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The algebra of rack and quandle cohomology.
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This paper presents the first complete calculation of the cohomology of any
nontrivial quandle, establishing that this cohomology exhibits a very rich and
interesting algebraic structure.

Rack and quandle cohomology have been applied in recent years to attack a
number of problems in the theory of knots and their generalizations like virtual
knots and higher dimensional knots. An example of this is estimating the min-
imal number of triple points of surface knots [16]. The theoretical importance
of rack cohomology is exemplified by a theorem [13] identifying the homotopy
groups of a rack space (see 83 ) with a group of bordism classes of high di-
mensional knots. There are also relations with other fields, like the study of
solutions of the Yang-Baxter equations.

1 Introduction.

1.1 Definition and examples.

Definition 1. A quandle is a set A" with binary operation (a,b) a *b such
that

1. For any a G X we have a* a = a.
2. For any o,b G X there is a unique ¢ G X such that a = c*b.
3. For any o, b,c G X we have (a*b) *c= (a*c)* (b*c).

A rack is a set with a binary operation which satisfies (2) and (3). A homomor-
phism f: A" —Y between racks is a map such that f (a *b) = f(a) * f (6) for all
ft bGA.

Remark 1. Some authors, for example [1] and [2], write b*a where we and
most others write a *b.

The following are typical examples of quandles.

< Any group G gives rise to a quandle A" = Conj(G) operation a*b = b~lab.
This is the conjugation quandle of G. More generally any conjugation
invariant subset of G gives rise to a quandle. For example the reflections
in the dihedral group D n yield the dihedral quandle R n, which will be
studied in this paper.



e An abelian group M with an automorphism T’ gives rise to a quandle
X = Alex(M,T) by the formula

axb=Ta+(1-T)b (1)

This is the Alezander quandle of (M,T). For example Alex(Z/(n),—1) is
just Ry,.

e Any oriented classical knot or link diagram K gives rise to a quandle
called its fundamental quandle. The axioms for a quandle corrsepond to
Reidemeister moves of type LILIII respectively (see [11] and [19] and [8]).
A Fox n-coloring is just a quandle homomorphism from K to R,,. See
[18] and [11] and [28] for increasingly strong theorems about the degree to
which the fundamental quandle determines a knot.

e Simple curves on a surface give rise to a quandle using Dehn twists. See
[31] and [32].

e Any set S gives rise to a quandle by the formula a x b = a for a,b € S.
This is called the trivial quandle of S.

¢ One can construct a quandle by taking the disjoint union Z/(k) U Z/(m)
and defining a x b = a if ¢ and b are in the same part and ax b =a + 1 if
they are not.

The last example suggests that quandles can be glued together in disturbingly
many ways. For this reason we concentrate in this paper on connected quandles
(see next section for the definition) which seems to be a class more amenable to
understanding.

1.2 Rack and quandle homology.

In [13] a homology theory for racks was defined, which was modified in [6] to yield
a homology theory for quandles. For a rack X let C*(X) be the free abelian
group generated by X™. Define a map 9: CE(X) — CE | (X) as follows:

8?(9517...795”) = (Z1, .., Ti1, Tit1, .-, Tn)

8}(9517 coy ) = (T K Xy X KXy LAy Ty )

n n (2)
0" => (-1, o' => (-1}, o=3-0

i=1 =1
It can easily be checked that
2°9° =0, atol =o, %0 + 91’ =0 (3)

Therefore {C(X),d} forms a chain complex, the rack complex of X. Its ho-
mology groups H*(X) constitute the rack homology of X. One purpose of this
paper is to determine the rack homology of R, for p an odd prime. Homology



and cohomology with coefficients in an abelian group A are defined in the usual
way.

Let CP(X) be the subgroup of CE(X) generated by the (xy,...,2,) such
that z; = x;41 for some 7. If X is a quandle these constitute a subcomplex of the
rack complex, called the degeneracy complex. This is not true for a general rack
X. The quotient groups C%(X) = CE(X)/CP(X) form the quandle complex
of X. Its homology groups H?(X) constitute the quandle homology of X. A
second purpose of this paper is to determine the quandle homology of R,. We
will do this from the rack homology, using a theorem of [20] which says that the
canonical map from rack homology to quandle homology splits.

1.3 Known facts.

It is noted in [9] that calculating quandle cohomology is difficult, since brute
force calculations are very limited in range, and unlike group cohomology, the
topological underpinnings are less well developed. It is our purpose to begin to
remedy this situation by showing how methods from homotopy theory can be
applied.

The following list provides the main facts which were already known, and
motivated our research.

e In [10] a formula is proved for the dimension of H*(X;Q) for X a finite
rack. In particular for a connected quandle these dimensions are all one,
as they are for the one point rack. This means that the interesting things
happen in finite characteristic.

¢ In [25] the third cohomology is computed for Alexander quandles associ-
ated to a finite field & where T is multiplication by some w € k*. Unfor-
tunately the statement of the main theorem and its proof contain some
mistakes, which have however been corrected in [22].

e In [20] it is proved that the torsion subgroup of H*(X) is annihilated by
d"™ if X is a rack a cardinality d with homogeneous orbits. This is the
case for Alexander racks. In particular all torsion in the homology of R,
is p-primary. Thus it is sensible to concentrate first on the homology with
coefficients in Z/(p).

o In [26] it is proved that for p = 3 the torsion in the homology of R, is in
fact of exponent p, and conjectured that this might be true for general p.
We will see that this is indeed the case.

e The same authors construct a homomorphism h,: HZ(R,) — H,?H(Rp)
and report on computer calculations showing that this map is a monomor-
phism for small n and p. These calculations also suggests that the ranks
of these groups form a ‘delayed Fibonacci sequence’. We will generalize
their construction and show that these conjectures are all true.



1.4 A sketch of the new results.

The explicit calculations in this paper deal with the rack cohomology of R, with
coefficients in F,,. It turns out that it differs only by a dimension shift from the
cohomology of a space M = B(D,; R,) which is described in the next section,
and which carries a monoid structure p: M x M — M.

e The cohomology vector spaces H% (M) have a basis consisting of expres-
sions of the form

A, UBTUPH (A, UB2UPR(. . A, UB=UPH*1)) (4

with m;,j; € {0,1,2...} and e; € {0,1}. Here A,, is in HZ"(M), B is
in H3(M), and the additive operators P: H%(M) — H?l(M) are Rota-
Baxter operators. The A,, form a system of divided powers in the sense
that AnAr = (") A,

e The homology is generated as an algebra by generators r € Hf(M), s €
HE(M) and t € HE(M) with as only relations st = ts and 2 = 0.

The action of the Bockstein operator on (co)homology is known and shows that
all torsion is of exponent p. By the splitting result in [20] the same is true
for quandle (co)homology. The above result allows us to estimate the quandle
homology from above and the quandle cohomology from below, and since both
estimations coincide the homology and cohomology are completely determined.
They can be expressed in a similar way as the rack (co)homology. The main
difference is that the operator P is replaced by a similar operator ¢ satisfying
Q? =0, and that 2 = 0.

1.5 Organization.

The paper is organized as follows. In §2 we discuss the monoid structure on
augmented rack space and the resulting algebraic structure on chain level. The
formulas involving the cup product are proved in §3. In §4 we apply A Serre
spectral sequence to dihedral rack space and deduce the additive structure of
its cohomology. In §5 we compute its algebra structure and in §6 its coalgebra
structure. In §7 we show that all homology is of exponent p. Finally we compute
the quandle cohomology from the rack cohomology.

In order to simplify notation we will always use the same symbol for an
operator acting on chains and the dual operator acting on cochains. Thus for
example in section 2.3 we have operators P and D) acting on chains such that
PD is the identity, but on cochains DP is the identity.

2 The rack space and its coverings.

2.1 Groups associated to a rack.

For a rack X the adjoint group Adj(X) is defined as the group with a generator
e, for each a € X, and relations egleaeb = eqqp for a,b € X. There is a canonical



map adj: X — Adj(X) mapping a € X to e, € Adj(X). The functor Adj is left
adjoint to the functor Conj. For each b € X the map op defined by op(a) = axb
is a rack automorphism of X. For this reason racks were called ‘automorphic
sets’ in [3]. In this way we get a map o: Adj(X) = Aut(X). The image is called
the group Inn(X) of inner automorphisms of X. If Aut(X) acts transitively
on X then X is called homogeneous. If even Inn(X) acts transitively then X
is called connected. An Alexander quandle Alex(M,T) is connected iff 1 — T is
invertible.

2.2 Augmented racks

An augmented rack is a quadruple (X, G, n, p) where X is a rack, G a group, p
a right action of G on X by rack homomorphisms, and n: X — G a map which
satisfies

np(a,g) =g 'nla)g (5)

In this case the map 7 extends uniquely to a homomorphism 7: Adj(X) - G
such that the composition with p: G — Aut(X) is just . See [18] and [12]. For
a quandle we also demand that p(a,n(a)) = a.

Examples:

e For any rack X take G = Adj(X) and n(a) = e, and p(z,e,) = = * a.

e An oriented manifold M with an oriented properly embedded codimension
2 submanifold K and a point in M — K defines an augmented quandle.
See [31].

In the above situation a right action of G on a set Y gives rise to a pairing
Y x X — Y given by y*z = yn(z). It satisfies

1. For any a € Y and b € X there is a unique ¢ € Y such that a = c¢x b.
2. Forany a € Y and b,c € X we have (axb)xc = (axc)*(bxc).
Such a pairing is called an action of X on Y, and Y is called an X-set. Examples:
e One can take Y = X, in which case x = x.
¢ One can take Y = 0o, the one point set.
e In [12] an action of X on G is defined by gxz = n(z)~'g. We prefer to take

g xx = gn(z), coming from the action of G on G by right multiplicaton.

Obviously both actions are isomorphic by mapping g to g~ 1.

2.3 The chain complex of an X-set.

For a rack X acting on a set Y we introduce a chain complex as follows.
Let C,,(Y; X) be the free abelian group generated by Y x X™. Define a map



0: Cp(Y;X) = Ch—1(Y; X) as follows:

ail(y;$17~~~7$n) = (YR DT R Dy Ty KTy T 1, T (6)
" => (v, o' => (-1, a=9-9
i=1 i=1

If Y and Z are X-sets then a map f: Y — Z is called a map of X-sets if
flyxz) = f(y) 2. Obviously every map of X-sets gives rise to a chain map.

In particular the unique map Y — oo gives rise to a chain map 7: C,(Y; X) —
Co(o0: X) = Col(X).

Proposition 1. The isomorphisms : C,(X) = Cp_1(X; X) given by

O(xy, ..., x,) = (=) Nag; 2o, .., ) (7)
forn >0 form a chain map.
Proof. Immediate from the fact that 8} = 8. O

Remark 2. Combining ¢ with = we get a chain map P = ¢w: C,,_1(X; X) —
Cp—2(X; X) described by

Play;ae, . xn) = (1) (29,23, ..., 2y (8)

Proposition 2. Let X be a quandle. Then the maps D: C,_1(X; X) —
Cn(X; X)) given by

D(zy;20,. .., 2n) = (—1)"71(11;117127 cey ) (9)

form a chain map such that PD is the identity. This implies that the map
7w Hy (X5 X)) = Hp(X) is surjective.

Proof. Straightforward. O

2.4 The monoid stucture and homology operations.

Proposition 3. Let (X,G,n,p) be an augmented rack, and let G act on Y.
Then there is a pairing py: Co(Y; X) @ Cp(G; X) = Cpa i (Y X)) defined by

MY((yv Liyeeny ZEm) ® (g7$/17 .- 71;6)) - (ygvxlg7 <y Tmg, x/17 .- 7x;f) (10)
Here xg is short for p(x,g). In particular there is a pairing
Moreover one has

py (py(n®@y) @) = py(n® paly ®+")) (12)



and

Iy (n® ) = py (On @y + (=1)"n® dy) (13)

and if Y — Z is equivariant then
pz(f(n) @) = fuy(n®7y) (14)
Proof. Straightforward from identities like (yg) * (xg) = (y % z)g, which follow
from the definition of *. O

From this proposition it follows that pg induces a structure of associative
algebra on the total homology of (G; X). Moreover the total homology of (V; X)
is a right module over this algebra, and any G-equivariant map ¥ — Z induces
a module map. For example 7, : H,(X; X) — H,(X) is a module map. In this
paper we will determine this structure for the case that X = R,,.

