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Multi-Task Preference Learning with an Application to 
Hearing-Aid Personalization

Adriana Birlutiu, Perry Groot, Tom Heskes
Radboud U niversity N ijmegen, Intelligent System s, Toernooiveld 1, 6525 ED  N ijmegen, The

Netherlands

A b s tra c t
We present an EM-algorithm for the problem of learning preferences with Gaus­
sian processes in the context of multi-task learning. We validate our approach 
on an audiological data set and show that predictive results for sound quality 
perception of normal-hearing and hearing-impaired subjects, in the context of 
pairwise comparison experiments, can be improved using a hierarchical model. 
Key words: preference learning, multi-task learning, hierarchical modeling, 
Gaussian processes

1. In tro d u c t io n

There has been a wide interest in learning the preferences of people within 
artificial intelligence research in the last years [19]. Preference learning is a 
crucial aspect in modern applications such as decision support systems [14], 
recommender systems [9, 7], and personalized devices [17, 30].

It is im portant to optimize the preference learning process in terms of 
cost/tim e invested. Many machine learning techniques especially designed for 
learning optimization, such as multi-task learning, have been little explored in 
the context of preference learning. Multi-task learning is especially suited to 
the situation in which data for a specific single scenario is scarce, but data is 
already available from similar scenarios. An example is evaluating sound quality 
with hearing-aids: we have gathered sound evaluations for quite some subjects, 
information that we would like to exploit when learning a model for a new
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subject.
The aim of this article is to apply multi-task learning to the context of 

preference learning. We consider the problem of learning subject preferences 
not as an individual problem, but in the context of learning from similar tasks 
with multiple subjects. In this way, the model of different subjects can regularize 
and influence each other. We demonstrate the usefulness of our model on an 
audiological data set. We show that the process of learning preferences can be 
significantly improved by using a hierarchical non-parametric model based on 
Gaussian processes.

1.1. Related Work

In this section we review some studies from preference learning and multi­
task learning related to the work presented in this paper.

1.1.1. Preference Learning

Preference learning has recently received much attention in the machine 
learning community [22]. In the literature, two approaches are mainly used 
for representing preference information: i) binary preference predicates and ii) 

scoring methods (utility functions) [21, 22]. For example, the first approach 
solves a ranking problem as an augmented binary classification problem [29, 28, 
21, 1]; the second approach uses regression to map instances to target valuations 
for direct ranking [13, 18, 16]. We focus on the second approach by modeling 
utility functions using Gaussian processes (GPs). By formulating the preference 
elicitation process as a probabilistic Bayesian learning problem, one can deal 
with inconsistencies in subject responses as well as learn biases the subject 
may have. GPs have been around quite some time [32, 8], nevertheless, their 
applications have increased considerably over the years and is still the focus of 
much research [41]. Only recently, GP models have been applied to the problem 
of eliciting people’s preferences [16, 12] or eliciting probability distributions from 
expert’s opinions [26, 27, 38].

2



1.1.2. Multi-Task Learning

The basic idea in multi-task learning is tha t models learned on different sce­
narios have parts in common. In a Bayesian framework this often boils down to 
the sharing of a hierarchical prior [3, 20, 44]. A typical application scenario for 
multi-task learning are recommender systems [7, 36], some of these applications 
combine content information (e.g., features of items) with collaborative infor­
mation (data from other subjects) [15, 45]. Multi-task learning with Gaussian 
processes has recently received attention [43, 46, 10, 40]. The learning setting in
[15] for conjoint analysis is similar to the one considered in this paper, however, 
the authors restrict to a linear parametric form for the utility function. The 
work in [20] extends kernel learning to the multi-task setting. The contribution 
of this paper is the extension of the multi-task Gaussian processes for regres­
sion introduced by [43, 46] to learning from qualitative preference statements. 
Preliminary results were reported by us in [5].

1.2. Structure of the Article

Section 2 introduces the probabilistic choice model used for learning prefer­
ences, which assumes a latent utility function. Section 3 presents three represen­
tations for utility functions: i) A parametric representation in which multi-task 
learning can be easily implemented; ii) A non-parametric Gaussian process rep­
resentation; iii) A dual representation based on Gaussian processes. Section 4 
describes Bayesian learning of the individual utility function. Section 5 presents 
the multi-task preference learning. We introduce a hierarchical extension to 
the Bayesian framework and use the Expectation Maximization algorithm for 
learning a hierarchical prior. Section 6 reports experimental results with the 
hierarchical model for learning subject preferences in an audiological context. 
Section 7 presents our conclusions and directions for future work. Appendices A 
and B give details about the algorithms developed in this paper.
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Boldface notation is used for vectors and matrices and normal fonts for the 
components of vectors and matrices or scalars. Superscript is used to distinguish 
between different vectors or matrices and subscript to address their components. 
The notation N (0 \p ,  S ) is used for a multivariate Gaussian with mean ^  and 
variance S . The transpose of a matrix M  is denoted by M T. The zero vector 
and identity matrix are denoted by 0 and 1, respectively.

