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The algebra of rack and quandle cohomology.

F.J.-B.J. Clauwens 

April 27, 2010

This paper presents the first complete calculation of the cohomology of any 
nontrivial quandle, establishing that this cohomology exhibits a very rich and 
interesting algebraic structure.

Rack and quandle cohomology have been applied in recent years to attack a 
number of problems in the theory of knots and their generalizations like virtual 
knots and higher dimensional knots. An example of this is estim ating the min­
im al number of triple points of surface knots [16]. The theoretical importance 
of rack cohomology is exemplified by a theorem [13] identifying the homotopy 
groups of a rack space (see §3 ) w ith a group of bordism classes of high di­
mensional knots. There are also relations w ith other fields, like the study of 
solutions of the Yang-Baxter equations.

1 Introduction.

1.1 Definition and examples.
D e fin it io n  1. A  quandle is a set A" w ith binary operation (a,b) a *b  such 
that

1. For any a G X  we have a *  a = a.

2. For any o, b G X  there is a unique c G X  such that a = c*b .

3. For any o, b,c G X  we have (a * b )  * c =  ( a  * c) * (b * c).

A  rack is a set w ith a b inary operation which satisfies (2) and (3). A  homomor­
phism ƒ :  A" —> Y  between racks is a map such that ƒ  (a  *b) = f ( a ) * ƒ  (6) for all 
ft, b G A  .

R em ark  1. Some authors, for example [1] and [2], w rite b * a  where we and 
most others w rite a *b.

The following are typ ical examples of quandles.

• Any group G  gives rise to a quandle A" = C o n j(G ) operation a*b = b~1ab. 
This is the conjugation quandle of G. More generally any conjugation 
invariant subset of G  gives rise to a quandle. For example the reflections 
in the dihedral group D n yield the dihedral quandle R n, which w ill be 
studied in this paper.
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• An abelian group M  w ith an automorphism T  gives rise to a quandle 
X  = A le x (M ,T ) by the formula

a * b = T a + ( I  — T)b (1)

This is the Alexander quandle of (M ,T ) .  For example A le x (Z / (n ), —1) is 
just R „ .

• Any oriented classical knot or link diagram K  gives rise to a quandle 
called its fundamental quandle. The axioms for a quandle corrsepond to 
Reidem eister moves of type I , I I , I I I  respectively (see [11] and [19] and [8]). 
A  Fox n-coloring is just a quandle homomorphism from K  to R n . See 
[18] and [11] and [28] for increasingly strong theorems about the degree to 
which the fundamental quandle determines a knot.

• Sim ple curves on a surface give rise to a quandle using Dehn twists. See 
[31] and [32],

• Any set S  gives rise to a quandle by the formula a * b = a for a, b £ S. 
This is called the trivial quandle of S.

• One can construct a quandle by taking the disjoint union Z /(k) U Z /(to ) 
and defining a * b = a if a and b are in the same part and a * 5 = a + 1 if 
they are not.

The last example suggests that quandles can be glued together in disturbingly 
m any ways. For this reason we concentrate in this paper on connected quandles 
(see next section for the definition) which seems to be a class more amenable to 
understanding.

1.2 Rack and quandle homology.
In  [13] a homology theory for racks was defined, which was modified in [6] to yield 
a homology theory for quandles. For a rack X  let C ^ (X )  be the free abelian 
group generated by X n. Define a map d: C „ ( X )  —> C^'_1 ( X )  as follows:

(^11 • • • i ) (-^l, • • • , %i— 1, £̂¿+1, • • • , %n )

d l(x 1 , . . . , x n) = (x 1 * x i , . . . , x i- 1 * x i ,x i+1 , . . . , x n)
n  n

5° =  E ( - 1)<a°> 5 l =  E ( - !)*#> d =  d ° - d 1
i =  1  i =  1

It  can easily be checked that

a°a° =  0, d1d1=0, d °d 1 + d1d° = 0 (3)

Therefore { C „ ( X ) , d }  forms a chain complex, the rack complex of X .  Its  ho­
mology groups H n (X )  constitute the rack homology of X . One purpose of this 
paper is to determine the rack homology of R p for p an odd prime. Homology
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and cohomology w ith coefficients in an abelian group A  are defined in the usual 
way.

Let C ^ (X )  be the subgroup of C ^ (X )  generated by the ( i i , . . . , i n ) such 
that Xi = Xj_|_i for some i. If  X  is a quandle these constitute a subcomplex of the 
rack complex, called the degeneracy complex. This is not true for a general rack 
X .  The quotient groups C ^ (X )  = C ^ (X ) / C ^ (X )  form the quandle complex 
of X .  Its  homology groups H ^ (X )  constitute the quandle homology of X .  A  
second purpose of this paper is to determine the quandle homology of R p. W e 
w ill do this from the rack homology, using a theorem of [20] which says that the 
canonical map from rack homology to quandle homology splits.

1.3 Known facts.
It  is noted in [9] that calculating quandle cohomology is difficult, since brute 
force calculations are very lim ited in range, and unlike group cohomology, the 
topological underpinnings are less well developed. It  is our purpose to begin to 
remedy this situation by showing how methods from homotopy theory can be 
applied.

The following list provides the main facts which were already known, and 
m otivated our research.

• In  [10] a formula is proved for the dimension of H „ ( X ;  Q ) for X  a finite 
rack. In  particular for a connected quandle these dimensions are all one, 
as they are for the one point rack. This means that the interesting things 
happen in finite characteristic.

• In  [25] the third  cohomology is computed for Alexander quandles associ­
ated to a finite field k where T  is m ultiplication by some w G k*. Unfor­
tunately the statement of the main theorem and its proof contain some 
mistakes, which have however been corrected in [22].

• In  [20] it is proved that the torsion subgroup of H ^ (X )  is annihilated by 
dn if X  is a rack a cardinality d w ith homogeneous orbits. This is the 
case for Alexander racks. In  particular all torsion in the homology of R p 
is p-primary. Thus it is sensible to concentrate first on the homology w ith 
coefficients in Z /(p ).

• In  [26] it is proved that for p = 3 the torsion in the homology of R p is in 
fact of exponent p, and conjectured that this might be true for general p. 
W e w ill see that this is indeed the case.

• The same authors construct a homomorphism ha : H ® (R p) —> H ®+2 (Rp) 
and report on computer calculations showing that this map is a monomor­
phism for small n and p. These calculations also suggests that the ranks 
of these groups form a ‘delayed Fibonacci sequence’. W e w ill generalize 
their construction and show that these conjectures are all true.
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1.4 A sketch of the new results.
The explicit calculations in this paper deal w ith the rack cohomology of R p w ith 
coefficients in F p. It  turns out that it differs only by a dimension shift from the 
cohomology of a space M  = B ( D p; R p) which is described in the next section, 
and which carries a monoid structure

• The cohomology vector spaces H ^ (M )  have a basis consisting of expres­
sions of the form

A mi U B ei U P ^  (A m2 U B e2 U P ^ ( . . .  A ms U B Cs U F - ( l ) )  (4)

w ith rrii,ji G {0 ,1 , 2 . . . }  and e* G {0 ,1 }.  Here A m is in B  is
in H ft (M ),  and the additive operators P :  H 3R(M )  —> are Rota-
Baxter operators. The A m form a system of divided powers in the sense 
that A mAk = (m^ k)Ak+m.

• The homology is generated as an algebra by generators r  G H ^ M ) ,  s G 
H ^ iM )  and t G H ^ (M )  w ith as only relations st = ts and t2 = 0.

The action of the Bockstein operator on (co)homology is known and shows that 
all torsion is of exponent p. B y  the splitting result in [20] the same is true 
for quandle (co)homology. The above result allows us to estimate the quandle 
homology from above and the quandle cohomology from below, and since both 
estimations coincide the homology and cohomology are com pletely determined. 
They can be expressed in a sim ilar way as the rack (co)homology. The main 
difference is that the operator P  is replaced by a sim ilar operator Q satisfying 
Q 2 = 0 , and that r 2 = 0 .

1.5 Organization.
The paper is organized as follows. In  §2 we discuss the monoid structure on 
augmented rack space and the resulting algebraic structure on chain level. The 
formulas involving the cup product are proved in §3. In  §4 we apply A  Serre 
spectral sequence to dihedral rack space and deduce the additive structure of 
its cohomology. In  §5 we compute its algebra structure and in §6 its coalgebra 
structure. In  §7 we show that all homology is of exponent p. F in a lly  we compute 
the quandle cohomology from the rack cohomology.

In  order to sim plify notation we w ill always use the same symbol for an 
operator acting on chains and the dual operator acting on cochains. Thus for 
example in section 2.3 we have operators P  and D  acting on chains such that 
P D  is the identity, but on cochains D P  is the identity.

2 T he rack space and its coverings.

2.1 Groups associated to a rack.
For a rack X  the adjoint group A d j(X )  is defined as the group w ith a generator 
ea for each a G X ,  and relations e^1eae6 = ea*6 for a, b G X .  There is a canonical
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map a d j: X  —> A d j(X )  mapping a G X  to ea G A d j(X ) .  The functor Adj is left 
adjoint to the functor Conj. For each b G X  the map <t& defined by ab(a) = a*b  
is a rack automorphism of X . For this reason racks were called ‘automorphic 
sets’ in [3]. In  this way we get a map a : A d j (X )  —> A u t (X ) .  The image is called 
the group In n (X )  of inner automorphisms of X .  If  A u t (X )  acts transitively 
on X  then X  is called homogeneous. If  even In n (X )  acts transitively then X  
is called connected. An Alexander quandle A le x (M ,T ) is connected iff 1 — T  is 
invertible.

2.2 A ugm ented racks
An augmented rack is a quadruple (X , G, r), p) where X  is a rack, G  a group, p 
a right action of G  on X  by rack homomorphisms, and rj: X  - > G a  map which 
satisfies

vp (a ,g) = g~1v (a )g (5)

In  this case the map rj extends uniquely to a homomorphism r/: A d j (X )  —> G  
such that the composition w ith p\ G  —>• A u t (X )  is just a. See [18] and [12]. For 
a quandle we also demand that p (a, 77(a)) = a.
Exam ples:

• For any rack X  take G  = A d j(X )  and 77(a ) = ea and p(x, ea) = x * a.

• An oriented manifold M  w ith an oriented properly embedded codimension 
2 submanifold K  and a point in M  — K  defines an augmented quandle. 
See [31].

In  the above situation a right action of G  on a set Y  gives rise to a pairing
Y  x X  —̂  Y  given by y *  x = yr/(x). It  satisfies

1. For any a G Y  and b G X  there is a unique c G Y  such that a = c *  b.

2. For any a G Y  and 6, c G X  we have (a *  b) *  c = (a *  c) *  (b * c).

Such a pairing is called an action of X  on Y , and Y  is called an X-set. Exam ples:

• One can take Y  = X ,  in which case *  = *.

• One can take Y  = 00, the one point set.

• In  [12] an action of X  on G  is defined by g*x  = ,r/(x)~1g. W e prefer to take 
g -k x = grj(x), coming from the action of G  on G  by right m ultiplicaton. 
Obviously both actions are isomorphic by mapping g to g-1.

2.3 The chain com plex of an X -set.
For a rack X  acting on a set Y  we introduce a chain complex as follows. 
Let C n ( Y ; X )  be the free abelian group generated by Y  x X n. Define a map
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d: Cn ( Y ; X )  ->• C ^ - i ^ X )  as follows:

( y : : ' ' ' : ) ( y : % 1: • • • : 1: 1 ■? • • • i )
d l ( y ,x i , . . . , x n) = ( y * x i , x i * x i , . . . , x i - i * x i , x i+i , . . . , x n)

(6)
s °  =  ] T ( - i r 0, ^  =  E ( - 1 ) ^  5 = a 0 - a 1

i =  1  - ¿ = 1

I f  y  and Z  are X-sets then a map ƒ :  y  -> 2  is called a map of X-sets if 
f ( y  -k x) = f ( y )  -k x. Obviously every map of X-sets gives rise to a chain map. 
In  particular the unique map Y  —> oo gives rise to a chain map n : C n( Y ; X )  —> 
C n( ^ - X )  = Cn (X ) .

P r o p o s it io n  1. The isomorphisms tj)\ Cn ( X ) —> C'n_ i ( X ; X )  given by

ip(x i, . . . , i „ )  = ( - l ) ” _ 1(xi; x2, . . . , x n) (7)

/or n > 0 /orm a chain map.

Proof. Im m ediate from the fact that d{ = df. □

R em ark  2. Combining tp w ith n we get a chain map P  =  tjjn: C'n_ i (X ;  X )  —>• 
C n- 2 ( X ; X )  described by

P (x  1 ;x 2 , . . . , x n) = ( ~ l ) n (x2 ;x 3 , . . . , x n) (8)

P r o p o s it io n  2. Let X  be a quandle. Then the maps D : C n- i ( X ; X )  —>• 
C n( X ; X )  given by

D (x  1 ;x 2 , . . . , x n) = ( ~ l ) n~ 1 (x 1 ;x 1 ,x 2 , . . . , x n) (9)

form a chain map such that P D  is the identity. This implies that the map 
7r* : H n ( X ; X )  —> H n (X )  is surjective.

Proof. Straightforward. □

2.4 The monoid stucture and hom ology operations.
P r o p o s it io n  3. Let (X ,G ,r ),  p) be an augmented rack, and let G  act on Y . 
Then there is a pairing p y  '■ Cm{ Y ; X )  <g>Ck(G ;X )  —>• C m+k(Y ; X )  defined by

H v ( ( y ;  X U . . . ,  x m ) (g) (g, x [ , .. ., x'k )) = (y g ; x x g , . . . ,  x m g, x [ ,  . . . , x ' k ) (10)

Here xg is short for p{x, g). In  particular there is a pairing

p G : C k(G ; X )  ®  Ce(G ;X )  ->■ C k+e(G ;X )  (11)

Moreover one has

P y (p y (v  ®  7 ) ®  7 ') = P y (v  ®  Pa{l ®  7 ')) (12)
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and
d/i,y(r] Cg) 7 ) = ^y(dr] <g> 7 + <g> ^7 ) (13)

and if  ƒ  : Y  equivariant then

(14)

Proof. Straightforward from identities like (yg) *  (x<?) = (y * x )g , which follow

From  this proposition it follows that (Uq induces a structure of associative 
algebra on the total homology of (G ;X ) .  Moreover the total homology of ( Y ; X )  
is a right module over this algebra, and any G-equivariant map Y  —> Z  induces 
a module map. For example 7r* : H n( X ; X )  —> H n (X )  is a module map. In  this 
paper we w ill determine this structure for the case that X  = R p.

R e m a rk  3. One can view  the elements of H k(G ;X )  as additive operations of 
degree k acting from the right on the homology of X . Indeed the operations 
described in [26] can be viewed in this way:

• The operation h'a is the one associated to the class of (ea; a) + (1; a).

• The operation hs is the one associated to the class of j , j  + 1).