Remark 3. One can view the elements of Hy(G; X) as additive operations of
degree k acting from the right on the homology of X. Indeed the operations
described in [26] can be viewed in this way:

e The operation k), is the one associated to the class of (eq;a) + (1;a).

e The operation h, is the one associated to the class of Z?;g(l;j}j +1).

Remark 4. We will write 1 for the 0-cochain given by 1(y;) = 1 for every
y € Y. Choose a base point y € Y. Then by applying uy to (y;) € Co(YV; X)
we get a map x: Cx(G; X) = Cy(Y; X). If the action of G on Y is transitive
then the class of (y; ) in Ho(Y; X) is independent of y and will be denoted by vy .
Thus x: Hy(G; X) — Hp(Y; X) is decribed by x(a) = u(ty ® a). In particular
the associativity of p implies that xyug = py (x ® 1).

Proposition 4. The interaction of ux with P is given by
Pula®b) = (=1)"p(P(a) @ b) + 1(a)P(x(b)) (15)

fora e Cy(X; X) and b € Cp,(G; X).
Proof. For k > 0 one has

= P(yg;x1g, ..., ohg, @, )
(=)t gy wag, .. ang, 2, . 2l)
Mx(($1;$27 .- .7$k) ® (gvx/h o 7x;n))
_1)k+m+1(_1)k+1MX(P(y;xl? .. .7$k) ® (gv x/17 .- 7x;n))

_1)k+m+1

(
(
and for £ =0

/’LY((yv) (gvx/h ;n) ygvx17"'7 ;n)



Proposition 5. The interaction of px with D is given by
Dpx(a® ) = (~1)™ ux(Daw b) (16)
fora e Cy(X;X) and b e Cp,(G; X).
Proof. We have
Dpx (g1, 24) ® (g, 2,))
= D(yg;x19,..., 280,24, ..., 2L)
= (—1)k+m(y9; TG, TAG, - TRG T, Ty
(D" ux ((yiy, 21, o) © (9520, 2),))
(—1)ktm(—1)ky (D(y;xh...7xk)®(g;x/17...7x;n))
(=D px(D @ D) ((y; 21, . oz) @ (g2, )

O

Remark 5. If we abbreviate p(a®b) to a-b then for Y = G the above formulas
read
P(a-b)=(=1)"P(a)-b+ 1(a)Pb

D(a-b) = (=1)"D(a) - b (an

Thus P is a graded Fox derivation of the algebra H,(G; X), with respect to 1.
Also D acts on C,,,(X; X) as left multiplication by (—1)"D(.x).

Remark 6. We identify C* ® C™ with the dual of C}, ® C,, using the pairing
(...} given by
(F®Gash) = (~1)"F(a)G(b) (18)

Thus the cochain version of proposition 4 reads
wPF)=Peo)ul'+1® PF (19)
and the cochain version of proposition 5 reads

W(DF) = (D ® uF (20)

2.5 The rack space as a monoid.

We now turn to the topological constructions which give rise to some of these
complexes and chain maps. From a rack X acting on a set Y the action rack
space B(Y'; X) is defined as in [12] as follows. One starts with ¥ x ([0, 1] x X)™
and defines an equivalence relation by

(y;t1, @1, t, 22, ...,0,25,. . tn, 20)

~ (y;t17xl7 ot g1, b, T, 7tn7xn) (21)
(y;ti, @1, te, 20, ..., L, 25,0ty @)

~(y*agt, e x @y, b1, T % 5,1, T, - By Tn)



and defines B(Y; X) as the quotient space.

It is easy to see that the chain complex {C,(Y; X)} introduced before is
just the cellular complex of this space, with one cell [0,1]™ for each (n 4 1)-
tuple (y;x1,...,2,). Moreover the pairing p of chain complexes is induced by
a pairing p of spaces given by

M([y;t17$17 cee 7tm7$m]7 [gvt/hx;w s 7t;{:7x;€])

(22)
- [yg;t17$197 cee 7tm7xmg7 t/17 x/17 .. '7t;g7 x;g]

In particular we get a strictly associative monoid structure on B(G; X ). Note
that this monoid contains the group G as a submonoid, so that by restriction
we get a pairing B(Y; X) x G — B(Y; X), which is the edge action described
n [12]. In case Y = G we get by restriction a pairing G x B(G; X) = B(G; X)
which is the vertez action described in the same paper (but note our different
convention). According to theorem 3.7 of [12] and the remarks preceding it we
have:

Proposition 6. Let (X,G,n,p) be an augmented rack, with G acting on Y.
Then the projection B(Y; X) — B(X) is a covering. In particular B(G; X) —
B(X) is a principal G-bundle, with the verter action as covering transforma-

tions. Moreover B(Y; X) can be identified with Y x ¢ B(G; X).

Proposition 7. Assume that the map n: Adj(X) — G is surjective. Then
B(G; X) is connected.

Proof. The vertices associated to g and ge, are connected by the edge associated
to (g; z). Therefore any two vertices are connected, O

Remark 7. A first consequence of this is that the covering transformations
act trivially on homology. A second consequence is that B(G; X) is homotopy
equivalent to a loop space, since that is true for any connected associative topo-
logical monoid.

2.6 The universal property of B(G; X).

The following fact is stressed in [12]: if a finite set X is equipped with the trivial
rack structure then B(X) is nothing but the James construction applied to the
suspension of X. One aspect of the James construction J(Y') applied to a space
Y is that it yields the free topological monoid on Y. This means that there is
a map from Y to J(Y) which is universal among maps from Y to a topological
monoid. We can give a similar interpretation to B(G; X) and thus view it as
some kind of generalized James construction.

Proposition 8. Let (X, G,n, p) be an augmented rack, and let M be a topolog-
ical monoid. There is a bijection between monoid maps ®: B(G; X) — M and
pairs consisting of a map ¢: G — M and a map f:[0,1] x X — M such that

e ¢ is a homomorphism and f is continuous.



o f(0,x) is the identity of M.
o f(1,z) = ¢(n(x)).
o dlg) 1 f(t,2)d(9) = [t pla, )

Proof. Straightforward: one writes (g; 1,21, ...,tn, xy) € B(G; X) as the prod-
uct of (g;) and (1;t1,21),...,(1,4,,z,). Moreover one writes ¢(g) for ®((g;))
and f(¢,z) for ®((1;¢,z)). O

If we take the canonical choice G = Adj(X) then this reduces to

Proposition 9. Let X be a rack and let M be a topological monoid. There is
a bijective correspondence between monoid maps ©: B(Adj(X); X) - M and
maps f:]0,1] x X = M such that

o f(0,x) is the unil element.
o f(1,z) is invertible.

o f(Ly) ' flta)f(Ly) = flt,xxy).
Proof. Straightforward. O

It is yet a mystery how this relates to the most important aspect of the James
construction J(Y') applied to a space Y the fact that it provides a homotopy
model for the loop space of the suspension of Y.

2.7 Simplicity of B(X).

The fact that B(G; X) is a topological monoid gives a nice alternative explana-
tion for the following fact noted in [12]: the canonical action of the fundamental
group of B(X) on its higher homotopy groups is trivial. It can be viewed as a
case of the following general fact:

Proposition 10. Let M be a simply connected topological monoid containing a
discrete subgroup G, so that the canonical projection M — M/G is a covering
map. Then the canonical action of the fundamental group of M/G on its higher
homotopy groups is trivial.

Proof. Let v be an element of the fundamental group, represented by a loop in
M /G, which is lifted to a curve ¢ in M starting at the base point m. Moreover
let £ be an element of 7, (M), which is represented by a map f: [0,1]" — M
mapping the boundary of [0, 1]™ to m. In order to find v¢ one has to construct
a map F:[0,1]" x [0,1] = M/G such that F'(z,0) = f(x) and F'(0,t) = c(t);
then ~¢ is represented by the map ¢ — F(z,1). However here we can simply
take F'(x,t) = f(z) - ¢(¢) using the monoid structure. O

10



2.8 The cup product.

As we have seen rack cohomology is in fact the cohomology of a space, the rack
space. Therefore the topological cup product gives rise to a ring structure on
cohomology. We now describe a product on the cochain complex informally. In
the next section we will describe it more formally and prove that the induced
product on cohomology coincides with the topological cup product. We will do
this as as special case of a more general theorem about O-sets.

For f € C*(B(Y; X)) and g € C™(B(Y; X)) the product f U g applied to
a sequence (y; 1, ..., Tktm) is a sum of terms, corresponding to subsets B of
(1,...,Tpym) of cardinality m, as follows:

e The arguments of f are y and the elements of B in ascending order.

e The first argument of g is y after it is acted upon by all elements of B. The
remaining arguments are the elements z,, of the complementary subset A,
after they are acted upon by the elements x, of B with v > w.

e Lastly every term is preceded by a sign depending of the parity of the
permutation involved.

The example k& = m = 2 may illustrate this:

(fUg)y; 1,20, 23, 74)
=f(y;z1,22)g((y * 1) * 22; 73, 74)
— fly;z1,23)g((y x 1) * 23,72 * 23, 74)
Y, L1,%4)9

(
+ f( )g(
+ fly; 2, 23)g(
- f( )g(
+ f( )g(

YxLy) Kk XTy,Tg * Ty, T3 * L) (23)

T3 yxx) xw3; (X1 % T2) * X3, T4)
x Yx o) kg (1 % T9) * T4, T3 * 24)

Y x I3

Y, L2, x4)g
Y,T3,24)9

e e e N

(
(
(
( xz4; (21 % 23) % Ty, (T * 3) * T4)

Moreover this product is strictly associative on the cochain level, and has 1 as
a unit.

Proposition 11. The interaction of the cup-product with i is given by
YF UG = (FUPG) + (1) (PFUG) (24)
for F € CH(X;X) and G € C™(X; X).
Remark 8. By applying 7 to the above formula we find
PFUPG = P(FUPG)+ (-1)"""P(PFUG) (25)

for F € C*(X; X) and G € C™(X; X). This means that P is a (graded) Rota-
Baxter operator with respect to the cup product. See [27] and [14] and [15] for
more on Rota-Baxter algebras.

11



Proposition 12. The interaction of the cup-product with D is given by
D(FUG)=DFUG+(-1)*FuDG (26)
for F € CH(X;X) and G € C™(X; X).

Thus on cochains P has the formal properties of integration and I has the
formal properties of differentiation. Moreover D P is the identity map. Since we
need the formal definition of U using the language of O-sets the proofs of these
two propositions are given in the next section.

2.9 Some remarkable identities.

Let us write A for the element P(1) € C*(Y; X). Thus A(y;z) =1 forally € Y
and z € X.

Proposition 13. One has AUA =0, and

F=-FUA
" (27)
OF=(-1"AUF
for F € C" (Y X).
Proof. Straightforward. O
Proposition 14. Let Q: C"(X; X) — C"tY(X; X) be defined by
QF)=P(F)+ (-1)""'FuUA (28)
Then Q% = 0.
Proof. We have
Q*(F)=P(PF+ (-1)"""FUA) + (-1)"(PF + (-1)""'"FUA)UA (29)
= PPF + (=1)""'P(FUA) + (-1)"PFUA - FUAUA
But PFUA = PFUP1=P(FUP1)+ (=1)""'PPF and AUA = 0. O

This fact seems less an accident if one observes that () is conjugated to the
operator 9%

Proposition 15. ¢Q = —9%) on C"(X; X).
Proof. Straightforward. O
Proposition 16. If §G =0 then

QFUQG=Q(FUQG) +(-1)*"QQFUG) (30)

for F € CH(X;X) and G € C™(X; X).

