, we also have a training set T  =  (Q, W ) 
from a set { q j i=i of data points without scoring information, Q =  (qi , . . . ,  q l)t G ( X x  Y ) , 
and the corresponding adjacency matrix W . To avoid misunderstandings with the definition of the 
label ranking task, we will use the terms "scored" instead of "labeled" and "unscored" instead of 
"unlabeled". We search for the functions FP =  (fPiy, . . . ,  fPM)) G H i x . . .  x H M, minimizing

M
Z(Fp , T , T )  = Y J c(fPv),T ) +  v ^  c(/Pv),/P M),T )

v = i
M

(1)v,u=1
where v G R+ is a regularization parameter and where c is the loss function measuring the disagree
ment between the prediction functions of the views on the unscored data:

c(fPv), fPu), T  ) 1
2 i j =i

W Ì i j ( (f Pv)(q¿) - f Pv)(q j^  -  (f P“)(q¿) - f P“)(q¿))

Although we have used unscored data in our formulation, we note that the algorithm can also op
erate in a purely supervised setting: It will not only minimize the error on the scored data but also 
enforce agreement among the prediction functions constructed from different views. The prediction
functions fPv) G H v of (1) for v =  1 , . . . ,  M  have the form fPv)(q) =  ^ P = i ap^fc^Uq) with 
corresponding coefficients {a1v), . . . ,  ap^} G R p . Let L  denote the Laplacian matrix of the graph 
W . Using a similar approach as in Sec. 3 we can write the objective function as

M
J(a, Y) =  c(Fp+i(a, y ), T , T ) =  ] T (r p -  a ^ k ^ ) ^  -  a ^ j )

v = i
M

+  v V  (a(v)kYv) -  a(“)kY“))iL(a(v)kYv) -  a(“)kY“)),/  j ' /v Yu ' K Yv Yu ' 1

where a =  (a(i), . . . ,  a(M))t G RM, Y =  (y1, . . . ,  YM) with Yv G { 1 , . . . ,  N }, and kY is the basis 
vector expansion on unscored data with fc7i =  k(qY, qi ). By taking partial derivatives with respect 
to the coefficients in each view (for clarity we denote k ^  and k ^  as k (v)and k (v), respectively) 
and defining gVv) 2v(M  -  1)k(v)tLk(v) and g(v) =  k (v)tLk(v), we obtain

M
da(v) J  (a, y ) =  2(g(v) +  gVv) )a(v) -  2k(v)iLrp -  4v ^  k (v)tL k (u) a(u).

u=i,u=v
At the optimum we have J  (a, Y ) =  0 for all views, thus, we get the exact solution by solving

g(1) a.(  g(1) +  gV -2 v k (1)tLk(2) . . .  \
—2vk(2)L k(1) g(2) +  gV2)

V

(2)

/  V

I  k(1)tLrp \  
k(2)tLrD

/ V /
with respect to the coefficients in each view. Note that the left-hand side matrix is positive definite 
by construction and, therefore, invertible. Once the coefficients are estimated, multiple solutions can

2

d

3



R e q u ire :  Training set w ith scored and unscored d a ta  - T ,  T ,  dictionary of functions - V,  
number of the basis functions - P,  and the co-regularization param eter - v.

E n su re : Construct residue vector r  
1 : fo r p  =  1,. .. , P  (or until performance on the validation set stops improving) d o  
2: 7 P =  argm in7  J  (a* (7 ), 7 )
3: Com pute a*(7 p) =  (B  +  C')-1 e using the matrices (notation from Sec. 3):

b = 0 g
(2)

•• /

k^Lrp \
e =  I k ^ ^ L rp C =  I - 2 !/k^)iLk^1)

- 2 !/k^1)iLk^)
(2)9i>

. . .  \  

•••

Set a  =  a*(7 p) and com pute new residual r p+i =  rp — jj  
e n d  for
Com pute prediction:

_ M  P

/Hq ) = ¥ E E »
V = 1 p = 1

Figure 1: Semi-supervised ranking pursuit algorithm.

be obtained using the prediction functions constructed for each view. We can also consider a single 
prediction function that is given, for example, by the average of the functions for all views. The 
overall complexity of the standard ranking pursuit algorithm is ö ( P n 2), thus, there is no increase 
in computational time compared to the kernel matching pursuit algorithm in the supervised setting 
[9]. The semi-supervised version of the ranking pursuit algorithm requires 0 ( P n M ( M 3 + M 2l)) 
time, which is linear in the number of unscored data points1. The pseudo-code for the algorithm is 
presented in Figure 1.

4 Experiments
We perform a set of experiments on the publicly available Jester joke dataset2. The task we address 
is the prediction of the joke preferences of a user based on the preferences of other users. The dataset 
contains 4.1M ratings in the range from -1 0 .0  to +10.0 of 100 jokes assigned by a group of 73421 
users. Our experimental setup is similar to that of [2], We have grouped the users into three groups 
according to the number of jokes they have rated: 20 -  40 jokes, 40 -  60 jokes, and 60 -  80 jokes. 
The test users are randomly selected among the users who had rated between 50 and 300 jokes. For 
each test user half of the preferences is reserved for training and half for testing. The preferences are 
derived from the differences of the ratings the test user gives to jokes, e.g. a joke with higher score 
is preferred over the joke with lower score. The features for each test user are generated as follows: 
A set of 300 reference users is selected at random from one of the three groups and their ratings for 
the corresponding jokes are used as a feature values. In case user has not rated the joke the median 
of his/her ratings is used as the feature value. The experiment is done for 300 different test users 
and the average performance is recorded. Finally, we repeat complete experiment ten times with a 
different set of 300 test users selected at random. We report the average value over the ten runs for 
each of the three groups.
In this experiment we compare performance of the ranking pursuit algorithm to several algorithms, 
namely kernel matching pursuit [9], RankSVM [6], RLS [8], and RankRLS [7] in terms of the 
disagreement error. In all algorithms we use a Gaussian kernel where the width parameter is chosen 
from the set {2 1 r’. 2 11. . . ,  214, 215} and other parameters (e.g. stopping criteria) are chosen by

!In semi-supervised learning usually n  <C I, thus, linear complexity in the number of unscored data points 
is beneficial. We note that complexity of the algorithm can be further reduced to 0 ( P M 3n l ) by forcing the 
indices of the nonzero coefficients in the different views to be the same.

2 Available at h t t p  : /  /www . i e o r .  b e r k e l e y ,  e d u / - g o ld b e r g /  j e  s t e r - d a t a / .

4



Table 1: Performance comparison of the kernel matching pursuit, RLS, RankSVM, RankRLS, and 
ranking pursuit algorithms in the supervised learning experiment conducted on Jester joke dataset. 
Normalized version of the disagreement error is used as a performance evaluation measure.

M e t h o d 20 - 40 40 - 60 60 - 80
RLS 0.425 0 .419 0 .383
M a t c h in g  P u r s u it 0 .428 0 .417 0.381
R a n k SV M 0 .4 1 2 0 .404 0 .3 7 2
R a n k R L S 0 .409 0 .407 0 .374
R a n k in g  P u r s u it 0 .410 0 .404 0 .373

Table 2: Performance comparison of the kernel matching pursuit, RLS, RankSVM, RankRLS, rank
ing pursuit, and semi-supervised ranking pursuit algorithms in the semi-supervised learning experi
ment conducted on Jester joke dataset. Supervised learning methods are trained only on the scored 
part of the dataset. Normalized version of the disagreement error is used as a performance evaluation 
measure.