R e m a rk  4. W e w ill w rite 1 for the 0-cochain given by 1 (y ;) = 1 for every 
y G Y . Choose a base point y G Y . Then by applying /iy to (y; ) G C o (Y ;X )  
we get a map x : G k (G ;X )  —> C k (Y ;X ) .  If  the action of G  on y  is transitive 
then the class of (y; ) in H q(Y  ; X )  is independent of y and w ill be denoted by by. 
Thus x- H k (G ;X )  —> H k (Y ;X )  is decribed by x(a) = ® a)■ In particular 
the associativity of ¡i implies that x P a  = P y (x  <S> 1) -

P ro p o s itio n  4. The interaction of ¡j>x  with P  is given by

from the definition of *. □

P M(a Cg) b) = ( —l ) ” V ( P ( a )  ®  b) + l (a )P (x (b ) )  (15)

for a G C k( X ; X )  and b G Cm(G ;X ) .

Proof. For k > 0 one has

P n x ( ( y ;x  1, . . .  , x fc) <g> (g; X l  7 • • • 7 *^m))

= P(yg; *1 g, • • •, xkg, x i , ..., x'm)
= ( - l ) fc+m+1(x i g-, x2 g , . . . ,  x kg, x'v  . . . ,  x'm)

= ( - l ) H m + V x ( ( i i ; i 2, .. , , x fc) <g> {g-,x[,. ..,x 'm))
= (_ i)fc+™+i(_ i)fc+ iM x ( p ( y ; X l ; . .. j X k ) <g> (g; xi, . ..,x 'm))

and for k =  0
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P r o p o s it io n  5. The interaction of ¡j>x with D  is given by

Dtix { a ®b )  = { - l ) mtix { D a ® b )  (16)

for a G C k( X ; X )  and b G Cm ( G;X) .

Proof.  W e have

D ^ x  ( y , x i , .. ., x k) <g> (g; x'1; . . . ,  x'm ))

=  D(yg; x^g, .. ., x kg, x [ , . . . ,  x'm )

= ( - 1  )k+m(yg; xg, xxg,. . . ,  x kg, x [ , .. ., x'm)

= (- l)fc+mMx((y;y,a:i, • • • , x k ) <g> ( g ; x [ , . . . , x ' m ))

= (- l)fc+m(-l)Vx(-D (y;x i,... ,xfc) <g> ( g ; x [ , . . .  ,xm))
= ( - ! ) mMx(-D <8) l ) ( ( y ; x i , . . . ,  x k) <g> (g; x [ , . . .,x 'm))

□
R em ark  5. If  we abbreviate /x(a<g>6) to a-b then for Y  = G  the above formulas 
read

P( a- b)  = ( - l ) mP ( a ) - b + l ( a ) P b
D( a - b )  =  -b 1 j

Thus P  is a graded Fox derivation of the algebra H , (G ; X ) ,  w ith respect to 1. 
Also D  acts on Cm ( X ; X )  as left m ultiplication by ( —1 )mD( i x) -

R em ark  6. W e identify C k <g> C m w ith the dual of C k Cg) Cm using the pairing 
( . . . )  given by

{F®G,a<E)b)  = { - l ) km F  {a)G{b)  (18)

Thus the cochain version of proposition 4 reads

n( PF)  = ( P  <g> l)fj,F + 1 <g> P F  (19)

and the cochain version of proposition 5 reads

n ( DF)  = {D (g> 1 )/j,F (20)

2.5 The rack space as a monoid.
W e now turn to the topological constructions which give rise to some of these 
complexes and chain maps. From  a rack X  acting on a set Y  the action rack 
space B (Y ;  X )  is defined as in [12] as follows. One starts w ith Y  x ([0,1] x X ) n 
and defines an equivalence relation by

{y: tl: t 2: X 2 , • • • , 0 ,  Xj  : ... : t n , X „ )

(y ;th  x i , . . . , t j~ i, X j—i, i j+ i ,  Xj-|-1, . . . , tn ,x n) (21)
(y: ti: t 2: x 2: . . . : i : X j : . . . : t n , X „ )

^  {y * Xj : t  \ , Xl * Xj , . . . , t j — 1 , Xj— \ * Xj , tjj -̂1 , X j^l, .. ., t n: xn)
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and defines B ( Y ; X )  as the quotient space.
It  is easy to see that the chain complex {C n (Y ; X ) }  introduced before is 

just the cellular complex of this space, w ith one cell [0 , 1]"  for each (n  + 1)- 
tuple (y ;x i , . . .  ,x n). Moreover the pairing ¡j , of chain complexes is induced by 
a pairing ¡j , of spaces given by

A* ( [2/ 3 ^ • • • 1 t r m  x m]j  [fi1) ^1 X kX) ( 2 2 )

\lJ9i t \ 7X \  9: ■ ■ ■ ; t r m  x m 9 ; x k\

In  particular we get a strictly  associative monoid structure on B ( G ; X ) .  Note 
that this monoid contains the group G  as a submonoid, so that by restriction 
we get a pairing B ( Y ; X )  x G  —> B ( Y ; X ) ,  which is the edge action described 
in [12]. In  case Y  = G  we get by restriction a pairing G  x B (G ;  X )  —> B ( G ; X )  
which is the vertex action described in the same paper (but note our different 
convention). According to theorem 3.7 of [12] and the remarks preceding it we 
have:

P r o p o s it io n  6. Let (X ,G ,r ) ,  p) be an augmented rack, with G  acting on Y .  
Then the projection B ( Y ; X )  —> B ( X )  is a covering. In  particular B ( G ; X )  —> 
B ( X )  is a principal G-bundle, with the vertex action as covering transforma­
tions. Moreover B ( Y ; X )  can be identified with Y  X a B ( G ; X ) .

P r o p o s it io n  7. Assume that the map r)\ A d j(X )  —̂  G  is surjective. Then 
B ( G ; X )  is connected.

Proof. The vertices associated to g and gex are connected by the edge associated 
to (g;x). Therefore any two vertices are connected, □

R em ark  7. A  first consequence of this is that the covering transformations 
act triv ia lly  on homology. A  second consequence is that B ( G ; X )  is homotopy 
equivalent to a loop space, since that is true for any connected associative topo­
logical monoid.

2.6 The universal property of B(G;X) .
The following fact is stressed in [12]: if a finite set X  is equipped w ith the triv ia l 
rack structure then B ( X )  is nothing but the Jam es construction applied to the 
suspension of X . One aspect of the Jam es construction J ( Y )  applied to a space
Y  is that it yields the free topological monoid on Y . This means that there is 
a map from Y  to J ( Y )  which is universal among maps from Y  to a topological 
monoid. W e can give a sim ilar interpretation to B ( G ; X )  and thus view  it as 
some kind of generalized Jam es construction.

P r o p o s it io n  8. Let (X , G, 77, p) be an augmented rack, and let A4 be a topolog­
ical monoid. There is a bijection between monoid, maps $ : B ( G ; X )  —> A4 and 
pairs consisting of a map <j>\ G  —̂  A4 and a map ƒ :  [0,1] x X  —> A4 such that

• <p is a homomorphism and ƒ  is continuous.
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• ƒ(0, x) is the identity of A i.

• ƒ  (1; X ) =

• 4>{a)~1 f{t,x)4>(g) = f (t ,p (x ,g )) .

Proof. Straightforward: one writes (g; 1 1, x i , . . . ,  tn , xn) G B ( G ; X )  as the prod­
uct of (g; ) and (1; 1 1, x i ) , . . . ,  (1, tn , xn). Moreover one writes <f>(g) for $((<?;)) 
and ƒ (t,x) for <J>((1; t ,x )) .  □

If  we take the canonical choice G  = A d j(X )  then this reduces to

P r o p o s it io n  9. Let X  be a rack and let A4 be a topological monoid. There is 
a bijective correspondence between monoid, maps $ : B (A d ,j(X );  X )  —>- A i  and 
maps f : [0,1] x X  —> A4 such that

• ƒ ( 0 , x) is the unit element.

• / ( l , x )  is invertible.

• f ( l , y ) ~ 1 f ( t , x ) f ( l , y )  = f ( t , x * y ) .

Proof. Straightforward. □

It  is yet a m ystery how this relates to the most im portant aspect of the Jam es 
construction J ( Y )  applied to a space Y : the fact that it provides a homotopy 
model for the loop space of the suspension of Y .

2.7 Sim plicity of B( X) .
The fact that B ( G ; X )  is a topological monoid gives a nice alternative explana­
tion for the following fact noted in [12]: the canonical action of the fundamental 
group of B ( X )  on its higher homotopy groups is triv ia l. It  can be viewed as a 
case of the following general fact:

P r o p o s it io n  10. Let A4 be a simply connected topological monoid, containing a 
discrete subgroup G , so that the canonical projection A4 —>■ M ./G  is a covering 
map. Then the canonical action of the fundamental group o fM / G  on its higher 
homotopy groups is trivial.

Proof. Let 7 be an element of the fundamental group, represented by a loop in 
A 4 jG , which is lifted to a curve c in A4 starting at the base point m. Moreover 
let £ be an element of 7rn (A i ) ,  which is represented by a map ƒ :  [0 , 1]"  —> A4 
mapping the boundary of [0 ,1]" to m. In  order to find 7  ̂one has to construct 
a map F : [0,1]" x [0,1] —> M / G  such that F (x ,  0) = f {x )  and F (0 , t )  = c (t); 
then 7  ̂ is represented by the map t 1—> F (x , 1). However here we can sim ply 
take F (x , t )  = f (x )  ■ c(t) using the monoid structure. □

10



2.8 The cup product.
As we have seen rack cohomology is in fact the cohomology of a space, the rack 
space. Therefore the topological cup product gives rise to a ring structure on 
cohomology. W e now describe a product on the cochain complex inform ally. In  
the next section we w ill describe it more form ally and prove that the induced 
product on cohomology coincides w ith the topological cup product. W e w ill do 
this as as special case of a more general theorem about D-sets.

For ƒ  G C k( B ( Y ; X ) )  and g G C m( B ( Y ; X ) )  the product ƒ  U g applied to 
a sequence (y ;x  1, . . . ,  Xfc+m) is a sum of terms, corresponding to subsets B  of 
( # i , . . . ,  Xk+m) of card inality to, as follows:

• The arguments of ƒ  are y and the elements of B  in ascending order.

• The first argument of g is y after it is acted upon by all elements of B .  The 
remaining arguments are the elements xu of the com plementary subset A, 
after they are acted upon by the elements xv of B  w ith v > u.

• Lastly  every term  is preceded by a sign depending of the parity of the 
perm utation involved.

The example k = m = 2 m ay illustrate this:

( ƒ  U g r) (y ;x i,x 2,x 3,x4)
= f(y ; xi, x2 )g ((y  *  x i )  *  x2; x3, x4)

-  f (y ;  xi, x3 )g {{y  *  x\) *  x3; x2 * x3, x4)
+ f (y ;  Xi, x4 )g ((y  *  x t ) *  x4; x2 * x4, x3 * x4) (23)
+ f (y ,  x2, x3 )g ((y  *  x2) *  x3; (x i * x2) * x3, x4)
-  ƒ  (y; x2, x4 )g {{y  *  x2) *  x4; (x i * x2) * x4, x3 * x4)
+ f (y ;  x3, x4 )g ((y  *  x3) *  x4; (xx * x3) * x4, (x 2 * x3) * x4)

Moreover this product is strictly  associative on the cochain level, and has 1 as 
a unit.

P ro p o s itio n  11. The interaction of the cup-product with "¡A is given by

-ifiF U ipG = rtp(F U P G )  + (-1  ) k+1 'iP (P F  U G ) (24)

for F  G C k{ X ; X )  and G  G G m(X ;  X ) .

R e m a rk  8 . B y  applying 7r to the above formula we find

P F  U P G  = P ( F  U P G )  + ( - l ) k+1P ( P F  U G ) (25)

for F  G C k( X ; X )  and G  G C m(X ;  X ) .  This means that P  is a (graded) Rota- 
Baxter operator w ith respect to the cup product. See [27] and [14] and [15] for 
more on Rota-Baxter algebras.

11



(27)

P ro p o s itio n  12. The interaction of the cup-product with D  is given by

D ( F U G )  = D F u G + ( - l ) kF l ) D G  (26)

for F  G C k( X ; X )  and G  G C m(X ;  X ) .

Thus on cochains P  has the formal properties of integration and D  has the 
formal properties of differentiation. Moreover D P  is the identity map. Since we 
need the formal definition of U using the language of D-sets the proofs of these 
two propositions are given in the next section.

2.9 Some remarkable identities.
Let us w rite A for the element P ( l )  G C 1 ( Y ;X ) .  Thus A (y; x) = 1 for all y G Y  
and x G X .

P ro p o s itio n  13. One has A U A  = 0, and

d °F  = - F  U A 

d1F  = ( - l ) nA l l F

for F  G C n~ 1 ( Y ;X ) .

Proof. Straightforward. □

P ro p o s itio n  14. Let Q : C n ( X ; X )  ->• C n+1 ( X ; X )  be defined by

Q (F )  = P ( F )  + ( ~ l ) n+1F  U A (28)

Then Q 2 = 0.

Proof. W e have

Q 2 ( F )  = P ( P F  + (-1  )n+1F  U A ) + (-1  )n ( P F  + (-1  )n+1F  U A ) U A

= P P F  + ( - l ) n+1P ( F  U A ) + (-1  )nP F  u A - f u A u A  ^

B u t P F  U A = P F  U P I  = P ( F  U P I )  + ( - l ) n+1P P P  and A U A = 0. □

This fact seems less an accident if one observes that Q is conjugated to the 
operator <9°:

P ro p o s itio n  15. ripQ = —d°tp on C n( X ; X ) .

Proof. Straightforward. □

P ro p o s itio n  16. I f  SG  = 0 then

Q F  U Q G  = Q (F  U Q G ) + ( - l ) fc+1Q ( Q P  U G ) (30)

for F  G C k{ X ] X )  and G  G C m( X ; X ) .

12



Proof. B y  definition of Q and proposition 11 we have

Q F  U Q G  = P { F  U P G )  + (-1  ) k+1P ( P F  U G )

+ ( - l ) m+1P P  U G  U A ) + ( - l ) fc+1P  U A U P G  
_l_ ( - l ) fc+mP u  A U G U  A 

Q (F  U Q G ) = P ( F  U P G )  + (-1 )m+1P ( P  U G U A )  (31)
+ ( _ i  f+ m F  u p c  u A + ( - l ) fc+1P  U G U A U A  

( - l ) fc+1Q ( Q P  U G ) = (-1 ) k+1P ( P F  U G ) + P ( F  U A U G )

+ ( - l ) m+1P P  U G U A +  (-1 ) k+mF  U A U G U A  

If  6G  = 0 then —G  U A = d °G  = d l G  = ( - l ) m+1A U G  and therefore 

( - 1 )H 1 F U A U P G  = ( _ l ) fc+mP l J P G U  A

Moreover in that case S P G  = P S G  = 0 which implies in a sim ilar way that 
- P G  U A = ( - l ) mA U P G  so ( - l ) m+1P ( G  U G U A )  + P ( F  U A U G ) = 0. □

Thus Q does not behave as a Rota-Baxter operator on the the cochain level 
but it does so on the cohomology level.

3 Cup products in D-sets.

3.1 Introduction to D-sets.
Since the rack spaces B ( Y ; X )  are built up from cubes, we have to study general 
spaces constructed from cubes. This is formalized in the theory of D-sets, see
[13]-
D e fin itio n  2. Maps d\ : [0,1]" -1  —> [0,1]" are defined for n > 1 by

d f(ii, .. . , t „ _ i )  = ( ¿ i , . .. , i j _ i ,  e ,ii; .. . , tn ) for e G {0 ,1 }  and 1 < i < n 

They satisfy djd!j_ 1 = d^df for 1 < i < j  < n.

