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A b stract
These are the, somewhat polished and updated, lecture notes for a three hour course on tensor 

categories, given at the C IR M , M arseille, in A pril 2008. The coverage in these notes is relatively 
non-technical, focusing on the essential ideas. They are meant to be accessible for beginners, but 
it is hoped that also some of the experts w ill find something interesting in them.

Once the basic definitions are given, the focus is m ainly on categories that are linear over a field 
k and have finite dimensional hom-spaces. Connections w ith quantum groups and low dimensional 
topology are pointed out, but these notes have no pretension to cover the latter subjects to any 
depth. Essentially, these notes should be considered as annotations to the extensive bibliography. 
W e also recommend the recent review [43], which covers less ground in a deeper way.

1 Tensor categories
These inform al notes are an outgrowth of the three hours of lectures that I  gave at the Centre 
International de Rencontres Mathem atiques, M arseille, in A p ril 2008. The original version of text 
was projected to the screen and therefore kept m axim ally concise. For this publication, I  have 
corrected the language where needed, but no serious attem pt has been made to make these notes 
conform w ith the highest standards of exposition. I  still believe that publishing them in this form 
has a purpose, even if only providing some pointers to the literature.

1.1 Strict tensor categories
W e begin w ith strict tensor categories, despite their lim ited immediate applicability.

• W e assume that the reader has a working knowledge of categories, functors and natural trans
formations. Cf. the standard reference [180]. Instead of s G Hom(A", Y )  we w ill occasionally 
w rite s : X  —> Y .

• W e are interested in “categories w ith m ultiplication” . (Th is was the title  of a paper [24] by 
Benabou 1963, cf. also M ac Lane [178] from the same year). This term  was soon replaced by 
‘monoidal categories’ or ‘tensor categories’. (W e use these synonymously.) It  is mysterious 
to this author why the explicit form alization of tensor categories took twenty years to arrive 
after that of categories, in particular since monoidal categories appear in protean form, e.g., 
in Tannaka’s work [255].

• A  str ict ten so r  category  (strict monoidal category) is a triple (C, ® , 1), where C is a cate
gory, 1 a distinguished object and ®  : C x C —> C is a functor, satisfying

(A  ®  Y )  ®  Z  = A  ®  (Y  ®  Z )  and A  ®  1 = A  = 1 ®  A  V A , Y, Z.

1



If  (C, (5), 1), (£?', (5)', 1') are strict tensor categories, a str ic t ten so r  functor C —> C  is a functor 
F  : C —» C  such that

F ( X  ®  Y )  = F ( X )  ® ' F (Y ) ,  F (  1) = 1'.

If  F, F '  : C —> C  are strict tensor functors, a natural transform ation a  : F  —> F '  is m on oid al 
if and only if a.\ = id]/ and

olxqy  = a A' (H> <y.y VA", Y  G C.

(Bo th  sides live in H o m ^ X  ®  Y ),  F ' ( X  ®  Y ) )  = H o m (F (X ) ® ' F (Y ) ,  F ' ( X )  ® ' F '( Y ) ) . )
• W A R N IN G : The coherence theorems, to be discussed in a b it more detail in Subsection 1.2, 

w ill im ply that, in a sense, strict tensor categories are sufficient for all purposes. However, 
even when dealing w ith strict tensor categories, one needs non-strict tensor functors!

• Basic examples:
— Let C be any category and let End  C be the category of functors C —> C and their natural 

transformations. Then End C  is a strict ©-category, w ith composition of functors as 
tensor product. It  is also denoted as the ‘center’ Zo(C). (The subscript is needed since 
various other centers w ill be encountered.)

— To every group G , we associate the discrete tensor category C (G ):

Obj C (G ) = G , Homfo, h) = j {l̂ } 9g = £ , g ®  h = gh.

— The sym m etric  ca tegory  §:

Obj<S = Z +, Hom ()i, m ) = I  n , n ® m  = n + m T j v n  m
w ith tensor product of morphisms given by the obvious map Sn x Sm —> Sn+m .
Rem ark: 1. § is the free sym metric tensor category on one monoidal generator.
2 . § is equivalent to the category of finite sets and bijective maps.
2. This construction works w ith any fam ily (G *) of groups w ith an associative composition
G j x G j —> G-i^j.

— Let A  be a un ital associative algebra w ith unit over some field. W e define End  A  to have 
as objects the un ital algebra homomorphisms p : A  —> A . The morphisms are defined by

Hom(p, a ) = {x  € A  \ xp(y) = a {y )x  Vy G *4}

w ith s o t = st and s ®  f = sp(t) = p '(t)s  for s G Hom(p, p'), t G Horn (<7, a '). This con
struction has im portant applications in in subfactor theory [169] and (algebraic) quantum 
field theory [68, 90]. Yam agam i [284] proved that every countably generated C*-tensor 
category w ith conjugates (cf. below) embeds fu lly into End  A  for some von Neumann- 
algebra A  = A (C ). (See the final section for a conjecture concerning an algebra that 
should work for all such categories.)

— The T em p erley-L ieb  categories T C ( t ) .  (C f. e.g. [107].) Le t k be a field and r  G k*. 
W e define

Obj T C ( t )  =  Z + , n  ® m =  n  +  m, 
as for the free sym metric category S . Bu t now

Hom(??, m ) = spanfc{Isotopy classes of (n, m )-TL diagram s}.

Here, an (n, m)-diagram is a planar diagram where n points on a line and m points 
on a parallel line are connected by lines w ithout crossings. The following example of a 
(7,5)-TL diagram w ill explain this sufficiently:
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The tensor product of morphisms is given by horizontal juxtaposition, whereas compo
sition of morphisms is defined by vertical juxtaposition, followed by removal all newly 
formed closed circles and m ultiplication by a factor r  for each circle. (Th is makes sense 
since the category is k-linear.)
Rem ark: 1. The Temperley-Lieb algebras TL(??, r )  = En d 7-£(T )(??.) first appeared in the 
theory of exactly soluble lattice models of statistical mechanics. They, as well as T C ( t ) 
are closely related to the Jones polynom ial [127] and the quantum group S L q(2). Cf. 
[262, Chapter X II].
2. The Temperley-Lieb algebras, as well as the categories T C (t ) can be defined purely 
algebraically in terms of generators and relations.

— In  dealing w ith (strict) tensor categories, it is often convenient to adopt a graphical 
notation for morphisms:

Y

s : X  ^  Y  Q

X
I f  s : X  —> Y, t  : Y  —> Z , u  : Z  —> W  then we write

Z

t  o s : X  —> Z  •<=>

X
The usefulness of this notation becomes apparent when there are morphisms w ith ‘different 
numbers of in- and outputs’: Let, e.g., a \ X  S ® T ,  b : 1 —> U ® Z ,  c : 5' —> 1, d : T ® U  — 
V, e : Z  ® Y  —> W  and consider the composite morphism

c ®  d ®  e o a ®  b ®  id y  : A" ®  Y  —> V  ®  W .  (1 .1)

This formula is almost unintelligible. (In  order to economize on brackets, we follow the 
m ajority of authors and declare ® to bind stronger than o, i.e. a o b ® c =  a o (b ® c). 
Notice that inserting brackets in (1.1) does nothing to render the formula noticeably more 
intelligible.) It  is not even clear whether it represents a morphism in the category. This is

s (xi it, : X  (xi Z  —> Y  (xi W  <£=> [ «
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im m ediately obvious from the diagram:

Often, there is more than one way to translate a diagram into a formula, e.g.

X X '
can be read as t ®  t' o s ®  s' or as (t o s) <H> (t1 <H> s '). B u t by the interchange law (which is 
just the functoriality of ® ), these two morphisms coincide. For proofs of consistency of the 
formalism, cf. [129, 94] or [137].

1.2 N on-strict tensor categories
For almost all situations where tensor categories arise, strict tensor categories are not general 
enough, the main reasons being:

- Requiring equality of objects as in (A" ®  1") ®  Z  = X  ®  ( X  (5) Z )  is highly unnatural from 
a categorical point of view.

— M any would-be tensor categories are not strict; in particular this is the case for Vectfc, 
as well as for representation categories of groups (irrespective of the class of groups and 
representations under consideration).

The obvious m inim al m odification, nam ely to require only existence of isomorphisms (A" ®
Y ) ® Z  = X  ® (1" ® Z )  for all A", Y,  Z  and 1 ® A" = A" = A" ® 1 for all A", turns out to be too 
weak to be useful.
The correct definition of not-necessarily-strict ten so r  categories was given in [24]: It  is a 
sextuplet (C, ®, 1, a ,  A, p),  where C is a category, 0  : C x C - i  C a functor, 1 an object, and
a  : ® o (®  x id ) —> ® o (id x  ® ), A : 1(g)--- > id, p : — ®  1 —> id are natural isomorphisms (i.e., for
all A", Y,  Z  we have isomorphisms ax,Y,z ■ [ X  ® Y )  ® Z  —> X  ®  (X  Z'j and A y : 1 A  —y A , 
p x  '■ X  ® 1 -> X )  such that all morphisms between the same pair of objects that can be built 
from a ,  A, p  coincide. (Exam ples of what this means are given by the com m utativity of the 
following two diagrams.)
There are two versions of the coherence theorem for tensor categories:
Version I  (M ac Lane [178, 180]): A ll morphisms built from a , X , p  are unique provided a  
satisfies the pentagon identity, i.e. com m utativity of

m  a X , Y , Z  ®  i d T((A  ®  1 )  ®  Z )  ® T -------- (x ® (y ® z)) ® t "VJ x x ® ((y ® z) ® T)

<XXQY,Z,T

(X  ®  Y )  ®  (Z  ®  T ) ®-X,Y,ZQT

id a' (s> czy ,z ,t

x ®  ( y ®  (z ® t ))
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and A, p satisfy the unit identity

px  (2> id y idx  (s’ Ay

X  ®  y : x .s. y
For modern expositions of the coherence theorem see [180, 137]. (Notice that the original 
definition of non-strict tensor categories given in [178] was modified in slightly [146, 147].)
Exam ples of non-strict tensor categories:

— Let C be a category w ith products and term inal object T. Define X" ®  Y  = X  Y  
(for each pair X , Y  choose a product, non-uniquely) and 1 = T . Then (C, ® , 1) is non- 
strict tensor category. (Existence of associator and unit isomorphisms follows from the 
universal properties of product and term inal object). An analogous construction works 
w ith coproduct and in itia l object.

— Vectfc w ith czu,v,w defined on simple tensors by (it, ®  v) ®  w i—> it, ®  (v ®  w). Note: This 
triv ia lly  satisfies the pentagon identity, but the other choice (it, ®  v) <H> w  i—> —it, ®  (v <H> w) 
does not!

— Let G  be a group, A  an abelian group (w ritten m ultip licatively) and u> G Z S(G ,A ), i.e.

io(h, k, l)uj(g, hk, l)w(g , h, k) = ui(gh, k, l)w(g , h, kl) Vg, h, k, I G G.

Define C(G, ui) by

Obj C = G, Hom ((;, h) g h = gh.

Hom ((;, h) = I  denote this by Cfc(G, w), but also Vect^ appears in the

w ith associator a  = w, cf. [245]. If  k is a field, A  = k* , one has a fc-linear version where 
k, g = h 

{ 0 }  g + h 
literature.
The im portance of this example lies in its showing relations between categories and 
cohomology, which are reinforced by ‘higher category theory’, cf. e.g. [14]. B u t also the 
concrete example is relevant for the classification of fusion categories, at least the large 
class of ‘group theoretical categories’. (C f. O strik et al. [223, 84].) See Section 3.

— A  categorical group is a tensor category that is a groupoid (a ll morphisms are invertible) 
and where every object has a tensor-inverse, i.e. for every X" there is an object X" such 
that X" ®  X" = 1. The categories C(G, u>) are just the skeletal categorical groups.

Now we can give the general definition of a tensor functor (between non-strict tensor categories 
or non-strict tensor functors between strict tensor categories): A  tensor functor between 
tensor categories (C, ® , 1, a, A, p), (C', ® ', 1', a ', A', p') consists of a functor F  : C —>■ C , an 
isomorphism eF  : F ( l )  —> 1' and a fam ily of natural isomorphisms d y V : F ( X )  ®  F ( Y )  —> 
F ( X  (5) y )  satisfying com m utativity of

( F ( X )  ® ' F ( Y ) )  ® ' F ( Z )

*F(X ),F (Y ),F (Z )

F ( X )  ® ' ( F ( Y )  ® ' F ( Z ) )  -

dx,Y  (2> id F ( X  ®  Y )  ® ' F ( Z ) d x o Y ,z

id (5) d,y}Z F ( X )  ® ' F ( Y  ®  Z )
dx,

F ( ( X  (x) Y )  ® Z )

F ( a x ,Y,z) 

F ( X ®  ( Y ® Z ) )
y q z
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(notice that this is a 2-cocycle condition, in particular when a  = id) and

i  d  6 ? )  p  ̂
F { X )  ®  F {  1) — — F { X )  ®  1 '

^A',1

F ( X  ®  1)
F { p x )

Pf ( x)

—  F ( X )

(and sim ilar for A y )

Rem ark: Occasionally, functors as defined above are called s tro n g  tensor functors in order 
to distinguish them from the lax variant, where the ciy Y  and eF  are not required to be 
isomorphisms. (In  this case it also makes sense to consider dF , eF  w ith source and target 
exchanged.)

• Let (C, ® , 1, a, A, p ), (£?', ® ', 1', a ' , A', p') be tensor categories and (F , d, e), ( F r, cl!, e') : C —>• C  
tensor functors. Then a natural transform ation a  : F  —> F '  is monoidal if

d x v
F ( X )  ® ' F ( Y )  — ^  F ( X  ®  Y )

a x  <*> ay

d'a X , Y

CKXQY

F ' ( X )  ® ' F ' ( Y )  — F ' { X  ®  Y )

For strict tensor functors, we have d = id = d/, and we obtain the earlier condition.
A  tensor functor F  : (C ,® , l , a ,  A, p) —> (C',(g)', 1', a ', A', p') is called an equivalence if there 
exist a tensor functor G  : C  —> C and natural monoidal isomorphisms a  : G o i 1 idc and 
¡3 : F  o G  —> idt-'. For the existence of such a G  it is necessary and sufficient that F  be full, 
faithful and essentially surjective (and of course monoidal), cf. [238]. (W e follow the practice 
of not worrying too much about size issues and assuming a sufficiently strong version of the 
axiom of choice for classes. On this m atter, cf. the different discussions of foundational issues 
given in the two editions of [180].)
Given a group G  and w, u>' G Z S(G ,A ),  the identity functor is part of a monoidal equivalence 
C (G ,uj) —> C (G ,uj') if and only if [w] = [a/] in F [3(G ,A ).  Cf. e.g. [54, Chapter 2]. Since 
categorical groups form a 2-category CQ, they are best classified by providing a 2-equivalence 
between CQ and a 2-category TL3 defined in terms of cohomology groups i i 3(G , A ). The details 
are too involved to give here; cf. [128]. (Unfortunately, the theory of categorical groups is 
marred by the fact that im portant works [245, 128] were never form ally published. For a 
comprehensive recent treatm ent cf. [12].)
Version I I  of the Coherence theorem (equivalent to Version I): E ve ry  tensor category is 
m onoidally equivalent to a strict one. [180, 137]. As mentioned earlier, this allows us to 
pretend that all tensor categories are strict. (B u t we cannot restrict ourselves to strict tensor 
functors!)
One may ask what the strictification of C (G ,cj) looks like. The answer is somewhat compli
cated, cf. [128]: It  involves the free group on the set underlying G. (Th is shows that sometimes 
it is actually more convenient to work w ith non-strict categories!)
As shown in [241], m any non-strict tensor categories can be turned into equivalent strict ones 
by changing only the tensor functor ® , but leaving the underlying category unchanged.
W e recall the “Eckm ann-Hilton argument” : If  a set has two monoid structures * i,  *2 satisfying 
(a *2 b) *1 (c *2 d) = (0*1 c) *2 (& * i d) w ith the same unit, the two products coincide and are 
commutative. If  C is a tensor category and we consider End  1 w ith *1 = o, *2 = ®  we find that
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End  1 is commutative, cf. [148]. In  the Ab- (fc-linear) case, defined in Subsection 1.6, End  1 is 
a com mutative unital ring (fc-algebra). (Another classical application of the Eckm ann-Hilton 
argument is the abelianness of the higher homotopy groups 7rn(X ), n > 2 and of (M ) for a 
topological monoid M .)

1.3 G eneralization: 2-categories and bicategories
• Tensor categories have a very natural and useful generalization. W e begin w ith ‘2-categories’, 

which generalize strict tensor categories: A  2-category £ consists of a set (class) of objects and, 
for every X , Y  G Obj £, a category H O M (A", 1"). The objects (morphisms) in H O M (A", Y )  
are called 1-morphisms (2-morphisms) of £. For the detailed axioms we refer to the references 
given below. In  particular, we have functors o : H O M (2l, *B) x H O M (*B, C) —> H O M (2l, £), 
and o is associative (on the nose).

• The prototypical example of a 2-category is the 2-category C A T . Its  objects are the small 
categories, its 1-morphisms are functors and the 2-morphisms are natural transformations.

• W e notice that if £ is a 2-category and A" G Obj £, then EN D (A ") = H O M (A", A") is a strict 
tensor category. This leads to the non-strict version of 2-categories called bicategories: W e 
replace the associativity of the composition o of 1-morphisms by the existence of invertible
2-morphisms (A" o Y ) o Z  —> X  o (Y  o Z )  satisfying axioms generalizing those of a tensor 
category. Now, if £ is a bicategory and A" G Obj £, then EN D (A ") = H O M (A", A") is a (non- 
strict) tensor category. Bicategories are a very im portant generalization of tensor categories, 
and we’ll meet them again. Also the relation between bicategories and tensor categories is 
prototypical for ‘higher category theory’.
References: [150] for 2-categories and [26] for bicategories, as well as the very recent review 
by Lack [162].

1.4 C ategorification of m onoids
Tensor categories (or monoidal categories) can be considered as the categorification of the 
notion of a monoid. This has interesting consequences:

•  Monoids in monoidal categories: Let (C, ®, 1) be a strict ©-category. A  monoid in C (Benabou 
[25]) is a triple (A , m, ?y) w ith A  G C, m : A  ®  A  —> A, i] : 1 —> A  satisfying

ni o m ®  id^ = m o id^ ®  m, m o q ®  id^ = id^ = m o id^ ®  q.

(In  the non-strict case, insert an associator at the obvious place.) A  monoid in Ab (Vectfc) is 
a ring (fc-algebra). Therefore, in the recent literature monoids are often called ‘algebras’. 
Monoids in monoidal categories are a prototypical example of the ‘microcosm principle’ of 
Baez and Dolan [11] affirming that “certain algebraic structures can be defined in any category 
equipped w ith a categorified version of the same structure” .

• If  C is any category, monoids in the tensor category End C  are known as ‘monads’. As such 
they are older than tensor categories! Cf. [180].