12



Proof. By definition of Q and proposition 11 we have
QFUQG = P(FUPG) + (-1 P(PFUQG)
+ (=)™ TIPFUGUA) + (D) FUAU PG
+(-D)MmFUAUGUA
QFUQG) = P(FUPG) +(—1)""'P(FUGUA) (31)
+ (- FUPGUA+ (DT FUGUAUA
(-DMQQFUG) = (-1D)MP(PFUG) + P(FUAUG)
+ (- TPFUGUA + (=)™ FUAUGUA
If 6G =0 then —GUA = 8°G = 9'G = (—=1)" " AU G and therefore
(-DFFUAUPG = (-1)F™FUPGUA
Moreover in that case §PG = P3G = 0 which implies in a similar way that
—PGUA = (=1)"AU PG so (-1)"HMP(GUGUA)+ P(FUAUG)=0. O

Thus @ does not behave as a Rota-Baxter operator on the the cochain level
but it does so on the cohomology level.

3 Cup products in O-sets.

3.1 Introduction to O-sets.

Since the rack spaces B(Y'; X ) are built up from cubes, we have to study general
spaces constructed from cubes. This is formalized in the theory of O-sets, see
[13].

Definition 2. Maps d<: [0,1]" ! — [0,1]" are defined for n > 1 by
d;(th .. ~7tn71) = (t17 Ca 7ti,1767ti7 .. ~7tn) for e € {07 1} and 1 < 1 <n
They satisfy did] | = djd for 1 <i<j<n.

Definition 3. A O-set X is a sequence of sets X,, for n =0,1,2,... together
with face maps 65: X,, — X, for e € {0,1} and 1 <4 < n such that (5;771(55 =
(55(5;7 for 1 <4 < 7 < n. Its chain group C,,(X) is defined as the free abelian
group generated by X,,, and the boundary operator d: C,,(X) — C,,—1(X) is
defined as >, (—1)%(8) — &}).

Remark 9. Some caution is needed when dealing with O-sets. Note that the
singular cubes in a topological space do not yield the correct homology, but
after dividing out the degenerate ones they do.

Definition 4. We write [n]for {i € Z |1 < i < n}. Let A C [n]and B = [n]—A,
say A = {a1,a9,...,an} and a1 < ag < -+ < am, and B = {by, ..., by} with
by < -+ < by. Then we write ¢(A) for the sign of the permutation o4 that
maps (1,2,...,n) to (by,...,b,a1,...,ay). Moreover if X is a O-set we write
0% = 0g, ©0---00;
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Definition 5. Let X be a O-set, and let f € C*(X) and g € C™(X). Then
fUg e Ckm(X) is defined by

(JUg)@) = (=1)"" Y~ e(A) - [(5a(x) - 965 () (32)

A
where B = [n] — A and the sum is over all subsets A of cardinality m.
Definition 6. The realization | X|| of a O-set X is defined as the quotient of
the topological sum [], X, x [0, 1]" by the identifications (65 (z),t) ~ (z, d5(¢)).

The aim of this section is to show that the above formula for the cupproduct
for cochains on X agrees with the topological cupproduct on || X||. To do this
we rewrite | X || as the realization of a simplicial set. The idea is to triangulate
the cubes into simplices, and to use the known formula in the simplicial case.
The proof in this section is adapted from [22].

3.2 The triangulation.

The triangulation which we will describe will not deliver us an honest simplicial
set but one lacking degeneracies.

Definition 7. A A-set Y is a sequence of sets Y,, for n = 0,1,2,... together
with face maps 6;: Y, — Y,y for 0 < i < n such that §;_10; = 0;0; for
0 < i < j <n. lts chain group C,(Y) is defined as the free abelian group
generated by Y,,, and the boundary operator 9: C,,(Y) — C,_1(Y) is defined

as >, (—1)"4;.
Definition 8. A k-partition of [n] is a sequence S = (S1;59; .. .; Si) of nonempty
subsets of [n] which are pairwise disjoint and have [n] as their union.

Definition 9. For a O-set X we define a A-set T'(X). The set of k-simplices
T(X), consists of the pairs (x;5) where z € X,, and S is a k-partition of [n].
The boundary maps are given by
So(x;S1;...35%) = (88,2305, (S2); .3 05, (Sk))
0i(x; S1; .. 3 8,) = (2,515 .. 5821, 8: U Sig1; Sina;. .3 Sk) for0<i<k
5k(x; Sl; SN Sk) — ((5gk (:E), Osk (Sl); N Osk (Skfl))
Here 05 denotes for S C [n] the unique order preserving map from [n] — S to
[n — #(S)]-

Remark 10. To check the necessary relations one uses that Osur = g s(T)© fg
if S,T C [n] are disjoint, and a similar formula for the 5.
As particular cases we have

S8(x;S1;. .. 8n) = (04(2); 08 (Ska1); ... ;08 (Sh))
Skrt - On(@;S1s. .1 S0) = (0%(2); 04(S1);...;04(Sk)

where A = S U---US, and B=5,U---USy, and where 05: A — [#(A)]
and 64: B — [#(B)] are the unique order preserving maps.

(33)
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The geometrical k-simplex associated to (z;5) is the subset of {z} x [0, 1]™
consisting of the (z;t1,...,t,) with the property: if @ < 8 and i € S, and
j S SB then ti S tj.

Consider the special case k = n. An n-partition S of [n] can be viewed as a
permutation o € S, using the formula S; = {o(4)}.

The n-simplex now consists of the points (z;¢y,...,t,) € X x [0, 1]™ for which
a < B implies t,0,) < t,(5). We write o(x) for this simplex. It is clear that
these simplices cover || X|| and intersect only in a common face.

Definition 10. For z € X,, define 7(z) =3 .5 e(o)o(z).

Proposition 17. 7 induces a chain map from chain complex of the O-set X to
the chain complex of the A-set T(X).

Proof. We prove that 6(r(z)) = 7(6(z)). Let 0 € S;, and 0 < i < n . Then
one of a(x) and (i i+ 1)o(x) looks like (z;...;a;b;...) and the other looks like
(x;...;b;a;...). Therefore the §; of these two terms cancel in 6(7(z)). We are
left with

d(7(x)) = do(7(x)) + (=1)"dn(7(x))

Let T, = {o¢ € S, | o(1) = i}, and for 0 € T} deﬁne p(g) = B;0(5 + 1)
forl1 <j <n-—1 Then p=(ii+1 ... n) to(l n) € Sp—1, 80
elp) = (=1)" te(a)(—1)" 1 = (1) te(o). For o € T; we ﬁnd

doo(x) =g (z;4 | 0(2) | -+ | o(n))
= (6} (x);0,0(2) | | 00(n)) = pot(x ) and thus
dor(z) = do Z ooz Z Z o)épo(z
oES, i o€T;
=> > (- p)pd; (x) = (=1)'" 17 ()

i pESH_1

l()for

Let T] = {0 € S, | a(n) = i}, andforaET/deﬁnep():
= (=) "e(o).

1<j<n—1 Thenp =@Gi+1...n)"to €S8, 1,s0¢lp)
For o € T/ we find

ono(x) =0 (z;0(1) |- |o(n—1) | i)
= (67 (x); 0 (1) | | B0 (n — 1)) = p/(5Q( ) and thus
) =dn Z (o)o(z ZZ
ceS, i ocT)
=X > P8 (@) = (1) 7o) (a)
i pESL_1

Summing over i we get §(7(z)) = >, 7((=1)"6)(z) — (-1)6}(z)) = 76(z). O

K K
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Definition 11. Let Y be a A-set, and let f € C*(Y) and g € C™(Y). Then
fUge CHm(Y) is defined by

(fUg)(y) = (=1)"" f(Ors1 .- Ony) - 9(d5y) (34)
for y € Yi1m. This is the Alexander-Whitney formula as in theorem 8.5 of [21].

We now prove that the products in definition 5 and definition 11 correspond
under 7.

Proposition 18. The dual map satisfies 7(f U g) = 7(f) U7(g).

Proof. For any A C [n] let B and 04 be as in definition 4. Then o € S,, can be
written uniquely as o4(o1 X 09) for some A and some o1 € S;; and 09 € S,,.
From 840(i) = 01(4) and 0po(k + i) = o9(4) it follows that

Opt1...0n0y = alégy and 5§ay = agééy (35)
Thus for f € C*(T(X)) and g € C™(T(X)) and y € X} We have
(fUg)oy) = (=) [(Sks1 ... 6n0y) - g(850y)
= (=1)"" f(016%y) - g(o205y)

Therefore

(r(fUg)y) = (FUg)ry) = (FUg) D e(o)o(y)

a

=(fug) Z Z Z e(oalor x 09)) - (0alor X 09)y)

A 018 0268

=3 )" D A -elor) - €lor) - (fUg)(oalor x 02)y)

A 01E€8L 0268,

= (I Y ) clon) - elon) - F(018%9) - 9(020hy) (ap)

A 016SL 02€8m

:(—1)]%26(14) Z f(6(01)'015?4y) Z 9(6(02)'025}:&)

A 01ESE 02ESm
1Y () - F(r) - ol )
A

kmzAjﬁ (T))(04y) - (T9)(Spy) = (Tf UTg)(y)

O

Remark 11. The cup product in definition 5 is strictly associative since the
Alexander-Whitney cup product is strictly associative and the map 7 is strictly
homomorphic and surjective. Moreover the 0-cochain which maps every vertex
to 1 is a strict unit.
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Proposition 19. Let X be a O-set. Then there is a chain equivalence between
C*(X) and the singular cochains on || X|| under which the product in definition
5 corresponds to the cup product on singular cochains.

Proof. There is a functor G from A-sets to simplicial sets which is left adjoint
to the forgetful functor F' from simplicial set to A-sets. For each A-set Y there
is a chain equivalence (see [21] theorem 8.6.1) from the chain complex of GY to
the normalized chain complex of GY, which coincides with the chain complex
of Y. Under this equivalence the Alexander-Whitney maps agree.

Now C*(X) with the product of definition 5 is equivalent to C*(T'X) with
the AW product, which is equivalent to C*(GT X ) with the AW product, which
is equivalent to the singular cochains on ||GT'X|| with the AW product. But
|IGT X|| is homeomorphic to || X]|. O

Remark 12. The geometric realization of the A-set Y is homeomorphic to
the geometric realization of the simplicial set GY. However the realization of a
simplicial set Z is not homeomorphic to the realization of the A-set I'Z. They
are however homotopy-equivalent. For more on this see [29].

Now we specialize to rack spaces.

Definition 12. Let X be rack and let Y be an X-set. Then we get a O-set
B(Y; X) by defining B(Y; X),, =Y x X" and
5’?(y7x17 ce 7£En) = (y;x17 BRI S P R PR 7x’ﬂ) (38)
5}(y;$17~~~7$n) = (Y * T TR Ty T K Ty, i1, -5 T)
Obviously ||B(Y; X)|| is just what we called B(Y; X), and C,,(B(Y; X)) is
what we called C,,(Y; X). Combining this definition with definition 5 one finds
the prescription of subsection 2.8.

3.3 The proof of proposition 11.

Now we investigate the relation of this cup product with « and thus P and
with D. First we have to translate ¢ in the language of O-sets. We write
Ve: B(X)n — B(X; X),—1 for the map given by

Yol(T1, 22, ..., 20) = (T1;22, .., Tn) (39)
The relation with ¢ is given by
(WF)(x) = F(yz) = (=1)" 'F(az) (40)

for z € B(X), and F € C" }(X; X).