D e fin itio n  3. A  D-set X  is a sequence of sets X n for n = 0,1, 2 , . . .  together 
w ith face maps S f : X n —>■ for e G {0 ,1 }  and 1 < i < n such that =

for 1 < i < j  < n. Its  chain group Cn (X )  is defined as the free abelian 
group generated by X n, and the boundary operator d: Cn (X )  —>■ C n- i ( X )  is 
defined as ^ ¿ ( - l )^ ^ 0 ~  S j).

R e m a rk  9. Some caution is needed when dealing w ith D-sets. Note that the 
singular cubes in a topological space do not yield the correct homology, but 
after dividing out the degenerate ones they do.

D e fin itio n  4. W e w rite [n] for {* G Z  | 1 < i < n }. Let A  C [n] and B  = [n]— A, 
say A  = {a i ,  a2, . . . ,  am} and a i < a2 < ■ ■ ■ < am, and B  = { 61, . . . ,  6^} w ith 
61 < • • • < bk- Then we w rite e(A) for the sign of the perm utation cta that 
maps (1 ,2 , . . . ,  n) to (61, a i , . . . ,  am). Moreover if X  is a D-set we write
6 A  =  6 h  0  ' ' '  0  5 l m

13



D e fin itio n  5. Let X  be a D-set, and let ƒ  G C k(X )  and g G C m(X ) .  Then 
ƒ  U g G C k+m(X )  is defined by

( f U g ) (x )  = (-1  (32)
A

where B  =  [n] — A  and the sum is over all subsets A  of cardinality to.

D e fin itio n  6 . The realization ||X|| of a D-set X  is defined as the quotient of 
the topological sum ] J n X n x [0,1]" by the identifications (Sf(x ), t) ~  (x, d^(t)).

The aim  of this section is to show that the above formula for the cupproduct 
for cochains on X  agrees w ith the topological cupproduct on ||X||. To do this 
we rewrite ||X|| as the realization of a sim plicial set. The idea is to triangulate 
the cubes into simplices, and to use the known formula in the sim plicial case. 
The proof in this section is adapted from [22].

3.2 The triangulation.
The triangulation which we w ill describe w ill not deliver us an honest sim plicial 
set but one lacking degeneracies.

D e fin itio n  7. A  A-set Y  is a sequence of sets Yn for n = 0,1, 2 , . . .  together 
w ith face maps 5 i'.Yn —>• Yn-\ for 0 < i < n such that 5j-\5i = SiSj for
0 < i < j  < n. Its  chain group Cn (Y )  is defined as the free abelian group 
generated by Yn, and the boundary operator d: C n (Y )  —> C n- i (Y )  is defined
as E i ( - l ) ^ i -

D e fin itio n  8 . A  ^-partition of [n] is a sequence S  = (S i ;  S 2; . . . ;  S\ ) of nonempty 
subsets of [n] which are pairwise disjoint and have [n] as their union.

D e fin itio n  9. For a D-set X  we define a A-set T (X ) .  The set of £;-simplices 
T (X )k  consists of the pairs (x; S )  where x G X n and S' is a ^-partition of [n]. 
The boundary maps are given by

S0(x-, S i ; . . . ;  S fc)) = ( 4 * ;  0Sl (S 2); ...-,0Sl (S k))
Si(x; S i ; . . . ;  S k) = (x; S i ; . . . ;  S j _ i ;  S* U S i+ i; S i+2; . . . ;  S k) for 0 < i < k 

Sk(x; S i ; . . . ;  S k) = (<5°fc(x ); 9Sk ( S i ) ; . . . ;  9Sk(S k- 1))

Here Os denotes for S  C [n] the unique order preserving map from [n] — S  to 
[ n - # ( S ) ] .

R e m a rk  10. To check the necessary relations one uses that Os \j t  = @es (T) °  Os 
if S ,T  C [n] are disjoint, and a sim ilar formula for the 5$.
As particular cases we have

Sk(x; S i ; . . . ;  S „ )  = (¿ ¿ (x ) ;  eB (S k+1) ; . . . ;  0B (S n)) 

Sk+1 . . . S n (x ;S 1 ; . . . ; S n ) = (#3A(x );0A (S 1 ) ; . . . ; 0 A (S k))

where A  = S k+1 U ■ • • U S „  and B  = S i U • • • U S k, and where Ob '■ A  —>• [# (A )]  
and 9a '- B  —> [#(B)]  are the unique order preserving maps.
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The geometrical A;-simplex associated to (x; S )  is the subset of {x }  x [0,1]" 
consisting of the (x; t i , . . . ,  t „ )  w ith the property: if a  < ¡3 and i G S a and 
j  G S ¡3 then t¿ < t j .
Consider the special case k = n. An n-partition S  of [n] can be viewed as a 
perm utation a  G S n using the formula S\ = {<r(*)}.
The n-simplex now consists of the points ( x ; t i , . ..  , t n) £ X  x [0,1]" for which 
a  < ¡3 implies < ta(py W e w rite a (x ) for this simplex. It  is clear that 
these simplices cover ||X|| and intersect only in a common face.

D e fin itio n  10. For x G X n define t (x )  = J2o-eS e(o')o'(a;)-

P ro p o s itio n  17. r  induces a chain map from chain complex of the O-set X  to 
the chain complex of the A -set T (X ) .

Proof. W e prove that 5(t (x )) = t (5(x )). Le t a  G S n and 0 < i < n . Then 
one of a (x ) and (i i + 1)<t(x) looks like (x ; . . . ;  a; b ;. . . )  and the other looks like 
(x ; . . . ;  6; a ; . . . ) .  Therefore the Si of these two terms cancel in 5(t (x )). W e are 
left w ith

S(t (x )) = S0(t (x )) + ( - 1  )nSn (r (x ))

Let Ti = { a  G S n \ <j(1) = *}, and for a  G Ti define p (j)  = Oicr(j + 1) 
for 1 < j  < n — 1. Then p = (i i + 1 ...  n )~ 1a ( 1 2 . ..  n) G <Sn_ i,  so 
<P) = ( - 1)” _ ie (cr) ( - 1)” _1 = ( — For  a  G Ti we find

S0cr(x) = 60 (x; i | <r(2) | • • • | a (n ))

= (S ¡(x );0 ia (2 ) | • • • | 0¿<r(n)) = pS}(x ) and thus

60t ( x ) = S0 E  e (a )a (x ) = E E  e(a)Soa(x)
a £ $ n i <r£.Ti

=  E  E  (x ) =
i p £ S n _ i

Let T ¡ = { a  G S n \ a (n ) = *}, and for a  G T ¡  define p '( j )  = Oicr(j) for
1 < j  < n — 1. Then p' = (i i + 1 . ..  n )~ 1a  G <Sn_ i,  so e(p') = ( —1 )n~le{<j). 
For a  G T ¡ we find

5no-(x) = Sn (x ;a ( 1) | • • • | a (n  -  1) | i)

= ((5°(x ); Oi<j(l) | • • • | 9i<j(n — 1)) = p!S®(x) and thus

S „t (x ) = Sn ^ 2  e (a )a (x ) = E  E  e{a )Sn^{x)
a  £  S n i

=  E  E  =  ( - i ) n-v ¿ ° (x )
i p 'G Sn-!

Summing over i we get S (t (x )) = t (( — 1)*J?(x) — ( — l ) l S j(x )) = t S(x ). □
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D e fin itio n  11. Let Y  be a A-set, and let ƒ  G C k(Y )  and g G C m(Y ).  Then 
ƒ  U g G C k+m(Y )  is defined by

( ƒ  U g )(y) = ( - l ) km f  (Sk+1 . .. Sny) ■ g (Sky ) (34)

for y G Yk+m. This is the Alexander-W hitney formula as in theorem 8.5 of [21].

W e now prove that the products in definition 5 and definition 11 correspond 
under r.

P ro p o s itio n  18. The dual map satisfies r ( f  U g) = r ( f )  U r(g ).

Proof. For any A  Ç [n] let B  and a  a  be as in definition 4. Then a  G S n can be 
w ritten uniquely as c ta ^ i x  cr2) for some A  and some a i G S k and a 2 G S m. 
From  0Acr(i) = cri(*) and 0Bcr(k + i) = a 2 (i)  it follows that

4 + 1  • • -Snay  = o-iô°Ay and ôkay  = a 2 6 lB y (35)

Thus for ƒ  G C k(T (X ) )  and g G C m(T (X ) )  and y G X k+m we have

( ƒ  U g )(ay ) = ( - l ) kmf ( S k+1 . ..  Snay ) ■ g(S^ay)

= ( - l ) kmf ( a 1ô0Ay )- g (a 2ô1By)

Therefore

(t ( Î  U g )){y ) = ( ƒ  U g )(ry ) = ( ƒ  U g) ^  e (a )a (y )
cr

=  ( / u 5 ) E  e  e  e(aA(cri x a2)) ■ (<7A ( v l x a 2 )y)
A  (7iG<Sfc (72 E<Sm

=  E  E  E  e(^) • e(a l) • e(a2) • (ƒ Usr)(crA(cri X cr2)i/)
A  (71 (72

=  ( - l ) fcmE E  E  ^ ) - ^ i ) - ^ 2 ) - / ( ^ ) - f f ( CT2̂ y )  (37)
A (7l (72 (=5™,

=  ( - 1f ’" E t (i ) E  / ( e(a i) •<7i 5a?/) E  9 (^ 2 )  ■ (T2Sb V)
A  (71 (72£5m

=  ( - ! )* = -^  e(A ). ƒ (r 5 °y ) . ff( r ^ y )
A

= (- l)fcm 53 e(A ) ' ( T f ) (ô °A y )  ■ (rgr)(4y) = ( r f  U T g ) ( y )
A

□
R e m a rk  11. The cup product in definition 5 is strictly  associative since the 
Alexander-W hitney cup product is strictly  associative and the map r  is strictly 
homomorphic and surjective. Moreover the 0-cochain which maps every vertex 
to 1 is a strict unit.
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P ro p o s itio n  19. Let X  be a O-set. Then there is a chain equivalence between 
G * (X )  and the singular cochains on ||X|| under which the product in definition 
5 corresponds to the cup product on singular cochains.

Proof. There is a functor G  from A-sets to sim plicial sets which is left adjoint 
to the forgetful functor F  from sim plicial set to A-sets. For each A-set Y  there 
is a chain equivalence (see [21] theorem 8.6.1) from the chain complex of G Y  to 
the normalized chain complex of G Y , which coincides w ith the chain complex 
of Y . Under this equivalence the Alexander-W hitney maps agree.

Now G * ( X )  w ith the product of definition 5 is equivalent to C * ( T X ) w ith 
the A W  product, which is equivalent to G * ( G T X )  w ith the A W  product, which 
is equivalent to the singular cochains on ||GTX|| w ith the A W  product. Bu t 
||GTX|| is homeomorphic to ||X||. □

R e m a rk  12. The geometric realization of the A-set Y  is homeomorphic to 
the geometric realization of the sim plicial set G Y . However the realization of a 
sim plicial set Z  is not homeomorphic to the realization of the A-set F Z .  They 
are however homotopy-equivalent. For more on this see [29].

Now we specialize to rack spaces.

D e fin itio n  12. Let X  be rack and let Y  be an X-set. Then we get a D-set 
B {Y - X )  by defining B ( y ; X ) „  = Y  x X ”  and

( y  : X 1 ? • • • : ^ n )  { y  : -^1, • • • , 3^— 1, , • • • , x n  )

( y  : X 1 ? • • • : x n  ) ( y  *  x i:  X \  * X-i , . . . , \  * X-i, X ^  \  , . . . , X

Obviously | |B (y ;X ) | |  is just what we called B ( Y ; X ) ,  and G „ ( B ( y ; X ) )  is 
what we called C n ( Y ;X ) .  Combining this definition w ith definition 5 one finds 
the prescription of subsection 2 .8 .

3.3 The proof of proposition 11.
Now we investigate the relation of this cup product w ith ip and thus P  and 
w ith D . F irst we have to translate tp in the language of D-sets. W e write 
ipt : B ( X ) „  —> B ( X ; X ) „ _ i  for the map given by

ip ,(x 1 ,x 2, ... ,x n) = (x i,x 2 , . . . , x n) (39)

The relation w ith tp is given by

('tpF)(x) = F ( rtpx) = (-1  )n- l F{ii>.x) (40)

for x G B ( X ) „  and F  G G ” - 1( X ; X ) .

P ro p o s itio n  20. One has

F('il),5 lx) = F {5 l_ l 'il),x) for i > 1 and
F (^ .S tx )  = (-1  )n ( P F ) (^ .x )  (41)

for x G B ( X ) „  and F  G G ” - 2( X ; X ) .
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Proof. For e = 1 one has

F (ip t 6j ( x i , .. . ,£ „ ) )  = F (ip t (x i * xi ; . . .  ,X j_ !  * xi ; xi+1, . ..  ,x „ ) )
= F ( x i  * Xj; x2 * xi ; . . . ,  X j_ i  * xi; xi+i , . . . ,  x „ )  (42)

= • • ■ ,% ) )  = F {5 l_ l ip .{x i , x 2, . ..  ,x „ ) )

for * > 1 and

(x i ; . . . ,  x „ ) )  = F('tp ,(x2, . . . ,  xn)) = F (x 2 ;x 3, . . . , x n)
= ( - l ) " ( P F ) ( x 1;x 2, . . . , x n) = ( - l ) n (PF )(V> .(x 1,x 2, . . . , x n)) ( j

and sim ilarly for e = 0 . □

Now we prove proposition 11. Let F  G C k( X ; X )  and G  G C m( X ; X )  and 
x G B (X )k + m+ 2  then by definition of the cup product we have

(V-F U V*?)(x) =  (-I)(fc+D(™+1) 5 3  e(A) . (V>F)(^x) • (V-G X^x)
A

= (_i)fc»+fc+™+i 5 3 e (A )  • F (^S °a x ) ■ G {^ 5 lB x)

A (44) 
= (_i)fc»+fc+™+i 5 3  e(A ) • (-1 ) kF(iP.S°Ax) • ( - l ) mG(V>.4x)

A

= ( - l ) km +1 5 3 e(A) • F ^ .5 °a x) ■ G ^ . S ix )
A

where the sum is over subsets A  C [k + m + 2] of cardinality m + 1, and B  is 
the complement of A. For each term  we write

A  (l2 7 7 dm-\- \}  w ith Q/~l (l2
B  = {& 1, b2, . . . ,  bk+1}  w ith b\ < b 2 < ■ ■ ■ < bk+1

There are two possibilities:

• If  a\ = 1 we write

U  = { a — 1; a G A, a > 1} = { a 2 — 1, 03 — 1, , am +1 — 1}
V  = {b -  1 ; b G B }  = {61 -  1, b2 -  1 , . . . ,  6fc+i -  1}

From  proposition 20 we get by induction

F ^ .5 °a x) = F ^ A C  • • • ¿ ° a j L +1x)

&m + l
X= ( - 1  ) fc( P F x v > . < c - - o :

= ( - l ) fc(PF)(< 5 °2_ 1 ...(5°m+i_ 1V-.x)

= ( - l ) fc( P i 1)(< 5 ^ .x ) (45)