• If  (A , m, i]) is a monoid in the strict tensor category C, a left A-module is a pair (A", ¿t), where 
X  G C and : A  ®  A" —> X  satisfies

p o m ®  id a' = ytt o id .4 ®  ¿t, p o t] ®  idA' = id a  •

Together w ith the obvious notion of A-module morphism

HoniA-M od((A, ¿t), (A ',  ¿ i')) = { s 6  Home (A , A ')  | s o p o id j4 ®  s },

A-modules form a category. Right A-modules and A  — A  bimodules are defined analogously. 
The free A-module of rank 1 is just (A , m ).
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• If  C is abelian, then A  — Mode is abelian under weak assumptions, cf. [6]. (The latter are 
satisfied when A  has duals, as e.g. when it is a strongly separable Frobenius algebra [98]. A ll 
this could also be deduced from [76].)

• Eve ry  monoid (A , m, ?;) in C gives rise to a monoid = H o m (l, A ) in the category S E T  of 
sets. W e call it the e lem en ts o f  A. (T^ is related to the endomorphisms of the unit object 
in the tensor categories of A  — A-bimodules and A-modules (in the braided case), when the 
latter exist.)

• Let C be abelian and (A , m, ?;) an algebra in C. An id ea l in A  is an A-module (A", ¿t) together 
w ith a monic morphism (X ,p )  ^  (A ,m ). Much as in ordinary algebra, one can define a 
quotient algebra A/1. Furtherm ore, every ideal is contained in a maximal ideal, and an ideal 
/ C A  in a com mutative monoid is maximal if and only if the ring T a/ i is a field. (For the 
last claim , cf. [197].)

• C oalgebras and their comodules are defined analogously. In  a tensor category equipped 
w ith a sym m etry or braiding c (cf. below), it makes sense to say that an (co)algebra is 
(co)com m utative. For an algebra (A , m, ?;) this means that m o c a , a  = m -

• (B ) Ju st as monoids can act on sets, tensor categories can act on categories:
Let C be a tensor category. A  left C -m odule category  is a pair ( M , F )  where M  is a 
category and F  : C —> End  .A/i is a tensor functor. (Here, End  .A/i is as in our first example 
of a tensor category.) This is equivalent to having a functor F '  : C x A i ->■ M  and natural 
isomorphisms fix ,Y ,A  '■ F ' { X  ® Y ,A )  —> F { X ,  F (Y ,  A ))  satisfying a pentagon-type coherence 
law, unit constraints, etc. Now one can define indecomposable module categories, etc. (O strik 
[222 ])

• There is a close connection between module categories and categories of modules:
If  (A , m, if) is an algebra in C, then there is an natural right C-module structure on the category 
A  — Mode of left A-modules:

F '  : A  — Mode x C, (M , n) x X  h* (M  ®  A", ¡i ®  idx)-

(In  the case where (M ,;it) is the free rank-one module (A ,m ), this gives the free A-modules 
F '{ {A ,m ) ,  X )  = (A  ®  A", m ®  idx)-) F ° r a fusion category (cf. below), one can show that 
every semisimple indecomposable left C-module category arises in this way from an algebra 
in C, cf. [222],

1.5 D uality  in tensor categories I
• If  G  is a group and n a representation on a finite dimensional vector space V , we define the 

‘dual’ or ‘conjugate’ representation W on the dual vector space V*  by (T(g)<f),x) = (</>, n(g)x). 
Denoting by tt q the triv ia l representation, one finds HomRepG(7r ®  t t , t t q )  =  HoniRep g  { f t ,  ?r ) ,  

im plying n ®  tt >~ ttq ■ If  7r is irreducible, then so is tt and the m u ltip licity of ttq in n <H> tt is one 
by Schur’s lemma.
Since the above discussion is quite specific to the group situation, it clearly needs to be 
generalized.

•  Le t (C, ® , 1) be a strict tensor category and A", Y  G C.  W e say that Y  is a left dual of A" if 
there are morphisms e : Y  ®  A" —> 1 and d  : 1 —> X  ®  Y  satisfying

id a' ®  e o d  ®  id x  = id x , e (S> id -̂ o id -̂ ®  d  = id -̂,

or, representing e : Y  ®  X  —> 1 and d, : 1 —> X  ®  Y  by ^ ^  and \  respectively,

A YA ye f  '
y = A =

J L d, y
X Y
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(e stands for ‘evaluation’ and d for ‘dual’.). In  this situation, A" is called a right dual of Y . 
Exam ple: C = V ectfn, A" G C. Let Y  = A"*, the dual vector space. Then e : 1"® A" —> 1 is the 
usual pairing. W ith  the canonical isomorphism ƒ  : A "*®A " — EndA ", we have d, = / _ 1(id\-). 
W e state some facts:

1. W hether an object A" admits a left or right dual is not for us to choose. It  is a property 
of the tensor category.

2. If  Y ,Y '  are left (or right) duals of A" then Y  = Y '.
3. If  VA, vB  are left duals of A , B , respectively, then vB  ®  VA  is a left dual for A  ®  B , and 

sim ilarly for right duals.
4. If  A" has a left dual Y  and a right dual Z , we may or may not have Y  = Z  ! (Again, 

that is a property of A".)
W h ile  duals, if they exist, are unique up to isomorphisms, it is often convenient to make 
choices. One therefore defines a le ft d u a lity  of a strict tensor category (C ,® ,1 ) to be a 
map that assigns to each object A" a left dual VA" and morphisms e \ ■ VX  ®  I  -> 1 and 
dx : 1 —> X  ® VA" satisfying the above identities.
G iven a left duality and a morphism, s : X  —> Y  we define

VS =  e y  <2> i d v  y  O i d v y  <2> S <2> id v  Y O i d v y  <2> d x  =

Then (A" i—> VX , s i—> vs) is a contravariant functor. (W e cannot recover the e’s and d ’s from 
the functor!) It  can be equipped w ith a natural (anti-)m onoidal isomorphism V(A  ®  B )  ^  
vB<5> VA, V1 -> 1. Often, the duality functor comes w ith a given anti-monoidal structure, e.g. 
in the case of pivotal categories, cf. Section 3.
A  chosen right d u a lity  A" i—> (A "v , e'Y : A" ®  A"v —> 1, d'x : 1 —> X v ®  X )  also give rise to a 
contravariant anti-monoidal functor A" h > Iv .
Categories equipped w ith a left (right) duality are called left (right) rig id  (or au ton om ou s). 
Categories w ith left and right duality are called rigid (or autonomous).
Exam ples: V ectfn, Rep G  are rigid.
Notice that VVA" = A" holds if and only if VA" = A"v , for which there is no general reason.
If  every object X  G C admits a left dual VA" and a right dual A"v , and both are isomorphic, 
we say that C has tw o-sid ed  duals and w rite A". W e w ill only consider such categories, but 
we w ill need stronger axioms.
Let C be a ^-category (cf. below) w ith left duality. If  (VA", e y , d \ )  is a left dual of A" G C then 
(A v = VA  ,d*x ,e*x ) is a right dual. Thus duals in ^-categories are autom atically two-sided. 
For this reason, duals in ^-category are often axiomatized in a sym metric fashion by saying 
that a conjugate, cf. [70, 172], of an object A" is a triple ( X ,  r , r ) ,  where r  : 1 —> X  ® X ,  ¥ : 
1 —> X  ® A" satisfy

id x  ®  ’>’* °  r  ®  id a' = idA , id ^  <H> f* o r  <H> id ^  = id^ .

It  is clear that then (X ,r * , r )  is a left dual and (X ,r * , r )  a right dual.
Unfortunately, there is an almost Babylonian inflation of slightly different notions concern
ing duals, in particular when braidings are involved: A  category can be rigid, autonomous, 
sovereign, pivotal, spherical, ribbon, tortile, balanced, closed, category w ith conjugates, etc. 
To make things worse, these terms are not always used in the same way!

9



• Before we continue the discussion of duality in tensor categories, we w ill discuss symmetries. 
For sym metric tensor categories, the discussion of duality is somewhat simpler than in the 
general case. Proceeding like this seems justified since sym metric (tensor) categories already 
appeared in the second paper ([178] 1963) on tensor categories.

1.6 A dditive, linear and ^-structure
• The discussion so far is quite general, but often one encounters categories w ith more structure.
• W e begin w ith ‘Ab-categories’ (=categories ‘enriched over abelian groups’): For such a cate

gory, each Hom(A", Y ) is an abelian group, and o is bi-additive, cf. [180, Section 1.8]. Exam ple: 
The category A b  of abelian groups. In  ©-categories, also ®  must be bi-additive on the mor- 
phisms. Functors of Ab-tensor categories required to be additive on hom-sets.

• If  A", Y, Z  are objects in an Ab-category, Z  is called a direct sum of A" and y if  there are

morphisms I  A  Z  4  A", Y  A  Z  Y  satisfying u o u ' + v o v ' = idz, u 'o u  = id x , v ' ov = id y . 
An ad d itiv e  category is an Ab-category having direct sums for all pairs of objects and a zero 
object.

• An ab elian  category  is an additive category where every morphism has a kernel and a 
cokernel and every monic (epic) is a kernel (cokernel). W e do not have the space to go further 
into this and must refer to the literature, e.g. [180].

• A  category is said to have splitting idempotents (or is ‘Karoubian’) if p = pop G End  A" implies 
the existence of an object Y  and of morphisms u : Y  —> X , u' : A" —> Y  such that u' ou = id y  
and u o u' = p. An additive category w ith splitting idempotents is called pseu do-ab elian . 
Eve ry  abelian category is pseudo-abelian.

• In  an abelian category w ith duals, the functors — ®  A" and A" ®  — are autom atically exact, 
cf. [64, Proposition 1.16]. B u t w ithout rig id ity this is far from true.

• A  sem isim p le  category is an abelian category where every short exact sequence splits.
An alternative, and more pedestrian, way to define semisimple categories is as pseudo-abelian 
categories adm itting a fam ily of simple objects A’’*, i £ I  such that every A" £ C is a finite 
direct sum of AYs.
Standard examples: The category Rep G  of finite dimensional representations of a compact 
group G, the category H  — Mod of finite dimensional left modules for a finite dimensional 
semisimple Hopf algebra H .

• In  fc-linear categories, each Hom(A", Y )  is k-vector space (often required finite dimensional), 
and o (and ®  in the monoidal case) is bilinear. Functors must be A-linear. Exam ple: Vectfc.

• Pseudo-abelian categories that are fc-linear w ith finite-dimensional hom-sets are called K rull- 
Sch m id t categories. (Th is is slightly weaker than sem isim plicity.)

• A  fusion  category  is a semisimple A-linear category w ith finite dimensional hom-sets, fin itely 
m any isomorphism classes of simple objects and End  1 = k. W e also require that C has 2-sided 
duals.

• A  fin ite  ten so r  category  (Etingof, O strik [85]) is a A-linear tensor category w ith End  1 = 
k that is equivalent (as a category) to the category of modules over a finite dimensional 
k-algebra. (There is a more intrinsic characterization.) Notice that sem isim plicity is not 
assumed.

• Dropping the condition End  1 = Addfc, one arrives at a m u lti-fu sion  category  (Etingof, 
Nikshych, O strik [84]).

• Despite the recent work on generalizations, most of these lectures w ill be concerned w ith 
semisimple fc-linear categories satisfying End  1 = Audi, including infinite ones! (B u t see the 
remarks at the end of this section.)
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• If  C is a semisimple tensor category, one can choose representers {A ’’*,* £ 1 } of the simple 
isomorphism classes and define A f̂c • £ Z + by

•v v ; " 0  V?.; V /.
fee/

There is a distinguished element 0 £ I  such that A ’o = I ,  thus A f 0 = Aq,; = 5.,,̂ . B y  
associativity of ®  (up to isomorphism)

E  Ni j Nn,k =  E  J, k>1 e I-
n m

If  C has two-sided duals, there is an involution i such that X.,, = X j.  One has A ?  • = 5.,,̂ . 
The quadruple (/, {A^fc •}, 0, * i—>- T) is called the fusion  ring or fusion  h ypergroup  of C.

•  The above does not work when C is not semisimple. Bu t: In  any abelian tensor category, 
one can consider the G roth end ieck  ring R ( C ) ,  the free abelian group generated by the 
isomorphism classes [A"] of objects in C, w ith a relation [A"] + [Z] = [Y] for every short exact 
sequence 0 - > X  —> Y  —> Z  —> 0 and [A"] • [Y] = [A" ® Y ].
In  the semisimple case, the Grothendieck ring has {[A ";],* £ 1} as Z-basis and [A-*] • |Xj] = 
S fc  Afj[A"fc]. Obviously, an isomorphism of hypergroups gives rise to a ring isomorphism 
of Grothendieck rings, but the converse is not obvious. W h ile  the author is not aware of 
counterexamples, in order to rule out this annoying eventuality, some authors work w ith 
isomorphisms of the Grothendieck sem iring or the ordered  Grothendieck ring, cf e.g. [112]. 
Back to hypergroups:

• The hypergroup contains im portant inform ation about a tensor category, but it misses that 
encoded in the associativity constraint. In  fact, the hypergroup of R ep G  for a finite group 
G  contains exactly the same inform ation as the character table of G , and it is well known 
that there are non-isomorphic finite groups w ith isomorphic character tables. (The simplest 
example is given by the dihedral group Ds = Z 4 x Z 2 and the quaternion group Q , cf. 
any elem entary textbook, e.g. [123].) Since D% and Q  have the same number of irreducible 
representations, the categories Rep_Dg and Rep Q  are equivalent (as categories). They are 
not equivalent as sym metric tensor categories, since this would im ply D% = Q by the duality 
theorems of Doplicher and Roberts [70] or Deligne [58] (which we w ill discuss in Section 3). In  
fact, Ds and Q  are already inequivalent as tensor categories (i.e. they are not isocategorical 
in the sense discussed below). Cf. [254], where fusion categories w ith the fusion hypergroup 
of Ds are classified (among other things).

• On the positive side: (1) If  a finite group G  has the same fusion hypergroup (or character 
table) as a finite simple group G ', then G  = G ', cf. [51]. (The proof uses the classification 
of finite simple groups.) (2) Compact groups that are abelian or connected are determined 
by their fusion rings (by Pontrjagin duality, respectively by a result of M cM ullen [188] and 
Handelm an [112]. The latter is first proven for simple compact Lie groups and then one 
deduces the general result via the structure theorem for connected compact groups.)

• If  all objects in a semisimple category C are invertible, the fusion hypergroup becomes a group. 
Such fusion categories are called p o in ted  and are just the linear versions of the categorical 
groups encountered earlier. This situation is very special, but:

• To each hypergroup {/ , A , 0, i 1—> *} one can associate a group G ( ƒ )  as follows: Let ~  be the 
smallest equivalence relation on I  such that

i ~  j  whenever 3 m, n £ I  '■ i < mn >- j  (i.e. + 0 + N 3 ).

Now let G ( I )  = 1/ ~  and define

H • b l =  M  for any k  -< i j ,  [*]-1  =  [*], e =  [0],

11



Then G ( I )  is a group, and it has the universal property that every map p : / —> K ,  K  a 
group, satisfying p(k) = p (i)p (j)  when k -< i j  factors through the map I  —> G ( I ), i i—> [*].
In  analogy to the abelianization of a non-abelian group, G ( I )  should perhaps be called the 
grou p ification  of the hypergroup /. B u t it was called the u n iversa l grad in g  group  by 
Gelaki/N ikshych [102], to which this is due in the above generality, since every group-grading 
on the objects of a fusion category having fusion hypergroup I  factors through the map 
/ —» G ( I ) .

• In  the sym metric case (where I  and G ( I )  are abelian, but everything else as above) this 
groupification is due to Baum gartel/Lledo [21], who spoke of the ‘chain group’. They stated 
the conjecture that if K  is a compact group, then the (discrete) universal grading group 
G (R e p iv ) of Rep A ' is the Pontrjagin dual of the (com pact) center Z (K ) .  Thus: The center 
of a compact group K  can be recovered from the fusion ring of K ,  even if K  itself in general 
cannot! This conjecture was proven in [195], but the whole circle of ideas is already im plicit 
in [188],
Exam ple: The representations of K  = S U (2 )  are labelled by Z + w ith

= © ••• ffi i + j  — 2 0  i + j .

From  this one easily sees that there are two ^-equivalence classes, consisting of the even and 
odd integers. This is compatible w ith Z {S U {2 ) )  = Z/2Z. C-f. [21].

• There is another application of G(C): If  C is k-linear semisimple then group of natural 
monoidal isomorphisms of idc is given by A u t0 (id c) = H om (G (C ), k*).

• G iven a fusion category C (where we have two-sided duals A"), Gelaki/N ikshych [102] define 
the full subcategory Cad C C to be the generated by the objects A" © A" where A" runs through 
the simple objects. Notice that Cad is just the full subcategory of objects of universal grading 
zero.
Exam ple: If  G  is a compact group then (R e p G )nd = R e p (G /Z (G )).
A  fusion category C is called n ilp o ten t [102] when its upper central series

C D Cad D {Cad)ad • • • 

leads to the triv ia l category after fin itely m any steps.
Exam ple: If  G  is a finite group then R ep G  is nilpotent if and only if G  is nilpotent.

• W e call a square n x «-m atrix A  indecomposable if there is no proper subset S  C {1 , . . . ,  n } 
such that A  maps the coordinate subspace span{es | s G 5 '} into itself. Le t A  be an inde
composable square m atrix A  w ith non-negative entries and eigenvalues A ;. Then the theorem 
of Perron and Frobenius states that there is a unique non-negative eigenvalue A, the Perron- 
Frobenius eigenvalue, such that A = max* |Aj|. Furtherm ore, the associated eigenspace is 
one-dimensional and contains a vector w ith all components non-negative. Now, given a finite 
hypergroup (/, { N ^ } ,  0, i H* i) and i G /, define N i € M at(|/| x |/|) by (N i)jk  = N 1̂ . Due to 
the existence of duals, this m atrix is indecomposable. Now the P erron -F rob en iu s d im en 
sion  d.Fp(i) of i G I  is defined as the Perron-Frobenius eigenvalue of Ni. Cf. e.g. [96, Section 
3.2], Then:

d F p { i ) d p p { j )  =  E N i j d p p { k ) .  
k

Also the hypergroup I  has a Perron-Frobenius dimension: F P  — d im (J) = d p p (i)2. This 
also defines the PF-dimension of a fusion category, cf. [84]

• O cneanu rigidity: Up to equivalence there are only fin ite ly m any fusion categories w ith given 
fusion hypergroup. The general statement was announced by Blanchard/A . Wassermann, and 
a proof is given in [84], using the deformation cohomology theory of Davydov [53] and Yetter 
[290],
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• Ocneanu rig id ity was preceded and m otivated by several related results on Hopf algebras: 
Stefan [249] proved that the number of isomorphism classes of semisimple and co-semisimple 
Hopf algebras of given finite dimension is finite. For Hopf *-algebras, Blanchard [30] even 
proved a bound on the number of iso-classes in terms of the dimension. There also is an 
upper bound on the number of iso-classes of semisimple Hopf algebras w ith given number of 
irreducible representations, cf. E tingo f’s appendix to [224].