M et h o d 20 - 40 40 - 60 60 - 80
RLS 0.449 0.434 0.405
M a t c h in g  P u r su it 0.451 0.433 0.404
R a n k SVM 0.428 0 .417 0.391
R a n k RLS 0.429 0.418 0.393
R a n k in g  P u r su it 0.428 0 .417 0.393
SS R a n k in g  P u r su it 0.419 0.411 0.381

taking the average over the performances on a hold out-set. The hold-out set is created similarly as 
the corresponding training/test set.
The results of the collaborative filtering experiment are included in Table 1. It can be observed that 
ranking based approaches in general outperform regression methods. Although performance of the 
ranking pursuit algorithm is similar to that of the RankSVM and RankRLS algorithms, obtained 
solutions are on average 30% sparser.
To evaluate performance of the semi-supervised extension of the ranking pursuit algorithm we con
struct datasets similarly as in the supervised learning experiment with the following modification: 
To simulate unscored data, for each test user we leave only a half of his/her preferences from the 
training set to be available for learning. Using this training set we construct two views, each con
taining a half of the scored and a half of the unscored data points. The rest of experimental setup 
follows previously described supervised learning setting. The results of this experiment are included 
in Table 2. We observe notable improvement in performance of the semi-supervised ranking pursuit 
algorithm compared to all baseline methods. This improvement is statistically significant according 
to Wilcoxon signed-rank test [4] with 0.05 as a significance threshold.

5 Conclusions
We propose a sparse preference learning/ranking algorithm and its semi-supervised extension. Our 
algorithm allows explicit control over sparsity and is naturally applicable in situations when one 
is interested in obtaining several near-optimal solutions. The experiments demonstrate that in the 
supervised setting our algorithm outperforms regression methods such as kernel matching pursuit, 
RLS and performs comparably to the RankRLS and RankSVM algorithms, while having sparser so
lution. In semi-supervised setting the proposed algorithm notably outperforms all baseline methods. 
In the future we aim to apply our algorithm in other domains and will examine different aggregation 
techniques for multiple sparse solutions.

Acknowledgments
We acknowledge support from the Netherlands Organization for Scientific Research (NWO), in 
particular Learning2Reason and Vici grants (639.023.604).

5



References
[1] Adriana Birlutiu, Perry Groot, and Tom Heskes. Multi-task preference learning with an appli

cation to hearing aid personalization. Neurocomputing, 73(7-9):1177-1185, 2010.
[2] Corinna Cortes, Mehryar Mohri, and Ashish Rastogi. Magnitude-preserving ranking algorithms. 

In Zoubin Ghahramani, editor, Proceedings o f the 24th Annual International Conference on 
Machine Learning, pages 169-176, New York, NY, USA, 2007. ACM.

[3] Ofer Dekel, Christopher D. Manning, and Yoram Singer. Log-linear models for label rank
ing. In Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Advances in Neural 
Information Processing Systems 16, pages 497-504, Cambridge, MA, 2004. MIT Press.

[4] Janez Demsar. Statistical comparisons of classifiers over multiple data sets. The Journal o f 
Machine Learning Research, 7:1-30, 2006.

[5] Johannes Fürnkranz and Eyke Hüllermeier (Eds.). Preference Learning. Springer, Cambridge, 
Massachusetts, 2010.

[6] Thorsten Joachims. A support vector method for multivariate performance measures. In 22nd 
International Conference on Machine Learning, pages 377-384, New York, NY, uSA, 2005. 
ACM.

[7] Tapio Pahikkala, Evgeni Tsivtsivadze, Antti Airola, Jouni Järvinen, and Jorma Boberg. An 
efficient algorithm for learning to rank from preference graphs. Machine Learning, 75(1):129- 
165, 2009.

[8] Ryan Rifkin, Gene Yeo, and Tomaso Poggio. Regularized least-squares classification. In J.A.K. 
Suykens, G. Horvath, S. Basu, C. Micchelli, and J. Vandewalle, editors, Advances in Learning 
Theory: Methods, Model and Applications, pages 131-154, Amsterdam, 2003. IOS Press.

[9] Pascal Vincent and Yoshua Bengio. Kernel matching pursuit. Machine Learning, 48(1-3):165- 
187, 2002.

6