G (V - .^ x )  =  G t M X  • • • ¿ ¡ A k+ix)

= G(51bl-i51b2- i - - -5 l j i+i- i ^ x)
= G (6y'tp,x)
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F in a lly  if we w rite k for the cycle (1 2 3 . . .  k + m + 2) then <7a(ko‘!7K'~1) 
is the cycle (1 b\ b2 .. .bk+i), so e(A) = ( — l ) k+1 e(U ). Therefore these 
terms add up to

( _ 1)fcm+i ^ - ( _ 1) fc+ie(t/) . { - l f ( P F ) ^ , x ) . G {§ U .x )
u

=  (-1  )k m ^ e ( U )  ■ ( P F ^ . x )  • G i S ^ . x )  ( 4 6 )

= (-1  )m( P F  U G ){^ .x ) = ( ~ l ) k+1( P F  U G)(tpx)

= ( - l ) k+1 (i/> (P Fu G ))(x )

• If  b\ = 1 we write

U  = {a  — 1 ; a £ A }  = {a i — 1, a2 — 1, .. .,  am+i -  1}
1/ =  { h —  l  ; b £ B,  b > 1}  = {b2 -  1 , b3 -  1 , . . . ,  bk+1 -  1}

From  proposition 20 we get by induction

F ^ . 6°a x) = F ^ X X  ■ ■ ■ f l j L + i * )
= F(5°a i_ 1 5°a2_ 1 ...6°am+i_ 1 'lp .x)

= F ^ . x )

G iip .S^x) = G (iP .S lS l2Sl3 . . .  S lk+ix) (47)

= ( - i r ( P G ) ( i ; . S 1bj l - - - Si +1x)

= { - ^ { P G ^ S l ^ S l - i  • • • S l +1_ iV-.x)

= (-1 )m( P G ) ( S ^ . x )

This time <7,i(k<7[/-k_1) _1 is the identity so e(A) = e(U ). Therefore these 
terms add up to

(_ 1)fcm+i 5 3  e{lJ) . F{5^ , x) . (_1  y»{PG){5U . x )
u

= { - l ) km+m+l 5 3  e(U ) ■ F { § U . x )  ■ (P G )(5 y ip ,x ) (4g)
u

=  (_i)fc+™+i(f u P G )(ip .x ) =  ( F  U PG )(ip x )
= (V > (F u P G ) ) (x )

Thus if>F U ipG = V>(P U P G )  + { - l ) k+lip {P F  U G).

3.4 The proof of proposition 12.
Now we investigate the relation of the cup product w ith D. F irst we have to 
translate D  in the language of D-sets. W e w rite D , : B ( X ; X ) „ _ i  —> B ( X ; X ) „  
for the map given by

D ,(x  i ; x 2, .. .  , x „ )  = (xi; xi, x2,x3, . . . , x „ )  (49)
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(51)

(52)

The relation w ith D  is given by

(.D F ) (x ) = F (D x )  = (-1  )n- l F {D .x )  (50)

for x G B ( X ; X ) „ _ i  and F  G C n ( X ; X ) .

P ro p o s itio n  21. One has

F (5 lD ,x )  = F ( D t ô l_ i x) for i > 1, and 
F {5 \D .x ) = F {x )

for x G B { X ] X ) n and F  G C n ( X ; X )

Proof. For e = 1 one has

F (ô jD , (x 0; x i , . . .  ,x „ )) =  F (ô j (x 0; x0, x i , . . .  ,x„ ))

Fi^xo  ̂x^_i j xo  ̂x^_i, . . . ,  X i—2  ̂x^_i, x^, . . . ,  xn)
= F (D , ( x o * x j _ i ; x i  * X j _ i , . . . ,  Xj_ 2 * ^¿-l, xi ; . . .  ,x „ ) )

= F (D ,ô j_ 1 (xo', x i , . . .  , X j _ i , X j , .. . , x „ ) )  

for * > 1 and

F {5 \ D t {x o; x i , . . .  , x „ ) )  = F (5 \ (x  0; x0, x i ; . . . ,  x „ ) )  = F ( x 0;x i ,  . . . , x „ )  (53)

and sim ilarly for e = 0 . □

Now we prove proposition 12. Let F  G C k( X ; X )  and G G C m( X ; X )  and 
x G B ( X ;  X )k+ m- 1 then by definition of the cup product we have

(.D ( F  U G ))(x) = ( F  U G )(D x ) = ( - l ) k+m- l ( F  U G ){D .x )

= (-i)km+k+m+i e(A) ■ F ( ô°aD . x ) ■ G (S g D ,x ) (54)
A

where the sum is over subsets A c  [k + to] of cardinality to, and B  is the 
complement of A. For each term  we write

A  = {a i ,  a2, . . . ,  am}  w ith a i < a2 < • • • < am 
B  = {&i, b2, . . . ,  bk}  w ith 6i < b2 < ■ ■ ■ < bk 

There are two possibilities

• If  a\ = 1 we write

U  = {a  — 1 ; a G A , a > 1} = {a 2 — 1, 03 — 1 , ,  am — 1}
V  = {b — 1 ; b G B }  = {61 — 1, 52 — 1 , . . . ,  bk — 1}

From  proposition 21 we get

F(S°a D . x ) = F ^ S l  ...  S°amD .x ) = F ^ D . S l - i  ■ ■ • C - i * )
= F (ô 0a2_ 1 . . .ô 0am- 1x) = F (ô 0u x)

G {8 1b D ,x ) = G { S l  . ..  5lhD .x ) = G (D ,S l i _ 1...  S ^ x )  

= G {D ,5 y x ) = ( — l ) m~ 1 (D G )(S y x )

(55)
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If  we write k  for the cycle (1 2 3 . ..  k + m) then aA{ncrun X) 1 is the cycle 
(1 &i 62 • • • bk), so e(A) = ( — l ) ke(U ). Therefore these terms add up to

(_1)fcm+fc+m+ 1 Y ^ ( - l ) ke(U) ■ F (ô fjx ) ■ ( - l r ^ t D G X ^ i )  
u

= e( i J )  ■ F {$ jx )  ■ (D G )(S y x ) = (-1 ) k( F  U D G ){x )
(56)

(57)

• If  61 = 1 we write

U  = {a  — 1 ; a £ A ]  = {a i — 1, <12 — 1,.. ., am — 1}
V  = {b -  1 ; b G B ,b  > 1} = {b2 -  l,b 3 -  1 ,... ,bk -  1}

This time we have

F(5°AD .x ) = F (5 0ai50a2 ■ ■ - 6amD .x )

= F (D .5 °a i-i---S°am- 1x ) = F ( D . 5 0ux)

= ( - 1  ) k- l {D F ) {5 0uX )
G {5 1BD .x ) = G {5 1bi5l2 . . . 5 lD . x )

= G (5\D ,5 l2_ i . . .5 lk_ i x)

= G (Sb2- 1 . . .  5lk_ lX ) = G (Slrx )

This time a ^(KCTjyK- 1 ) -1  is the identity so e(A) = e(U ). Therefore these 
terms add up to

^ k m + k + m + l J 2 < U )  ■ (-1  ) k- 1 (D F )(S ^ x ) ■ G (Syx ) 
u

= ( _ 1)*™+™ < U ) • (D F )(S °uX ) ■ G (Syx ) (58)
u

= {D F  U G ){x )

Thus D ( F  U G )  = D F U G +  (-1  ) kF  U D G .

4 The key fibrations.

4.1 The cohom ology of the coverings of B(X) .
From  now on we assume that X  is finite quandle w ith the following properties:

• It  is faithful in the sense that x * a = x * b for all x implies a = b. In  
this case the the canonical map X  —> G  = In n (X )  is injective. W e w ill 
identify X  w ith its image in G .

• It  is connected: the action of G  on X  is transitive. Thus there is a bijection 
G / H  —>• X  where F [ is the isotropy group of some a G X .
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• It  has ‘homogeneous orbits’ so that the result of [20] can be applied which 
says that the torsion in H n(X )  is annihilated by dn, where d is the cardi­
na lity of X .

• It  is regular in the sense that the cardinalities of X  and Ft are relatively 
prime.

The first three conditions are satisfied for the Alexander quandle associated to 
(M ,T )  if 1 — T  is invertible. The last condition is satisfied if the order of T  is 
prime to the order of M .

A ll this is satisfied if X  is a Galois quandle, where M  is a finite field K  of 
characteristic p, and T  is m ultiplication by some w G K  — { 0,1}. Note that G  
is a subgroup of the affine group of K .

Let p b e a  prime dividing d, the cardinality of X . As noted above only such 
a prime can be involved in the torsion in the homology of X . For this reason we 
w ill start w ith looking a the cohomology of B ( G , X )  and B ( X , X )  and B ( X )  
w ith coefficients in F , the field of p elements.

A  key role in our considerations is played by the following well known ob­
servation.

P ro p o s itio n  22. Let 7t : Y  - > I  be a principal covering, with group T. I f  the 
order d of T is prime to p then the map

7r: H n ( X ; F )  —» Ftn (Y, F ) r (59)

is an isomorphism.

Proof. The transfer map provides an inverse. □

For any augmented quandle (X , G ) one gets an equivariant map G  —> X  by 
choosing some base point xo G X  and mapping G  to xog. From  this one gets a 
principal covering B (G ,  X )  —> B ( X ,  X )  w ith group the isotropy group of x q .

In  the situation considered here the zero element of K  is an obvious choice 
for xo, and the group T consists of the powers of w. So we get as a corollary:

P ro p o s itio n  23. The projection map induces an isomorphism

X : H n ( B ( X , X ) ; F ) ~ I I n ( B (G ,X y , F )  (60)

Proof. B y  remark 7 the action of T on the cohomology of B (G ,  X )  is trivia l. □

Henceforward we w ill identify both cohomologies using x- I n particular 
proposition 4 now says that ¡jlP F  = (P  <g> 1 )/i,F + 1 (g> P F .  Note also that the 
element D (tx )  mentioned in proposition 5 corresponds under x  up to a factor
2 w ith the class of (1 ;y ) + (ey; y) which corresponds to the operation h'a of [26], 
as discussed in remark 3.

Next we cite the result on page 349 of [12], again for general augmented 
racks:
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P ro p o s itio n  24. There is a map 7 from B ( X )  to the classifying space B (G )  
and the principal coverinq B I G . X ) —> B I X )  is the pull-hack of universal cov­
ering E ( G ) —» B (G ) .

Thus we have a com mutative diagram

B ( G , X ) ----> E (G ) (61)

B ( X ) ----- > B (G )

In  our special case this has the following consequence:

P ro p o s itio n  25. 7 : H n(B (G ) ;  F )  —> H n (B ( X ) ;  F )  vanishes for n > 0.

Proof. It  follows from proposition 2 and proposition 23 that the map B ( X )  —> 
B ( G ; X )  is injective in cohomology. On the other hand the cohomology of E (G )

Like any map 7 can be replaced by an equivalent Hurewicz fibration. One 
gets the fibre F ( 7 ) of this fibration by pulling back the path space over B (G ) .  
Since the path fibration is equivalent to the covering E (G )  of B (G ) ,  the resulting 
fibre is equivalent to the pull back B ( G , X )  of E (G ) .  Henceforward we w ill 
make no difference in notation between any map and the equivalent fibration 
that replaces it.

R e m a rk  13. A t this point one can see how a recursive com putation of the 
cohomology of B ( X )  starting from the cohomology of B (G )  might be feasible. 
One considers the fibration sequence

where 7 is homologically trivia l. If  one knows the cohomology of B ( X )  up to 
dimension n one can hope to be able to compute the cohomology of B ( G ; X )  up 
to dimension n by a spectral sequence argument. Bu t this coincides w ith the 
cohomology of B ( X , X ) .  B y  proposition 1 this yields the cohomology of B ( X )  
up to dimension n + 1.

In  this way a new proof might be given of the results of [25] about H 3. 
However from subsection 4.5 onward we specialize to the dihedral case K  = F , 
w = — 1. W e try  to recognize the pattern that emerges in H n for larger n, and 
prove that the found pattern is the correct one by using a spectral sequence 
comparison argument.

4.2 Replacing B(G).
A  problem w ith the fibration B ( X ; G )  —> B ( X )  —> B (G )  is the fact that the 
base space is not sim ply connected. W e w ill remedy this by replacing it by 
another space L  w ith the same cohomology which is sim ply connected.

vanishes in positive dimensions. □

B (G ;  X ) ----5- B ( X )  B (G ) (62)
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D e fin itio n  13. Let C  C G  be the cyclic group generated by T . Let ic  '■ B ( C ) —> 
B (G )  the map of classifying spaces induced by the inclusion C  C G. Then L  is 
defined to be the mapping cone of ic- W e w il w rite j  for the inclusion B (G )  —> L.

So L  is built by attaching the cone of B (C )  to B (G ) .  W e might reach our 
goal also by just attaching one 2-cell and one 3-cell.

P ro p o s itio n  26. The space L  is simply connected, and the map j  induces 
isomorphisms F [n (B (G ) ,  F )  —> H n (L ; F ).

Proof. B y  the van Kam pen theorem the effect of attaching a cone is quotienting 
out the normal subgroup generated by the image of the attaching map. In  
the present case the normal subgroup generated by T  is the whole of G. The 
second statement follows since H n (B (C ) ;  F )  is triv ia l for n > 0, because the 
characteristic of F  is prime to the order of C. □

Now we consider the following map of fibrations

F ( 7 ) ---- > B ( X ) ^ U b (G ) (63)

J  i j

F  (j'y ) — B ( X )  —^ — s* L

P ro p o s itio n  27. The map J :  H n(F(j~/); F )  —>• H n( F ( 7 ) ; F )  is an isomor­
phism.

Proof. W e cite the Zeeman spectral sequence comparison theorem, a version of 
which can be found as proposition 1.12 from [17]: Suppose we have a map of 
fibrations, and both fibrations satisfy the hypothesis of triv ia l action for the 
Serre spectral sequence. Then if two of the three maps induce isomorphisms on 
i?-homology w ith R  a principal ideal domain, so does the third.
In  our case the fundamental group G  of B  (G ) acts triv ia lly  on the cohomology of 
F ( 7 ) since it acts triv ia lly  on the cohomology of the equivalent space B ( G ; X ) .  
The fundamental group of L  acts triv ia lly  on the cohomology of F ( j 7 ) since it 
is trivia l. □

4.3 The second key fibration.
The problem of computing the cohomology of B ( X ; X )  is now reduced to that 
of computing the cohomology of F ( j 7 ). To do that we change £ into a fibration 

This yields a fibration sequence

F ( e ) ^ ^ F ( n ) ^ B ( X )  (64)

P ro p o s itio n  28. Let be given a fibration sequence

F  — E  — B  (65)
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and change j  into a fibration j '  : F '  —> B , giving a fibration sequence

G  — F '  — E  (66)

then G  is homotopy equivalent to the loop space Q B , and the action of tti( E )  
on H n{G ) factorizes over the action of 7T i(S )  on H n (C lB).

Proof. In  general the action of ( E )  on H n (G ) is induced by a pairing i l ( E )  x 
G  —> G  which in turns is the restriction of a Hurewicz connection. If  ƒ  is 
coming from a fibration as indicated then such a Hurewicz connection can be 
explicitly constructed from p, and the resulting pairing can be seen to factorize 
over Q (B ). □

Since the fundamental group of L  is triv ia l this means that in the fibration 
sequence (64) the fundamental group of the base acts triv ia lly  on the cohomology 
of the fibre, so that we can set up a Serre spectral sequence. The cohomology 
of the fibre is the cohomology of i l ( L )  which we regard as known. Now consider 
the following well known theorem.