• There is an enormous literature on hypergroups. Much of this concerns harmonic analysis 
on the latter and is not too relevant to tensor categories. B u t the notion of am enability 
of hypergroups does have such applications, cf. e.g. [119]. For a review of some aspects of 
hypergroups, in particular the discrete ones relevant here, cf. [278].

• A  considerable fraction of the literature on tensor categories is devoted to categories that are 
fc-linear over a field k  w ith finite dimensional Hom-spaces. C learly this a rather restrictive 
condition. It  is therefore very remarkable that fc-linearity can actually be deduced under 
suitable assumptions, cf. [161].

• ^-categories: A  ‘^-operation’ on a C-linear category C is a contravariant functor * : C —> C 
which acts triv ia lly  on the objects, is antilinear, involutive (s** = s) and monoidal (s ®  i)*  = 
s* <E> t* (when C is monoidal). A  ^-operation is called positive if s* o s = 0 implies s = 0. 
Categories w ith (positive) ^-operation are also called herm itian (un itary). W e w ill use 
category’ as a synonym for ‘un itary category’.) Exam ple: The category of H ilbert spaces 
T L IC B  w ith bounded linear maps and * given by the adjoint.

• It  is easy to prove that a finite dimensional C-algebra w ith positive ^-operation is semisimple. 
Therefore, a un itary category w ith finite dimensional hom-sets has semisimple endomorphism 
algebras. If  it has direct sums and splitting idempotents then it is semisimple.

• Banach-, C*- and von Neumann categories: A  Banach category [135] is a C-linear additive 
category, where each Hom(A", Y ) is a Banach space, and the norms satisfy

l| s ° i| | < IM II| i| | , ||s * o S || =  |M|2.

(They were introduced by Karoubi w ith a view  to applications in K-theory, cf. [135].) A  
Banach ^-category is a Banach category w ith a positive ^-operation. A  C*-category is a 
Banach ^-category satisfying ||s*os|| = ||s|| for any morphism s  (not only endomorphisms). In  
a C*-category, each End  (A’’) is a C*-algebra. Ju st as an additive category is a ‘ring w ith several 
objects’, a C*-category is a “C*-algebra w ith several objects” . Von Neumann categories are 
defined sim ilarly, cf. [105]. They turned out to have applications to L 2-cohomology (cf. Farber 
[88]), representation theory of quantum groups (Woronowicz [280]), subfactors [172], etc. 
Rem ark: A  ^-category w ith finite dimensional hom-spaces and End  1 = C  autom atically is a 
C*-category in a unique way. (C f. [190].)

• If  C is a C*-tensor category, End  1 is a com mutative C*-algebra, thus = C (S )  for some 
compact Hausdorff space S .  Under certain technical conditions, the spaces Hom(A", Y )  can 
be considered as vector bundles over S , or at least as (semi)continuous fields of vector spaces. 
(W ork by Zito [291] and Vasselli [271].) In  the case where End  1 is finite dimensional, this 
boils down to a direct sum decomposition of C = ®*Cj, where each C.,, is a tensor category w ith 
Endem ic*) = C. (In  this connection, cf. Baez’ comments a Doplicher-Roberts type theorem 
for finite groupoids [9].)

2 Sym m etric tensor categories
• M any of the obvious examples of tensor categories encountered in Section 1, like the categories 

S E T ,  Vectfc, representation categories of groups and Cartesian categories (tensor product ®  
given by the categorical product), have an additional piece of structure, to which this section 
is dedicated.
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• A sy m m etry  on a tensor category (C, ® , 1, a ,  p,  A) is a natural isomorphism c : —> ®  o <7, 
where a  : C x C — C x C is the flip automorphism of C x C, such that c2 = id. (I.e., for any 
two objects A", Y  there is an isomorphism c \ , y  '■ X  ®  Y  —> Y  <H> A", natural w .r.t. A", Y  such 
that c y , x  ° c x , y  =  i d x o v - ) ;  where “all properly built diagrams commute” , i.e. the category 
is coherent. A sym m etr ic  ten so r  ca tegory  (STC) is a tensor category equipped w ith a 
symmetry.
W e represent the sym m etry graphically by

• As for tensor categories, there are two versions of the Coherence Theorem. Version I (M ac 
Lane [178]): Let ( C , ® ,  l , a , p ,  A) be a tensor category. Then a natural isomorphism c : —>• 
®  o a  satisfying c2 = id is a sym m etry if and only if

^ c A ', r  ®  i d z  „  ay,x ,z  „  , „  i d y  ®  cx,z (A  ®  1 ) ( X ,  z  — :------ - (1 ( X )  A ) ( X )  z ------------1 ( X )  (A  ( X )  Z ) -----------------------------------------------------U- 1  ( X ,  (z ( X )  A )

®X,Y,Z 0-Y,Z,X

X  ®  (Y  .S. Z )  --------------------------------------------------------- (Y  .S. Z )  (S. A
CX , Y Q Z

commutes. (In  the strict case, this reduces to c x , y q z  = id y  ®  c\,z °  c x , y  ®  idz ■)
A  sym m etric  ten so r  functor is a tensor functor F  such that F ( c x , y ) =  c ' f ( \ )  f ( y ) -  Notice 
that a natural transform ation between sym metric tensor functors is just a monoidal natural 
transform ation, i.e. there is no new condition.

• Now we can state version I I  of the Coherence theorem: Eve ry  sym metric tensor category is 
equivalent (by a sym metric tensor functor) to a strict one.

• Exam ples of sym metric tensor categories:

— The category § defined earlier, when cn : n + m —> n + m is taken to be the element of 
Sn+m defined by (1 , .. . ,  n + m) i—> (n  + 1 ,...,? ?  + m, 1 ,... n). It  is the free symmetric 
monoidal category generated by one object.

— Non-strict sym metric categorical groups were classified by Sinh [245]. W e postpone our 
discussion to Section 4, where we w ill also consider the braided case.

— Vectfc, representation categories of groups: W e have the canonical sym m etry c\ ,y  : 
A" ®  Y  —> Y  ®  A", x ®  y i—> y <H> x.

— The tensor categories obtained using products or coproducts are symmetric.

• Let C be a strict ST C , X  G C and n G N. Then there is a unique homomorphism

11,)' : S n —> Aut A"wn such that a,, id Yo(i-i) ®  cx,x ®  id Yo(-.-i-i) •

Proof: This is immediate by the definition of STC s and the presentation

Sn = W l,  ■ ■ • ,Cr„ - 1 | CTjO-j+lCTj = <Ti+i<Tj<Ti+i, CTjCTj = (JjCJi when |i -  j\  > 1, (t\ = 1} 

of the sym metric groups.
These homomorphisms in fact combine to a sym metric tensor functor F  : § —> C such that 
F (n )  = A"wn. (Th is is why § is called the free sym metric tensor category on one generator.)
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In  the ©-category C = V ectfn, H om (V,TU) is itself an object of C, giving rise to an internal 
hom-functor: Cop x C —> C, 1 x 7 4  [^ ^ '1  = Horn (A", 7 )  satisfying some axioms. In  the 
older literature, a sym metric tensor category w ith such an internal-hom functor is called a 
closed  category. There are coherence theorems for closed categories. [149, 148].
Since in Vect®n we have Hom (V, W )  = V*  ®  W ,  it is sufficient - and more transparent - to 
axiomatize duals V  i-4 V * , as is custom ary in the more recent literature. W e won’t mention 
‘closed’ categories again. (W h ich  doesn’t mean that they have no uses!)
W e have seen that, even if a tensor category has left and right duals VA", A"v for every object, 
they don’t need to be isomorphic. B u t if  C is symmetric and A" i-4 (vX ,e x ,d x )  is a left 
duality, then defining

A"v = VA", e'x = ex  °  c a v a , d'x  = cx^x  °  «¿a,

one easily checks that A" i-4 (A "v , e'Y , d'x ) defines a right duality. W e can thus take VA" = A"v 
and denote this more sym m etrically by A".
Let C be sym metric w ith given left duals and w ith right duals as just defined, and let A" G C. 
Define the (left) tra ce  T ry  : End  A" 4  End  1 by

/

T rx (s ) = ex  o id-^ixi s o d'x  = __

\

\ /
W ithout much effort, one can prove the trace property Tta'(o&) = Tta'(&o) and m ultip licativity 
under <H> : TrA '© y(o ®  b) = T rA (o )T ry (6). Finally, T ry  equals the right trace defined using 
e'x ,dx- For more on traces in tensor categories cf. e.g. [134, 185].
Using the above, we define the categorical d im en sion  of an object A" by d (X )  = TrA '(idA ') G 
End  1. If  End  1 = fcidi, we can use this identification to obtain d (X )  G k.
W ith  this dimension and the usual sym m etry and duality on V ectfn, one verifies d (V ) = 
dim fc V  ■ lfc.
However, in the category SVectfc of super vector spaces (which coincides w ith the represen
tation category RepfcZ 2, but has the sym m etry modified by the Koszul rule) it gives the 
super-dimension, which can be negative, while one might prefer the total dimension. Such 
situations can be taken care of (w ithout changing the sym m etry) by introducing twists.
If  (C, ® , 1 ) is strict symmetric, we define a tw is t to be natural fam ily { 0 a  G End  A", A" G C } 
of isomorphisms satisfying

©AG y  — © a  (2> © y , 01 id i (2 .1)

i.e., 0  is a monoidal natural isomorphism of the functor idc- If  C has a left duality, we also 
require

V( 0 A )  =  «  V
The second condition implies 0  = id. Notice that 0 y  = id a  VA" is a legal choice. This w ill 
not remain true in braided tensor categories!
Exam ple: If  G  is a compact group and C = R ep G , then the twists 0  satisfying only (2.1) are 
in bijection w ith Z (G ).  The second condition reduces this to central elements of order two. 
(C f. e.g. [197].)
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• G iven a strict sym metric tensor category w ith left duality and a tw ist, we can define a right 
duality by A v = VX , w riting X  = VX  = X v , but now

e'x  = ex  o cx ,x  °  <S> id^ , d,'x  = id^  ®  Ox  o cx x  odx , (2.2)

still defining a right duality and the maps T r x  '■ End  A" 4  End  1 still are traces.
• Conversely, the tw ist can be recovered from X" 4  (X", ex, d x , e x , d'X) by

ex

O x  = (T rA ®  id )(cA A ) = _
X

d'x

Thus: G iven a sym metric tensor category w ith fixed left duality, every tw ist gives rise to a 
right duality, and every right duality that is ‘com patible’ w ith the left duality gives a twist. 
(The triv ia l tw ist 0  = id corresponds to the original definition of right duality. The latter does 
not work in proper braided categories!) This com patibility makes sense even for categories 
w ithout sym m etry (or braiding) and w ill be discussed later (~> pivotal categories).

• The sym metric categories w ith 0  = id are now called even.
• The category SVectfc of super vector spaces w ith 0  defined in terms of the Z 2-grading now 

satisfies dim (V ) > 0 for all V.
• The standard examples for STC s are Vectfc, S'Vectfc, R ep G  and the representation categories 

of supergroups. In  fact, rigid STC s are not far from being representation categories of (su
per) groups. However, they not always are, cf. [103] for examples of non-Tannakian symmetric 
categories.)

• A  category C is called con crete  if  its objects are sets and Home (A’’, Y )  C Homsets(A", 7 ). 
A  fc-linear category is called concrete if  the objects are fin.dim. vector spaces over k and 
Home (A", Y )  C HomVe c t JA ,y ) .  However, a better way of thinking of a concrete category is 
as a (abstract) category C equipped w ith a fiber functor, i.e. a faithful functor E  : C —>• Sets, 
respectively E  : C —>• Vectfc. The latter is required to be monoidal when C is monoidal.

• Exam ple: G  a group. Then C := RepfcG  should be considered as an abstract fc-linear ®- 
category together w ith a faithful ®-functor E  : C —>• Vectfc.

• The point of this that a category C may have inequivalent fiber functors!!
• Bu t: If  k  is algebraically closed of characteristic zero, C is rigid symmetric k-linear w ith 

End  1 = k and F , F '  are symmetric fiber functors then F  = F '  (as ®-functors). (Saavedra 
Rivano [238, 64]).

• The first non-trivial application of (sym m etric) tensor categories probably were the recon
struction theorems of Tannaka [255] (1939!) and Saavedra Rivano [238, 64].
Let k be algebraically closed. Let C be rigid sym metric fc-linear w ith End  1 = k and E  : 
C 4  Vectfc faithful tensor functor. (Tannaka did this for k = C, C a ^-category and E  *- 
preserving.) Let G  = A u t0 S  be the group of natural monoidal [unitary] automorphisms of 
E .  Define a functor F  : C —> Rep G  [unitary representations] by

F ( A ) = ( E ( A ), 7rA ), Trx (g) = gx  (g G G ).

Then G  is pro-algebraic [compact] and F  is an equivalence of sym metric tensor [*-]categories. 
Proof: The idea is the following (Grothendieck, Saavedra Rivano [238], cf. Bichon [27]): Let 
E \ , E 2 : C —> Vectfc be fiber functors. Define a un ital fc-algebra A q (E i,  E 2 ) by

A 0( E 1, E 2) = 0 H o m Vect(£2(A ) , .E 1(A )),
A'ec
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spanned by elements [A", s], A" G C, s G H om (£,2 (A’’), E i ( X ) ) ,  w ith [A", s] • [Y, i] =  [A" <5> Y,u\, 
where u is the composite

f(iv  v )  s (x) t ¿ v  y
E 2( X  ®  Y )  — ^ ---- E 2(X )  ®  E 2(Y )  —  £ ?i(A ) ®  £ ? i(y ) £ i (A  ®  y ) .

This is a unital associative algebra, and A ( E i , E 2) is defined as the quotient by the ideal 
generated by the elements [A’’, a o E 2(s)] — [y £ i(s ) o a], where s G Hom e(A ”, Y ),  a G 
Homvect{ E 2{ Y ) , E \ { X ) ) .

• Rem ark: Let E \ 7E 2 : C —> Vectfc be fiber functors as above. Then the map

A  x y  4  Homvectfc( S 2(A"), E \ {Y ) )

extends to a functor F  : Cop x C —> Vectfc. Now the algebra A ( E i , E 2) is just the coen d  
J X  F ( X , X )  of F ,  a universal object. Coends are a categorical, non-linear version of traces, 
but we refrain from going into them since it takes some time to appreciate the concept. (Cf. 
[180].)

• Now one proves [27, 197]:
— If  E 1, E 2 are symmetric tensor functors then A ( E  1, E 2) is commutative.
— If  C is ^-category and E \ 7E 2 are *-preserving then A ( E i , E 2) is a *-algebra and has a 

G*-completion.
— If  C is fin ite ly generated (i.e. there exists a monoidal generator Z  G C such that every 

A" £ C is direct summand of some Z ‘~N ) then A ( E  1, E 2) is fin ite ly generated.
— There is a bijection between natural monoidal (un itary) isomorphisms a  : E\  —> E 2 and 

(*-)characters on A ( E  1, E 2).
Thus: If  E \ 7E 2 are sym metric and either C is fin ite ly generated or a ^-category, the algebra 
A ( E i , E 2) admits characters (by the Nullstellensatz or by Gelfand’s theory), thus E\ = E 2. 
One also finds that G  = A u tQE  = (*-)C-hai { A { E , E ) )  and A (E )  = Fu n (G ) (representative 
respectively continuous functions). This is used to prove that F  : C —> Rep G  is an equivalence.

• Remarks: 1. W h ile  it has become custom ary to speak of Tannakian categories, the work of 
Krein , cf. [158], [118, Section 30], should also be mentioned since it can be considered as a pre
cursor of the later generalizations to non-symmetric categories, in particular in Woronowicz’s 
approach.
2. The uniqueness of the sym metric fiber functor E  implies that G  is unique up to isomor
phism.
3. For the above construction, we need to have a fiber functor. Around 1989, Doplicher and 
Roberts [70], and independently Deligne [58] construct such a functor under weak assumptions 
on C. See below.
4. The uniqueness proof fails if either of E \ 7E 2 is not sym metric (or C is not sym m etric). 
G iven a group G , there is a tautological fiber functor E .  The fact that there may be (non- 
sym m etric) fiber functors that are not naturally isomorphic to E  reflects the fact that there 
can be groups G ' such that Rep G  ~  Rep G ' as tensor categories, but not as sym metric tensor 
categories! This phenomenon was independently discovered by Etingof/Gelaki [80], who called 
such G , G ' iso ca tego rica l and produced examples of isocategorical but non-isomorphic finite 
groups, by Davydov [55] and by Izum i and Kosaki [122]. The treatm ent in [80] relies on 
the fact that if G , G ' are isocategorical then C G ' = C J  for some Drinfeld tw ist J . A  more 
categorical approach, allowing also an extension to compact groups, w ill be given in [202]. A  
group G  is called categorically rigid if every G ' isocategorical to G  is actually isomorphic to 
G. (Com pact groups that are abelian or connected are categorically rigid in a strong sense 
since they are determined already by their fusion hyper groups.)
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• Consider the free rigid sym metric tensor ^-category C w ith End  1 = C  generated by one object 
A" of dimension d. If  d £ N then C is equivalent to Rep U(d) or Rep O(d) or Rep Sp(d), depend
ing on whether A" is non-selfdual or orthogonal or sym plectic. The proof [9] is straightforward 
once one has the Doplicher-Roberts theorem.

• The free rigid sym metric categories just mentioned can be constructed in a topological w ay in 
a fashion very sim ilar to the construction of the Temperley-Lieb categories T L (r ). The main 
difference is that one allows the lines in the pictures defining the morphisms to cross. (B u t 
they still live in a plane.) Now one quotients out the negligible morphisms and completes 
w .r.t. direct sums and splitting idempotents. (In  the non-self dual case, the objects are words 
over the alphabet {+ , —}  and the lines in the morphisms are directed.) A ll this is noted in 
passing by Deligne in a paper [59] dedicated to the exceptional groups! Notice that when 
d ^ N, these categories are examples of rigid sym metric categories that are not Tannakian.

• The above results already establish strong connections between tensor categories and repre
sentation theory, but there is much more to say.

3 Back to  general tensor categories
• In  a general tensor category, left and right duals need not coincide. This can already be seen 

for the left module category H  — Mod of a Hopf algebra H . This category has left and right 
duals, related to S  and S'-1. (S  must be invertible, but can be aperiodic!) They coincide 
when S 2(x) = uxu-1 w ith u £ H .

• W e only consider tensor categories that have isomorphic left and right duals, i.e. two-sided 
duals, which we denote A".

• If  C is fc-linear w ith End  1 = k  id and End  A" = k id (A" is sim ple/irreducible), one can 
canonically define the squared dimensions d2(X )  £ k by

d2(X )  = (ex °  d'x ) ■ (e'x  o dx) £ End  1.