Proposition 20. One has
F(ipa652) = F(65_19ez) fori>1 and
Feiz) = (=1)"(PF)(¢ez)

for z € B(X),, and F € C" %(X; X).
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Proof. For ¢ =1 one has
F(449; (3517 cosy)) = F (e (y %y, o Ty ¥ Xy, Ty 1y ey X))
= F(zy %220 % Tyy oo, T4t ¥ Tiy Tt 1,y -, Ty (42)
- F((Sz 1($1,ZE27.. 7$n)) = F((572171¢0(x17x27" 7x’ﬂ))
for ¢ > 1 and
F(lﬁ.é%(ﬂ?h vy ) = Fle(za, ... xp)) = Flag;as, ... 2y)
= (—1)”(PF)($1,:E27 .. '7x’ﬂ) - (—1)”(PF)(¢.($17$27 7x’ﬂ))

and similarly for ¢ = 0. O

(43)

Now we prove proposition 11. Let F' € C*(X;X) and G € C™(X; X) and
2 € B(X)gr4m+2 then by definition of the cup product we have

(WF UG () = (~)FFIIED S T e(4) - (9 F)(6h2) - ($G)(dp2)

A
= (-1 ’“"‘*’f*m“z F(yé4z) - G(yépa)
(44)
= (-1 km+k+m+12 FF(1hediz) - (1) G(1he 5p )
= km+1 Z ¢05Ax) (¢0511395)

where the sum is over subsets A C [k + m + 2] of cardinality m + 1, and B is
the complement of A. For each term we write

A:{a17a27...7am+1} with a1 < a9 < --- < Gma1
B:{bl7bg7...7bk+1} with by < by < --- <bk+1

There are two possibilities:
o If a;y =1 we write

U={a-1;a€Aa>1}={ars—1l,a3 —1,...,ams1 — 1}
V:{b—l; bEB}:{51—1752—17...7bk+1—1}

From proposition 20 we get by induction

:(—1)k(PF)(¢- ~ 52m52m+1 x)
= (=DMPF) 05, 100, 1¥ew)
= (=D)"PF)(0)az) (45)

G(¢,5}31) G(
= ( 15b2 1-- .5§k5gk+1,1¢.x)
(6V¢o )

03,04, -+ 0,04, )
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Finally if we write & for the cycle (1 23...k+m+2) then oca(kopr 1)t
is the cycle (1 by ba...bgi1), so €(A) = (=1)*T1e(U). Therefore these
terms add up to

"“”“Z DEHU) - (=1 (PF) (S ber) - G(ob1per)
:<—1>kmze<v>~<PF><aU oz) - G5 az) (45)
U

= (=1)™(PFUG)(¢oz) = (=1)" (PF U G)(yz)
= (=) (PFUQG))(x)
o If by = 1 we write

U={a-1;acAt={a1—l,aa —1,...,ams1 — 1}
V:{b—l; b€B7b>1}:{52—17[)3—17...7bk+1—1}

From proposition 20 we get by induction

F(¢.5gx): F(1)46° 50 00 80 )

0100y - 0a, Ba
( a2 1- amﬂfﬁﬁo?ﬂ)
:F(5U¢o )
(¢063x) G 515b 5b3~ ~5gk+195) (47)
= (=1)"™(PG) (a0, ... O, )
= (=1)™(PG)(0p,—10by—1 - - Op,,—1%e)
= (=1)™(PG)(6¢Paw)

This time o 4(koyk 1)1 is the identity so e(A) = ¢(U). Therefore these
terms add up to

1ykm+1 Z F(60bez) - (—1)™(PG) (55 bez)

km+m+1z 5U¢‘ z) - (PG)((5\1/¢0$) (48)

U E U PG)a) — (U PG
— (Y(F U PG))(x)

Thus ¢ F U ¢G = (F U PG) + (-1 p(PFUG).

3.4 The proof of proposition 12.

Now we investigate the relation of the cup product with D. First we have to
translate D in the language of O-sets. We write Ds: B(X; X )p—1 — B(X; X)»
for the map given by

Dy(z1;29,. .. 20) = (T1; 21, T2, T3, . .., Ty (49)
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The relation with D is given by
(DF)(x) = F(Da) = (~1)"~'F(D\2) (50)
for z € B(X;X),—1 and F' € C"(X; X).
Proposition 21. One has
F(85 Do) = F(Da6;_12)  fori>1, and

P55 Duz) — Fl) (51)
forz € B(X;X),, and F' € C™"(X; X)
Proof. For ¢ =1 one has
F(8!Do(x0;21,. .., x0)) = F(0} (x0; x0, 21, . . ., %))
= F(zo* 21,20 % Ty—1, .., Tim9 % Ti1,Liy ..., Tp) (52)
= F(De(mo * Ty 1;T1 * Ti_1,. .., Ti 2k Ti1,Liy .., Tn))

= F(Ded} (z0;21, . i1, Ty oy )
for ¢ > 1 and
F(0iDy(z0; 21, ..., x0)) = F(61 (zo; 20, 1, ..., ) = Flao;z1, ..., x,) (53)
and similarly for e = 0. O

Now we prove proposition 12. Let F' € C*(X;X) and G € C™(X;X) and
z € B(X; X)ppm—1 then by definition of the cup product we have

(D(F UG (w) = (FUG)(Da) = (—1>’f+M*1<F UG (Du)
— (—1)fmrkemt Z F(8) Do) - G(ok D) O

where the sum is over subsets A C [k + m] of cardinality m, and B is the
complement of A. For each term we write

A=A{ay,a9,...,an} with a; <ag < - <ap
B ={b1,bo, ... by} with by < by < - < by
There are two possibilities
o If oy = 1 we write
U={a—-1;a€Aa>1}={ars—1l,as—1,...,a, —1}
V={b-1;beB}y={b —1,bo—1,... by —1}
From proposition 21 we get

F(égD.x)—F(é%O . 50 Dez) = F(6{Dy6S _...05 _jx)

PO,y 00 1) = Pllpe) -
G(65Duz) = G((Sbl .8} Do) = G(DS), .0, =)
~ G, m) ( (DG ()
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If we write x for the cycle (12 3...k+m) then o4 (koyrx—1)~!is the cycle
(1b1 by...by), so e(A) = (=1)%¢(U). Therefore these terms add up to

(—)fm LN () Re(U) - F(ha) - (=1)™H(DG) (8 )
U

= (=) Y eU) - F(6ha) - (DG)(8yx) = (~1)*(F U DG)(x) o
U
o If by =1 we write
U={a-1;acA={ar—l,aa—1,...,am — 1}
V={b-1;beBb>1}={bs—1,b5—1,...,b;, -1}
This time we have
F(84Dez) = F(35 60 ...00 Dax)
=F(Dy62 _y...60 ) =F(DJ5jx)
— (—1) U (DF)(8%a) -

G(0pDex) = G(5,64, ... 0, D)
= G(61Du6L, (... 6L i)
= G(0py—1...04 _1z) = G(6yz)

This time o 4(koy k1)1 is the identity so €(A) = ¢(U). Therefore these
terms add up to

(—L)Fm LS () (<) (DE)(Sh) - Gloha)
U
— (—1) ST (U) - (DP)(8%a) - G(oha) (58)
U
— (DFUG)(x)

Thus D(FUG) = DF UG + (—1)"F U DG.

4 The key fibrations.

4.1 The cohomology of the coverings of B(X).
From now on we assume that X is finite quandle with the following properties:

e It is faithful in the sense that x * a = z x b for all = implies a = b. In
this case the the canonical map X — G = Inn(X) is injective. We will
identify X with its image in G.

¢ It is connected: the action of G on X is transitive. Thus there is a bijection
G/H — X where H is the isotropy group of some a € X.
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¢ It has ‘homogeneous orbits’ so that the result of [20] can be applied which
says that the torsion in H,(X) is annihilated by d"™, where d is the cardi-
nality of X.

e It is regular in the sense that the cardinalities of X and H are relatively
prime.

The first three conditions are satisfied for the Alexander quandle associated to
(M, T) if 1 — T is invertible. The last condition is satisfied if the order of T is
prime to the order of M.

All this is satisfied if X is a Galois quandle, where M is a finite field K of
characteristic p, and T' is multiplication by some w € K — {0, 1}. Note that G
is a subgroup of the affine group of K.

Let p be a prime dividing d, the cardinality of X. As noted above only such
a prime can be involved in the torsion in the homology of X. For this reason we
will start with looking a the cohomology of B(G, X) and B(X, X) and B(X)
with coefficients in F, the field of p elements.

A key role in our considerations is played by the following well known ob-
servation.

Proposition 22. Let 7: Y — X be a principal covering, with group I'. If the
order d of I' is prime to p then the map

7w HY(X;F) = H"(Y,F)" (59)
is am tsomorphism.
Proof. The transfer map provides an inverse. O

For any augmented quandle (X, G) one gets an equivariant map G — X by
choosing some base point zg € X and mapping G to zog. From this one gets a
principal covering B(G, X) — B(X, X) with group the isotropy group of xg.

In the situation considered here the zero element of K is an obvious choice
for zp, and the group I' consists of the powers of w. So we get as a corollary:

Proposition 23. The projection map induces an isomorphism
x: H"(B(X, X);F) ~ H"(B(G, X); F) (60)
Proof. By remark 7 the action of I' on the cohomology of B(G, X) is trivial. O

Henceforward we will identify both cohomologies using x. In particular
proposition 4 now says that uPF = (P ® 1)uf"+ 1 ® PF. Note also that the
element D(vx) mentioned in proposition 5 corresponds under x up to a factor
2 with the class of (1;4) 4 (ey; ¥) which corresponds to the operation A/, of [26],
as discussed in remark 3.

Next we cite the result on page 349 of [12], again for general augmented
racks:
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Proposition 24. There is a map v from B(X) to the classifying space B(G)
and the principal covering B(G, X) — B(X) is the pull-back of universal cov-
ering B(G) — B(G).

Thus we have a commutative diagram

B(G,X)—— E(G)
B(X) —— B(G)
In our special case this has the following consequence:
Proposition 25. v: H"(B(G);F) — H"(B(X); F) vanishes for n > 0.

Proof. 1t follows from proposition 2 and proposition 23 that the map B(X) —
B(G; X) is injective in cohomology. On the other hand the cohomology of E(G)
vanishes in positive dimensions. O

Like any map « can be replaced by an equivalent Hurewicz fibration. One
gets the fibre F'(v) of this fibration by pulling back the path space over B(G).
Since the path fibration is equivalent to the covering £(G) of B(G), the resulting
fibre is equivalent to the pull back B(G, X) of E(G). Henceforward we will
make no difference in notation between any map and the equivalent fibration
that replaces it.

Remark 13. At this point one can see how a recursive computation of the
cohomology of B(X) starting from the cohomology of B(G) might be feasible.
One considers the fibration sequence

Y

B(G; X) B(X) B(&) (62)
where ~ is homologically trivial. If one knows the cohomology of B(X) up to
dimension n one can hope to be able to compute the cohomology of B(G; X)) up
to dimension n by a spectral sequence argument. But this coincides with the
cohomology of B(X, X). By proposition 1 this yields the cohomology of B(X)
up to dimension n + 1.

In this way a new proof might be given of the results of [25] about H?®.
However from subsection 4.5 onward we specialize to the dihedral case K = F,
w = —1. We try to recognize the pattern that emerges in H” for larger n, and
prove that the found pattern is the correct one by using a spectral sequence
comparison argument.

4.2 Replacing B(G).

A problem with the fibration B(X;G) — B(X) — B(G) is the fact that the
base space is not simply connected. We will remedy this by replacing it by
another space L with the same cohomology which is simply connected.
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Definition 13. Let C' C G be the cyclic group generated by T'. Let ic: B(C) —
B(@) the map of classifying spaces induced by the inclusion C C G. Then L is
defined to be the mapping cone of i¢;. We wil write j for the inclusion B(G) — L.

So L is built by attaching the cone of B(C) to B(G). We might reach our
goal also by just attaching one 2-cell and one 3-cell.

Proposition 26. The space L is simply connected, and the map j induces
isomorphisms H"(B(G),F) — H"(L; F).

Proof. By the van Kampen theorem the effect of attaching a cone is quotienting
out the normal subgroup generated by the image of the attaching map. In
the present case the normal subgroup generated by T is the whole of G. The
second statement follows since H™(B(C);F) is trivial for n > 0, because the
characteristic of F' is prime to the order of C. O

Now we consider the following map of fibrations

F(y) —= B(X)

b

— > B(G) (63)
F(jy) ——> B(X) 21—

;

L
Proposition 27. The map J: H"(F(jv);F) — H"(F(v); F) is an isomor-
phism.