P ro p o s itio n  29. (Leray-Hirsch). Let be given a fibration sequence

G  — ^  F> E  (67)

with 7Ti( E )  acting trivially on the H n {G , F ).  Suppose that we can find elements 
Xi (E H n i(F ',  F )  such that the k*(x i) form an F -basis of H * (G , F ).  Then the 
elements x* form a basis of F )  as a module over the cohomology algebra
of H * (E ;  F ),  using j ' .

R e m a rk  14. Suppose that this theorem is applicable to the fibration sequence 
64 then we have

d im F [n+1 (B (X ) ',  F )  = dim H n ( B ( X ; X ) ;  F )  = dim H n (F ',  F )

= V d i m F fc(G ; F )  - d im i in- fc( B ( X ) ; F )
k (68)

= ^ d i m H k(Q ,(L )]¥ ) ■ d\m H n- k( B ( X ) ] ¥ )
k

Thus we can compute the betti numbers of B ( X )  from the known betti numbers 
of i l ( L ) .  Even  better: a basis of the cohomology of B ( X ; X )  is given by the 
expressions

xkl U P (x fc2 U P (x fc3 .. . (69)

where P : F [n ( B ( X ; X ) ;  F )  —> F [n+1 ( B ( X ; X ) ;  F )  is as in remark 2.
In  any case we find a recursion formula for the betti numbers which for X  = R p 
is a version of the recursion formula conjectured in [26]. The remainder of this 
section is devoted to the proof that we are indeed in situation of the theorem, 
at least for the case of the dihedral quandle R p.
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R e m a rk  15. From  now on we shorten notation by w riting the sequences 62 
and 64 as

Q L  > M  — ^  B X  and M  — ^  B X  7 > L  (70)

where M  stands for B ( G ; X )  or B ( X ; X ) .  So these are fibration sequences up 
to homology equivalence.

4.4 Reverse transgression.
Let be given a fibration sequence

F  — —>■ E  — B  (71)

w ith F  the fibre over bo G B .  Suppose that p* is triv ia l in positive dimension. 
Then consider the following diagram

H n(B ;b 0; F )  — +  H n( B ; F )  (72)
a*

H n~ 1 (F-,F) — ^ - H n ( E , F ; F ) ----> H n(E ;  F )

The diagram shows that for an element £ G F [n ( B ; F )  there is an element 
S  G H n~ 1 {F\ F )  such that SE  = p*(g*)~1£,. The fact that SE  is in the image 
of p* shows that S  is transgressive, and the transgression maps S  to £ modulo 
indeterminacy. It  is well known (see page 54 of [17]) that the transgression 
coincides w ith the edge homomorphism dn : —> E™ ’°  in the Serre spectral
sequence of the fibration. There are two situations in which this observation is 
relevant. The first case is a path fibration, where E  is contractible. The second 
case is the one where p is 7 : B ( X )  —> L.

4.5 The cohom ology of L and QL in the dihedral case.
In  this subsection we consider the dihedral quandle R p. In  this case the group 
G  = In n (R p ) is the dihedral group D p.

P ro p o s itio n  30. The cohomology of B (D p) is generated, by an element a  of 
degree 3 and an element ¡3 of degree 4, with a  U a  = 0 as the only relation.

Proof. The cohomology H * (B (C P ); F )  is better known: it has a generator 0 of 
degree 1 and a generator rj = A (9) of degree 2. Here A  denotes the Bockstein 
operator. The covering B (C P) —> B ( D P) has one nontrivial covering transfor­
m ation which corresponds to inversion in Cp. So it maps 0 to —0 and therefore 
rj to —rj. Now we use proposition 22 for this double covering. The algebra 
of invariants under the covering transform ation are generated by a  = 6rj and 
¡3 =  rj2. □
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P ro p o s itio n  31. The cohomology o fQ L  has a basis consisting elements A kB e G 
H 2k+3e(Q L; F ) ; where k > 0 and e G {0 ,1 }. Here B 2 = 0; and the Au constitute 
a system of divided powers: A k A m = ( fĉ m)Afc+m.

R e m a rk  16. W e can construct A\ by the reverse transgression argument from 
a, and B  sim ilarly from (3. However we w ill not use this argument since we then 
still need to construct A p.

Proof. W e use the Serre spectral sequence for the path fibration of L , w ith 
coefficients in F . Thus

E s/  = H S( L ; H ^ Q L ; F ) )  = H \ L ; F )  ®  H ^ Q L ; F )

E ° J  = 0 if (S, i ) ^ ( 0 , 0 )

In  particular we identify E 2 °  w ith H S(L ; F )  and E 2’f' w ith H 1 {VlL\ F ). W e claim  
that this spectral sequence has the following structure:

• The cohomology of i l L  is as stated.

• d2Aj. = 0 and d2B  = 0.

• d3Ak = A j.- ia  and d3B  = 0 .

• d4B  = ¡3.

• dr = 0 for r  > 4.

In  other words

• E 2 and E 3 have a basis of monomials o J /3mA k B e G £^m+3/,2fc+3e 
k ,m  > 0 and e, ƒ  G {0 ,1 }.

• E i  has a basis of monomials (3mB e G E f 71’̂ .

• E r has basis 1 G E® ’°  for r  > 5.

W e use induction. The induction hypothesis H (n )  says that E p f is as stated 
for t + r  — 2 < n.

• n = 1.
Suppose that E g’1 contained an element £. Then it would survive to E% 
since d2£ G E 2’ = 0 . And it would survive to Eoo since the higher dr 
point to some E p l w ith t < 0. Thus H 1 (Q L ) = 0.

•  n =  2.
The element a  G E 2’°  is not hit by d2 because E ^'1 = 0 since H l (L )  = 0. 
Suppose that it is not hit by (¿3, and survives to E 4. Then it survives to 
Eoo since the higher dr originate from some E^ }t w ith s < 0. Therefore 
there must be some A\ G E g’2 C E 2 ’2 = H 2 (Q L ) such that d3A\ = a. If  
E 2 ’2 contained some £ independent from A i then £ would survive to Eoo-
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• n = 3.
The element [3 G E 2 °  is not hit by d3 or d4 since i î 1(L )  = 0 = H 2 (L ). 
If  it were not h it by d4 it would survive to E 0Q. Therefore there must be 
some B  G E ^ ’3 C E ^'3 = H 3 (ÇIL) such that d4B  = ¡3. If  E ^'3 contained 
anything more it would survive to E ^ .

• n = 2k > 4.
Consider the element aA u - i G E 3’2^ 2 ■

— d2 (a A j.- i) = 0 since d2a  = 0 and d2 (A j.-1) = 0 .
— d3 (a A k- 1) = a 2A k- 2 = 0.

— d4 (a A k- 1) is in E 74 2k~ 5 which vanishes since by induction hypothesis 
E ‘l ' l for t < n — 3 can only live if (s ,t)  is of the form (4m, 3).

— If  r  > 5 then dr (aA j.- 1) is in E 3+r,2k-r+i vanishes since by 
induction hypothesis for t < n + 1 — r  can only live if (s,t)  = 
(0 , 0 ).

If  aA j. - 1 is not hit by d3 it survives to Eoo since the higher dr originate 
from some w ith s < 0. Therefore there must be some Aj. G E^ ’2k C 
E ^ 2k such that d3A/. = aA ^ - 1. Again if E 2 ,2k contained some £ indepen­
dent from Ak then it would survive1 to E ^ .  This determines and 
thus all E p l w ith t < n + r  — 2, and it is easily checked that these behave 
as stated.

• n = 2k + 1 > 5.
Consider the element A ^ - iB  G E ^’2^ 1 ■ W e have d2 (A j ,_ iB )  = 0 since 
d2Ak-\ = 0 and d2B  = 0. Moreover d3 (A f .- iB ) = a A j._2B  ^  0, which 
shows that A k- \ B  ^  0 .
Suppose that also £ G E 2 ,2 k + 1 . Then d2Ç = 0 and we may assume that 
d3Ç = 0. Moreover d4Ç is in £ ^ ’2fc~ 2 which vanishes since by induction 
hypothesis E ^ ’1 for t < n  — 3 can only live if (s,t) is of the form (4m, 3). 
S im ilarly dr £ = 0 for r  > 5, so £ survives to E 0Q. Thus we see that A k- \B  
is a basis for E ^'2^ 1 ■

F in a lly  we have to prove the divided power structure. B y  induction one has

^ ( ^ - f c ^ - m )  ^ 3 (^ - fc )^ -m  ^ - f c ^ 3 ( ^ - m )  ^ A ^ — lA m -\- AkOiAm—\
^k — 1 + m\ fk  -\- m — 1\ .

k - 1  k Mfc+m-l (74)

k + m \ fk  + mA
^ \Ak+m- 1 = I ^ )d3Ak+r

and since d3 is injective on ¿;°>2fc+2m proves the statement. □

-'-Note d4S. € E^’2k 3 can not be f3B € E ^’3 since d4({3B) = /32 ^ 0.
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4.6 The cohom ology of M  in the dihedral case.
7T 1Now we consider the spectral sequence of M ----> B X ----^ L  • F irst a gen­

eral remark about Serre spectral sequences.

R em ark  17. Let X  — °- ^ Y  — — Z  be a fibration sequence, w ith 7Ti (Z ) 
acting triv ia lly  on the cohomology of X . Then there is a filtration

H n ( Y ; F )  = F ^ D F l i D - - - D F ^ D (0 )  (75)

such that the associated Serre spectral sequence { E a,t}  has

E a0?  = F ? / F ? + 1  and E a/ = H a (Z ; (X ;  F ) )  (76)

See [17] theorem 1.14. The map j * : H n{Y\ F )  —> H n (X \ F )  can be identified 
w ith the composition F q —> F q / F "  = E —> E 2’" . Now suppose that j*  is 
injective. Then f 1"  = 0 for s > 0. In  particular E ^  = 0 for s > 0. This 
situation is almost as nice as in the case of a contractible total space in the 
sense that few classes survive to Eoo. In  this situation F q can be identified w ith 
E^g1 and thus j*  can be identified w ith the inclusion E^g1 —> E^ ’11.

R em ark  18. The situation in the above remark applies here since n* is in­
jective. As mentioned before we w rite P :  H n ( M ;F )  —> i i " +1( M ; F )  for the 
composition 7r*tp where tp is as in proposition 1. Thus the image of P  can be 
identified w ith the image of 7r*, so w ith E ^ ,  which consists of the classes which 
are in ker(dr ) for all r.

T h eo rem  1. The cohomology of M  has a basis consisting of elements A mB eP J x 
where m > 0 and e (E {0, 1 }; and where either j  > 0 and x  runs through a similar 
basis in smaller dimension, or j  = 0 and x  = 1 .

Proof. The claim  about the basis is inspired by remark 14. The proof is modeled 
on the proof of proposition 31. W e claim  that this spectral sequence has the 
following structure:

• The cohomology of M  is as stated.

• d2Ak = 0 and d2B  = 0.

• d3Ak = A j.- ia  and d3B  = 0 .

• d4B  = ¡3.

• dr = 0 for r  > 4.

• dr P  = 0 for all r.

In  other words

• E 2 and E 3 have a basis of elements oJ¡39A mB e x G p 43+3f,2m+3e+j+ \x\ 
w ith k, e, j , x as above and m > 0 and f  G { 0 , 1}.
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• E 4 has a basis of elements [39B eP ix  G p 4m’3e+ +̂\x\ _

• E r has basis of elements P J x G E ? ’j+lxl for r  > 5.

W e use induction. The induction hypothesis H (n )  says that E p l is as stated 
for t + r  — 2 < n.

• n = 1.
W ith  1 G H ° ( M )  corresponds ip (l) G H l ( B X )  = E ^ 1 and thus P ( l )  €
En ’1. Suppose that E o’1 contained an independent element £. Then it

2 0would survive to E s  since d2£ G E 2’ = 0 . And it would survive to Eoo 
since the higher dr point to some E a,t w ith t < 0. This would give a 
E 1̂ 1 = H 1 ( B X )  and thus a H ° ( M )  which is too large. W e conclude that 
H 1 {M )  is generated by P ( l ) .

•  n =  2.
The element a  G E 3,0 is not hit by d2 because E 2jl = 0 since H l (L )  = 0. 
Suppose that it is not hit by ds, and survives to E 4. Then it survives to 
Eoo since the higher dr originate from some E p l w ith s < 0. Therefore 
there must be some A\ G E g’2 C E ^ ’2 = H 2 (M )  such that d3A\ = a. 
Secondly P ( l )  € H l (M )  corresponds to ip P ( l )  G H 2 ( B X )  = E ^ 2 and 
thus P 2( l )  £ E ^ ’2■ If  E 2 ’2 contained some £ independent from A\ then 
£ would survive to Eoo■ This would give a E ^¿2 = H 2 ( B X ) and thus a 
H 1 (M )  which is too large. W e conclude that H 2 ( M ) is generated by A\ 
and P 2( l ) .

• n = 3. Pa rt 1.
The element ¡3 G E 2 ’0 is not hit by d3 or d4 since i i 1(L ) = 0 = H 2 (L ). 
If  it were not hit by d4 it would survive to Eoo■ Therefore there must be 
some B  G E ^ ’3 C E 2 ’3 = H 3 (M )  such that d4B  = ¡3. Secondly A i P ( l )  
is in E 3,0- Moreover A\ and P 2( l )  in H 2 (M )  give rise to P (A \ )  and 
P 3( l )  in E 2 ’3■ B y  applying d3 and d4 one sees that these 4 elements are 
independent.

• n = 3. Pa rt 2.
Suppose z G E 3,0.

— d,2Z = 0.

— d3z is in S 3’1 and thus a m ultiple of a P (  1) = d s ,(A P (l))  so by 
susbstracting A P (  1) from z if necessary we m ay assume d3z = 0

— d4z is in E ^ ’°  and thus a m ultiple of ¡3 = d4B  so by substracting B  
from z if necessary we may assume that d4z = —0 .

— dr z = 0 for r  > 5.

Thus z survives to Eoo and therefore is in the image of P , consisting of 
P (A \ )  and P 3( 1). W e conclude that { B ,  A i P ( l ) ,  P (A \ ) ,  P 3( l ) }  is a basis 
of H S(M ).  Note that B 2 = 0  for degree reasons.
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• n > 4. Pa rt 1.
Consider an element y = a A m- i B eP^x G E 2’n~2, w ith to > 1. W e 
assume that either j  > 0 or that j  = 0 and x = I.

— y can not be h it by d2 since E \ ’* = 0 for any t.
— d2y = 0 since it is in E ^ ’n ^ 3 and E vanishes for t < n — 1.
— W e suppose for the moment that y is not h it by d3.
~ d3y = 0 since it is in i?g ’" ~ 4 since E g’4 vanishes for all t because E ^  

does.
— y can not be hit by any dr w ith r  > 3 since it would originate in E p l 

w ith s = 3 — r  < 0.
— d4y = 0 since it is in E 7A’n ~ 5 and E ^'1 vanishes for t < n — 3 unless 

s = 0 mod 4.
— dr y = 0 for r  > 5 since it is in E ^ + r ,n ~ r ~ 1 and E p l vanishes for 

t + r  — 2 < n — 1 for such r  unless s = 0 .