(Since A" is simple, the morphisms d, d!, e, e' are unique up to scalars, and well-definedness of 
d2 follows from the equations involving (d, e), (df, e') bilinearly.) Cf. [191].

• If  C is a fusion category, we define its d im en sion  by dim C = d2(X i).
• If  H  is a finite dimensional semisimple and co-semisimple Hopf algebra then dim H —Mod = 

dinifc H . (A  finite dimensional Hopf algebra is co-semisimple if and only if the dual Hopf 
algebra I I  is semisimple.)

• Even  if C is semisimple, it is not clear whether one can choose roots d (X )  of the above numbers 
d2(X )  in such a way that d is additive and m ultiplicative!

• In  p ivotal categories this can be done. A  strict p iv ota l category [93, 94] is a strict left rigid 
category w ith a monoidal structure on the functor A" 4  VA" and a monoidal equivalence of 
the functors idt- and A" 4  VVA". As a consequence, one can define a right duality satisfying 
A v = VA .

• In  a strict pivotal categories we can define left and right traces for every endomorphism:

d/x  d A'
Notice: In  general T r^ (s ) ^  T ry (s )
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•  W e now define dimensions by d ( X )  =  Tr^-(idA') G End  1. One then autom atically has d ( X )  =  
T ry (id A ')) which can differ from d ( X ) .  Bu t for simple A" we have d ( X ) d ( X )  = d ? ( X )  with 
d 2( X )  as above.

• In  a pivotal category we can use the trace to define pairings Hom(A", Y )  x H om (Y ,A ") 4  
E n d l by (s ,t) 4  Tr^-(i o s). In  the semisimple A-linear case w ith E n d l, these pairings are 
non-degenerate for all X , Y .  C-f. e.g. [104]. In  general, a morphism s : X  —> Y  is called 
n eg lig ib le  if T r (i o s )  =  0 for all t \ Y  X . W e call an Ab-category non-degenerate if 
only the zero morphisms are negligible. The negligible morphisms form a monoidal ideal,
i.e. composing or tensoring a negligible morphism w ith any morphism yields a negligible 
morphism. It  follows that one can quotient out the negligible morphisms in a straightforward 
way, obtaining a non-degenerate category. A  non-degenerate abelian category is semisimple 
[61], but a counterexample given there shows that non-degeneracy plus pseudo-abelianness 
do not im ply sem isim plicity!

• A  sp h erica l category [20] is a p ivotal category where the left and right traces coincide. 
Equivalently, it is a strict autonomous category (i.e. a tensor category equipped w ith a left 
and a right duality) for which the resulting functors A" 4  A"v and A" 4  VA" coincide. 
Sphericity implies d (X )  = d (X ),  and if C is semisimple, the converse im plication holds.

• The Temperley-Lieb categories T C ( t ) are spherical.

• A  finite dimensional Hopf algebra that is involutive, i.e. satisfies S 2 = id, gives rise to a 
spherical category. (It  is known that every semisimple and co-semisimple Hopf algebra is 
involutive.) More generally, ‘spherical Hopf algebras’, defined as satisfying S 2(x) = w i i t r 1, 
where iu G H  is invertible w ith A  (to) = to ®  iu and Tr(0w ) = T r^ w -1) for any fin itely 
generated projective left ii-m odule V , give rise to spherical categories [20].

• In  a ^-category w ith conjugates, traces of endomorphisms, in particular dimensions of objects, 
can be defined uniquely w ithout choosing a spherical structure, cf. [70, 172]. The dimension 
satisfies d (X ) > 1 for every non-zero A", and d (X ) = 1 holds if and only if A" is invertible. 
Furtherm ore, one has [172] a ^-categorical version of the quantization of the Jones index [126]:

d (X ) G |2  cos —, n = 3, 4, .. . j U [2, oo).

On the other hand, every tensor ^-category can be equipped [286] w ith an (essentially) unique 
spherical structure such the traces and dimension defined using the latter coincide w ith those 
of [172],

• In  a C-linear fusion category (no ^-operation required!) one has d2( X )  > 0 for all A", cf. [84]. 
The following is a very useful application: If  A  C B  is a full inclusion of C-linear fusion 
category then dim A  < dim ¿3, and equality holds if and only if A  — B.

• In  a un itary category, dim C = F P  — dim C. Categories w ith the latter property are called 
p seu d o -u n itary  in [84], where it is shown that every pseudo-unitary category admits a 
unique spherical structure such that F P  — d (X )  = d (X )  for all A".

• There are Tannaka-style theorem for not necessarily sym metric categories (U lbrich [268], 
Yetter [288], Schauenburg [239]): Le t C be a fc-linear pivotal category w ith E n d l = Addi 
and let E  : C —> Vectfc a fiber functor. Then the algebra A (E )  defined as above admits 
a coproduct and an antipode, thus the structure of a Hopf algebra Ft,  and an equivalence 
F  : C —> C o m o d ii such that E  = K o F ,  where I \  : C o m o d ii 4  Vectfc is the forgetful functor. 
(If  C and E  are symmetric, this F[ is a com mutative Hopf algebra of functions on the group 
obtained earlier G .) Woronowicz proved a sim ilar result [280] for ^-categories, obtaining a 
compact quantum group (as defined by him  [279, 281]). Com m utative compact quantum 
groups are just algebras C (G )  for a compact group, thus one recovers Tannaka’s theorem. Cf. 
[131] for an excellent introduction to the area of Tannaka-Krein reconstruction.
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• G iven a fiber functor, can one find an algebraic structure whose rep resen ta tio n s  (rather than 
corepresentations) are equivalent to C? The answer is positive, provided one uses a slight 
generalization of Hopf algebras, to w it A. van Daele’s ‘Algebraic Quantum  Groups’ [269, 270] 
(or ‘M ultip lier Hopf algebras w ith H aar functional’). They are not necessarily unital algebras 
equipped w ith a coproduct A  that takes values in the m ultiplier algebra M ( A ® A )  and w ith 
a left-invariant Haar-functional £ A*. A  nice feature of algebraic quantum groups is that 
they admit a nice version of Pontryagin duality (which is not the case for infinite dimensional 
ordinary Hopf algebras).
In  [200] the following was shown: If  C is a semisimple spherical (*-)category and E  a (*- 
)fiber functor then there is a discrete m ultiplier Hopf (*-)algebra (A, A ) and an equivalence 
F  : C —» Rep (A , A ) such that K  o F  =  E ,  where K  : Rep (A , A ) 4  Vect is the forgetful 
functor. (Th is (A, A ) is the Pontrjagin dual of the A (E )  above.) This theory exploits the 
sem isim plicity from the very beginning, which makes it quite transparent: One defines

A  =  ®  E n d  E (X i ) a n d  M (A ) =  I I E n d  E{~X i ) -  N a t E ’ i £ l  i £ l
where the summation is over the equivalence classes of simple objects in C.  Now the tensor 
structures of C and E  give rise to a coproduct A  : A  —>• M ( A ®  A ) in a very direct way. 
Notice: This reconstruction is related to the preceding one as follows. Since H  — comod ~  C is 
semisimple, the Hopf algebra F[ has a left-invariant integral ¿t, thus ( H ,  ¿t) is a compact alge
braic quantum group, and the discrete algebraic quantum group (A , A ) is just the Pontrjagin 
dual of the latter.

• In  this situation, there is a bijection between braidings on C and R-matrices (in M (A ® A ) ) ,  cf. 
[200]. Bu t: The braiding on C plays no essential role in the reconstruction. (Since [200] works 
w ith the category of finite dimensional representations, which in general does not contain 
the left regular representation, this is more work than e.g. in [137] and requires the use of 
sem isim plicity.)

• Summing up: Linear [braided] tensor categories adm itting a fiber functor are («^representa
tion categories of [(co)quasi-triangular] discrete (com pact) quantum groups.
Notice that here ‘Quantum  groups’ refers to Hopf algebras and suitable generalizations thereof, 
but not necessarily to q-deformations of some structure arising from groups!

• W A R N IN G : The non-uniqueness of fiber functors means that there can be non-isomorphic 
quantum groups whose (co)representation categories are equivalent to the given C\
The study of this phenomenon leads to Hopf-Galois theory and is connected (in the *-case) 
to the study of ergodic actions of quantum groups on C*-algebras. (C f. e.g. Bichon, de R ijd t, 
Vaes [28]).

• Despite this non-uniqueness, one may ask whether one can intrinsically characterize the tensor 
categories adm itting a fiber functor, thus being related to quantum groups. (Existence of a 
fiber functor is an extrinsic criterion.) The few known results to this questions are of two types. 
On the one hand there are some recognition theorems for certain classes of representation 
categories of quantized enveloping algebras, which w ill be discussed somewhat later. On the 
other hand, there are results based on the regular representation, to which we turn now. 
However, it is only in the sym metric case that this leads to really satisfactory results.

• The left regular representation 7r; of a compact group G  (living on L 2(G )) has the following 
well known properties:

n  = ©  d(7r) • 7r, (Peter-W eyl theorem)
tr e d

7r; ®  7r = d(7r) • 7T; V7T G R e p G. (absorbing property).
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• The second property generalizes to a n y  algebraic quantum group’ (A, A ), cf. [201]:
1. Let r  = 7T; be the left regular representation. If  (A , A ) is discrete, then T carries a monoid 
structure (T, m, ?]) w ith d im H o m (l, T) =  1, which we call the regular m onoid . (Algebras in 
fc-linear tensor categories satisfying d im H o m (l, T ) = 1 have been called ‘simple’ or ‘haploid’.) 
If  (A , A ) is compact, T has a comonoid structure. (And in the finite (=com pact + discrete) 
case, the algebra and coalgebra structures combine to a Frobenius algebra, cf. [191], discussed 
below.)
2. If  (A , A ) is a discrete algebraic quantum group, one has a monoid version of the absorbing 
property: For every A" G Rep (A , A ) one has an isomorphism

(T ®  A", m ®  id y ) — n {X )  • (T, m ) (3-2)

of (r, m, ??)-modules in Rep (A , A ). (Here n ( X )  G N  is the dimension of the vector space of 
the representation A", which in general differs from the categorical dimension.)

• The following theorem from [201] is m otivated by Deligne’s [58]: Let C be a fc-linear category 
and (r, m, ??) a monoid in C (more generally, in the associated category IndC  of inductive 
lim its) satisfying d im H o m (l,r ) = 1 and (3.2) for some function n : Obj C -> N . Then

E ( X )  = Homvectfc (1, r  ®  A )

defines a faithful ® - functor E  : C —>• Vectfc, i.e. a fiber functor. (One has dim E ( X )  = n( X)  \ /X 
and r  = ®ji?(A"j)A"j.) If  C is sym metric and (T, m, ?;) com mutative (i.e. m o c r ,r  = m ), then 
E  is symmetric.
Rem ark: Deligne considered this only in the sym metric case, but did not make the requirement 
d im H o m (l,r ) = 1. This leads to a tensor functor E  : C 4  A  — Mod, where A  = H o m (l,r ) 
is the com mutative fc-algebra of ‘elements of I ’ encountered earlier.

• This gives rise to the following im plications:

There is a discrete A Q G  (A, A ) 
such that C ~  Rep (A , A )

There is a fiber functor -*-------  C admits an absorbing monoid
E : C ^ U

Remarks: 1. This can be considered as an intrinsic characterization of quantum group cate
gories. (O r rather semi-intrinsic, since the regular monoid lives in the Ind-category of C rather 
than C itself.)
2. The case of finite ^-categories had been treated in [170], using subfactor theory and a 
functional analysis.
3. This result is quite unsatisfactory, but I  doubt that a better result can be obtained without 
restriction to special classes of categories or adopting a wide generalization of the notion of 
quantum, groups. Exam ples for both w ill be given below.
4. For a different approach, also in terms of the regular representation, cf. [69].
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• Notice that having an absorbing monoid in C (or rather In d (C )) means having an N-valued 
dimension function n  on the hypergroup 1(C)  and an associative product on the object T =

The latter is a cohomological condition.
If  C is finite, one can show using Perron-Frobenius theory that there is only one dimension 
function, nam ely the intrinsic one i 4  d (X i).  Thus a finite category w ith non-integer intrinsic 
dimensions cannot be Tannakian (in  the above sense).

• W e now turn to a very beautiful result of Deligne [58] (simplified considerably by Bichon [27]): 
Le t C be a semisimple fc-linear rigid even  sym m etr ic  category satisfying End  1 = k , where k  
is algebraically closed of characteristic zero. Then there is an absorbing com mutative monoid 
as above. (Thus we have a sym metric fiber functor, im plying C c; R ep G .)
Sketch: The homomorphisms 11;̂  : S n —> Aut A"wn allow to define the idempotents

P ± (X ,n )  = -  ] T  s g n (a )n ;y (a ) G E n d (A °" )  
i t

and their images S n( X ) , A n(X ) ,  which are direct summands of A"wn. Making crucial use of 
the evenness assumption on C, one proves

V n G N .
nl

In  a ^-category, this must be non-negative V??, im plying d (X )  G N, cf. [70]. Using this - or 
assuming it as in [58] - one has d (A d<-x ') ( X ) )  = 1, and A d(x ') ( X )  is called the d eterm in an t  
of A". On the other hand, one can define a com mutative monoid structure on

O O

S (A )  = ® S n ( A ),
n = 0

obtaining the sym m etric  a lgeb ra  ( S (X ) ,m , i ] )  of A". Let Z  be a ©-generator Z  of C sat
isfying det Z  = 1. Then the ‘interaction’ between sym m etrization (sym m etric algebra) and 
antisym m etrization (determ inants) allows to construct a maximal ideal I  in the commutative 
algebra S (Z )  such that the quotient algebra A  = S ( Z ) / I  has all desired properties: it is 
commutative, absorbing and satisfies d im H o m (l, A ) = 1. Q ED .
Rem arks: 1. The absorbing monoid A  constructed in [58, 27] did n o t  satisfy d im H om (l, A ) =
1. Therefore the construction considered above does not give a fiber functor to Vectc, but 
to T a  — Mod, and one needs to quotient by a maximal ideal in r^ . Showing that one can 
achieve d im H o m (l, A ) = 1 was perhaps the main innovation of [197]. This has the advantage 
that (A , m, rq) actually is (isomorphic to) the regular monoid of the group G  = N atq E .  A s a 
consequence, the latter group can be obtained sim ply as the automorphism group

A u t(T , m, jy) = {g  G Aut r  | g o m = m o g ®  g, g o = ?y}

of the monoid - w ithout even mentioning fiber functors!
2. Combining Tannaka’s theorem w ith those on fiber functors from monoids and w ith the 
above, one has the following beautiful
Theorem [70, 58]: Let k  be algebraically closed of characteristic zero and C a semisimple k- 
linear rigid even sym metric category w ith End  1 = k.  Assume that all objects have dimension 
in N. Then there is a pro-algebraic group G n, unique up to isomorphism, such that C ~  Rep G a 
(finite dimensional rational representations). If  C is a ^-category then sem isim plicity and 
the dimension condition are redundant, and there is a unique compact group G c such that 
C ~  R e p G c (continuous un itary finite-dimensional representations). In  this case, G a is the 
com plexification of G c.
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3. If  C is sym metric but not even, its sym m etry can be ‘bosonized’ into an even one, cf. [70]. 
Then one applies the above result and obtains a group G. The Z 2-grading on C given by the 
tw ist gives rise to an element k G Z (G ) satisfying k2 = e. Thus C ~  Rep (G ,k )  as symmetric 
category. Cf. also [60].

• The above result has several applications in pure mathematics: It  plays a big role in the 
theory of motives [5, 166] and in differential Galois theory and the related Riem ann H ilbert 
problem, cf. [230]. It  is used for the classification of triangular Hopf algebras in terms of 
Drinfeld twists of group algebras (Etingof/Gelaki, cf. [100] and references therein) and for the 
m odularization of braided tensor categories [39, 190], cf. below.
The work of Doplicher and Roberts [70] was m otivated by applications to quantum field theory 
in > 2 + 1 dimensions [68, 71], where it leads to a Galois theory of quantum fields, cf. also 
[111]-

• Thus, at least in characteristic zero (in  the absence of a ^-operation one needs to impose 
integrality of all dimensions) rigid sym metric categories w ith End  1 = Audi are reasonably 
well understood in terms of compact or pro-affine groups. W hat about relaxing the last 
condition? The category of a representations (on continuous fields of H ilbert spaces) of a 
compact grou p oid  Q is a sym metric C*-tensor category. Since a lot of inform ation is lost in 
passing from Q to Repiy, there is no hope of reconstructing Q up to isomorphism, but one 
m ay hope to find a compact group bundle giving rise to the given category and proving that 
it is M orita equivalent to Q. However, there seem to be topological obstructions to this being 
always the case, cf. [272].

• In  this context, we mention related work by Bruguieres/M altsiniotis [184, 40, 37] on Tannaka 
theory for quasi q uantum  grou p oid s in a purely algebraic setting.

• W e now turn to the characterization of certain special classes  of tensor categories:

• Combining Doplicher-Roberts reconstruction w ith the mentioned result of M cM ullen and 
Handelm an one obtains a simple prototype: If  C is an even sym metric tensor ^-category w ith 
conjugates and End  1 = C  whose fusion hypergroup is isomorphic to that of a connected 
compact Lie group G , then C c; Rep G .

• Kazhdan/W enzl [145]: Let C be a semisimple C-linear spherical ©-category w ith End  1 = C, 
whose fusion hypergroup is isomorphic to that of s l(N ).  Then there is a q G C* such that 
C is equivalent (as a tensor category) to the representation category of the D rinfeld/Jim bo 
quantum group S L q(N )  (or one of fin itely m any twisted versions of it). Here q is either 1 or 
not a root of un ity and unique up to q —> q^1. (For another approach to a characterization 
of the S L q(N )~categories, excluding the root of un ity case, cf. [228].)
Furtherm ore: If  C is a semisimple C-linear rigid ©-category w ith End  1 = C, whose fusion 
hypergroup is isomorphic to that of the (fin ite!) representation category of S L q(N ),  where 
q is a prim itive root of un ity of order i  > N , then C is equivalent to R e p S L q(N )  (or one of 
fin itely m any twisted versions).
W e w ill say (a b it) more on quantum groups later. The reason that we mention the Kazh
dan/Wenzl result already here is that it does not require C to come w ith a braiding. Un
fortunately, the proof is not independent of quantum group theory, nor does it provide a 
c o n s tru c tio n  of the categories.
Beginning of proof: The assumption on the fusion rules implies that C has a m ultiplicative 
generator Z . Consider the full monoidal subcategory Cn w ith objects { Z wn, n G Z +}. Now C 
is equivalent to the idempotent completion ( ‘Karoubification’) of Co- (Aside: Tensor categories 
w ith objects N + and ®  = + for objects appear quite often: The sym metric category §, the 
braid category B , P R O P s  [179].) A  semisimple A-linear category w ith objects Z + is called a 
m on oid al algebra, and is equivalent to having a fam ily A  = {A n of vector spaces together 
w ith semisimple algebra structures on A n = A n̂ n and bilinear operations o : A n m̂ x A miP —>■ 
AntP and ®  : A,hm x A Ptq —>■ A n+Pi„ l+q satisfying obvious axioms. A  monoidal algebra is
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d iagon al if A n m̂ =  0 for n ^  m and of ty p e  N  if d im A (0 , n) = d im A(??, 0) =  1 and 
A n,m = 0 unless n = m (m od Y ) .  If  A  is of type Y , there are exactly Y  monoidal algebras 
w ith the same diagonal. The possible diagonals arising from type Y  monoidal algebras can 
be classified, using Hecke algebras H n(q) (defined later).