Proof. We cite the Zeeman spectral sequence comparison theorem, a version of
which can be found as proposition 1.12 from [17]: Suppose we have a map of
fibrations, and both fibrations satisfy the hypothesis of trivial action for the
Serre spectral sequence. Then if two of the three maps induce isomorphisms on
R-homology with R a principal ideal domain, so does the third.

In our case the fundamental group G of B(G) acts trivially on the cohomology of
F'(v) since it acts trivially on the cohomology of the equivalent space B(G; X).
The fundamental group of L acts trivially on the cohomology of F'(jv) since it
is trivial. O

4.3 The second key fibration.

The problem of computing the cohomology of B(X; X) is now reduced to that
of computing the cohomology of F'(jv). To do that we change £ into a fibration
&, This yields a fibration sequence

7

F(&)) —> F(jv) —— B(X) (64)

Proposition 28. Let be given a fibration sequence

r2sp-tsop (65)
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and change j into a fibration j': F' — B, gwing a fibration sequence

G-t 7 (66)
then G is homotopy equivalent to the loop space QB, and the action of w1 (F)
on Hp(G) factorizes over the action of w1(B) on H,(QB).

Proof. In general the action of 71 (£) on H,,(G) is induced by a pairing Q(£) x
G — G which in turns is the restriction of a Hurewicz connection. If 5’ is
coming from a fibration as indicated then such a Hurewicz connection can be
explicitly constructed from p, and the resulting pairing can be seen to factorize
over Q(B). O

Since the fundamental group of L is trivial this means that in the fibration
sequence (64) the fundamental group of the base acts trivially on the cohomology
of the fibre, so that we can set up a Serre spectral sequence. The cohomology
of the fibre is the cohomology of (L) which we regard as known. Now consider
the following well known theorem.

Proposition 29. (Leray-Hirsch). Let be given a fibration sequence

’

G—k>F/L>E (67)

with 71(F) acting trivially on the H™ (G, F). Suppose that we can find elements
x; € HY(F',F) such that the k™ (x;) form an F-basis of H*(G,F). Then the
elements x; form a basis of H*(F';F) as a module over the cohomology algebra

of H*(E;F), using 7’

Remark 14. Suppose that this theorem is applicable to the fibration sequence
64 then we have

dim H"™H(B(X);F) = dim H"(B(X; X); F) = dim H"(F', F)

= dim HYG; F) -dim H* *(B(X); F) )

k
= dim H*(Q(L); F) - dim H" *(B(X); F)
k

Thus we can compute the betti numbers of B(X) from the known betti numbers
of Q(L). Even better: a basis of the cohomology of B(X; X) is given by the
expressions

Tk, UiD(:IZk2 UiD(:Zk3 (69)

where P: H"(B(X; X);F) — H""Y(B(X; X);F) is 7*¢ as in remark 2.

In any case we find a recursion formula for the betti numbers which for X = R,
is a version of the recursion formula conjectured in [26]. The remainder of this
section is devoted to the proof that we are indeed in situation of the theorem,
at least for the case of the dihedral quandle F,.
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Remark 15. From now on we shorten notation by writing the sequences 62
and 64 as

QL > M —s>BX and M —>BX—"L->7 (70)

where M stands for B(G; X) or B(X; X). So these are fibration sequences up
to homology equivalence.

4.4 Reverse transgression.

Let be given a fibration sequence

F—j>E—p>B (71)

with F' the fibre over by € B. Suppose that p* is trivial in positive dimension.
Then consider the following diagram

H™(B;bo; F) —— H"™(B; F) (72)
g

- lp*

" Y(F,F) —> H"(E, F';F) — H"(E:F)

The diagram shows that for an element £ € H"™(B;F) there is an element
Z € H" Y(F;F) such that 6= = p*(g*)~'¢. The fact that 6= is in the image
of p* shows that = is transgressive, and the transgression maps = to £ modulo
indeterminacy. It is well known (see page 54 of [17]) that the transgression
coincides with the edge homomorphism d,, : E>" 1 — E™° in the Serre spectral
sequence of the fibration. There are two situations in which this observation is
relevant. The first case is a path fibration, where I is contractible. The second
case is the one where p is v: B(X) — L.

4.5 The cohomology of L and )L in the dihedral case.

In this subsection we consider the dihedral quandle R,. In this case the group
G = Inn(Ry) is the dihedral group D,.

Proposition 30. The cohomology of B(D,) is generated by an element o of
degree 3 and an element B of degree 4, with U o = 0 as the only relation.

Proof. The cohomology H*(B(C}); F) is better known: it has a generator 6 of
degree 1 and a generator n = A(#) of degree 2. Here A denotes the Bockstein
operator. The covering B(C,) — B(D,) has one nontrivial covering transfor-
mation which corresponds to inversion in C,. So it maps # to —8 and therefore
n to —n. Now we use proposition 22 for this double covering. The algebra
of invariants under the covering transformation are generated by o = 6y and

B=n 0
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Proposition 31. The cohomology of QL has a basis consisting elements Ay B¢ €

H2ET3¢(QL; F), where k > 0 and e € {0,1}. Here B> =0, and the Ay, constitute

a system of divided powers: ApA,, = (kzm)Ak+m.

Remark 16. We can construct A; by the reverse transgression argument from
o, and B similarly from 8. However we will not use this argument since we then
still need to construct A,.

Proof. We use the Serre spectral sequence for the path fibration of L, with
coefficients in F. Thus

By' = H*(L; HYQL; F)) = H*(L;F) ® H'(QL; F)

. (73)
B3 = 0if (s,8) £ (0,0)

In particular we identify F5° with H*(L; F) and E5"' with H*(QL; F). We claim
that this spectral sequence has the following structure:

e The cohomology of Q1L is as stated.
® dQAk — 0 and ng =0.
dgAk = Akfla and ClgB =0.

dysB = 3.
e d. =0 for r > 4.

In other words

e F, and E; have a basis of monomials of 7 A,B® € E§m+3f’2k+35 with

k,m >0 ande, fe{0,1}.

e Ej has a basis of monomials g™ B® € E;”°.

e I has basis 1 € ES’O for r > 5.

We use induction. The induction hypothesis H(n) says that E5' is as stated
fort+r—-2<n.

e n=1.
Suppose that Eg’l contained an element £. Then it would survive to Fj3
since do€ € E22 = 0. And it would survive to E,, since the higher d,
point to some E$? with t < 0. Thus HY(QL) = 0.

e n=2
The element a € E3” is not hit by dy because Ey"' = 0 since H'(L) = 0.
Suppose that it is not hit by ds, and survives to E*. Then it survives to
E. since the higher d, originate from some E2*' with s < 0. Therefore
there must be some A; € E§’2 - ES’Z = H?*(QL) such that d3A; = . If
Eg 2 contained some £ independent from A; then £ would survive to E,.
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e n=23.
The element 8 € Ey” is not hit by ds or dy since HY(L) = 0 = H2(L).
If it were not hit by d4 it would survive to F.,. Therefore there must be
some B € Ey® C Ey® = H3(QL) such that dyB = 3. If EJ® contained
anything more it would survive to F...

o n—2k>4.
Consider the element aA,_| € EQS’%*Q.

— dg(aAkfl) = 0 since dga =0 and dQ(Akfl) =0.
- dg(aAkfl) == azAk,Q =0.

— da(aAp—1)isin EZ 2k=5 Which vanishes since by induction hypothesis
E;" for t < n —3 can only live if (s,t) is of the form (4m, 3).

— If > 5 then d,(adj_1) is in E2T72*=71 which vanishes since by
induction hypothesis E2* for t < n + 1 —r can only live if (s,¢) =
(0,0).

If aAi_1 is not hit by ds it survives to E., since the higher d, originate
from some E2?* with s < 0. Therefore there must be some A; € Eg’% -
Eg’zk such that d3 A, = aA,_1. Again if Eg’zk contained some £ indepen-
dent from A then it would survive! to E.,. This determines Eg ™ and
thus all 5! with ¢ < n+r — 2, and it is easily checked that these behave
as stated.

e n—=2k+12>5.

Consider the element A,_B &€ Eg’zkH. We have dy(Ap_1B) = 0 since
dyAp_1 = 0 and dy B = 0. Moreover ds(A,_1B) = aAp_oB # 0, which
shows that Ay_1B # 0.

Suppose that also £ € Eg 2EFL - Then ds§ = 0 and we may assume that
ds§ = 0. Moreover d€ is in Eff’%fz which vanishes since by induction
hypothesis F;" for t < n — 3 can only live if (s,t) is of the form (4m, 3).
Similarly d,£ = 0 for r > 5, so £ survives to E..,. Thus we see that A, B

. : 0,2k+1
is a basis for Fy”*

Finally we have to prove the divided power structure. By induction one has
d3(ApAy) = d3(Ap)Am + Apds(Ar) = adp 1 A + Apad,,

k—1+4+m k4+m—1
= Oé( >Ak1+m+a< >Ak+m1

k—1 k (74)
k+m k+m
= Oé( i >Ak+m1 = ( L >d3Ak+m
and since ds is injective on E§’2k+2m this proves the statement. O

INote dyu¢ € Ei’%*g can not be gB € Ej’g since d4(BB) = B2 £ 0.
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4.6 The cohomology of M in the dihedral case.

Now we consider the spectral sequence of M — T~ BX . L . First a gen-
eral remark about Serre spectral sequences.

Remark 17. Let X —j>Y—p> 7 be a fibration sequence, with 7((Z)
acting trivially on the cohomology of X. Then there is a filtration

H'Y;F)=F' D' D>---DFD(0) (75)
such that the associated Serre spectral sequence {E2*} has
B = FP/FYy and By' = H*(Z; H'(X; F)) (76)

See [17] theorem 1.14. The map j*: H"(Y;F) — H"(X;F) can be identified
with the composition F' — F}/FP = E2" — Eg’". Now suppose that j* is
injective. Then F™ = 0 for s > 0. In particular E5" = 0 for s > 0. This
situation is almost as nice as in the case of a contractible total space in the
sense that few classes survive to I/o. In this situation I} can be identified with
E2%™ and thus j* can be identified with the inclusion E%" — Eg .

Remark 18. The situation in the above remark applies here since n* is in-
jective. As mentioned before we write P: H"(M;F) — H""Y(M;F) for the
composition 7*¢ where ¢ is as in proposition 1. Thus the image of P can be
identified with the image of 7*, so with F,, which consists of the classes which
are in ker(d,.) for all r.

Theorem 1. The cohomology of M has a basis consisting of elements A, B*PIx
where m > 0 and e € {0, 1}, and where either j > 0 and x runs through a similar
basis in smaller dimension, or j =0 and z = 1.

Proof. The claim about the basis is inspired by remark 14. The proof is modeled
on the proof of proposition 31. We claim that this spectral sequence has the
following structure:

e The cohomology of M is as stated.
® dQAk — 0 and ng =0.

dgAk = Akfla and ClgB =0.

dsB = 8.
e d. =0 for r > 4.
o d.P —0 for all ».
In other words
o F» and Es have a basis of elements af 89A4,,B°Piz € E§g+3f’2m+35+j+‘z‘

with k, e, 7,z as above and m > 0 and f € {0,1}.
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e [ has a basis of elements 89 B°Pig € [Tt
e I, has basis of elements Piz € E}?’j*“’”‘ for r > 5.

We use induction. The induction hypothesis H(n) says that E5?' is as stated
fort+r—-2<n.

e n=1.
With 1 € H°(M) corresponds (1) € H(BX) = E%! and thus P(1) €
Eg’l. Suppose that Eg’l contained an independent element £. Then it
would survive to E3 since dof € E22 © = 0. And it would survive to E
since the higher d, point to some E®' with ¢ < 0. This would give a
E%! = HY(BX) and thus a H°(M) which is too large. We conclude that
H'(M) is generated by P(1).

o n=2.