Thus y survives to Eco which is a contradiction unless it is h it by d3. 
Indeed if 2(to — 1) < n then A m has been introduced before this stage, 
and y is the image of A mB eP^x which proves that these elements are 
independent. On the other hand if 2(to — 1) = n and thus e = j  = 0 and 
x = 1 this says there must exist some A m G E^ ’n C = H n(M )  such 
that d3A m — A m—\.

• n > 4. Pa rt 2.
Consider an element y = (HP^x G E 4’n~3, again w ith x = 1 if j  = 0. Then 
dry = 0 for all r  since dr f3 = 0 and drP 31 = 0 for all r. It  can not be h it by 
dr for r  ^  4 since E p l vanishes for s < 2s ^  0 for all r. Therefore it must 
be h it by d4 and indeed it is the image under d4 of B P ^ x  which proves 
that these elements are independent of each other and of the elements 
constructed in Pa rt 1.

• n > 4. Pa rt 3.
F in a lly  E ^’11 must contain E^g1 which is the image of E 2 ’n ~ 1 under P .  
Applying the induction hypothesis to E 2 ’n ~ 1 yields that this image has a 
basis consisting of the (x ).

• n > 4. Pa rt 4.
W e have shown that E ^ ’11 contains at least as many independent elements 
as stated. W e must show that it does not contain anything more. Thus 
let z G E ° ' n .

— d2z = 0 since it is in E \'n and E ^’1 vanishes for all t.
— d3z is in i?g ’" ~ 2 which by induction hypothesis has a basis consisting 

of elements a A k B eP ix .  Bu t these elements are the image under d3 
of A k + iB eP ix .  So by substracting appropriate elements from z we 
may assume that d3z = 0 .
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— d4z is in E 4 ’n ~ 3 which by induction hypothesis has a basis consisting 
of elements (HBeP^x. The elements w ith e = 1 cannot occur because 
they are mapped by d4 to independent elements ¡32P^x. The elements 
w ith e = 0 are the image under d4 of BP^ x . So by substracting 
appropriate elements from z we may assume that d4z = 0.

— dr z is in E rr ’n ~ r + 1  which vanishes by induction hypothesis for r  > 5.

This means that z survives to Eoo and therefore is in the image of P , and 
thus is a combination of the listed basis elements.

E ve ry  time that we have found a basis of E ^’11 for some n this proves that E ^  
has the required structure for t < n and from this it follows easily that E p l has 
the required structure for t < n + 2 — r. □

R em ark  19. From  now one we w rite A  for A i. The element Au is only defined 
up to an element of ker(d3), so up to an element of the form B ePx . For this 
reason we can not prove at this point than they form a system of divided powers. 
However at least for k < p one can force it to be the case by taking A/. =

R em ark  20. There is a com mutative diagram of fibration sequences

Q L ----5» p l ---- 5» l  (77)

M ---- s» B X ----s» L

and this leads to a map of the Serre spectral sequences by natura lity of the 
spectral sequence construction. The image under c j* of the elements A m in 
H 2m(M ) satisfy the same recursive relation d3A m = a A m- 1 as the elements 
of the same name in H 2m(ilL ) .  This implies that A m maps under c j* to the 
element of the same name. In  particular c j* is surjective. Thus proposition 29 
is indeed applicable.

5 T he product structure.

5.1 Choosing the right A.
From  theorem 1 its is clear that A  is only defined up to a m ultiple of P 2( 1). 

R em ark  21. There are two ways to measure the contribution of P 2( 1).

• There is A i such that D A  = A i P l .

• There is such that ¡iA  = A  eg) 1 + A2P 1  <8> P I  + 1 <8> A.

If  we add v P 21 to A  then both A* change by v.

Bo th  ways amount to the same:
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P r o p o s it io n  32 . A2 =  A ( y ; y , y ) =  A i.

Proof. As noted in remark 4 the generator i x  of H q ( X ;X )  can be represented 
by (y; ) for any y £ X . Now 2D i x  is represented by 2 (y; y) in Ft \ (X ]X )  and by
( l;y) + (v(y);y) in 11,(0-X ) .  From  (P(1)) (Dlx )) = (D P (1 ))(lx ) = l ( ^ )  = 1 
one sees that D i x  generates H \ ( X \ X ) .  Now

2A2 =  2(p>A)(Dlx g> D i x )  =  2A(p (D lx  g> D ix ) )
= A(n((y \y)  g> ((1; y) + (77(2/); y))) = 2A(y; y, y) (78) 

A i = (D A ) (D ix )  = A ( D 2lx ) = A(y; y, y)

□
W e now choose A  in such a way that the A* vanish. So D A  = 0 and A  is 

prim itive, and A(y; y, y) = 0 for all y £ X . This has a nice consequence:

P r o p o s it io n  33. I f  A  is chosen as above then t[A £ H ^ ( X )  is in the image of 
H q ( X ) .  Thus tpA must be equivalent to the class of [24].

Proof. From  d(y; a ,y ,y )  = (y;y,y)  — (y * a;y,y)  and the fact that X  = R p is 
connected on sees that (zyyyy) is homologous to (y;y,y)  for all y ,z .
Since the cohomology class of D A  vanishes there exists a cochain F  such that 
d*F = DA.  Now let G(y, z) = F(y)  and A  = A  + d*G then

(dG)(y; y, z) = G(d(y; y; z)) = G((y; y) -  ( y * z ; y *  z))
= F(y) -  F(y  * z) = F(d(y; z)) = (dF)(y, z) (79)
= (DA)(y \z )  = —A(y; y, z)

Therefore A'(y; y, z) = A(y; y, z) + (dG)(y; y, z) = 0. □

5.2 C hoosing th e  right B.
In  this paper we w ill use the notation A  for the Bockstein homomorphism 
H n+ i(C ;F ) —> H n (C; F), which is defined for any chain complex C  of free 
abelian groups, and is natural for chain maps.

R em ark  22 . If  we identify Hn (C <g> C'; F) w ith Hk(C; F) (g> H m ( C F) then 
A  corresponds w ith A  (g) 1 + ( —l ) fcl  eg) A .
In  line w ith our convention in 1.5 we w rite also A  for the dual map, which differs 
from the Bockstein homomorphism H n (C; F) —> H n+1(C; F) by a sign. If  we 
identify H n (C <g> C ' \ F) w ith J2 U k(C; F) (g> H m ( C F) then A  corresponds w ith
1 <g> A  + ( - l ) mA  (g> 1.

The Bockstein homomorphism anticommutes w ith the boundary operator 
in the long exact sequence associated to an exact sequence of chain complexes. 
Therefore it anticommutes w ith transgression. Since A  £ H 2(M; F) transgresses 
to a £ H S(BG; F), its image A  A  transgresses to —A a  = ¡3. This shows that 
A  A  is a suitable choice for B.
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P r o p o s it io n  34 . We have n*(B) = B(E>l + l(g>B.

Proof. W riting  p\ M  x M  —>• M  for the projection on the first factor we have 
A(A(g> 1) = A p* A  = p*AA = p*B = B  i.g> 1 and sim ilarly A (1  <g> A) = 1 <g> B,  so 
H*(B) = A) = An*(A)  = A(A<g> l  + l<g>A) = B<g>l + l<g>B. □

R em ark  23 . Another argument for the p rim itiv ity  of B  could go along the 
following lines. The m ultipication map ¡j, provides a map of fibrations from the 
fibration M  x M  —> B ( X )  x M  —> B(G)  to the fibration M  —> B ( X )  —> B(G).  
B y  naturality of the Serre spectral sequence this provides a map of spectral 
sequences. From  this one sees that ¡i*B can not have a contribution A  eg) P I .  
Thus the most general expression for ¡jl*B is

H*B = B  <g> 1 + A3P 21 <g> P I  + A4P 1  <g> P 21 + A5P I  <g> A  + 1 <g> B  (80)

Moreover from the associativity of ¡j, one can deduce that A3 = A4. If  we add 
1̂ 2 P 31 + v3P A  to B  the effect is adding v2 to A3 and A4 and adding v3 to A5. 
Thus we can force all Aj to vanish.

P r o p o s it io n  35. I f  B  is chosen as above then tpB G H R(X)  is in the image of 
H ^ X ) .

Proof. This follows from proposition 33, the fact B  = A  A, and the fact that 
that the diagram

Hh(X)

H aq {X)

■H3r (X)

A

^ m x )

H 2R ( X ; X )

A

H 3r ( X ; X )

(81)

is com mutative because the tp and the canonical map from the rack complex to 
the quandle complex are both chain maps. □

5.3 T he system  o f d ivided  pow ers.

For the next proposition we note that d2 vanishes and thus d3 is defined on 
every x  G H n (B(G ; X)) .

P r o p o s it io n  36. I f  d3x  = 0 and /xx = x <g>l + l(g>x then x = 0 for n  > 4.

Proof. B y  the proof of theorem 1 the elements x G H n ( M ) in the kernel of d3 
are precisely the elements of the form x = P y  + B P z  w ith y G H n~ 1(M)  and
2 G i i " _ 4(M ). W e can write

p y y (g )l+ l(g )i/  + a,i®bi, yU,z = z (g )l + l(g )z  + Uj (g> Vj (82)
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for certain elements cn,bi,Uj,Vj of positive dimension. Now we have

¡jL X  —  X  g) 1 —  1 g) X

= P I  g> y -  P I  g> B z  + B  g> P z  + B P  1 g> z + ( - l ) n_1P z  g> B  (83) 

+  ' ^ j P u i  g> Wj +  B P u j  g> Vj +  y ^ (  — l ) fc,+1P M j g> Bvj

where kj is the dimension of Vj.
In  particular the only contribution of the form B  g> ... is B  eg) Pz.  Thus if 

fix — x g> 1 — 1 g> x = 0 then P z  = 0. B u t now the only contribution of the form 
P I  g) ...  is P I  g> y. Thus \ï ¡jlx — x g> 1 — 1 g> x = 0 then y = 0. □

P r o p o s it io n  37. I f  x  is a cohomology class of positive dimension then xv = 0.

Proof. If  x  has odd dimension then x 2 = 0, so we m ay assume that x  has even 
dimension n. W e can write

fix = x  g ) l  + l g ) x  + Ui g> Vi (84)
i

for some elements Ui,Vi of positive dimensions smaller than n. Since n  is even 
all terms in the above sum commute and we have

jj,(xp) = (jj,x)p = xp (g)l + l(g>xp + ^ 3 (w i g> Vi)p (85)
i

B y  induction hypothesis we have up = 0 and vf  = 0. Thus we conclude that 
¡jl ( x p )  = x p g> 1 + 1 g> x p. Moreover d3x  is defined and d3 is a derivation so 
d3(xp) = pxp~ 1d3x = 0. Therefore x p satisfies the hypothesis of proposition 36 
and so vanishes. □

R em ark  24 . One can easily deduce using induction from the Rota-Baxter 
formula in remark 8 that

(.Px)n = nP ( ( P x )n- l x) (86)

for every x  of odd degree. In  particular (P x ) p = 0 for all x , in line w ith the 
above proposition.

T h eo rem  2. The generators A m can be chosen in such a way that they form 
a system of divided powers.

Proof. W e use induction. The induction hypothesis H(e) claims that the A m 
are defined for m  < p e in such a way that d3A m = a.Am- \  for rri < p e and such 
that

( (mi+m2)Am-l+m2 if TOI + TO2 < p CA miA m2 = { \  - i ’ mi+m2 2 (87)
I U if to i + m 2 > p

For e = 1 this accomplished by choosing A m = - ^ ( A ) m .
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For the induction step the proof of theorem 1 shows that there can be chosen 
some A pe such that d3A p  ̂ = Ap*-i .  Now we define

(88)

for 1 < q < p and 0 < r  < p e. Note that the numerical factor is the inverse 
of an integer which is nonzero modulo p. It  can easily be checked that A m so

R e m a rk  25. As far as the cup product structure is concerned this only means 
that the algebra generated by the A m is a polynom ial algebra generated by the 
A pC w ith as only relations (Ape)p = 0. However we w ill see in the next section

6 The coproduct structure.

6.1 F ix ing  generators for Hn(M;  F) for sm all n.
W e fix the following notations:

• W e w rite r  for the element D i x  £ H i ( M ;F )  which satisfies ( P l , r )  = 1.

• Let s £ H 2 (M; F )  be the element such that (A , s) = 1 and ( P 21, s) = 0.

• Let t £ Hs (M ;F )  be the element such that (B , t )  = 1, ( A P l , t )  = 0, 
(.P A , t ) = 0 and (P 3 l , t ) = 0.

From  this follows that A t = s.

P ro p o s itio n  38. One has  /x(s (git) = /x(t g> s ).

Proof. W e must check that s g> t  — t  g> s vanishes on ¡ix when x  runs through 
the basis elements of i i 5(M ;F ) ,  which are A P A ,  A P 21, B P 21, A 2P I ,  AB,  
P A P 21, P B P 1, P A 2 , P 2A P 1 , P 2B , P 3A  and P 51 according to theorem 1. 
Here we can assume A 2 to be \ A 2.

One can evaluate ¡jlx from the formulas for ¡j,B and ¡jloP . For example

= A P A  g) 1 + A P I  (g)A + A(g>PA + PA(g>A + Pl(g> 2 A 2 + 1 ®  A P A

W h at we must check is that in each case the contribution of B  g> A  is the same as 
the contribution of A  g> B.  In  fact only ¡i(AB)  contains any of these terms. □

P ro p o s itio n  39. I f  p > 3 then t 2 = 0.

defined satisfy H ( e +  1). □

that also for the coproduct ¡j it is worthwile to think secretly of A m as ^ j A m .

ju(APA) = /li(A)/li(PA)
= (A g) 1 + 1 g> A)( (P  g> 1 )((A  g ) l  + lg )A )  + lg> PA) (89)
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Proof. W e must check that t <g> t  vanishes on f i x  when x  runs through the 
basis elements of H 6 (M] F), which are A P A P 1 ,  A P B , A P 2A , A P 4 1, B P  A,  
B P 3 1, A 2P 2 1, A B P 1, A 3, P A P A , P A P 2 1, P B P 2 1, P A 2P1,  P A B , P 2A P 2 1, 
P 2BP1,  P 2A 2, P 3 AP1,  P 3 B, P aA  and P 61. However only for p > 3 can we 
assume assume A 3 to be gA 3. W hat we must check is that in each case the 
contribution of B  eg) B  vanishes. This is easily checked in all cases for p > 3. For 
p = 3 we do not know f iA3. □

From  r, s ,t we can thus form expressions sm ite ir j l sm2te2r j2 . ..  w ith s*,rj G 
{1 ,2 , . . . }  and e* G {0 ,1 }. W e w ill show that these are in fact a basis for the 
homology by evaluating them on our cohomology basis.

6.2 A  partial order on m onom ials.

W e want to describe a partial order on the cohomology basis x* and on the 
homology monomials aj w ith the property that the m atrix formed by the values 
(xi, aj) is a triangular m atrix.

W e define a node N  to be a finite sequence consisting of the symbols R , S , T .  
There is an obvious notion of concatenation of nodes.

• The replacement of a node Ni(S ,  R ) N 2 by the node Ni(R ,  S ) N 2 is called 
an elem entary reduction.