• There is an analogous result (Tuba/W enzl [259]) for categories w ith the other classical (B C D ) 
fusion rings, but that does require the categories to come w ith a braiding.

• For fusion categories, there are a number of classification results in the case of low rank 
(number of simple objects) (O strik: fusion categories of rank 2 [224], braided fusion categories 
of rank 3 [225]) or special dimensions, likep  or pq (Etingof/G elaki/O strik  [82]). Furtherm ore, 
one can classify near group categories, i.e. fusion categories w ith all simple objects but 
one invertible (Tam bara/Yam agam i [254], Siehler [244]).

• In  another direction one may try  to represent more tensor categories as module categories by 
generalizing the notion of H opf algebras. W e have already encountered a very modest (but 
useful) generalization, to w it Van Daele’s m ultiplier Hopf algebras. (B u t the main rationale 
for the latter was to repair the breakdown of Pontrjagin duality for infinite dimensional Hopf 
algebras, which works so nicely for finite dimensional Hopf algebras.)

• D rinfeld’s q u asi-H op f a lgebras [73] go in a different direction: One considers an associative 
unital algebra H  w ith a unital algebra homomorphism A : H  —> H  ®  H , where coassociativity 
holds only up to conjugation w ith an invertible element 4> £ H  ®  H  ®  H :

id ®  A o A(x) = <j>(A ®  id o A(x))</>_1,
where (A, </>) must satisfy some identity in order for R e p ii w ith the tensor product defined in 
terms of A to be (non-strict) monoidal. Unfortunately, duals of quasi-Hopf algebras are not 
quasi-Hopf algebras. They are useful nevertheless, even for the proof of results concerning 
ordinary Hopf algebras, like the Kohno-Drinfeld theorem for U q(g),  cf. [73, 74] and [137]. 
Exam ples: G iven a finite group G  and u> G Z 3(G , k*), there is a finite dimensional quasi Hopf 
algebra D U(G ), the twisted quantum double of D ijkgraaf/Pasquier/Roche [66]. (W e w ill later 
define its representation category in a purely categorical way.) Recently, Naidu/Nikshych 
[205] have given necessary and sufficient conditions on pairs (G , [w]), (G ', [w]') for D U'(G ) — 
Mod, D u (G ') — Mod to be equivalent as braided tensor categories. B u t the question for 
which pairs (G , [w]) D U'(G ) — Mod is Tannakian (i.e. admits a fiber functor and therefore is 
equivalent to the representation category of an ordinary Hopf algebra) seems to be still open.

• There have been various attem pts at proving generalized Tannaka reconstruction theorems in 
terms of quasi-Hopf algebras [182] and “weak quasi-Hopf algebras” . (C f. e.g. [176, 113].) As 
it turned out, it is sufficient to consider ‘weak’, but ‘non-quasi’ Hopf algebras:

• Preceded by Hayashi’s ‘face algebras’ [115], which largely went unnoticed, Bohm  and Szlachanyi 
[35] and then Nikshych, Vainerm an, L. Kadison introduced w eak H o p f algebras, which may 
be considered as finite-dimensional quantum groupoids: They are associative un ital algebras 
A  w ith coassociative  algebra homomorphism A : A  —> A  ®  A ,  but the axioms A(l) =  1  ®  1  

and e ( l)  = 1 are weakened.
W eak Hopf algebras are closely related to Hopf algebroids and have various desirable prop
erties: Their duals are weak Hopf algebras, and Pontrjagin duality holds. The categorical 
dimensions of their representations can be non-integer. And they are general enough to ‘ex
p lain ’ finite-index depth-two inclusions of von Neumann factors, cf. [215].

• Furtherm ore, O strik [222] proved that every fusion category is the module category of a 
semisimple weak Hopf algebra. (Again, there was related earlier work by Hayashi [116] in the 
context of his face algebras [115].)
Proof idea: An i?.-fiber functor on a fusion category C is a faithful tensor functor C 4  
Bim odi?., where R  is a finite direct sum of m atrix algebras. Szlachanyi [252]: An R-fiber

2 4



functor on C gives rise to an equivalence C ~  A  — Mod for a weak Hopf algebra (w ith base 
R ) .  (C-f. also [110].) How to construct an R-fiber functor?
Since C is semisimple, we can choose an algebra R  such that C c; R  — M od (as abelian 
categories). Since C is a module category over itself, we have a C-module structure on R  — Mod. 
Now use that, for C and R  as above, there is a bijection between R-fiber functors and C-module 
category structures on R  — Mod (i.e. tensor functors C 4  E n d (i?  — M od).
Remarks: 1. i?  is highly non-unique: The only requirement was that the number of simple di
rect summands equals the number of simple objects of C. (Thus there is a unique commutative 
such R , but even for that, there is no uniqueness of i?-fiber functors.)
2. The above proof uses semisimplicity. (A  non-semisimple generalization was announced by 
Bruguieres and V irezilier in 2008.)
Let C be fusion category and A  a weak Hopf algebra such that C c; A  — Mod. Since there is 
a dual weak Hopf algebra A, it is natural to ask how C = A  — Mod is related to C. (One may 
call such a category dual to C, but must keep in mind that there is one for every weak Hopf 
algebra A  such that C c; A  — M od.)

Answer: A  — Mod is (weakly m onoidally) M orita equivalent to C. This notion (M iiger [191]) 
was inspired by subfactor theory, in particular ideas of Ocneanu, cf. [216, 217]. For this we 
need the following:
A  F roben ius a lgeb ra  in a strict tensor category is a quintuple (A , m, A , e), where (A , m, ?]) 
is an algebra, (A , A , e) is a coalgebra and the Frobenius identity

m ®  id a  °  id a  ®  A  = A  o m = id a  ®  m o A  ®  id a

holds. D iagram m atically:

A  Frobenius algebra in a fc-linear category is called s tro n g ly  sep arab le  if

t  O 1) a  id i m o A  = ¡3 id r, aj3 G k*

The roots of this definition go quite far back. F . Quinn [231] discussed them under the name 
‘am bialgebras’, and L . Abrams [1] proved that Frobenius algebras in Vect®n are the usual 
Frobenius algebras, i.e. fc-algebras V  equipped w ith a (f> G V*  such that (x ,y ) 4  4>{xy) is 
non-degenerate. Frobenius algebras p lay a central rôle for topological quantum field theories 
in 1 + 1 dimensions, cf. e.e. [156].
Frobenius algebras arise from two-sided duals in tensor categories: Let X  G C w ith two-sided 
dual A", and define T = A" ®  A". Then T carries a Frobenius algebra structure, cf. [191]:

A

A  A

A

Ie  A'
A  A

A

A

A

A

‘A"
A

d'X x
X X

Verifying the Frobenius identities and strong separability is a triv ia l exercise. In  view  of 
E n d ^ ) = V  ®  V *  in the category of finite dimensional vector spaces, the above Frobenius 
algebra is called an ‘endomorphism (Frobenius) algebra’.
This leads to the question whether every (strongly separable) Frobenius algebra in a ®- 
category arise in this way. The answer is, not quite, but: If  T is a strongly separable Frobenius 
algebra in a fc-linear spherical tensor category A  then there exist

— a spherical k - linear 2-category £ w ith two objects {21,23},
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— a 1-morphism A" G Honi4(2S,2l) w ith 2-sided dual A" G Hom£-(2l, 23), and therefore a 
Frobenius algebra A" o A" in the ®-category End£-(2l),

— a monoidal equivalence En d i-(2l) 4  A  mapping the the Frobenius algebra A" o A" to T.
Thus every Frobenius algebra in A  arises from a 1-morphism in a bicategory £ containing A  
as a corner. In  this situation, the tensor category B  = End£-(23) is called weakly m onoidally 
M orita equivalent to A  and the bicategory £ is called a M orita context.
The original proof in [191] was tedious. Assuming m ild technical conditions on A  and strong 
separability of T, the bicategory £ can sim ply be obtained as follows:

Hom,>(2l,2l) = A,
1101114(21,23) = r  -  Mod.4,
1101114(23,21) = M od .4 — r ,
H o n v (23, 23) = T -  M od .4 -  T,

w ith the composition of 1-morphisms given by the usual tensor products of (left and right) 
T-modules. C-f. [285]. (A  discussion free of any technical assumptions on A  was recently given 
in [163].)
W eak monoidal M orita equivalence of tensor categories also admits an interpretation in terms 
of module categories: If  21, 23 are objects in a bicategory £ as above, the category Hom£-(2l, 23) 
is a left module category over the tensor category End£-(23) and a right module category over 
A  = End£-(2l). In  fact, the whole structure can be formulated in terms of module categories, 
thereby getting rid of the Frobenius algebras, cf. [85, 84]: W riting  M  = Hom£-(2l, 23), the 
dual category B  = End£-(23) can be obtained as the tensor category H O M .4 (A /i, A4), denoted 
A \ { in [85], of right A-module functors from M  to itself.
Since the two pictures are essentially equivalent, the choice is a m atter of taste. The picture 
w ith Frobenius algebras and the bicategory £ is closer to subfactor theory. W h at speaks in 
favor of the module category picture is the fact that non-isomorphic algebras in A  can have 
equivalent module categories, thus give rise to the same ^4-module category. (B u t not in the 
case of com mutative algebras!)
M orita equivalence of tensor categories indeed is an equivalence relation, denoted « . (In  
particular, B  contains a strongly separable Frobenius algebra T such that T —Modg — T ~  *4..) 
As mentioned earlier, the left regular representation of a finite dimensional Hopf algebra H  
gives rise to a Frobenius algebra r  in H  — Mod. T is strongly separable if and only if H  
is semisimple and cosemisimple. In  this case, one finds for the ensuing M orita equivalent 
category:

B  = r  — Mod#_Mod — r  — H  — Mod.

(Th is is a situation encountered earlier in subfactor theory.) Actually, in this case the M orita 
context £ had been defined independently by Tam bara [253].
The same works for weak Hopf algebras, thus for any semisimple and co-semisimple weak 
Hopf algebra we have A  — Mod k , A  — Mod, provided the weak Hopf algebra is Frobenius, i.e. 
has a non-degenerate integral. (It  is unknown whether every weak Hopf algebra is Frobenius.) 
The above concept of M orita equivalence has im portant applications: If  C \ , C 2 are M orita 
equivalent (spherical) fusion categories then

1.  d i m C i = d i m C 2 .
2. C\  and C2 give rise to the same triangulation T Q F T  in 2+1 dimensions (as defined 

by Barrett/W estbury [19] and S. Gelfand/Kazhdan [104], generalizing the Turaev/V iro 
T Q F T  [265, 262] to non-braided categories. Cf. also Ocneanu [218].)
This fits nicely w ith the known fact (Kuperberg [159], Barrett/W estbury [18]) that, the 
spherical categories H  — Mod and H  — Mod (for a semisimple and co-semisimple Hopf 
algebra H ) give rise to the same triangulation T Q FT .
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3. The braided centers Z i(C i) ,  Z i(Co) (to be discussed in the next section) are equivalent 
as braided tensor categories. This is quite immediate by a result of Schauenburg [240].

• W e emphasize that (just like Vectfc) a fusion category can contain m any (strongly separable) 
Frobenius algebras, thus it can be M orita equivalent to many other tensor categories. In  view 
of this, studying (Frobenius) algebras in fusion categories is an im portant and interesting 
subject. (Even  more so in the braided case.)

• Exam ple: Com m utative algebras in a representation category R ep G  (for G  finite) are the 
same as commutative algebras carrying a G-action by algebra automorphisms. The condition 
d im H o m (l,r ) = 1 means that the G-action is ergodic. Such algebras correspond to closed 
subgroups H  C G  via T #  = C (G / H ).  C-f. [155].

• Algebras in and module categories over the category Ck(G ,cj) defined in Section 1 were studied 
in [223],

• A  group th eo retica l ca tegory  is a fusion category that is weakly M orita equivalent (or 
‘dual’) to a pointed fusion category, i.e. one of the form Ck(G,cj) (w ith G  finite and [w] £ 
H S(G , T )). (The original definition [222] was in terms of quadruples (G , H , w, ip) w ith H  C G 
finite groups, u> G Z 3(G ,C * )  and tp G C 2(H , C *) such that dtp = co\H , but the two notions are 
equivalent by O strik ’s analysis of module categories of Ck(G,u>) [222].) For more on group 
theoretical categories cf. [203, 101].

• The above considerations are closely related to subfactor theory (at finite Jones index): A  
factor is a von Neumann algebra w ith center C l. For an inclusion N  C M  of factors, there 
is a notion of index \M : N ] G [l,+ oo] (not necessarily integer!!), cf. [126, 169]. One has 
\M : N ] < oo if and only if  the canonical N-M-bimodule A" has a dual 1-morphism A" in 
the bicategory of von Neumann algebras, bimodules and their intertwiners. M otivated by 
Ocneanu’s bimodule picture of subfactors [216, 217] one observes that the bicategory w ith the 
objects { N , M }  and bimodules generated by A", A" is a M orita context. On the other hand, 
a single factor M  gives rise to a certain tensor ^-category C (consisting of M  — M-bimodules 
or the endomorphisms E n d M ) such that, by Longo’s work [170], the Frobenius algebras ( “Q- 
systems” [170]) in C are (roughly) in bijection w ith the subfactors N  C M  w ith \M : N ] < oo. 
(C f. also the introduction of [191].)

4 Braided tensor categories
• The sym metric groups have the well known presentation

Sn = W i , . . .  ,cr„ - 1 I CTjO-j+iCTj =  <Ti+ i<Tj<Ti+ i ,  (JiCFj = (TjCFi when |i -  j \  > 1, o f =  1}.

Dropping the last relation, one obtains the B raid  groups:
Bn = W i , < 7 „ - i  I <Tj<Ti + i<Tj = <Ti + i<Tj<Ti + i ,  (JiCFj = ( j j ( j i  when \i -  j \  > 1}.

They were introduced by A rtin  in 1928, but had appeared im plicitly in much earlier work by 
Hurw itz, cf. [141]. They have a natural geometric interpretation:

Note: B n is infinite for all n > 2 , Bo = Z. The representation theory of B n, n > 3 is difficult. 
It  is known that all B n are linear, i.e. they have faithful finite dimensional representations 
B n '-4 G L(m , C ) for suitable m = m (n). Cf. Kassel/Turaev [141].
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• Analogously, one can drop the condition cy,x °  cx ,y = id on a sym metric tensor category. 
This leads to the concept of a braiding, due to Jo ya l and Street [128, 132], i.e. a fam ily 
of natural isomorphisms c\,y '■ X  ® Y  —>• Y  ®  A" satisfying two hexagon identities but not 
necessarily the condition c2 = id. Notice that w ithout the latter condition, one needs to 
require two hexagon identities, the second being obtained from the first one by the replacement 
c x , y  ^  (which does nothing when c2 = id). (The latter is the non-strict generalization 
of c x q y , z  = c\,z  ® id y  o id a' ® cy,z■) A  b raided  ten so r  ca tegory  (B T C ) now is a tensor 
category equipped w ith a braiding.

• In  analogy to the sym metric case, given a B T C  C and A" G N, n G Z +, one has a homomor
phism n ;y : B n —» A u t(A "wn).

• The most obvious example of a B T C  that is not sym metric is provided by the braid category 
B . In  analogy to the sym metric category §, it is defined by O b jB  = Z +, En d (n ) = B n, 
n ®  m = n + m, while on the morphisms ®  is defined by juxtaposition of braid diagrams. 
The definition of the braiding cn G End(?? + m ) = B n+m is illustrated by the example
(n ,m ) = (3 ,2 ):

£n,m

• If  C is a strict B T C  and A" G C, there is a unique braided tensor functor F  : B  —>• C such that 
F (  1) = A" and F ( c 2,2) = c\,x- Thus B  is the free braided  ten so r  category  generated by 
one object.

• Centralizer and center Z 2:
If  C is a B T C , we say that two objects X , Y  com m u te  if  cy x  0  c\ ,y  = id v 0 y . If  T> C C 
is subcategory (or just subset of Obj C), we define the centralizer C fl T>' C C as the full 
subcategory defined by

Obj (C n V )  = { X  G C I cr,A- °  C A '.y  = idXQ Y  V T  G V } .

Now, the cen ter Z ^ C )  is
z 2(C) = c n c ' .

Notice that CP\T>' is monoidal and Z ^ C )  is sym metric! In  fact, a B T C  C is sym metric if and 
only if C = Z 2(C). Apart from ‘central’, the objects of Z 2(C) have been called ‘degenerate’ 
[232] or ‘transparent’ [39].

• W e thus see that ST C  are m axim ally com mutative BT C s. Does it make sense to speak of 
m axim ally non-commutative B T C s? B  is an example since O b j^ 2(B ) = {0 }. Braided fusion 
categories w ith ‘tr iv ia l’ center w ill turn out to be just Turaev’s modular categories, cf. Section
5.

• Since the definition of B T C s  is quite natural if one knows the braid groups, one m ay wonder 
why they appeared more than 20 years after sym metric categories. Most likely, this was a 
consequence of a lack of really interesting examples. W hen they finally appeared in [128], this 
was m ainly m otivated by developments internal to category theory (and homotopy theory). It  
is a remarkable historical accident that this happened at the same time as (and independently 
from) the development of quantum groups, which dram atically gained in popularity in the 
wake of D rinfeld’s talk [72].

28



• In  1971 it was shown [68] that certain representation theoretic considerations for quantum 
field theories in spacetimes of dimension > 2 + 1  lead to sym metric categories. Adapting this 
theory to 1 +1 dimensions inevitab ly leads to braided categories, as was finally shown in 1989, 
cf. [90]. That this was not done right after the appearance of [68] must be considered as a 
missed opportunity.

• As promised, we w ill briefly look at braided categorical groups. Consider C (G ) for G  abelian. 
As shown in [132] - and in much more detail in the preprints [128] - the braided categorical 
groups C w ith 7To(C) = G  (isomorphism classes of objects) and (C) = A  (E n d l)  are classi
fied by the group H 3b(G ,A ),  where H™b(G ,A )  refers to the Eilenberg-Mac Lane cohomology 
theory for abelian  groups, cf. [177]. (W hereas H S(G ,A )  can be defined in terms of topo
logical cohomology theory as H S( K ( G , 1 ) ,A )  of the Eilenberg-Mac Lane space K (G ,  1), one 
has H'ab(G ,A ) := H 4(I\ (G , 2), A ). This group also has a description in terms of quadratic 
functions q : G  —>• A. The subgroup of H'^b(G ,A )  corresponding to sym metric braidings is 
isomorphic to i i 5(iv (G , 3), A ), cf. [46].)