The element a € Ey” is not hit by dy because ;! = 0 since H'(L) = 0.
Suppose that it is not hit by ds, and survives to E*. Then it survives to
E. since the higher d, originate from some E$* with s < 0. Therefore
there must be some A; € E§’2 - ES’Z = H?(M) such that dsA; = a.
Secondly P(1) € H'(M) corresponds to ¢P(1) € H?>(BX) = E%? and
thus P?(1) € Eg’z. If ES’Z contained some & independent from A; then
¢ would survive to E.,. This would give a E%? = H?(BX) and thus a
H'(M) which is too large. We conclude that H?(M) is generated by A;
and P2(1).

e n=3. Part 1.
The element 8 € Ey” is not hit by ds or dy since H*(L) = 0 = H2(L).
If it were not hit by d4 it would survive to F.,. Therefore there must be
some B € EY* ¢ E9® — H3(M) such that dyB — . Secondly A;P(1)
is in E5°. Moreover A; and P2(1) in H2(M) give rise to P(A;) and
P3(1) in Eg 3, By applying ds and d4 one sees that these 4 elements are
independent.

e n = 3. Part 2.
Suppose z € ES’O.
- ng =0.

— dsz is in E3' and thus a multiple of aP(1) = d3(AP(1)) so by
sushstracting AP(1) from z if necessary we may assume dzz =0

— dyz is in Eff’o and thus a multiple of 3 = d4B so by substracting B
from z if necessary we may assume that dqsz = —0.

— dyz2 =0 for r > 5.

Thus z survives to I, and therefore is in the image of P, consisting of
P(A;) and P3(1). We conclude that {B, A{P(1), P(A1), P3(1)} is a basis
of H3(M). Note that B? = 0 for degree reasons.
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e n>4. Part 1.
Consider an element v = oA, 1B°Pix € Eg’"fz, with m > 1. We
assume that either 5 > 0 or that j =0 and z = 1.

— y can not be hit by ds since Ezl’t =0 for any ¢.
— doy = O since it is in Eg’nf3 and Eg’t vanishes for t <n —1.
— We suppose for the moment that y is not hit by ds.

. PO 6n—4 . 6,t . 6,t
— day = O since it is in F3™" " since F3" vanishes for all ¢ because Ey’
does.

— y can not be hit by any d, with » > 3 since it would originate in E2*
with s =3 —7 < 0.

— dyy = 0 since it is in EZ’"i5 and Ei’t vanishes for ¢ < n — 3 unless
s =0 mod 4.

— dyy = 0 for r > 5 since it is in E3t7"~"~1 and E%' vanishes for
t+7—2<n-—1 for such r unless s = 0.

Thus y survives to Fo which is a contradiction unless it is hit by ds.
Indeed if 2(m — 1) < n then A, has been introduced before this stage,
and y is the image of A,, B®P7x which proves that these elements are
independent. On the other hand if 2(m — 1) = n and thus e = j = 0 and
& = 1 this says there must exist some A, € Ey" C Ey" = H"(M) such
that ClgAm = Amfl.

e n > 4. Part 2.
Consider an element y = 3P7x € E*" 3 again with = 1 if j = 0. Then
d,y = 0 for all r since d,3 = 0 and d,, P71 = 0 for all . It can not be hit by
d, for r #£ 4 since E2* vanishes for s < 25 £ 0 for all r. Therefore it must
be hit by d4 and indeed it is the image under d; of BP?z which proves
that these elements are independent of each other and of the elements
constructed in Part 1.

e n > 4. Part 3.
Finally E5™ must contain E%" which is the image of E5™ ' under P.
Applying the induction hypothesis to Eg m—l yields that this image has a

basis consisting of the P7(z).

e n > 4. Part 4.
We have shown that Eg ™ contains at least as many independent elements
as stated. We must show that it does not contain anything more. Thus
let z € Ey™.

. .. 2 n—1 2t .
— dyz = 0 since it is in £ and F3” vanishes for all .

— d3zisin Eg ™2 which by induction hypothesis has a basis consisting
of elements oA, B*P7z. But these elements are the image under ds
of Aj.1B°PJz. So by substracting appropriate elements from z we
may assume that dsz = 0.
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— dyzisin Eff’"ig which by induction hypothesis has a basis consisting
of elements 3B°P7x. The elements with e = 1 cannot occur because
they are mapped by d4 to independent elements 32 P7z. The elements
with ¢ = 0 are the image under ds of BP7z. So by substracting
appropriate elements from z we may assume that dsz = 0.

— d,z is in 7" "1 which vanishes by induction hypothesis for r > 5.

This means that z survives to E., and therefore is in the image of P, and
thus is a combination of the listed basis elements.

Every time that we have found a basis of Eg ™ for some n this proves that Ej"*
has the required structure for ¢ < n and from this it follows easily that E5* has
the required structure for ¢t <n+2 —r. O

Remark 19. From now one we write A for A;. The element Ay is only defined
up to an element of ker(ds), so up to an element of the form B¢Pz. For this
reason we can not prove at this point than they form a system of divided powers.
However at least for k < p one can force it to be the case by taking Ay = %Ak.

Remark 20. There is a commutative diagram of fibration sequences

QL—> PL—>1L (77)
S
M BX L

and this leads to a map of the Serre spectral sequences by naturality of the
spectral sequence construction. The image under w* of the elements A,, in
H 2m(M ) satisfy the same recursive relation dsA,, = aA,,_1 as the elements
of the same name in H>™(QL). This implies that A,, maps under w* to the
element of the same name. In particular w” is surjective. Thus proposition 29
is indeed applicable.

5 The product structure.
5.1 Choosing the right A.

From theorem 1 its is clear that A is only defined up to a multiple of P?(1).
Remark 21. There are two ways to measure the contribution of P?(1).

e There is A such that DA = A\ P1.

e There is Ay such that pA = A® 1+ P11 P1+1® A.
If we add P21 to A then both A\; change by v.

Both ways amount to the same:
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Proposition 32. A2 = A(y;y,y) = A1.

Proof. As noted in remark 4 the generator vx of Ho(X; X) can be represented
by (y; ) for any y € X. Now 2D.x is represented by 2(y;y) in H1(X; X) and by
(Ly)+ (n(y);y) in Hy (G X). From (P(1))(Dex)) = (DP(1))(ex) = 1(ex) = 1
one sees that Dvx generates Hi(X; X). Now

29 = 2(/LA)(DLX (9 Dbx) = 2A(M(DLX (4 Dbx))

= Alp((y;v) ® (L) + (nly); v)) = 2A(y; 9, v) (78)
A = (DA)(Dux) = A(D*ux) = Aly; y,9)
m

We now choose A in such a way that the \; vanish. So DA = 0 and A is
primitive, and A(y;y,y) =0 for all y € X. This has a nice consequence:

Proposition 33. If A is chosen as above then A € H3(X) is in the image of
H%(X) Thus ) A must be equivalent to the class of [24].

Proof. From d(y;a,y,y) = (v;y,y) — (v * a;y,y) and the fact that X = R, is
connected on sees that (z;y,y) is homologous to (y;y,y) for all y, 2.

Since the cohomology class of DA vanishes there exists a cochain F' such that
O"F = DA. Now let G(y,z) = F(y) and A’ = A+ 9"G then

(0G)y;y,2) = G(O(y; 95 2)) = G((y;9) — (y * 259 % 2))

=F(y) = Fly*=2) = F(9(y;2)) = (OF)(y; 2) (79)
= (DA)(y; 2) = —Aly; 9, 2)
Therefore A'(y;y, 2) = Aly;y, 2) + (0G)(y;y, z) = 0. O

5.2 Choosing the right B.

In this paper we will use the notation A for the Bockstein homomorphism
H,1(C;F) — H,(C;F), which is defined for any chain complex C' of free
abelian groups, and is natural for chain maps.

Remark 22. If we identify H,,(C ® C’;F) with > H;(C; F) ® H,,(C’"; F) then
A corresponds with A® 1+ (=1)*1 ® A.

In line with our convention in 1.5 we write also A for the dual map, which differs
from the Bockstein homomorphism H"(C;F) — H"T'(C;F) by a sign. If we
identify H"(C ® C'; F) with 3" H*(C; F)® H™(C’; F) then A corresponds with
1A+ (-1)"A 1.

The Bockstein homomorphism anticommutes with the boundary operator
in the long exact sequence associated to an exact sequence of chain complexes.
Therefore it anticommutes with transgression. Since A € H?(M; F) transgresses
to a € H3(BG;F), its image AA transgresses to —Aa — 3. This shows that
AA is a suitable choice for B.
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Proposition 34. We have n*(B) = B® 1+ 1® B.

Proof. Writing p: M x M — M for the projection on the first factor we have
A(A®1)=Ap"A=p"AA=p"B=B®1 and similarly A(1® A) = 1® B, so
w (B)=p (AA) = Ap*(A)=AA21+12A)=Bel+1xB. O

Remark 23. Another argument for the primitivity of B could go along the
following lines. The multipication map p provides a map of fibrations from the
fibration M x M — B(X) x M — B(G) to the fibration M — B(X) — B(G).
By naturality of the Serre spectral sequence this provides a map of spectral
sequences. From this one sees that p* B can not have a contribution A ® P1.
Thus the most general expression for p* B is

p'B=B®1+MP1oPl+MP1o P14 MP1leoA+1®B (80

Moreover from the associativity of p one can deduce that A3 = Ay. If we add
9 P31 + 3 PA to B the effect is adding vs to A3 and s and adding v5 to Xs.
Thus we can force all A\; to vanish.

Proposition 35. If B is chosen as above then B € Hg(X) 4s in the image of
Hé(X ).

Proof. This follows from proposition 33, the fact B = AA, and the fact that
that the diagram

HE(X) — H3(X) —— HL(X; X) (81)

lA lA lA
HY(X) —— H3(X) == H}(X; X)

is commutative because the ¢ and the canonical map from the rack complex to
the quandle complex are both chain maps. O

5.3 The system of divided powers.

For the next proposition we note that dy vanishes and thus d3 is defined on
every z € H"(B(G; X)).

Proposition 36. Ifdszc=0and pr =z 1+ 1® x then z =0 for n > 4.

Proof. By the proof of theorem 1 the elements z € H™(M) in the kernel of dj
are precisely the elements of the form z = Py + BPz with y € H" (M) and
z € H" *(M). We can write

My:y®1+1®y+2ai®b¢, uz:z®1+1®z+zug‘®7}j (82)
i J
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for certain elements a;, bs, uj,v; of positive dimension. Now we have

pr—rz®1l—-1®x
=Ploy-Pl®Bz+B®P2z+BPloz+(-1)""'Pz2®B  (83)
+Y Pui®vi+» BPuy@uv;+» (—1)%"Pu; @ Bu;

where k; is the dimension of v;.

In particular the only contribution of the form B ® ... is B ® Pz. Thus if
pr—x®1—1®z =0 then Pz = 0. But now the only contribution of the form
Pl®...is Pl®y. Thusif pr —2® 1 —1® z = 0 then y = 0. O

Proposition 37. [fz is a cohomology class of positive dimension then xP = 0.

Proof. If = has odd dimension then z> = 0, so we may assume that z has even
dimension n. We can write

ux:x®1+1®x+2ui®w (84)

K

for some elements u;, v; of positive dimensions smaller than n. Since n is even
all terms in the above sum commute and we have

p(a®) = (pa) = ©1+1@af +3 (ui ©v)f (85)

K

By induction hypothesis we have u! = 0 and v = 0. Thus we conclude that
w(z?) = 2P ® 1 + 1 ® zP. Moreover dsz is defined and ds is a derivation so
d3(zP) = pzP~'dsz = 0. Therefore P satisfies the hypothesis of proposition 36
and so vanishes. O

Remark 24. One can easily deduce using induction from the Rota-Baxter
formula in remark 8 that

(Pz)" = nP((Pz)" 'z) (86)

for every z of odd degree. In particular (Pz)? = 0 for all z, in line with the
above proposition.

Theorem 2. The generators A,, can be chosen in such a way that they form
a system of divided powers.