• Likewise the replacement of a node Ni(T,  R ) N 2 by the node N i ( R , T ) N 2 

is called an elem entary reduction.

• The replacement of a node Ni(S,  T ) N 2 by a the node Ni(T,  S ) N 2 is called 
an elem entary equivalence. S im ilarly for the inverse operation.

W e w rite N  > N '  if  we can get from N  to N '  by a sequence of elementary 
reductions and elem entary equivalences. W e w rite N  ~  N '  if we can get from 
N  to N '  by a sequence of elem entary equivalences.

To any node N  we associate its S'-value v s ( N )  by counting how may times a 
symbol S  is on the left of a symbol R.  The T-value v t (N)  is defined sim ilarly. 
Obviously for each elem entary reduction one of the two values decreases and the 
other stays the same, and for each elem entary equivalence both stay the same. 
Thus if N  > N '  and N '  > N  then N  ~  N ' . C learly we get in this way a partial 
order on the set of equivalence classes under

Note also that two nodes can only be comparable if they contain the same 
amount of R , of S  and of T.  From  this partia lly  ordered set we elim inate all 
classes represented by a node of the form N \ ( T , T ) N 2. Furtherm ore we call a 
node pure if  it contains only the symbol S .

To each node class N  we associate a cohomology basis element xjy and a 
homology element ajv as follows. If  N  is em pty then xjy = 1 and = 1. 
If  N  = (S)m (T)e(R .yK  then x n  = A mB eP ^x k  and a^r = smt er^aK- Thus 
to a pure node corresponds some A m in cohomology and some power of s in 
homology.
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P ro p o s itio n  40. Suppose that ¡j,A m = ^2j= 0 A J g) A m - j  for 2 m  < n, and that 
N  is not pure. Then {xn, ax )  ^  0 for classes of dimension n  implies N  > K . 
Moreover (xjv^ajv) = 1 or — 1.

Proof. W e use induction on the size of N.  One can w rite N  = (S ')m(T )e(i? )JV  
w ith j  > 0 or w ith j  = 0 and V  empty. W e assume that j  > 0 since the other 
case is easy. Then x n  = A mB eP ^xy and therefore

^ n = ( Y ,  A k B f  ®  A <B 9 ]  h p j  ®  1W  + Y .  p U  1 ®
f c + £ = m  u - \-v = j   ̂ '
/+ s=e

W e consider three cases:

• Suppose that K  = (S1) ^  for some node W . Then a x  = saw = n(s(g>aw), 
so (xjv, ax )  = {/ Jijv, s eg) aw)- This means that we must look for terms of 
the form A(g> z in ¡jlxn ■
The term  w ith (P J eg) l ) n x v  can give no contribution. The sum over u 
can only give a contribution for ƒ  = 0 and u = 0 and k = 1, and in 
particular to > 1. The contributing term  is A \  g> A m_ iB eP J x y , which 
can be w ritten as A ®  xu,  where U = (S ')m_1(T )e(P ) JV .
The contribution is {A(g>xu, s(g>aw) = {xu,aw)-  B y  induction hypothesis 
this can only be nonvanishing if U > W . B u t then N  = (S)U > (S1) ^  = 
K  as desired.

• Suppose that K  = (T )W  for some node W . This case is com pletely 
analogous to the first one.

• Suppose that K  = (R ) W  for some node W . Then a x  = ra w  = n(r(g>aw), 
so (xjv, a x)  = {/ Jijv, r g) aw)- This means that we must look for terms of 
the form P I  g> z in ¡jlxn- There are two subcases.

— The term  w ith ( P J g> 1 )/ ixv can only give a contribution if j  = 1 and 
k = 0 and ƒ  = 0. O n ly the term  x y  g> 1 of ¡ixy can be involved. The 
contributing term  is Pl(g>AmB ex v , which can be w ritten as P lg ix y ,  
where U = (S)m (T)eV . The contribution is ( P I  g> xu,  r g> aw) = 
±(x[/, aw)- B y  induction hypothesis this can only be nonvanishing 
if U > W.  B u t then

N  = (S ) m (T)e(R)V  > (R )( S )m (T)eV  = (R)U > (R ) W  = K  

as desired.
— The sum over u can only give a contribution for ƒ  = 0 and u = 1 and 

k = 0. The contributing term  is P I  g> A mB eP :>~1x v , which can be 
w ritten as P lg ix y ,  where U = (S)m (T)e( R y ^ i V . The contribution 
is {Pl(E>xu,r(g>aw) = ±(xu ,  aw)- B y  induction hypothesis this can 
only be nonvanishing if U > W .  B u t then

N  = (S ) m (T)e(R)j V  > (R )( S )m (T)eR j - l V  = (R)U > (R ) W  = K  

as desired.
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It  can easily be checked that (x n ,(i n ) is in fact ( —1)£(£ 1̂ 2, where £ is the 
number of occurences of R  or T  in N.  □

P r o p o s it io n  41 . Assume that the a x  form a basis of homology in dimension 
< d, and that ¡iAm = ^  • Aj  g> A m- j  for 2m  < d. For d = 2n also assume that 
sn ^  0. Then the a x  form a basis in homology in dimension d, and if  d = 2n 
we can find A n such that ¡j,An = E " = 0 Aj  g> An—j,

Proof. Suppose that there is a linear relation between the elements a x  asso­
ciated to impure nodes K .  Then by applying the elements xjy associated to 
impure nodes N  we see that all coefficients must vanish.

Now suppose that s " is a linear combination of elements ajy. Then again 
by applying the xjy associated to impure nodes N  we see that all coefficients 
vanish, and we get the contradiction s " = 0. Therefore s " and the a x  are 
independent, and since their number is equal to the number of basis elements 
x n  they are a basis of H 2n (M).

Now we define A n as the class which is 1 on s " and 0 on the a x  associated 
to impure nodes. Consider the expression

n — 1
(¡J>An ^   ̂A j  g> A n—j , ax  g) aB )

i =1 (91)
(An , a x a B) ^  ^ 7, t!i\) * {An—j 7aB)

3

B y  assumption A n vanishes on axL = a x a B if K L  is an impure node, which is 
the case unless K  and L  are both pure. On the other hand (Aj, ax )  vanishes 
unless K  = (<S')J and (A n- j , aB) vanishes unless L = (S)n~ i .

W e see that the above expression vanishes for all K  and L. Since the a x  and 
the a,L form a basis, this proves that ij,Au — Y^j=i A j ® A n- j  has no contribution 
other than in dimensions (0, 2n) and (2n, 0). Bu t the the contribution in these 
dimensions are obviously A n g> 1 and 1 g> A n . □

R em ark  26. Suppose we can prove that sn ^  0 in the critical degrees, which are 
the powers of p. Then the above proposition says that r, s, t  generate homology 
and that st = ts and t 2 = 0 are the only relations between them. Equ ivalently 
the A m satsify g) A m-k  for all m, which means that A m behaves
as if it were ^ j A m . In  the next subsection we w ill prove that indeed sp ^  0.

P r o p o s it io n  42 . A A n = A n-\F> i f  the ¡j,Am formula is satisfied for m  < n.

Proof. Let K  = (S)m (T)e( R y  L  w ith j  > 0. Then

a a , m P n \ f smr J Aa£  if e = 0A a K = A(s  t r3 aL) = I (92)
I s + rJa,L + smtr3 A a B if e = 1

Thus we see by induction that A  a x  is a sum of classes au associated to nodes 
U starting w ith (S)m (T)e ( i? ) J w ith ƒ  > j  > 0 . Such a node is incomparable
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w ith (S)n and thus evaluates to 0 on A„.  However if K  = (S )m (T)e then 
a x  = smt and

W e see that (A A n , a x )  = (A n , A a x ) is nonvanishing only if K  = (S)n 1 (T). 
Bu t the class x k  = A n- \ B  associated to K  = (£')n-1(T ) is characterized by

6.3 T he T hom as operation  and its use.
W e use the following notations:

• (f> is the map on cohomology induced by map Z/(p) —> Z / ( p 2) on coeffi­
cients given by m ultiplication by p.

• rj is the map on cohomology induced by map Z / (p 2) —> Z /(p) on coeffi­
cients given by projection.

• If  tp is a cohomology operation H n —> H m then atp is the composition 
H n~ l (X)  = H n (Y>X) —> H m (Y>X) = H m~ i (X)  using the suspension S .

• As before A : H n (X;Z/ (p ) )  —> H n+1 (X ;Z/ (p ) )  is the Bockstein operator 
associated to the coefficient sequence 0 —> Z /(p) —> Z / ( p 2) —> Z (/ (p ) —> 0.

• A :  H n ( X ; Z / (p2)) —> H n+1 (X ;Z/ (p ) )  is the Bockstein operator associ­
ated to the coefficient sequence 0 —» Z /(p ) —>• Z / ( p 3) —>• Z / ( p 2) —>• 0.

It  can easily be seen that A  o <f> = A . W e cite the following theorem from [4]:

P r o p o s it io n  43 . There exists a cohomology operation C : H 2n (X;Z / (p ) )  —>
H 2pn(X; Z / ( p 2)) with the following properties:

• r]C(u) = up and Crj(u) = up.

• a C  = 0.

Moreover these properties determine C  uniquely.

W e need the following additional fact about C:

P r o p o s it io n  44 . A C x =  xp~ 1Ax.

Proof. Consider the operation tp defined by ip(x) =  A  Cx — x p~ 1Ax .  Then 
atp = 0 since a C  = 0 and a  anticommutes w ith A  and since cup products in a 
suspension vanish.

The following argument is an adaptation of the proof in [4] proving the 
uniqueness of C. B y  the description in [5] of the algebra of cohomology opera­
tions any operation can be split uniquely as a sum of two parts:

(93)

this property. □

C(ui + u 2) = C(ui )  + C ( u 2) + </>fŷ  ~ U *)
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• The first part is a composition of Bockstein operations and Pontrjagin 
operations. On this part a is injective.

• The second part consists of operations which are decomposable, viewed as 
elements in the cohomology of an Eilenberg-M acLane space. On this part 
a vanishes since cup products in a suspension vanish.

From  this we see that tp is decomposable.
From  A  o <f> = A  and the fact that A  is a derivation one checks easily that

=  (mi +  U 2)p^ 1 A(w i  +  « 2) —  u p 1 A w i  +  «2 1^ w 2

This means that the operation tp is additive, which means that its is prim itive, 
viewed as an element in the cohomology of an Eilenberg-M acLane space; see 
theorem 5.8.3 in [30]. Thus tp is decomposable and prim itive and of odd degree. 
B y  proposition 4.23 of [23] this implies that tp vanishes. □

T h eo rem  3. Let q = p e, and assume that the ¡j,Am formula is satsified for 
to < pq = p e + 1 . Then spq ^  0.

Proof. Consider the following com mutative diagram:

H 2q(M; Z / (p )) (96)

c

H 2pq( M , Z / (p ) )  — ^  H 2pq(M; Z / (p 2)) H 2pq{M; Z /(p))

A

H 2pq+1 ( M ; Z / ( P))

Since rjC(Aq) = Ap = 0 we can choose some A € H 2pq(M ,Z /(p ))  such that 
4>A = C A q. W e have

A*4 = A  <t>A = A  C A q = AP - 'A A g  = A^~ 1A q- i B  = c A ^ B  (97)

where c = (q ifp-i(l-i)! is nonzero modulo p. Therefore

(A, spq) = (A, A (spq-H))  = (A A  spq-H )  = c ±  0 (98)

Thus A detects spq. □

This completes the proof that the algebra structure and coalgebra structure 
on the cohomology of M  are as stated.
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R e m a rk  27. In  the yet undecided case p = 3 this still proves that s3 com­
plements { s 2r 2, .. .  , r 6}  to a basis. Thus there is c 6 F  such that t 2 — cs3 is 
a combination of s2r 2, .. .  , r 6. B y  applying xjy w ith N  impure we see that all 
coefficient must vanish. So at least we have t 2 = cs3 for some c. Equ ivalently 
¡jA3 = A 3 g> 1 + A 2 g> A  + A  g> A 2 + 1 g> A 3 -  cB g> B.

If  t 2 = s3 the replacement of a node N i ( T , T ) N 2 by a node Ni(S ,  S, S ) N 2 

should be added as an elem entary equivalence. Then 2v$ + 3v t  decreases for 
an elem entary reduction and stays the same for an elem entary equivalence. So 
we still get a useful partial order.

7 Integral hom ology and cohom ology.
Let X  be any quandle, and choose a base point y £ X . Then this choice defines 
a map from the one point rack to X . On the other hand there is unique map 
from X  to the one point rack. Together these two maps split the rack complex of 
X  into the rack complex of the one point rack and a com plem antary summand. 
The homology of the first part is infinite cyclic in each dimension n, generated 
by r " .

Now we concentrate on the dihedral case X  = Rp. The homology of the 
com plementary part is generated by the monomials other than r " . W e w ill prove 
that the homology is p-torsion, by checking that the kernel of the Bockstein 
operator A  acting on this part equals the image of A . This settles one of the 
conjectures in [26].

G iven a chain complex C  the notation C\i\ stands for the shifted com­
plex given by C\i\j = Ci+j. Obviously Hj(C[i]) is canonically isomorphic to
H j i C M

Now let Z  denote the chain complex w ith basis the an  associated to nodes 
N  which are not of the form R n , w ith the Bockstein operator A  as boundary 
operator. Furtherm ore let Y  denote the subcomplex w ith basis the smt e.

P ro p o s itio n  45. The chain complex Y  is acyclic.

Proof. Obvious since A (smt) = sm + 1  for m > 0 and A sm = 0 for m > 1. □ 

P ro p o s itio n  46. The chain complex Z  is acyclic.

Proof. There is an isomorphism of chain complexes

a : y ®  0 ( y [ j ] g ) x )  (99)
j> o

which on Y  is the inclusion, and which on Y\j]  eg) Z  is given by

a(smt e g> a x)  = smt3 r3 o,k (100)
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as the following computations show:

A z a ( s mt g > c lk ) =  A z (smt r 3c lk )

= sm+1rj aK + ( - i y +1smtr j A z aK 

= a ( s m+1t g> aK +  (-1 )j+1smt g) A z aK )

= a ( A Y g) 1 + (-1)J(-1)'S *11 g) A z ) ( s mt  g) aK )

(101)

A z a ( s m g) aK ) = A z (sm rj aK ) = { - i y  smrj  A z aK 

=  a( s mt g> a x  + ( —1 y  smt g> A z cik) (102)

=  a ( A Y g) 1 + (-1)J (-1)'S 1 g) A z )(smt g> aK )

Therefore by the Kunneth theorem we have

H{Z)  = H { Y ) ® ( $ ( H { Y ) \ 3 ] ® H { Z ) )  (103)
j> o

and since H ( Y )  is trivia l, so is H(Z) .  □

8 Quandle hom ology and cohom ology.

8.1 C on stru ctin g  quandle cocycles.

W e w ill call an element x £ H n (X; X;  F) a quandle class iff ip(x) £ H n+1 (X; F) 
is a quandle class. Thus A  and B  are quandle classes. W e w rite H q ( X ; X ; F) 
for the subgroup of H n ( X , X ;  F) consisting of quandle classes.

P r o p o s it io n  47 . I f  F  and G are quandle classes then so is F  U G.