• Duality: Contrary to the sym metric case, in the presence of a (non-symmetric) braiding, 
having a left duality is not sufficient for a nice theory: If  we define a right duality in terms 
of a left duality and the braiding, the left and right traces w ill fail to have all the properties 
they do have in the sym metric case. Therefore, some additional concepts are needed:

• A  tw ist for a braided category w ith left duality is a natural fam ily {© a  G End  A", X  G C } 
of isomorphisms (i.e. a natural isomorphism of the functor idc) satisfying

© A W  =  © A ' @  © y  o Cy^x  o CX ,Y ,  © 1 =  id i ,  V(© A ') =  ©  'A-

Notice: If  cy x  °  c\ ,y  ^  id then the natural isomorphism © is n o t m .onoidal  and © = id is 
not a legal tw ist!

• A  r ib b on  category  is a strict braided tensor category equipped w ith a left duality and a 
twist.

• Let C be a ribbon category w ith left duality A" 4  (AT, ex, d x ) and tw ist ©. W e define a right 
duality A" 4  ( X v ,e rx ,d rx ) by A"v = 'A" and (2.2). Now one can show, cf. e.g. [137], that the 
maps End  A" 4  E n d l defined as in (3.1) coincide and that T r(s ) := T r^ (s) = T r# (s ) has 
the trace property and behaves well under tensor products, as previously in the symmetric 
case. W riting  A" = VA" = A"v , one finds that C is a spherical category in the sense of [20]. 
Conversely, if C is spherical and braided, then defining

© A ' = (T rx  ®  idA ) (CA,A ),

{© a , X  G C } satisfies the axioms of a tw ist and thus forms a ribbon structure together w ith 
the left duality. (C f. Yetter [289], based on ideas of Deligne, and Barrett/W est bury [20].) 
(Personally, I  prefer to consider the tw ist as a derived structure, thus talking about spherical 
categories w ith a braiding, rather than about ribbon categories. In  some situations, e.g. when 
the center Z\(C) is involved, this is advantageous. This also is the approach of the Rome 
school [71, 172].)

• So far, our only example of a non-symmetric braided category is the free braided category B , 
which is not rigid. In  the remainder of this section, we w ill consider three main ‘routes’ to 
braided categories: (A ) the topological route, (B ) the “non-perturbative approach” via quan
tum  doubles and categorical centers, and (C ) the “perturbative approach” v ia  deformation 
(or ‘quantization’) of sym metric categories.

• W e briefly mention one construction of an interesting braided category that doesn’t seem to fit 
nicely into one of our routes: W h ile  the usual representation category of a group is symmetric, 
the category of representations of the general linear group G L n(F 9) over a finite field w ith 
the ex te rna l  tensor product of representations turns out to be braided and non-symmetric, cf. 
[133],
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4.1 R ou te A: Free braided categories (tangles) and their quotients
• Combining the ideas behind the Temperley-Lieb categories T L (r )  (which have duals) and the 

braid category B  (which is braided but has no duals), one arrives at the categories of tan g les  
(Turaev [260], Yetter [287]. See also [262, 137].) One must distinguish between categories 
of u n orien ted  tan g les having Obj U  — T A N  = Z + w ith tensor product (of objects) given 
by addition and orien ted  tan g les, based on Obj O — T A N  = {+ , —}*  (i.e. finite words in 
± , 1 = 0) w ith concatenation as tensor product. In  either case, the morphisms are given as 
sets of pictures as in Figure 1, or else by linear combinations of such pictures w ith coefficients 
in a commutative ring or field. A ll this is just as in the discussion of the free symmetric 
categories at the end of Section 2. The only difference is that one must distinguish between 
over- and undercrossings of the lines; for technical reasons it is more convenient to do this in 
terms of pictures embedded in 3-space.

Figure 1: An unoriented 3-5 tangle

There also is a category O — T A N  of oriented tangles, where the objects are finite words in 
± , 1  = 0 and the lines in the morphisms are directed, in a way that is compatible w ith the 
signs of the objects. It  is clear that the morphisms in E n d (l) in U  — T A N  (O  — T A N )  are 
just the unoriented (oriented) links.
W h ile  the definition is in tu itively natural, the details are tedious and we refer to the textbooks 
[262, 137, 290]. In  particular, we omit discussing ribbon tangles.

• The tangle categories are pivotal, in fact spherical, thus ribbon categories. O — T A N  is the 
free ribbon category generated by one element, cf. [243].

• Let C be a ribbon category. Then one can define a category C — T A N  of C-labeled oriented 
tangles and a ribbon tensor functor Fc  : C — T A N  —> C. (Th is is the rigorous rationale behind 
the diagram m atic calculus for braided tensor categories!)
Let C be a ribbon category and A" a self-dual object. G iven an unoriented tangle, we can 
label every edge by A". This gives a composite map

{lin k s } Home/_r.4A/'(0,0) — >• HomC-T.4A/'(0 , 0) En d c l.

In  particular, if C is A-linear w ith End  1 = Add, we obtain a map from {  links }  to k, which is 
easily seen to be a knot invariant. If  C = Uq(s 1(2)) — Mod and A" is the fundamental object, 
one essentially obtains the Jones polynom ial. Cf. [260, 234]. (The other objects of C give 
rise to the colored Jones polynomials, which are much studied in the context of the volume 
conjecture for hyperbolic knots.)

• So far, all our examples of braided categories have come from topology. In  a sense, they are 
quite trivia l, since they are just the universal braided (ribbon) categories freely generated 
by one object. Furtherm ore, we are p rim arily interested in linear categories. O f course, we 
can apply the ^-linearization functor C A T  —> k-lm.-CAT- B u t the categories we obtain have 
infinite dimensional hom-sets and are not more interesting than the original ones. (Th is should 
be contrasted to the symmetric case, where this construction produces the representation 
categories of the classical groups, cf. Section 2.)
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• Thus in order to obtain interesting fc-linear ribbon categories from the tangle categories, we 
must reduce the infinite dimensional hom-spaces to finite dimensional ones.
W e consider the following analogous situation in the context of associative algebras: The braid 
group B n (n > 1) is infinite, thus the group algebra C B n is infinite dimensional. Bu t this 
algebra has finite dimensional quotients, e.g. the H ecke a lgeb ra  H n (q),  the unital C-algebra 
generated by <ji, . . . ,  <rn- i, modulo the relations

CTjO-j+iCTj = <Ti+ i<Tj<Ti+i, CTjCTj = CTjCTj when I* -  j I > 1, o f = {q -  1 )<7i + q l.

This algebra is finite dimensional for any q, and for q = 1 we have H n(q) = C5'n . In  fact, 
H n(q) is isomorphic to C S n, thus semisimple, whenever q is not a root of unity, but this 
isomorphism is highly non-trivial. C-f. e.g. [164].
The idea now is to do a sim ilar thing on the level of categories, or to ‘categorify’ the Hecke 
algebras or other quotients of C B n like the Birm an/M urakam i/W enzl- (BM W -)-algebras [29].

• W e have seen that ribbon categories give rise to knot invariants. One can go the other way and 
construct fc-linear ribbon categories from link invariants. This approach was in itiated in [262, 
Chapter X II] ,  where a topological construction of the representation category of Uq(s l(2)) was 
given. A  more general approach was studied in [267]. A  k-valued link invariant G  is said to 
ad m it fun ctoria l ex ten s io n  to  tan g les if there exists a tensor functor F  : U  — T A N  —> 
k — Mod whose restriction to End fy_7-v4̂ /-(0 ) = {lin k s } equals G.
For any X  G U — T A N , ƒ  €= End (A "), let Lf be the link obtained by closing ƒ  on the right, 
and define T Tq( ƒ ) = G(Lf). If  C is the ^-linearization of U — TAN,  it is shown in [267], under 
weak assumptions on G, that the idempotent and direct sum completion of the quotient of C 
by the ideal of negligible morphisms is a semisimple ribbon category w ith finite dimensional 
hom-sets. Cf. [267],
Exam ple: Applying the above procedure G  = Vt, the Jones polynom ial, one obtains a 
Temperley-Lieb category T C t , which in turn is equivalent to a category Uq(s[(2 )) — Mod. 
Cf. [262, Chapter X II] .  Applying it to the Kauffm an polynom ial [142], one obtains the quan
tized B T C s  of types BC D , cf. [267]. The general theory in [267] is quite nice, but it should be 
noted that the assumption of functorial extendability to tangles is rather strong: It  implies 
that the resulting semisimple category admits a fiber functor and therefore is the represen
tation category of a discrete quantum group. Furtherm ore, the application of the general 
formalism of [267] to the Kauffm an polynom ial used input from (q-deformed) quantum group 
theory for the proof of functorial extension to tangles and of m odularity. This drawback was 
repaired by Beliakova/Blanchet, cf. [22, 23].
Blanchet [31] gave a sim ilar construction w ith H O M FL Y  polynom ial [92], obtaining the type 
A  categories. (The H O M FL Y  polynom ial is an invariant for oriented links, thus one must 
work w ith oriented tangles.)
Rem ark: The ribbon categories of B C D  type arising from the Kauffm an polynom ial give rise 
to topological quantum field theories. The latter can even be constructed d irectly from the 
Kauffm an bracket, bypassing the categories, cf. [32]. This construction actually preceded 
those mentioned above.

• The preceding constructions reinforce the close connection between braided categories and 
knot invariants. It  is im portant to realize that this reasoning is not circular, since the poly
nomials of Jones, H O M FLY , Kauffm an can (nowadays) be constructed in rather elementary 
ways, independently of categories and quantum groups, cf. e.g. [167]. Since the knot polyno
mials are defined in terms of skein relations, we speak of the skein construction of the quantum 
categories, which arguably is the simplest known so far.

• In  the case q = 1, the skein constructions of the A B C D  categories reduce to the construction of 
the categories arising from classical groups mentioned in Section 2. (Th is happens since q = 1 
corresponds to parameters in the knot polynom ials for which they fail to distinguish over-
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from under-crossings. Then one can replace the tangle categories by symmetric categories of 
non-embedded cobordisms (oriented or not) as in [59].)

• Concerning the exceptional Lie algebras and their quantum  categories, inspired by work of 
C-vitanovic, cf. [52] for a book-length treatm ent, and by Vogel [273], Deligne conjectured [59] 
tha t there is a one param eter family of symmetric tensor categories Ct specializing to Rep G 
for the exceptional Lie groups at certain values of t. This is still unproven, but see [48, 63, 62] 
for work resulting from this conjecture. (For the i?n-categories, including the (/-deformed 
ones, cf. [277].)

• In a similar vein, Deligne defined [61] a one param eter family of rigid symmetric tensor 
categories Ct such tha t Ct — RepS't for i  6 N. These categories were studied further in [49]. 
(Recall tha t Sn is considered as the G L n(Fi) where Fi is the ‘field with one element’, cf.
[248].)

• More generally, one can define linear categories by generators and relations, cf. e.g. [160].

4.2 R ou te  B: D ou b les and centers

We begin with a brief look at Hopf algebras.

• Q u a s i- tr ia n g u la r  Hopf algebras (Drinfeld, 1986 [72]): If H  is a Hopf algebra and R  an 
invertible element of (possibly a completion of) H  ® H , satisfying

R A ( - ) R =ffo  A(-), a(x  ® y) =  y  ® x,

(A ® id )(R) =  R 1 3 R 2 3 , (id ® A )(R) =  R 13Ru -

(e ® id )(R) =  (id (Hi s){R)  =  1.

If (V, 7r), (V',  7r') £ H  — Mod, the definition C(y,Tr),(v',ir') =  ® ft')(R) produces a
braiding for H  — Mod.

• But this has only shifted the problem: How to get quasi-triangular Hopf algebras? To this 
purpose, Drinfeld [72] gave the quantum  double construction H  ^  D( H) ,  which associates a 
quasi-triangular Hopf algebra D ( H ) to a Hopf algebra H.  Cf. also [137].

• Soon after, an analogous categorical construction was given by Drinfeld (unpublished), Joyal/Street 
[130] and Majid [181]): The (braided) center Z\ ( C ), defined as follows.
Let C be a strict tensor category and let X  G C. A  half braiding e \  for A" is a family {ex (7 ) £ 
Home (A ® Y, Y  (5) A"), Y  G C} of isomorphisms, natural w.r.t. Y,  satisfying e x ( l)  =  idx and

ex (i' ® Z) =  idy ® e x ( Z )  o ex(^' ) ® id^ VI', Z  G C .

Now, the c e n te r  Zi(C)  of C has as objects pairs (yY, ex), where X  G C and e \  is a half 
braiding for A". The morphisms are given by

HomZl(C)((X, ex), (Y, eY )) =  { t  G Homc(X, Y)  \ id x ® i o ex {Z) =  eY (Z) o i® idx  VZ G C}.

The tensor product of objects is given by (A", ex ) ® {Y, eY ) =  (A" (gi Y, ex©y), where

ex©Y (Z) =  ? x ( Z)  (Si idj- o idx  (S> eY (Z).

The tensor unit is ( l , e i )  where ei(A") =  idx- The composition and tensor product of 
morphisms are inherited from C. Finally, the braiding is given by

C((A, ex), (Y, eY )) =  ex (Y).

(The author finds this definition is much more transparent than th a t of D( H)  even though a 
priori  little is known about Z\(C).)
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• Just as the centralizer C P\T>' generalizes Z^C)  =  C f l  C , there is a version of Z\  relative to a 
subcategory V  C C, cf. [181].

• Z\(C)  is categorical version (generalization) of Hopf algebra quantum  double in the following 
sense: If H  is a finite dimensional Hopf algebra, there is an equivalence

Z i ( H  -  Mod) ~  D( H)  -M o d  (4.1)

of braided tensor categories, cf. e.g. [137]. (If H  is infinite dimensional, one still has an 
equivalence between Z \ ( H  — Mod) and the category of Yetter-Drinfeld modules over H .)

• If C is a category and T> := Zo(C) =  End(C) is its tensor category of endofunctors, then Z\{T>) 
is trivial. (This may be considered as the categorification of the fact tha t the center (in the 
usual sense) of the endomorphism monoid End(S') of a set S  is trivial, i.e. equal to {ids}.) 
But in general, the braided center of a tensor category is a non-trivial braided category tha t is 
not symmetric. Unfortunately, this doesn’t seem to have been studied thoroughly. Presently, 
strong results on Z\{C)  exist only in the case where C is a fusion category.

• There are abstract categorical considerations, quite unrelated to topology and quantum 
groups, tha t provide rationales for studying BTC-s:
(A): A second, compatible, multiplication functor on a tensor category gives rise to a braid
ing, and conversely, cf. [132]. (This is a higher dimensional version of the Eckmann-Hilton 
argument mentioned earlier.)
(B): Recall tha t tensor categories are bicategories with one object. Now, braided tensor 
categories turn  out to be monoidal bicategories with one object, which in turn  are weak 3- 
categories with one object and one 1-morphism. Thus braided (and symmetric) categories 
really are a manifestation of the existence of «-categories for n >  1 !

• Baez-Dolan [10] conjectured the following ‘periodic table’ of ‘k-tuply monoidal n-categories’:

n  =  0 n  =  1 n  =  2 n  =  3 n  =  4
k  =  0 sets categories 2-categories 3-categories
k  =  1 monoids monoidal

categories
monoidal

2-categories
monoidal

3-categories
k  =  2 commutative

monoids
braided

monoidal
categories

braided
monoidal

2-categories

braided
monoidal

3-categories
k  =  3

JJ
symmetric
monoidal
categories

‘sylleptic’
monoidal

2-categories
?

k =  4
JJ ??

symmetric
monoidal

2-categories
?

k =  5
JJ ?? ??

symmetric
monoidal

3-categories
k =  6 ?? ?? ?? ??

In particular, one expects to find ‘center constructions’ from each structure in the table to 
the one underneath it. For the column n =  1 these are the centers Z q, Z\ ,  Z 2 discussed above. 
For n =  0 they are given by the endomorphism monoid of a set and the ordinary center of 
a monoid. The column n =  2 is also relatively well understood, cf. Crans [50]. There is an 
accepted notion of a non-strict 3-category (i.e. n  =  3, k  =  0) (Gordon/Power/Street [108]), 
but there are many competing definitions of weak higher categories. We refrain from moving 
any further into this subject. See e.g. [13].
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• W ith this heuristic preparation, one can give a high-brow interpretation of Z\(C),  cf. [132, 250]: 
Let C be tensor category and EC the corresponding bicategory with one object. Then the cat
egory End (EC) of endofunctors of EC is a monoidal bicategory (with natural transformations 
as 1-morphisms and ‘modifications’ as 2-morphisms). Now, T> =  EndEnd(Sc-)(l)  is a tensor 
category with two compatible ®-structures (categorifying End 1 in a tensor category), thus 
braided, and it is equivalent to Z\(C).

• For further abstract considerations on the center Z\ ,  consider the work of Street [250, 251] 
and of Bruguieres and Virelizier [41, 42].

• If C is braided there is a braided embedding t\ : C 4  Zi(C), given by A" i-4 (A", ex) ,  where 
ex { Y )  =  c ( X ,  Y ) .  Defining C to be the tensor category C with ‘opposite’ braiding c \ , y  =  cy;1Y; 
there is an analogous embedding i : C 4  Z\(C).  In fact, one finds tha t the images of t, i' are 
each others’ centralizers:

z t (C) n i.(C)' =  T(C), Zi(C) nT(cy =  i(C).

C-f. [192]. On the one hand, this is an instance of the double commutant principle, and on 
the other hand, this establishes one connection

i(C )ru(C ) =  i { z 2{C)) = i { z 2{C)),

between Z\  and Z 2 which suggests tha t LLZ\{C)  ~  C x C” when Z 2(C) is “trivial” . We will 
return to both points in the next section.

4.3 R ou te  C: D eform ation  o f groups or sym m etric  categories
• As for Route B, there is a more traditional approach via deformation of Hopf algebras and a 

somewhat more recent one focusing directly on deformation of tensor categories.
• (C-i): The earlier approach to braided categories relies on deformation of Hopf algebras re

lated to groups. For lack of space we will limit ourselves to providing just enough information 
as needed for the discussion of the more categorical approach. For more, we refer to the text
books, in particular [137, 47, 124, 173]. In any case, one chooses a simple (usually compact) 
Lie group G and considers either the enveloping algebra U(g)  of its Lie algebra g in terms 
of Serre’s generators and relations [242], or one departs from the algebra Fun(G) of regular 
functions on G, which can also be described in terms of finitely many relations, cf. e.g. [279]. 
In a nutshell, one inserts factors of a ‘deformation param eter’ q into the presentation of U(g)  
or Fun(G) in such a way tha t for q ^  1 one still obtains a (non-trivial) Hopf algebra. Quantum 
group theory began with the discovery tha t this is possible at all.