Proof. We use induction. The induction hypothesis H(e) claims that the A,
are defined for m < p© in such a way that d3A,, = a4, 1 for m < p° and such
that

my

AmlAmg - .
0 ifmi+mo2>p

(87)

e

{(m1+m2)Aml+m2 if mq 4+ mg < p°©

For e = 1 this accomplished by choosing A,, = %(A)m
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For the induction step the proof of theorem 1 shows that there can be chosen
some Ape such that dsA,e = Ape_1. Now we define

Apeger = LI 4 oy, (55)

(peq +r)!

for 1 < g < pand 0 <7 < p° Note that the numerical factor is the inverse
of an integer which is nonzero modulo p. It can easily be checked that A,, so
defined satisfy H(e+ 1). O

Remark 25. As far as the cup product structure is concerned this only means
that the algebra generated by the A,, is a polynomial algebra generated by the
Ape with as only relations (A, )P = 0. However we will see in the next section
that also for the coproduct p it is worthwile to think secretly of A,, as %Am.

6 The coproduct structure.

6.1 Fixing generators for H,(M;F) for small n.

We fix the following notations:
o We write r for the element Dux € Hy(M;F) which satisfies (P1,7) = 1.
o Let s € Ho(M;F) be the element such that (A, s) =1 and (P?1,s) = 0.

o Let ¢t € H3(M;F) be the element such that (B,t) = 1, (AP1,t) = 0,
(PA,t) =0 and (P31,¢) = 0.

From this follows that At = s.
Proposition 38. One has p(s ®t) = pu(t ® s).

Proof. We must check that s ® t — ¢ ® s vanishes on gz when z runs through
the basis elements of H®(M;F), which are APA, AP?1, BP?1, AP1, AB,
PAP?1, PBP1, PA,, P?AP1, P’B, P?A and P°1 according to theorem 1.
Here we can assume A5 to be %Az.

One can evaluate pz from the formulas for Ay, B and po P. For example

HAPA) = p(A)u(PA)
S (A1 19 A(Po1)(A®1+1®A) + 1 PA) (89)
—APA®1+ AP1®A+A®PA+PA® A+ P1®24;+1® APA

What we must check is that in each case the contribution of B® A is the same as
the contribution of A ® B. In fact only u(AB) contains any of these terms. O

Proposition 39. If p > 3 then t* = 0.
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Proof. We must check that ¢ ® ¢ vanishes on gz when z runs through the
basis elements of H°(M;F), which are APAP1, APB, AP?A, AP*1, BPA,
BP31, A, P?1, ABP1, A3, PAPA, PAP’1, PBP’1, PA,P1, PAB, P2AP?1,
P?BP1, P?’A,, PPAP1, P?B, P*A and P°1. However only for p > 3 can we
assume assume As to be %AS. What we must check is that in each case the
contribution of B ® B vanishes. This is easily checked in all cases for p > 3. For
p =3 we do not know pAs. O

From r, s,t we can thus form expressions s™1¢®1 i1 g™m2¢e2p92 | with s;,7; €
{1,2,...} and ¢; € {0,1}. We will show that these are in fact a basis for the
homology by evaluating them on our cohomology basis.

6.2 A partial order on monomials.

We want to describe a partial order on the cohomology basis z; and on the
homology monomials a; with the property that the matrix formed by the values
(zi,a;) is a triangular matrix.

We define a node N to be a finite sequence consisting of the symbols R, S,T'.
There is an obvious notion of concatenation of nodes.

¢ The replacement of a node N(S, R)Ny by the node Ny(R,S)N, is called
an elementary reduction.

¢ Likewise the replacement of a node Ni(T', R)Ny by the node N{(R,T)N,
is called an elementary reduction.

¢ The replacement of a node N{(S,T )Ny by a the node Ny (T, S)N, is called
an elementary equivalence. Similarly for the inverse operation.

We write N > N’ if we can get from N to N’ by a sequence of elementary
reductions and elementary equivalences. We write N ~ N’ if we can get from
N to N’ by a sequence of elementary equivalences.

To any node N we associate its S-value vg(/N) by counting how may times a
symbol S is on the left of a symbol R. The T-value vy (N) is defined similarly.
Obviously for each elementary reduction one of the two values decreases and the
other stays the same, and for each elementary equivalence both stay the same.
Thus if N > N’ and N’ > N then N ~ N’. Clearly we get in this way a partial
order on the set of equivalence classes under ~.

Note also that two nodes can only be comparable if they contain the same
amount of R, of S and of T'. From this partially ordered set we eliminate all
classes represented by a node of the form Ny (7T,7T)N,. Furthermore we call a
node pure if it contains only the symbol S.

To each node class N we associate a cohomology basis element x5 and a
homology element ay as follows. If N is empty then zy = 1 and ay = 1.
If N = (S)"(T)*(R)K then zny = A, B°Plixyk and ay = s™tr7ax. Thus
to a pure node corresponds some A,, in cohomology and some power of s in
homology.
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Proposition 40. Suppose that pAn, = Z;‘n:o A; ® Am—j for 2m < n, and that
N is not pure. Then (xn,ax) # 0 for classes of dimension n implies N > K.
Moreover (xn,an) =1 or —1.

Proof. We use induction on the size of N. One can write N = (S)"(T)¢(R)’V
with 7 > 0 or with j = 0 and V empty. We assume that 7 > 0 since the other
case is easy. Then x2x = A, B*PJxyv and therefore

HEN = ( Z ApBf ® Ang) ((Pj ® Vpzy + Z Pl ® P”xv)
k+Il=m utv=3
ftg=e

(90)

We consider three cases:

e Suppose that K = (S)W for some node W. Then ax = saw = p(s®@aw),
so (xn,akx) = {(uxy, s ® aw). This means that we must look for terms of
the form A ® z in pxy.

The term with (P7 ® 1)uzy can give no contribution. The sum over u
can only give a contribution for f = 0 and v = 0 and & = 1, and in
particular m > 1. The contributing term is A1 ® A,,_1B°PJzy, which
can be written as A ® xy;, where U = ()"~ H(T)*(R)7V.

The contribution is (A®xy, s®aw) = {zy, aw ). By induction hypothesis
this can only be nonvanishing if U' > W. But then N = (S)U > (S)W =
K as desired.

e Suppose that K = (T)W for some node W. This case is completely
analogous to the first one.

¢ Suppose that K = (R)W for some node W. Then ax = raw = p(r®aw),
so (zn,ax) = {(uxy,” ® aw). This means that we must look for terms of
the form P1 ® z in px . There are two subcases.

— The term with (P ® 1)uzy can only give a contribution if 5 = 1 and
k=0 and f = 0. Only the term zy ® 1 of puzy can be involved. The
contributing term is P1® A,,, B°xy, which can be written as P1®zy,
where U = (S)™(T)¢V. The contribution is (Pl ® zy,r ® aw) =
+{xy, aw). By induction hypothesis this can only be nonvanishing
if U > W. But then

N = (ST RV = (R)(S)™(T)V = (R)U = (R)W — K

as desired.

— The sum over u can only give a contribution for f =0 and v = 1 and
k = 0. The contributing term is P1 ® A,, B°P7 'z, which can be
written as P1®xy, where U = (S)™(T)%(R)7~'V. The contribution
is (Pl®zy,r®aw) = £{zy, aw). By induction hypothesis this can
only be nonvanishing if U > W. But then

N = (S (D) (RYV = (R)(S)™(T)° RV = (RU > (R)W — K

as desired.
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It can easily be checked that (zx,an) is in fact (—1)*“~1/2 where ¢ is the
number of occurences of B or T"in N. (]

Proposition 41. Assume that the ax form a basis of homology in dimension
< d, and that pA,, = Zj Aj® Ap—j for 2m < d. For d = 2n also assume that
8" £ 0. Then the ax form a basis in homology in dimension d, and if d = 2n

we can find Ay, such that uA, = Z;‘L:o A;® Anj,

Proof. Suppose that there is a linear relation between the elements ay asso-
ciated to impure nodes K. Then by applying the elements zy associated to
impure nodes N we see that all coefficients must vanish.

Now suppose that s” is a linear combination of elements an. Then again
by applying the xn associated to impure nodes N we see that all coefficients
vanish, and we get the contradiction s = 0. Therefore s and the ax are
independent, and since their number is equal to the number of basis elements
zy they are a basis of Ho,, (M).

Now we define A,, as the class which is 1 on s™ and 0 on the ax associated
to impure nodes. Consider the expression

n—1
(A, — ZAJ‘ ®An_j,ax ®ar)
=1 (91)
= (An,axar) — Z<Aj7aK> {An—j,ar)
J

By assumption A,, vanishes on axy = axay, if KL is an impure node, which is
the case unless K and L are both pure. On the other hand (A4;, ax) vanishes
unless K = (5)7 and (A,,_;, ar) vanishes unless L = (S)"7.

We see that the above expression vanishes for all K and L. Since the ax and
the ay, form a basis, this proves that pA,, — Z;le A;® Ay —; has no contribution
other than in dimensions (0, 2n) and (2n,0). But the the contribution in these
dimensions are obviously 4, ® 1 and 1 ® A,,. O

Remark 26. Suppose we can prove that s = 0 in the critical degrees, which are
the powers of p. Then the above proposition says that r, s, generate homology
and that st = ts and t? = 0 are the only relations between them. Equivalently
the A,, satsify pA,, =Y Ar ® A, _j for all m, which means that A,, behaves
as if it were %Am. In the next subsection we will prove that indeed s?° # 0.

Proposition 42. AA, = A, 1B if the pA,, formula is satisfied for m < n.
Proof. Let K = (S)™(T)°(R)?L with j > 0. Then

s"rd Aary, ife=0

) ) 92
sty dar 4+ s™iriAa;,  ife=1 (92)

Aag = A(s™t%rIar) = {

Thus we see by induction that Aag is a sum of classes ay associated to nodes
U starting with (S)™ (T)¢ (R)? with 5/ > j > 0. Such a node is incomparable
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with (S)™ and thus evaluates to 0 on A,. However if K = (5)™(7)° then
ax = s™t and

0 ife=0
st jfe=1
We see that (AA,,ax) = (A,, Aak) is nonvanishing only if K = (S)"~1(T).
But the class z = A, 1B associated to K = (8)"1(T) is characterized by
this property. O

Aag = A(s™t) = { (93)

6.3 The Thomas operation and its use.
We use the following notations:

e ¢ is the map on cohomology induced by map Z/(p) — Z/(p*) on coeffi-
cients given by multiplication by p.

e 7 is the map on cohomology induced by map Z/(p?) — Z/(p) on coefi-
cients given by projection.

e If ¢ is a cohomology operation H* — H™ then o4 is the composition
H YX) =2 H'(XX) —» H™(XX) = H™ 1(X) using the suspension ..

o As before A: H"(X;Z/(p)) — H" 1(X;Z/(p)) is the Bockstein operator
associated to the coefficient sequence 0 — Z/(p) — Z/(p*) — Z(/(p) — 0.

o A: HY(X;Z/(p?) — H™ 1 (X;Z/(p)) is the Bockstein operator associ-
ated to the coefficient sequence 0 — Z/(p) — Z/(p®) — Z/(p*) — 0.

It can easily be seen that A o ¢ = A. We cite the following theorem from [4]:

Proposition 43. There erists a cohomology operation C: H*"(X;Z/(p)) —
H?P(X;Z/(p?)) with the following properties:

o pC(u) = u¥ and Cn(u) = uP.

s 0) = Ol + ) +0(E L (Muivug) o
i=1

SR

e 0C =0.
Moreover these properties determine C uniquely.
We need the following additional fact about C:
Proposition 44. ACz = 2P~ ' Az.

Proof. Consider the operation 1 defined by (z) = ACz — 2P~ 'Az. Then
o1 = 0 since 0C = 0 and ¢ anticommutes with A and since cup products in a
suspension vanish.

The following argument is an adaptation of the proof in [4] proving the
uniqueness of C. By the description in [5] of the algebra of cohomology opera-
tions any operation can be split uniquely as a sum of two parts:
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e The first part is a composition of Bockstein operations and Pontrjagin
operations. On this part ¢ is injective.

e The second part consists of operations which are decomposable, viewed as
elements in the cohomology of an Eilenberg-MacLane space. On this part
o vanishes since cup products in a suspension vanish.