Proof. Let F  be represented by a cocycle ƒ  £ C k( X ; X ;  F) such that ip f van­
ishes on degenerate elements of B(X)fc+i, and let G be represented by a co­
cycle g £ C m ( X ; X ; £  F) such that tpg vanishes on degenerate elements of 
B (X )m+i. W e w ill show that ip(f U g) vanishes on any degenerate element x =
(xo, £l,  X2 , • • • , Xfc-̂ -Tn) by evaluating ƒ  U q oil y (xo ? 1 ? • • • ? *̂ k-\-m) •
B y  construction of the cup product we have

(fug)(y)  =  ( - 1  )kmY ,< A)- f(sA(y))-9(s1B (y)) ( 1 0 4 )

A

W e consider the ways in which x can be degenerate.

• Suppose that xq = x\ .

— If  1 £ B  then ,̂ 15°A(y)) is degenerate so ipf vanishes on it.

— I f  I  £ A  then tp^1SB (y)) is degenerate so tpg vanishes on it.

• Suppose that x* = X j+i for some i > 1.
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— If  {*, * + 1} C B  then tfj^1SA(y)) is degenerate so ipf  vanishes on it.
— If  {*, * + 1} C A  then tp^1SB (y)) is degenerate so tpg vanishes on it.
— Suppose that A  = U U {* } and B  = V  U {* + 1}. Then there is a 

companion term  associated to K  = £/U {*+ 1} and L = VU{i} .  Since 
5°Ay = ô ^ y  and S^y = Sj^y and e(K) = —e(A) their contributions 
cancel.

□
P r o p o s it io n  48 . I f  F  G H n ( X ; X ;  F) is a quandle class then so is QF.

Proof. If  for x  = (xi, . . . , x „ )  G X n one has Xj = xJ+ i for some j  then the 
same is true for c^x unless i = j  or * = j  + 1, but d®x and <9°+1 give opposite 
contributions to d°x. Thus d° maps the degeneracy subcomplex of C ^ ( X )  to 
itself. So if F  G H n+1 (X] F) is a quandle class then so is d°F  G Ftn+2 (X; F). 
The claim  follows since the operator Q on H n ( X ; X ; F )  corresponds under tp 
with the operator d° on H n+1(X; X]  F) by proposition 15. □

Now we concentrate again on the dihedral case.

P r o p o s it io n  49 . The multiplicative generators A pn can be chosen to be quandle 
classes.

Proof. W e use induction in n. W e know that A \  is a quandle class. Now assume 
that A pf is a quandle class for ƒ  < n, and therefore also their product A pni. 
Assume also that A A ps = A ps_±B for ƒ  < n. From  the last section we know 
that all torsion in rack cohomology is of order p. The same must be true of 
quandle cohomology since it is a direct summand of rack cohomology. Thus on 
H q ( X ; X ; F) the kernel of A  coincides w ith the image of A . In  particular we 
can choose a quandle class A  such that A*4 = A pn _1B .

In  order to show that A  is a valid choice for A pn we must check that it is 
not in the algebra generated by lower dimensional generators. So assume that 
A  is a linear combination of basis elements x n  associated to impure nodes N.  
Then A*4 = is a sum of terms Axat. However if N  = (S)m (T)e( R ) iK
w ith j  > 0 for some node K  then

A x  at = A  (AmB eP j x K ) = A m- i B e+1P 3x K + A mB eP j A x K (105)

which is a sum of basis elements each associated w ith a node w ith the same 
amount of R.  So these terms can give no contribution to A pn _ \B  wich itself is 
a basis element associated to (S)p _1T . The only other possibility N  = (S ) m (T ) 
has Axjv = 0 □

8.2 Independ en ce o f quandle cohom ology classes.
This is also about the dihedral case. W e call a node N  a Q-node if does not 
contain two consecutive symbols R  and does not end w ith an R.  To each Q-node 
class we associate a quandle cohomology class y ^  as follows. If  N  = (S )m (T)e
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then yN = x n  = A mB e. If  N  = (S ) m (T)e(R )K  then y x  = A mB eQ yK■ W e 
w ill show that these classes are linearly independent.

P ro p o s itio n  50. x a t U P ( I )  is a combination of elements x k  with K  > (R ) N . 

Proof. W e use induction on the size of N.

• It  is true for N  = (S )m (T)e since

x {s)m{T)‘ U - P (l) = A mB eP(  1) = x (s)m{T)‘{R) (106)

and (S )m (T)e(R ) > (R )( S )m (T)e.

• Suppose that it is true for N  and w rite ijv  U P ( l )  = J2k ck x k  w ith 
K  > (R ) N  and C f £ F  then

x S m ( T ) ‘ ( R ) N  U - P (l) = A mB eP(x]\[) U P ( l )

= A mB e( ± P 2 (xN ) + P ( x N U P ( l ) ) )  (107)

= ± x (S)™(T)e(R)2N + E  cK x {S)™{TY{R)K 
K

where (S ) m (T)e(R ) K  > (S )m (T)e(R)2N  > (R)(S)m (T)e( R ) N . There­
fore it is true for (S ) m (T)e( R ) N .

□
P ro p o s itio n  51. I f  N  is a Q-node then yn  — x n  is a combination of elements 
x k  with K  > N .

Proof. It  is triv ia lly  true for N  = (S)m (T)e. Suppose that it is true for N  and 
write yN = x n  + J2k  ck x k  w ith K  > N . B y  the preceding proposition we may 
write

% U P ( 1 ) =  ^ 2  cu x u
U > ( R ) N

XK ' J P ( 1 ) =  ^  cK,vxv 

V  > { R ) K

W ith  e = ( — 1)1^1 we now have

y(s)m(T)e(R)N = A mB eQ(yN ) = A mB e(P(yN ) + eyn U P ( l ) )

= A mB eP ( x N ) + A mB e ^ 2  ck P ( x k )
K

(108)

+ eAmB eXN U P ( l )  + eAmB e ^  ' x k  U P ( l )
K

x ( S ) m ( T ) e ( R ) N  +  c K x ( S ) ™ ( T Y ( R ) K  
K

+  E  e c u x ( s ) ™ ( T ) ° u  +  E  E  e c K , V x ( S )™( T ) e V

(109)
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where (S )m (T)eV  > (S ) m (T)e(R ) K  > (S ) m (T)e(R ) N  and also (S )m (T)eU > 
(.S)m (T)e( R ) N . Thus it is true for (S)m (T)e(R)N.  □

P r o p o s it io n  52. The quandle classes yw associated to Q-nodes N  are inde­
pendent.

Proof. Suppose that some nontrivial linear combination ^  c^ V n  vanishes. Then 
among the N  for which cjy ^  0 there is one which is m inim al for the partial 
order on nodes. B u t then it is the only term  of the sum which gives anontrivial 
contribution to xjy, a contradiction. □

Thus the rank of a quandle cohomology group is at least as large as the 
number of Q-nodes contributing to that dimension. W e w ill see shortly that we 
have in fact equality.

8.3 G enerating  quandle hom ology.

Suppose that we are in the situation of proposition 23. In  particular a base 
point y £ X  has been chosen. Then (y) is a cycle and defines an element p 
of H ^ ( X ;  F), independent of the choice of y. The map from H n (G;X;  F) to 
Hn+i ( X ;  F) which maps c to p(p eg) c) coincides w ith the composition

H n (G;X;  F) -► H n ( X ; X ;  F) -► Hn+1(X;  F) (110)

of the isomorphisms tp and x- I n other words H*(X;  F) is a free module over 
H  * (G;X;  F) w ith one generator p.

Now we specialize to the dihedral case. In  that case H*(G;X;  F) is the 
algebra generated by r, s and t. The above remark shows that we get all of 
quandle homology by letting this algebra act from the right on p. Moreover the 
fact that 2r  is represented by (1 ;y) + (rj(y)',y) implies the following:

• pr vanishes since 2pr is represented by (y ) ( ( l ;  y) + (rj(y); y)) = 2(y, y).

• If  0 is any rack homology class then Or2 vanishes in quandle homology. In  
fact 49r2 is a sum of terms ending in . . . ,  y, y).

To each node N  we associate an element of quandle homology as follows. If  
N  is em pty then bjy = p. If  N  = (S)m (T)e( R ) iK  then 5jv = bKrHesm . The 
remarks above prove that the bn  generate the quandle homology groups. They 
show also that any bn  vanishes unless N  is a Q-node.

Thus the rank of a quandle homology group is at most as large as the number 
of Q-nodes contributing to that dimension. However the rank of the homology 
group and the rank of the cohomology group are the same. Therefore the 
inequality in the last subsection and the one in this subsection must both be 
equalities. This proves the ‘delayed Fibonacci sequence’ conjecture in [26].

46



R eferences
[1] N. Andruskiewitsch, M . Grana, From  racks to pointed Hopf algebras, 

Advances in Mathem atics 178 No. 2 (2003) 177-243.
Also math.QA/0202.5084.

[2] J .  Armstrong, Categorifying Coloring Numbers, to appear in Contemp. 
M ath.
Also math.GT/0803.1642.

[3] E . Brieskorn, Autom orphic sets and braids and singularities, 45-115 in: 
Braids (Santa Cruz 1986), Contemp. M ath. Vol. 78, Amer. M ath. Soc., 
Providence, R I , 1988.

[4] W . Browder, E . Thomas, Axioms for the Pontryagin cohomology opera­
tions, Quart. J .  M ath. Oxford (2) 13, (1962), 55-60.

[5] H. Cartan, Sem inaire H. Cartan, 1954-1955.

[6] J .  S. Carter, D. Jelsovsky, S. Kam ada, L . Langford, M . Saito, Quandle co­
homology and state-sum invariants of knotted curves and surfaces, Trans. 
Am er. M ath. Soc. 355 No. 10 (2003), 3947-3989.
Also math.GT/9903135.

[7] J .  S. Carter, D. Jelsovsky, S. Kam ada, M . Saito, Computations of quandle 
cocycle invariants of knotted curves and surfaces, Advances in M ath. 157 
No. 1 (2001) 36-94.
Also math.GT/9906115.

[8] J .  S. Carter, S. Kam ada, M . Saito, Diagram m atic computations for quan- 
dles and cocycle knot invariants, in: Diagram m atic morphisms and appli­
cations, San Francisco, C A , 2000. Contemp. M ath. 318 (2003) 51-74.
Also math.GT/0102092.

[9] M . Eiserm ann, Quandle coverings and their Galois correspondence, 
http://www-fourier.ujf-grenoble.fr/~eiserm or math.GT/0612459.

[10] P. Etingof, M . Grana, On rack cohomology, J .  Pure Appl. Algebra, 177 
No. 1 (2003) 49-59. Also in math.QA/0201290.

[11] R . Fenn, C. Rourke, Racks and links in codimension two, J .  Knot Theory 
Ram ifications 1 No. 4 (1992), 343-406.
Also http://ww w.m aths.sussex.ac.uk/Staff/RAF/M aths/racks.ps.

[12] R . Fenn, C. Rourke, B . Sanderson, Trunks and classifying spaces, Appl. 
Categ. Structures 3 No. 4 (1995) 321-356.

[13] R . Fenn, C. Rourke, B . Sanderson, Jam es bundles and applications, Proc. 
London M ath. Soc. (3) 89, no. 1 (2004) 217-240.
Also http: //www.m aths.warw ick.ac.uk/~bjs
or http: //www.m aths.warw ick.ac.uk/'cpr/ftp/jam es.ps

47

http://arxiv.org/abs/math/9903135
http://arxiv.org/abs/math/9906115
http://arxiv.org/abs/math/0102092
http://www-fourier.ujf-grenoble.fr/~eiserm
http://arxiv.org/abs/math/0612459
http://arxiv.org/abs/math/0201290
http://www.maths.sussex.ac.uk/Staff/RAF/Maths/racks.ps
http://www.maths.warwick.ac.uk/~bjs
http://www.maths.warwick.ac.uk/~cpr/ftp/james.ps


[14] L . Guo, W hat is a Rota-Baxter Algebra? Notices of the A M S, 56 nr. 11 
(2009) 1436-1437.

[15] K . Ebrahim i-Fard, L . Guo, Rota-Baxter Algebras in Renorm alization of 
Perturbative Quantum  Fie ld  Theory. Fields Institute Communications. 
Also math.hep-th/0604116.

[16] E . Hatakenaka, An estimate of the triple point numbers of surface knots 
by quandle cocycle invariants, Topology Appl. 139 No. 1-3 (2004) 129-144.

[17] A. Hatcher, Spectral Sequneces in Algebraic Topology, 
http://ww w.m ath.cornell.edu/~hatcher/SSAT/SS ATpage.htm l

[181 D. Joyce, A  classifying invariant of knots, the knot quandle, J .  Pure Appl. 
Alg. 23 No. 1 (1982) 37-65.

[19] L . H. Kauffm an, Knots and Physics, Series on Knots and Everyth ing, vol. 
1, W orld  Scientific Publishing Co., R iver Edge, N J, 2001.

[20] R . A. Litherland, S. Nelson, The B e tti numbers of some finite racks, J .  
Pure Appl. Algebra 178 (2003) 187-202.
Also math.GT/0106165.

[21] S. M ac Lane, Homology, Classics in Mathem atics, Springer Verlag, Berlin  
1995. Reprint of the 1975 edition: Grundlehren der mathematischen Wis- 
senschaften 114, Springer Verlag 1963.

[22] J .  Mandemaker, Various topics in rack and quandle homology. M . Sc. 
Thesis, Radboud University Nijmegen, august 2009.

[23] J .  W . M ilnor, J .  C. Moore, On the structure of Hopf algebras, Ann. of 
M ath. 81 nr 2 (1965), 211-264.

[24] T . Mochizuki, Some calculations of cohomology groups of finite Alexander 
quandles, J .  Pure Appl. Algebra 179 (2003) 287-330.
Also http://math01.sci.osaka-cu.ac.jp/~takuro.

[25] T . Mochizuki, The 3-cocycles of the Alexander quandles
F q[T]/(T — uj), Algebraic and Geom etric Topology 5 (2005) 183-205. Also 
math.GT/0210419.

[26] M . Niebrzydowski, J .  H. Przytycki, Homology of dihedral quandles, J .  
Pure Appl. Algebra 213 (2009) 742-755.
Also m ath.GT/0611803.

[27] G . C. Rota, Baxter algebras and com binatorial identities, Bu ll. A.M.S. 
(1969) 325-329

[28] C. Rourke, B . Sanderson, A  new classification of links and some calcula­
tions using it, =There are two 2-twist spun trefoils, math.GT/0006062.

48

http://www.math.cornell.edu/~hatcher/SSAT/SS
http://math01.sci.osaka-cu.ac.jp/~takuro


[29] C. Rourke, B . Sanderson, A-Sets I: Homotopy Theory, The Q uarterly 
Journal of Mathem atics 22 (1971) 321-338.

[30] G . W . W hitehead, Elem ents of homotopy theory, Graduate Texts in M ath­
ematics 61, Springer, New York, 1978.

[31] D. N. Yetter, Quandles and monodromy, J .  Knot Theory Ram ifications
12 (2003), 523-541.
Also math.GT/0205162.

[32] D. N. Yetter, Quandles and Lefschetz fibrations, math.GT/0201270.

49

http://arxiv.org/abs/math/0205162
http://arxiv.org/abs/math/0201270