• Obviously, this ‘definition’ is a farcical caricature. But there is some tru th  in it: In the 
m athematical literature on quantum  groups, cf. e.g. [137, 47, 124, 173], it is all but impossible 
to find a comment on the origin of the presentation of the quantum  group under study and of 
the underlying motivation. While the initiators of quantum  group theory from the Leningrad 
school (Faddeev, Kulish, Semenov-Tian-Shansky, Sklyanin, Reshetikhin, Drinfeld and others) 
were very well aware of these origins, this knowledge has now almost faded into obscurity. 
(This certainly has to do with the fact th a t the applications to theoretical physics for which 
quantum  groups were invented in the first place are still exclusively pursued by physicists, 
cf. e.g. [106].) One point of this section will be tha t -  quite independently of the original 
physical motivation -  the categorical approach to quantum  deformation is mathematically 
better motivated.

• In what follows, we will concentrate on the enveloping algebra approach. The usual Drinfeld- 
Jimbo presentation of the quantized enveloping algebra is as follows, Consider the algebra 
Uq(g) generated by elements Ei , Fi , i i j ,  K ^ 1, 1 < i  < r, satisfying the relations

/x/v = /V /x. = 1, K i K j  = K;K:.  K :E ;K : = C 3Ej,  /x./;/v = q i CH3Fj,
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k=0 L J <H k=0

i —â j — k o,

Q7} -- Q. n
[m]9i! =  [m]9i [ m - l ] 9i .. . [l]9i, [??],, =  —------and ^  =  qdi.

A  ( l u)  =  l u  ® Ki, A(Ei)  =  Ei ® 1 + l u  ® E.h A  (Fi) =  F. ® A,; 1 +  1 ® F.h 

e{Ei) = s(Fi) =  0, e(A'j) =  1.

One should distinguish between Drinfeld’s [72] formal approach, where one constructs a Hopf 
algebra F[ over the ring C[[/?]] of formal power series in such a way tha t Ft/hFt  is isomorphic 
to the enveloping algebra U(q),  and the non-formal deformation of Jimbo [125], who obtains 
an honest quasi-triangular Hopf algebra Uq(g) (over C ) for any value q G C  of a deformation 
parameter. (In this approach, the properties of the resulting Hopf algebra depend heavily on 
whether q is a root of unity or not. In the formal approach, this distinction obviously does not 
arise.) The relation between both approaches becomes clear by inserting q =  e h  in Jim bo’s 
definition and considering the result as a Hopf algebra over C  [[/?]].

• (C-2): As mentioned, one can obtain non-symmetric braided categories directly by ‘deforming’ 
symmetric categories. This approach was initiated by Cartier [45] and worked out in more 
detail in [137, Appendix] and [140]. (These works were all motivated by applications to 
Vassiliev link invariants, which we cannot discuss here.)
Let S  be a strict symmetric Ab-category. Now an in fin ite s im a l b ra id in g  on S  is a natural 
family of endomorphisms t x , Y  '■ X  ® Y  —>• A" ® Y  satisfying

Strict symmetric Ab-categories equipped with an infinitesimal braiding were called in fin ite s
im al sy m m etr ic . (We would prefer to call them  symmetric categories equipped with an 
infinitesimal braiding.)

• Example: If F[ is a Hopf algebra, there is a bijection between infinitesimal braidings t  on 
S  =  Ft — Mod and elements t  G P rim (ii) ® P rim (ii) (where P rim (ii) =  { x  £ Ft \ A(x)  =  
x  ® 1 +  1 ® #}) satisfying 121 =  t  and [t, A  (Ft)] =  0, given by t \ , Y  =  ® 7Ty)(i)-

• Now we can define the formal deformation of a symmetric category associated to an in
finitesimal braiding: Let S  be a strict C-linear symmetric category with finite dimensional 
hom-sets and let t  be an infinitesimal braiding for S.  We write <S[[/?]] for the C[[/?]]-linear 
category obtained by extension of scalars. (I.e. Obj<S[[/?]] =  Obj S  and Hom s^]] (A", Y )  =  
Homs(A", Y)  ®c C[[/?]].) Also the functor ® : 5  x 5  -> 5  lifts to <S[[/?]]. For objects A", Y, Z,

in two non-commuting variables A, B,  where c w G C, satisfying certain identities. (Cf. 
[137, Chapter XIX, (8.27)-(8.29)].) Then (<S[[/?]], ®, 1, a)  is a (non-strict) tensor category 
with associativity constraint a , trivial unit constraints and c a braiding. If S  is rigid, then 
(<S[[/?]], ®, 1, a, c) admits a ribbon structure.

c x ,y  0 t x , Y  =  t y , x  0 c x ,y  V A ", Y ,  

tx,YQZ =  tx , Y  ® id z  +  CA'V ‘S’ l(̂ z 0 idy <S> t x , z  ° cx ,y  ® id Z V A ", Y, Z.

define
ax,Y, z  =  ® K z { h t x , Y  ®  i d z ,  h i d x  ®  i y , z ) ,  c x , y  =  c x , y  0 e htx-Y/2 

Here Q k z  is a Drinfeld associator [73], i.e. a formal power series
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• Application: Let g be a simple Lie algebra/C. Let S  =  g — Mod and define {#A',y} be as in 
the example, corresponding to t = x.,, <H> x l + x l ® Xi)/2, where #*, x l are dual bases of g 
w.r.t. the Killing form. Then [t, A(-)] = 0  and one can prove

(<S[[/?]],®, l , a ,c )  ~  Uh{s) -  Mod (4.2)

as C[[/?]]-linear ribbon categories. (The proof is a corollary of the proof of the Kohno-Drinfeld 
theorem [73, 74], cf. also [137].)
Remark: 1. Obviously, we have cheated: The main difficulty resides in the definition of 
O k z - Giving the latter and proving its properties requires ca. 10-15 pages of rather technical 
material (but no Lie theory). Le and Murakami explicitly wrote down an associator; cf. 
e.g. [137, Remark XIX.8.3]. Drinfeld also gave a non-constructive proof of existence of an 
associator defined over Q, cf. [74].
2. The above is relevant for a more conceptual approach to the theory of finite-type knot 
invariants (Vassiliev invariants), cf. [45, 140].
3. A disadvantage of the above is tha t we obtain only a formal deformation of S.  If g is a simple 
Lie algebra and S  =  g — Mod, we know by (4.2), tha t we obtain the C[[/?]]-category Uh(g) — 
Mod. On the other hand, thanks to the work of Jimbo [125] and others [173, 124] we know 
tha t there is a non-formal version Uq(g) of the quantum  group with C-linear representation 
category. One would therefore hope tha t the C-linear categories Uq(g) — Mod can be obtained 
directly as deformations of the module categories U (g) — Mod. Indeed, for numerical q G C \Q , 
with some more analytical effort one can make sense of a q =  OK z { h t x ,y  @ idz ,  h idy  ®t y , z )  
as an element of End(X" ® Y® Z)  and define a non-formal, C-linear category C(g, q) and prove 
an equivalence

C(Q,q) =  ( S , ® , l , a q, c q) ~  Uq( g ) ~  Mod

of C-linear ribbon categories. This was done by Kazhdan and Lusztig [144], but see also the 
nice recent exposition by Neshveyev/Tuset [209].

• Fact: If q £  C* is generic, i.e. not  a root of unity, then C(g, q) := Uq(g) — Mod is a semisimple 
braided ribbon category whose fusion hyper group is isomorphic to tha t of U( q), thus of the 
category of g-modules, cf. [124, 173]. But it is not symmetric for q ^  1, thus certainly not 
equivalent to the latter. In fact, Uq(g) — Mod and U( q) — Mod are already inequivalent 
as ©-categories. (Recall tha t associativity constraints a  can be considered as generalized 
3-cocycles, and the a q for different q are not cohomologous.)

• We have briefly discussed the C artier/K assel/Turaev formal deformation quantization of sym
metric categories equipped with an infinitesimal braiding. There is a cohomology theory for 
Ab- tensor categories and tensor functors tha t classifies deformations due to Davydov [53] 
and Yetter [290].
Definition: Let F  : C Cr a tensor functor. Define Tn : Cn —> C by X"i x • • • x X n 4  
X i ® • • • ® X n. (To(0) =  1, Ti =  id.) Let C£(C) =  End(Tn o F ° n). (C£(C) =  End 1'.) For a 
fusion category, this is finite dimensional. Define d, : Cp(C)  4  Cp +1(C) by

df =  id (5) / 2 , . . . In +  l  — , n + l  +  / l , 2 3 , . . . , n  + l  — • • • +  ( — 1)" / l , . . . , n ( n  +  l )  +  ( — 1 )" +  1 / l , . . . ,n (S> id,

where, e.g., / i 2,3,...,n+i is defined in terms of ƒ using the isomorphism dy  Y, : F { X i )  ® 
F ( X 2) 4  F (X i (5) Fo) coming with the tensor functor F.
One has a9 =  0, thus (C \ d ) is a complex. Now H'P(C) is the cohomology of this complex, 
and iP(C ) =  H'^C) for F  =  idc .
In low dimensions one finds tha t F[p classifies derivations of the tensor functor F, H p  clas
sifies deformations of the tensor structure { d x 5-} of F. F[3(C) classifies deformations of the 
associativity constraint a  of C.
Examples: 1. If C is fusion then F['l (C) =  0 V* > 0. This implies Ocneanu rigidity, cf. [84].
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2. If g is a reductive algebraic group with Lie algebra fl and C =  RepG  (algebraic represen
tations). Then H l(C) =  (A*fl)G V*. If fl is simple then H l (C) =  H 2(C) =  0 , but H 3(C) is 
one-dimensional, corresponding to a one-parameter family of deformations C. According to
[84] “it is easy to guess th a t this deformation comes from an actual deformation, namely the 
deformation of 0 ( G ) to the quantum  group O q(G)v . It is not clear to this author whether 
this suggestion should be considered as proven. If so, together with the one-dimensionality of 
H 3(g — Mod) it provides a very satisfactory ‘explanation’ for the existence of the quantized 
categories C(fl, q) c; Uq(g) — Mod.

• In analogy to the result of Kazhdan and Wenzl mentioned in Section 3, Tuba and Wenzl [259] 
proved tha t a semisimple ribbon category with the fusion hypergroup isomorphic to tha t of 
a simple classical Lie algebra fl of BCD type (i.e. orthogonal or symplectic) is equivalent 
to the category C(g,q),  with q =  1 or not a root of unity, or one of finitely many twisted 
versions thereof. Notice tha t in contrast to the Kazhdan/W enzl result [145], this result needs 
the category to be braided! (Again, this is a characterization, not a construction of the 
categories.)

• Finkelberg [89] proved a braided equivalence between C(g,q),  q =  ei7r/ mK, where m  =  1 
for ADE, m  =  2 for BCD and m =  3 for Go, and the ribbon category O k of integrable 
representations of the affine Lie algebra fl of central charge c =  n — h, where h is the dual 
Coxeter number of fl.
The category O k plays an im portant role in conformal field theory, either in terms of ver
tex operator algebras or via the representation theory of loop groups (Wassermann [275], 
Toledano-Laredo [256]). This is the main reason for the relevance of quantum  groups to CFT.

• Finally, we briefly discuss the connection between routes (B) and (C) to BTC-s: In order 
to find an R-matrix for the Hopf algebra Uq(g) one traditionally uses the quantum  double, 
appealing to an isomorphism Uq(g) =  D ( B q(g) ) /1 , where B g(g) is the q-deformation of a 
Borel subalgebra of fl and I  an ideal in D ( B q(g)). Now R-Ugiß) =  (4>® </>)(-fi>D(_B,(fl))), where 4> 
is the quotient map. Since a surjective Hopf algebra homomorphism H i  4  Ho corresponds 
to a full monoidal inclusion Ho —  Mod Hi  —  Mod, and recalling the connection (4.1) 
between Drinfeld’s double construction and the braided center Z\ ,  we conclude tha t the BTC 
Uq(g) — Mod is a full monoidal subcategory of Z \ ( B q(g) — Mod) (with the inherited braiding). 
Therefore, also in the deformation approach, the braiding can be understood as ultimately 
arising from the Z\  center construction.

• Question: It is natural to ask whether a similar observation also holds for q a root of unity,
i.e., whether the modular categories C(g,q),  for q a root of unity, can be understood as full 
©-subcategories of Zi(T>), where T> is a fusion category corresponding to the deformed Borel 
subalgebra B q(g). Very recently, Etingof and Gelaki [81] gave an affirmative answer in some 
cases.
Remark: In the next section, we will discuss a criterion tha t allows to recognize the quantum 
doubles Z\{C)  of fusion categories.

5 M odular categories
• Turaev [261, 262]: A m o d u la r  category is a fusion category th a t is ribbon (alternatively, 

spherical and braided) such tha t the matrix S  =  (S'ij)

S i , j  =  T r A 'G r ( c Y,A' °  Cx ,y ), h J  e  1( C) ,

where 1(C) is the set of simple objects modulo isomorphism, is invertible.
• A fusion category th a t is ribbon is modular if and only if dimC ^  0 and the center Zo(C) 

is trivial. (In the sense of consisting only of the objects 1 © • • • © 1.) (This was proven by 
Rehren [232] for ^-categories and by Beliakova/Blanchet [23] in general. Cf. also [39] and [2].)
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Thus: Modular categories are braided fusion categories with trivial center, i.e. the maximally 
non-symmetric ones. (This definition seems more conceptual than the original one in terms 
of invertibility of S.)

• Why are these categories called ‘m odular’? Let S  as above and T  =  diag(w.j), where 0 ^  =  
WjidA'i , * € = / .  Then

S'2 = a C ,  ( ST) 3 =  ¡3 C, (a/3 +  0)

where =  ¿¿j, thus S', T  give rise to a projective representation of the modular group 
S L ( 2, Z) (which has a presentation { s , t  \ (st)3 =  s2 =  c, c2 =  e}). C-f. [232, 262].

• At first sight, this is somewhat mysterious. Notice: S L ( 2, Z) is the mapping class group of 
the 2-torus S'1 x S'1. Now, by work of Reshetikhin/Turaev [235, 262], providing a rigorous 
version of ideas of W itten, every modular category gives rise to a to p o lo g ica l q u a n tu m  field 
th e o ry  in 2 +  1 dimensions. Every such TQFT in tu rn  gives rise to projective representation 
of the mapping class groups of all closed surfaces, and for the torus one obtains just the above 
representation of S'L(2,Z). C-f. [262, 15]. We don’t have the time to say more about TQFTs.

• Turaev’s motivation came from conformal field theory (C-FT). (C-f. e.g. Moore-Seiberg [189]). 
In fact, there is a (rigorous) definition of ra tio n a l  ch ira l C F T s (using von Neumann alge
bras) and their representations, for which one can prove tha t the latter are unitary modular 
(Kawahigashi, Longo, Miiger [143]). Most of the examples considered in the (heuristic) physics 
literature fit into this scheme. (E.g. the loop group models: [275, 282] and the minimal Vira- 
soro models with c < 1 [168].)
In the context of vertex operator algebras, similar results were proven by Huang [121].

• It is natural to ask whether there are less complicated ways to produce modular categories? 
The answer is positive; we will reconsider our three routes to braided categories.

• Route A: Recall tha t the classical categories can be obtained from the linearized tangle cat
egories (type A: oriented tangles, types BCD: unoriented tangles), dividing by ideals defined 
in terms of the knot polynomials of HOMFLY and Kauffman. At roots of unity, this leads to 
modular categories, cf. [267, 31, 23].

• Route C-i: H. Andersen et al. [4], Turaev/Wenzl [266] (and others): Let g be a simple Lie 
algebra and q a primitive root of unity. Then Uq(g) — Mod gives rise to a modular category 
C(g,q).  (Using tilting modules, dividing by negligible morphisms, etc.)

• Let q be primitive root of unity of order L Then C(g,q)  has a positive ^-operation (i.e. is 
unitary) if i  is even (Kirillov Jr. [152], Wenzl [276]) and is not unitarizable for odd i  (Rowell 
[236]).

• Characterization theorem: A braided fusion category with the fusion hypergroup of C(g, q), 
where g is a simple Lie algebra of BCD type and q a root of unity, is equivalent to C(g, q) or 
one of finitely many twisted versions. (Tuba/W enzl [259])

• Before we reconsider Route B, we assume tha t we already have a braided fusion category, or 
p re -m o d u la r  ca teg o ry .
As we have seen, failure of modularity is due to non-trivial center Zo (C). Idea: Given a braided 
(but not symmetric) category with even center ^ (C ) ,  kill the latter, using the Deligne /  
Doplicher-Roberts theorem: Zo(C) c; RepG. The latter contains a commutative (Frobenius) 
algebra T corresponding to the regular representation of G. Now T — Mode is modular. 
(Bruguieres [39], Miiger [190]). This construction can be interpreted as Galois closure in a 
Galois theory for BTC-s, cf. [190].

• Route B to braided categories: Quantum  doubles: If G is a finite group then D(G)  — Mod and 
D U'(G) — Mod are modular (Bantay [16], Altschuler/ C-oste [3]). If H  is a finite-dimensional 
semisimple and cosemisimple Hopf algebra then D ( H ) — Mod is modular (Etingof/Gelaki
[79]). If A  is a finite-dimensional weak Hopf algebra then D(A)  — Mod modular (Nikshych/ 
Turaev/ Vainerman [214]).
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• The center Z\  of a left/right rigid, pivotal, spherical category has the same properties. In 
particular, the center of a spherical category is spherical and braided, thus a ribbon category. 
(Under weaker assumptions, this is not true, and existence of a twist for the center, if desired, 
must be enforced by a categorical version of the ribbonization of a Hopf algebra, cf. [139].)

• The braided center Z\ .  If C is spherical fusion category and dimC ^  0 then Z\(C)  is modular 
and dim Zi(C) =  (dimC)2. (Miiger [192].)
Comments on the proof: Semisimplicity not difficult. Next, one finds a Frobenius algebra Y 
in T> =  C Kl Cop such tha t the dual category T — Modp — T is equivalent to Z\(C),  implying 
d im Z 2(C) =  (dimC)2. Here T =  ©¿A"; Kl A"°p, which is again a coend and can exist also in 
non-semisimple categories.

• This contains all the earlier modularity results on D ( G ) — Mod and D ( H ) — Mod, but also 
for D U(G) — Mod since:

D U(G) -  Mod ~  Zi(Cfc(G,w)).
(Using work by Hausser/Nill [114] or Panaite [226] on quantum  double of quasi Hopf-algebras.)

• Modularity of Zi(C)  also follows by combination of Ostrik’s result tha t every fusion category 
arises from a weak Hopf algebra A,  combined with modularity of D(A)  — Mod [214], provided 
one proves D(A)  — Mod c; Z \ ( A  — Mod), generalizing the known result for Hopf algebras. But 
the purely categorical proof avoiding weak Hopf algebras seems preferable, not least since it 
probably extends to finite non-semisimple categories.