From this we see that « is decomposable.
From A o ¢ = A and the fact that A is a derivation one checks easily that

A¢(le }9 (f) fuu) (95)

i=1
= (u1 + ug)pflA(ul +ug) — ufﬁlAul + ugflAug

This means that the operation ¢ is additive, which means that its is primitive,
viewed as an element in the cohomology of an Eilenberg-MacLane space; see
theorem 5.8.3 in [30]. Thus ¢ is decomposable and primitive and of odd degree.
By proposition 4.23 of [23] this implies that ) vanishes. O

Theorem 3. Let ¢ = p®, and assume that the Ay, formula is satsified for
m < pg = p°tL. Then sP4 £ 0.

Proof. Consider the following commutative diagram:
H*(M;Z/(p)) (96)
lc
HM(M, 2/ (p) — HP(M; 2/ (7)) —"— H7P(M; 2/ (p))
\ l
A
HPPI Y (M Z/ (p))

Since nC(A,) = AP = 0 we can choose some A € H?P1(M,Z/(p)) such that
pA = CA,;. We have

AA = ApA = ACA, = AL 'AA, = A" Ay B = cApg 1B (97)

where ¢ = % is nonzero modulo p. Therefore
(A, sP9) = (A, A(sPT 1)) = (AA sPT7 1) = ¢ £0 (98)
Thus A detects sP9. O

This completes the proof that the algebra structure and coalgebra structure
on the cohomology of M are as stated.
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Remark 27. In the vet undecided case p = 3 this still proves that s com-
plements {s?r%,...,7%} to a basis. Thus there is ¢ € F such that t> — cs® is
a combination of $?#2,...,r%. By applying zx with N impure we see that all
coefficient must vanish. So at least we have t? = ¢s® for some ¢. Equivalently
pAs = A3 @1+ 40 A+ A A +1® A3 —cB® B.

If t> = 53 the replacement of a node N{(T,T)N, by a node N(S,S,S)N,
should be added as an elementary equivalence. Then 2vg + 3vr decreases for
an elementary reduction and stays the same for an elementary equivalence. So
we still get a useful partial order.

7 Integral homology and cohomology.

Let X be any quandle, and choose a base point y € X. Then this choice defines
a map from the one point rack to X. On the other hand there is unique map
from X to the one point rack. Together these two maps split the rack complex of
X into the rack complex of the one point rack and a complemantary summand.
The homology of the first part is infinite cyclic in each dimension n, generated
by ™.

Now we concentrate on the dihedral case X = E,. The homology of the
complementary part is generated by the monomials other than »™. We will prove
that the homology is p-torsion, by checking that the kernel of the Bockstein
operator A acting on this part equals the image of A. This settles one of the
conjectures in [26].

Given a chain complex C' the notation C[i] stands for the shifted com-
plex given by C[i]; = C;1;. Obviously H;(C[i]) is canonically isomorphic to
H,(C)]i].

Now let Z denote the chain complex with basis the ay associated to nodes
N which are not of the form R™, with the Bockstein operator A as boundary
operator. Furthermore let Y denote the subcomplex with basis the s™¢°.

Proposition 45. The chain complex Y is acyclic.
Proof. Obvious since A(s™t) = s™t! for m >0 and As™ =0form >1. O
Proposition 46. The chain complex 7 is acyclic.

Proof. There is an isomorphism of chain complexes

o ve@P(Viex) -2 (99)
7>0

which on Y is the inclusion, and which on Y[j]® Z is given by

(8™t ®ax) = "tV ag (100)
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as the following computations show:
Azo(s"t ®ag) = Az(smtrjaK)
=" g + (—1)j+1smtrjAZaK
—o(s" Mt @ag + (-1 st ®@ Agag)
—o(Ay @1+ (=1)(=1)*"11 & Az)(s™t ® ak)

(101)

Azo(s" ®ag) = Az(s™rlag) = (=1)7s™ 7 Agag
= o(s™t @ag + (17"t ® Agak) (102)
—o(Ay @1+ (1) (-1)*" N ® Ay)(s™ ® ag)
Therefore by the Kunneth theorem we have
H(Z)~ HY) o P (H(Y)[j] ® H(Z)) (103)
7>0

and since H(Y) is trivial, so is H(Z). O

8 Quandle homology and cohomology.

8.1 Constructing quandle cocycles.

We will call an element = € H™"(X; X; F) a quandle class iff ¢(z) € H" (X F)
is a quandle class. Thus A and B are quandle classes. We write H, 5()( ; X5 F)
for the subgroup of H™(X, X; F) consisting of quandle classes.

Proposition 47. If F' and G are quandle classes then so is FUG.

Proof. Let F be represented by a cocycle f € C*(X; X:F) such that ¢f van-
ishes on degenerate elements of B(X);11, and let G be represented by a co-
cycle g € C™(X;X;€ F) such that ¢g vanishes on degenerate elements of
B(X)pm11. We will show that ¢(f U g) vanishes on any degenerate element 2 =

(0, 21,29, ..., Trem) Dy evaluating fU g on y = ¥e(z) = (x0; 21, .., Thim)-
By construction of the cup product we have
(FUGy) = (=" e(A) - F(34(y)) - 9(05(y)) (104)
A

We consider the ways in which x can be degenerate.
e Suppose that zo = z1.

— If 1 € B then ¢, 16%(y)) is degenerate so ¢ f vanishes on it.
— If 1 € A then ¢, 155 (y)) is degenerate so g vanishes on it.

e Suppose that z; = x;11 for some ¢ > 1.
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— If {i,i+ 1} C B then ¢, 6% (y)) is degenerate so ¢ f vanishes on it.
— If {i,i+ 1} C A then +, 165(y)) is degenerate so ¢g vanishes on it.

— Suppose that A = U U {i} and B = V U {i + 1}. Then there is a
companion term associated to K = UU{i+1} and L = VU{i}. Since
8%y = 6%y and dby = &ty and ¢(K) = —e(A) their contributions
cancel.

O
Proposition 48. If '€ H"(X; X;F) is a quandle class then so is QF.

Proof. 1If for « = (x1,...,2n) € X™ one has z; = x;11 for some j then the
same is true for 87z unless i = j or i = j + 1, but aj% and 8? 1 give opposite
contributions to d°z. Thus d° maps the degeneracy subcomplex of CF(X) to
itself. Soif ' € H""}(X;F) is a quandle class then so is 9°F € H"?(X;F).
The claim follows since the operator @ on H™(X; X;F) corresponds under ¢
with the operator 8° on H"!(X; X;F) by proposition 15. O

Now we concentrate again on the dihedral case.

Proposition 49. The multiplicative generators Apn can be chosen to be quandle
classes.

Proof. We use induction in n. We know that A; is a quandle class. Now assume
that A,; is a quandle class for f < n, and therefore also their product Ayn;.
Assume also that AA,; = A,s 1B for f < n. From the last section we know
that all torsion in rack cohomology is of order p. The same must be true of
quandle cohomology since it is a direct summand of rack cohomology. Thus on
HEQ(X;X; F) the kernel of A coincides with the image of A. In particular we
can choose a quandle class A such that AA= A~ 1B.

In order to show that A is a valid choice for A,» we must check that it is
not in the algebra generated by lower dimensional generators. So assume that
A is a linear combination of basis elements zx associated to impure nodes N.
Then AA = Apn_1B is a sum of terms Azy. However if N = (S)™(T)¢(R)K
with 57 > 0 for some node K then

Azy = A(A,B°Plag) = A, 1B Play + A, B°PI Az (105)

which is a sum of basis elements each associated with a node with the same
amount of R. So these terms can give no contribution to A,~_1 B wich itself is
a basis element associated to (S)2" ~T". The only other possibility N = (S)™ (T
has Azy =0 O

8.2 Independence of quandle cohomology classes.

This is also about the dihedral case. We call a node N a Q-node if does not
contain two consecutive symbols R and does not end with an E. To each Q-node
class we associate a quandle cohomology class yy as follows. If N = (S)™(1")°
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then yny = 2y = A B If N = (S)"(T)°(R)K then yny = A B°Qyrx. We
will show that these classes are linearly independent.

Proposition 50. =y U P(1) is a combination of elements xx with K > (R)N.
Proof. We use induction on the size of V.
o It is true for N = (S)™(1')° since
zgym(rye U P(1) = Ay B P(1) = x(gym(Tye(R) (106)
and (S)™(T)°(R) > (R)(S)™(T)*.

e Suppose that it is true for N and write zy U P(1) = Y, cxzx with
K > (R)N and ck € F then

Zgm(TYe(R)N U P1)= A, B°Plan)U P(1)

= A BS(£P%(zy) + Plzy U P(1))) (107)

= Ex(s)m(T)e(R)2N T Z CKE(S)™(T)e(R)K
K

where (S)™(T)¢(R)K > (S)™(T)%(R)’N > (R)(S)™(T)*(R)N. There-
fore it is true for (S)™(T)¢(R)N.

O

Proposition 51. If N is a Q-node then yy — xn is a combination of elements
ri with K > N.

Proof. 1t is trivially true for N = (S)™(7)°. Suppose that it is true for N and
write yy = 2n + Y 5 ckxk With K > N. By the preceding proposition we may
write

zy UP(1) = Z cyTy
U>(R)N

zx UP(1) = Z Ty
V>(R)K

(108)

With ¢ = (=1)1¥~! we now have

Y(s)m(Tye(R)N = Am B Qyn) = AnB°(P(yn) + ey, U P(1))

= AnB°P(an) + AnB> ek Plek)
K

+ €A, B%xn UP(1) + €A, B° ZxK U P(1)
% (109)
= sy (RN + Z CKE(S)ym(T)e(R)K
K
+ Z 6C/U?ﬂ(s)m(T)eU + Z Z 60/1/(,Vx(s)m(T)6V
U K Vv
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where (S)(T)°V > (S)™(T)(R)K > (S)™(1)°(R)N and also (S)™(1)°U >
(S)y™(T)e(R)N. Thus it is true for (S)™(T)*(R)N. O

Proposition 52. The quandle classes yn associated to ()-nodes N are inde-
pendent.

Proof. Suppose that some nontrivial linear combination > ¢yyy vanishes. Then
among the N for which ¢y #£ 0 there is one which is minimal for the partial
order on nodes. But then it is the only term of the sum which gives anontrivial
contribution to z,, a contradiction. O

Thus the rank of a quandle cohomology group is at least as large as the
number of Q-nodes contributing to that dimension. We will see shortly that we
have in fact equality.

8.3 Generating quandle homology.

Suppose that we are in the situation of proposition 23. In particular a base
point y € X has been chosen. Then (y) is a cycle and defines an element p
of HR(X;F), independent of the choice of y. The map from H,(G; X;F) to
H,+1(X;F) which maps ¢ to u(p ® ¢) coincides with the composition

Ho (G X;F) = Hpy (X XGF) = Hy 1 (XGF) (110)

of the isomorphisms ¢ and y. In other words H.(X;F) is a free module over
H x (G; X; F) with one generator p.

Now we specialize to the dihedral case. In that case H.(G; X;F) is the
algebra generated by r, s and . The above remark shows that we get all of
quandle homology by letting this algebra act from the right on p. Moreover the
fact that 2r is represented by (1;vy) + (n(y);y) implies the following:

e pr vanishes since 2pr is represented by (y)((l, y) + (n(y); y)) = 2(y,y).

e If 6 is any rack homology class then 72 vanishes in quandle homology. In
fact 46r2 is a sum of terms ending in ..., y,y).

To each node N we associate an element by of quandle homology as follows. If
N is empty then by = p. If N = (S)™(T)¢(R)?K then by = byrit®s™. The
remarks above prove that the by generate the quandle homology groups. They
show also that any by vanishes unless N is a Q-node.

Thus the rank of a quandle homology group is at most as large as the number
of Q-nodes contributing to that dimension. However the rank of the homology
group and the rank of the cohomology group are the same. Therefore the
inequality in the last subsection and the one in this subsection must both be
equalities. This proves the ‘delayed Fibonacci sequence’ conjecture in [26].
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