• In the Morita context having CKICop and Z\(C)  as its corners, the two off-diagonal categories 
are equivalent to C and Cop, and their structures as C Kl Cop-module categories are the obvious 
ones. Therefore, the center can also be understood as (using the notation of EO):

Z t (C) ~  ( CMCop)*c .

A (somewhat sketchy) proof of this equivalence can be found in [223, Prop. 2.5].
• We give another example for a purely categorical result th a t can be proven using weak Hopf 

algebras: Radford’s formula for S'4 has a generalization to weak Hopf algebras [213], and this 
can be used to prove tha t in every fusion category, there exists an isomorphism of tensor 
functors id 4  * * **, cf. [83]. (Notice tha t in every pivotal category we have id =  **, thus 
here it is im portant tha t we understand ‘fusion’ just to mean existence of two-sided duals. 
But in [84] it is conjectured tha t every fusion category admits a pivotal structure.)

• If C is already modular then there is a braided equivalence Z\(C)  ~  C KI Cop, cf. [192]. Thus, 
every modular category M  is full subcategory of Z\(C)  for some fusion category. (This 
probably is not very useful for the classification of modular categories, since there are ‘more 
fusion categories than modular categories’: Recall from Section 3 tha t C\ «  Co => Zi(C\)  c; 
Zi{Co)• (For converse, see below.)

• There is a “Double commutant theorem” for modular categories (Miiger [193], inspired by 
Ocneanu [219]): Let M  a modular category and a C c M a  replete full tensor subcategory. 
Then:

1. ( M r ( M r c ' ) ' )  =  c.
2. dimC • dim(Af fl C') =  d im M ,
3. If, in addition C is modular, then also T> =  M  fl C  is modular and M  ~  CMT>.  (Thus 

every full inclusion of modular categories arises from a direct product.)
These results indicate tha t ‘modular categories are better behaved than finite groups’.

• Corollary: If M  is modular and 5 c M  symmetric then S  C M  fl S ' . Thus

(dim<S)2 < dim<S • dim(Af fl S') =  d im M ,

implying dim<S < V dim M . Notice th a t the bound is satisfied by RepG  C D ^ ( G )  — 
Mod. In fact, existence of a symmetric subcategory attaining the bound characterizes the 
representation categories of twisted doubles, cf. below.
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On the other hand, consider C C M  with M  modular. We have M  fl C  D Zo{C),  implying 
dim .A/i > dimC • d im Z 2(C). This provides a lower bound on the dimension of a modular 
category containing a given pre-modular subcategory as a full tensor subcategory. In [193] it 
was conjectured th a t this bound can always be attained.

It is natural to ask how primality of D ( G ) — Mod is related to simplicity of G. It turns out 
tha t the two properties are independent. On the one hand, there are non-simple finite groups 
for which D(G)  — Mod is prime. (This is a corollary of the classification of the full fusion 
subcategories of D(G)  — Mod given in [206].) On the other hand, for G =  TLjpTL one finds 
tha t D(G)  — Mod is prime if and only if p =  2. For p  an odd prime, D(G)  — Mod has two 
prime factors, both of which are modular categories with p  invertible objects, cf. [193]. But 
for every finite simple non-abelian G, one finds tha t D(G)  — Mod is prime. In fact, it has 
only one replete full tensor subcategory at all, namely Rep G.  Thus all these categories are 
mutually inequivalent: The classification of prime modular categories contains tha t of finite 
simple groups.

If C is symmetric and (T, m ,  ?;) a commutative algebra in C, then T —  Mode is again symmetric 
and

Him C
d im r  -  Mode =  — —  • (5.1)

d{T)

Now, if C is only braided, T — Mode is a fusion category satisfying (5.1), but in general it fails 
to be braided! (Unless T G Zo{C), as was the case in the context of modularization.)

Example: Given a BTC C D S  ~  RepG, let T be the regular monoid in S  as considered in 
Section 3. Then C x S  := T —Mode is fusion category, but it is braided only if S  C Z^iC), as in 
the discussion of modularization. In general, one obtains a b ra id ed  crossed  G -ca teg o ry  as 
defined by Turaev [263, 264] (cf. also Carrasco and Moreno [44]), i.e. a tensor category with 
G-grading d  on the objects, a G-action 7 such tha t d ( j g (X) )  =  g d X g and a ‘braiding’
c \ , y  '■ X  ®  Y  7 a a ' (Y)  ®  A". The degree zero part is T  —  ModcnS' — T  —  Mod° (cf. 
below). (Kirillov Jr. [153, 154], Miiger [194]). This construction has an interesting connection 
to conformal orbifold models ([196, 199]).

Even if r  ^  Zo(C), there is a full tensor subcategory T — Mod° C  T — Mode tha t is braided. 
Calling a module (A", ;i) 6  T -  Mode d y s le c tic  if

0  C A , r  =  A4 0  c r , A >

one finds tha t the full subcategory T — Mod® of dyslectic modules is not only monoidal, but 
also inherits the braiding from C, cf. Pareigis [227]. This was rediscovered by Kirillov and 
Ostrik [155] who in addition proved tha t if C is modular then T — Mod® is modular and the 
following identity, similar to (5.1) but different, holds:

dim T — Mod,0
dim C

C ~  d(r ) 2 '

Remark: Analogous results were previously obtained by Bòckenhauer, Evans and Kawahiga- 
shi [34] in an operator algebraic context. While the transposition of their work to tensor 
^-categories is immediate, removing the ^-assumption requires some work.

The above implies (for ^-categories, but also in general over C  by [84]) th a t d,(T) <  %/dim C for 
commutative Frobenius algebras in modular categories. (The above bound on the dimension 
of full symmetric categories follows from this, since the regular monoid in S  is a commutative 
Frobenius algebra T with ¿(T) =  dim<S.)

All these facts have applications to chiral conformal field theories in the operator algebraic 
framework, reviewed in more detail in [198]:
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Longo/Rehren [171]: Finite local extensions of a CFT A  are classified by the ‘local Q-systems’ 
(«  commutative Frobenius algebras) in Rep A,  which is a *-BTC.
Bockenhauer/Evans [33], [198]: If B  D A  is the finite local extension corresponding to the 
commutative Frobenius algebra T £  Rep A,  then R epB  c; F — Modp>ep A.
Analogous results for vertex operator algebras were formulated by Kirillov and Ostrik [155]. 
Remark: It is perhaps not completely absurd to compare these results to local class field 
theory, where finite Galois extensions of a local field k  are shown to be in bijection to finite 
index subgroups of k * .

• Drinfeld, Gelaki, Nikshych and Ostrik [75], and independently Kitaev and the author, ob
served th a t every commutative Frobenius algebra T in a modular category M  gives rise to a 
braided equivalence

Z i ( r - M o d M ) ~  A f H r - M o d ^ .  (5.2)

Taking T =  1, one recovers the fact Z \ ( M )  ~  M  KlM .  The latter raises the question whether 
one can find a smaller fusion category C such tha t M  c  Z\(C).  The answer given by (5.2) 
is tha t the bigger a commutative algebra one can find in M ,  the smaller one can take C to 
be. In particular, if T — Mod® t is trivial (which is equivalent to d ( r ) 2 =  dim M  over C) then 
M  ~  Z \(T — M od^i ) is not just contained in a center of a fusion category but is such a center. 
In fact, this criterion identifies the modular categories of the form Z\{C)  since, conversely, cf.
[57], one finds tha t the center Z\{C)  of a fusion category contains a commutative Frobenius 
algebra T of the maximal dimension d(T) =  \Jdim Z i(C ) =  dimC such that

T — M o d ^ c )  trivial, T — ModZl(-C) ~  C.

• As an application one obtains tha t if M  is modular and S  C M  symmetric and even such 
tha t dim<S =  \/d im M  then M  ~  D U'(G) — Mod, where S  ~  R epG  and uj £ Z 3(G, T).
This has an application in CFT: If A  is a chiral CFT with trivial representation category 
Rep A  (i.e. A  is ‘holomorphic’) acted upon by finite group G.  Then R epA G ~  D u' (G) — Mod. 
(Together with the results of [143], this proves the folk conjecture, having its roots in [67, 66], 
tha t the representation category of a ‘holomorphic chiral orbifold C FT ’ is given by a category 
D U{G) -  Mod.)

•  As shown in [191], a weak monoidal Morita equivalence C\  «  C\  of fusion categories implies 
Z \ ( C \ ) ~  Z \ { C o ). (This is an immediate corollary of the definition of « ,  combined with [240].) 
The converse is true for group theoretical categories (Naidu/Nikshych [205]), and a general 
proof is announced by Nikshych.

• By definition, a group theoretical category C is weakly Morita equivalent (dual) to Ck(G,cj)  
for a finite group G and [w] € H 3(G, T). Thus Z\{C)  ~  Z\{Cu{ G, l>j)) ~  D U{G) — Mod. The 
converse is also true.
Therefore, with M  modular and C fusion we have:

contains M Zi(C)
maximal comm. FA T M  ~  Zi{C) always true

maximal STC S M  ~  D U{G) -  Mod C is group theoretical

• W hat can we say about non-commutative (Frobenius) algebras in modular categories? We 
first look at the symmetric case. Let thus C be a rigid symmetric k-linear tensor category and
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r  a strongly separable Frobenius algebra in C.  Define p  G EndT by

r r

p  = (Trr <is> idr)(A  o m o cr,r) = ( 5 .3 )

(The fourfold vertex in the right diagram represents the morphism m W  =  mom@ id.) T henp 
is idempotent (up to a scalar) and its kernel is an ideal. Thus the image o fp  is a commutative 
Frobenius subalgebra of T. The latter is called the c e n te r  of T since it is the ordinary center 
in the case C =  Vect®n.

• Application to TQFT: Every finite dimensional semisimple fc-algebra A  gives rise to a TQFT 
in 1 +  1 dimensions via triangulation (Fukuma/Hosono/Kawai [99]). By the classification of 
TQFTs in 1 +  1 dimensions [65, 1, 156], this TQ FT corresponds to a commutative Frobenius 
algebra B  (in Vectfn), with A  =  V I S 1) and the product arising from the pants cobordism. 
The latter is given by the vector space associated with the circle and the multiplication is 
given by the pants cobordism. One finds B  =  Z(A) ,  and B  arises exactly as the image of 
A  under the above projection p. (This works since every semisimple algebra is a Frobenius 
algebra.)

• If C is braided, but not symmetric, we must choose between cr,r and Cp[ in the definition (5.3) 
of the idempotent p. This implies tha t a non-commutative Frobenius algebra will typically 
have two different centers, called the left and right centers F ; , r r . Remarkably, one then 
obtains an equivalence

E  : T l — Mod® Tr -  Mod®

of modular categories, cf. Böckenhauer, Evans, Kawahigashi [34], Ostrik [222] and Fröhlich, 
Fuchs, Runkel, Schweigert [98, 95]. Conversely, if C is modular, every triple (Ti ,Tr,E )  as 
above arises from a non-commutative algebra in C, [157]. (The latter is unique only up to 
Morita equivalence.)

• This is relevant for the classification of CFTs in two dimensions: The latter are constructed 
from a pair ( Ai , Ar ) of chiral CFTs and some algebraic datum  (‘modular invariant’) specifying 
how the two chiral CFTs are glued together. In the left-right symmetric case, where the two 
chiral theories coincide Ai =  A r =  A,  the above result indicates th a t Frobenius algebras in 
C =  Rep A  are the structure to use. This is substantiated by a construction, using TQFTs, of 
a ‘topological from a modular category C and a Frobenius algebra r  £ C, cf. Fuchs, Runkel, 
Schweigert, cf. [97] and sequels.

• The Frobenius algebras in /  module categories of SUq(2) — Mod can be classified in terms of 
ADE graphs. (Quantum MacKay correspondence.) Cf. Böckenhauer, Evans [33], Kirillov Jr. 
and Ostrik [155], E tingof/O strik [86].

• These results should be extended to other Lie groups. If SU(2)  already leads to the ADE 
graphs ( “ubiquitous” according to [117]), the other classical groups should give rise to very 
interesting algebraic-combinatorial structures, cf. e.g. [220, 221].

• More generally, when the two chiral theories A i , A r , and therefore the associated modular 
categories C;,Cr differ, it is better to work with triples (Ti ,Tr ,E) ,  where Ti/r G Ci/r are 
commutative algebras and E  : T; — Mod®; —> Tr — Mod®^ is a braided equivalence. (By the 
above, in the left-right symmetric case C\ =  Cr =  C, this is equivalent to the study of non- 
commutative Frobenius algebras T G C.) Now one finds [198] a bijection between such triples
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and commutative algebras T £ Ci Kl Cr of the maximal dimension d(T) =  %/dimC; • d im Cr . 
(This is a categorical version of Rehren’s approach [233] to the classification of modular 
invariants. It is based on studying local extensions A  D Ai MAr , corresponding to commutative 
algebras I G C; KlCr .)

• There also is a concept of a center of an algebra A  in a not-necessarily braided tensor category 
C, to wit the fu ll cen ter  defined in [56] by a universal property. While the full center is a 
commutative algebra in the braided center Z \ { C )  of C , as apposed to in C like the above 
notions of center, there are connections between these constructions.

• We close this section giving three more reasons why modular categories are interesting:
1. They have many connections with n u m b er theory:

— Rehren [232], Turaev [262]:

i i

In the pointed case (all simple objects have dimension one) this reduces to =
± y/\T \. For suitable C, this reproduces Gauss’ evaluation of Gauss sums. (Gauss actually 
also determined the sign of his sums.)

— The elements of T  m atrix are roots of unity, and the elements of S  are cyclotomic integers 
[36, 78],

— For related integrality properties in Y=TQFSs, cf. Masbaum, Roberts, Wenzl [186, 187] 
and Bruguieres [38]).

— The congruence subgroup property: Let N  =  o rd T (<  oo). Then

ker(7r : SL{2 , Z)  4  GL( \ I \ ,C) )  D T( N)  =  ker(S'L(2, Z )  4  SL(2,  Z/ NZ) ) .

For the modular categories arising from rational CFTs, this had been known in many 
cases and widely believed to be true in general. Considerable progress was made by 
Bant ay [17], whose arguments were made rigorous by Xu [283] using algebraic quantum 
field theory. Bantay’s work inspired a proof [247] by Sommerhäuser and Zhu for modu
lar Hopf algebras, using the higher Frobenius-Schur indicators defined by Kashina and 
Sommerhäuser [136]. Finally, Ng and Schauenburg proved the congruence property for 
all modular categories along similar lines, cf. [212], beginning with a categorical version 
of the higher Frobenius-Schur indicators [211].

2. A modular category M  gives rise to a surgery TQFT in 2 +  1 dimensions (Reshetikhin, 
Turaev [235, 262]). In particular, this works for M  =  Z\{C)  when C is spherical fusion 
categories C with dimC ^  0. Since such a category C also defines a TQ FT via triangulation 
[19, 104], it is natural to expect an isomorphism RT^t =  B W G K c  of TQFTs. (When C is 
itself modular, this is indeed true by Zi(C)  ~  C M C  and Turaev’s work in [262].) Recently, 
a general proof of this result was announced by Turaev and Virelizier, based on the work 
of Bruguieres and Virelizier [41, 42], partially joint with S. Lack. (Notice in any case that 
the surgery construction provides more TQFTs than the triangulation approach, since not all 
modular categories are centers.)
3. We close with the hypothetical application of modular categories to topological quantum 
computing [274]. There are actually two different approaches to topological quantum  com
puting: The one initiated by M. Freedman, using TQFTs in 2 +  1 dimension and the one due 
to A. Kitaev using d =  2 quantum  spin systems. However, in both proposals, the modular 
representation categories are central. Cf. also Z. Wang, E. Rowell et al. [120, 237].

6 Som e open problem s
1. Characterize the hypergroups arising from a fusion category. (Probably hopeless.) Or at least 

those corresponding to (connected) compact groups.
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2. Find an algebraic structure whose representation categories give all semisimple pivotal cat
egories, generalizing Ostrik’s result [222]. Perhaps this will be something like the quantum 
groupoids defined by Lesieur and Enock [165]?

3. Classify all prime modular categories. (The next challenge after the classification of finite 
simple groups...)

4. Give a direct construction of the fusion categories associated with the two Haagerup subfactors 
[109, 7, 8],

5. Prove th a t every braided fusion category C /C  embeds fully into a modular category M  with 
dim M  =  dimC -d im i^ C ). (This is the optimum allowed by the double commutant theorem, 
cf. [193].)

6. Find the most general context in which an analytic (i.e. non-formal) version of the C artier/ 
Kassel/ Turaev [45, 140] formal deformation quantization of a symmetric tensor category S  
with infinitesimal braiding can be given. (I.e. give an abstract version of the Kazhdan/Lusztig 
construction of Drinfeld’s category [144] tha t does not suppose S  =  RepG.)

7. Generalize the proof of modularity of Z\{C)  for semisimple fusion categories to not necessarily 
semisimple finite categories (in the sense of [85]), using Lyubashenko’s definition [175] of 
modularity.

8. Likewise for the triangulation TQFT [265, 19, 104]. Generalize the relation to surgery TQFT 
to the non-semisimple case. (For the non-semisimple version of the RT-TQFT in [151].)

9. Hard non-commutative analysis: Every countable C*-tensor category with conjugates and 
End 1 =  C embeds fully into the C*-tensor category of bimodules over L(F,X ) and, for any 
infinite factor M , into End (L(F,X )®M) .  Here F,x  is the free group with countably many 
generators and L(F ,X ) the type / / i  factor associated to its left regular representation. (This 
would extend and conceptualize the results of Popa/Shlyakhtenko [229] on the universality of 
the factor L(FC0) in subfactor theory.)

10. Give satisfactory categorical interpretations for various generalizations of quasi-triangular 
Hopf algebras, e.g. dynamical quantum  groups [77] and Toledano-Laredo’s quasi-C-oxeter al
gebras [257]. Soibelman’s ‘meromorphic tensor categories’ and the ‘categories with cylinder 
braiding’ of tom Dieck and Haring-Oldenburg [258] might be relevant -  and in any case they 
deserve further study.

Acknowledgement'. I thank B. Enriques and C. Kassel, the organizers of the Rencontre “Groupes 
quantiques dynamiques et catégories de fusion” tha t took place at CIRM, Marseille, from April 
14-18, 2008, for the invitation to give the lectures tha t gave rise to these notes. (No proceedings 
were published for this meeting.) I am also grateful to N. Andruskiewitsch, F. Fantino, G. A. 
Garcia and M. Mombelli for the invitation to the “Colloquium on Hopf algebras, quantum  groups 
and tensor categories” , Córdoba, Argentina, August 31st to September 4th, 2009, as well as for 
their willingness to publish these notes.

Disclaimer: While the following bibliography is quite extensive, it should be clear tha t it has no 
pretense whatsoever at completeness. Therefore the absence of this or tha t reference should not be 
construed as a judgment of its relevance. The choice of references was guided by the principal thrust 
of these lectures, namely linear categories. This means tha t the subjects of quantum  groups and 
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