2. P ro b a b ilis t ic  C ho ice  M odels

Let X  =  { x 1, . . . ,  x N} be a set of N  distinct inputs. Typically, every input 
is represented by a d-dimensional vector of features, x ! G R d. Let Dj be a set 
of N j observed preference comparisons over instances in X , corresponding to 
subject j ,

D j  =  { ( x i1, . . . ,  x iK , y i )\1 < i < N j , x i- G X , y i G { 1 , . . . , K }}

where yi =  k means that alternative x ik is preferred from the K  inputs presented 
to subject j . We consider a version of this setup in which the preference data 
of each subject uses the same set of inputs X , which is known beforehand and 
remains fixed. This is the standard setup in marketing applications of preference 
modeling where the same choice panel questions are given to many individual 
consumers, each subject provides his/her own preferences, and we assume that 
there is some similarity among the preferences of the subjects.

The preference observations from the comparisons described above can be 
modeled using probabilistic choice models. The main idea behind probabilistic 
choice models is to assume a latent utility function value Uj (x i ) associated with 
each input x i which captures the preference of subject j  for x i . In the ideal 
case, the latent function values are consistent with the preference observations, 
which in probabilistic terms can be written as P ( y i =  k\xi1, . . . ,  x iK, 9j ) =  1 if 
Uj (xik) > Uj ( x il), I =  k. In practice, however, subjects are often inconsistent

1.3. Notation
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in their responses. In order to deal with these inconsistencies, a standard model­
ing assumption [11, 31, 25] is tha t the subject’s decision in such a forced-choice 
comparison follows a multinomial logistic model, which is defined as

' E £ ,  exp [(«(*•')]
For pairwise comparisons (K  =  2), Equation (1) is known as the Bradley-Terry 
model [11]. For multiple choice experiments (K  > 2), the model is a softmax 
function [31].

An alternative to the model from Equation (1) is the multinomial probit 
model, which has been used to learn from pairwise comparisons in [16, 12]. The 
two models, logistic and probit, give similar predictions, however, for (K  > 3) 
the probit model is more difficult to handle [33]. For this study we use the 
multinomial logistic model.

3. M o d e lin g  th e  U tility  F u n c tio n

The probabilistic choice model assumes a latent utility function Uj . This 
section discusses three representations for the utility function:

1. A parametric representation in which multi-task learning is naturally ob­
tained by introducing a joint prior over parameters (Section 3.1).

2. A non-parametric representation based on Gaussian processes (Sec­
tion 3.2). Multi-task learning is in this case arguably more complicated 
since here one has to consider a joint prior over functions.

3. A dual representation of the utility function based on Gaussian processes 
(Section 3.3). This dual representation has a parametric form on which 
multi-task learning can be easily implemented by employing the theory 
of hierarchical modeling for parametric models. We show that this rep­
resentation preserves properties of the non-parametric Gaussian process 
representation (Section 3.4).
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The second and third representation are graphically illustrated in Figure 1 for 
the case of pairwise comparisons (K  =  2). For simplicity, we omit the super­
script j  when representing individual utility functions.

Figure 1: Preference learning based on two representations of th e  u tility  function. Left: 
non-param etric G aussian process (cf. Section 3.2). Right: param etric  G aussian process (cf. 
Section 3.3). T he observation y 1 of the  com parison {x 1, x 2} depends on th e  value associated 
by th e  su b jec t’s la ten t u tility  function w ith th e  inputs x 1 and x 2, Ui =  U (x 1) and U2 =  U (x 2) 
respectively. T he goal is to  predict th e  outcom es of th e  unseen com parisons (y2) based on the  
observed ones (y1 and y 3). We do th is  by learning th e  la ten t u tility  function U .

3.1. Parametric Models for Utility Functions

The utility function in the parametric representation is a fixed model, 
U(x, 9), in which the vector of parameters 9 captures the preferences of the 
subject. To learn a subject’s preferences, we need to learn the parameter 9. 
Multi-task learning is implemented by introducing a prior distribution over 9. 
This prior is learned from the data available from all subjects. Since the model 
U(x, 9) is predefined, this parametric representation is rather limited.
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The main advantage of using the Gaussian process formalism in our frame­
work is tha t it models the utility function in a non-parametric way, allowing 
more flexibility than having a fixed parametric model. Furthermore, the com­
putational complexity of GPs is independent of the dimension of the inputs but 
dependent on the number of inputs; this is an advantage when having few data 
points but of high dimension.

A Gaussian process (GP) [41] is a collection of random variables, any finite 
number of which have a joint Gaussian distribution. In our case the random 
variables are the output values of the utility function and we identify the utility 
function U with a finite vector U . Following the approach of [16] for learning 
preferences with GPs, we define a GP prior over the utility function, i.e., given 
X  =  { x 1, . . . ,  x N }, the joint distribution over the utility function values is a 
multivariate Gaussian distribution,

{U (x1) , . . . ,  U (xN)} ~ N (m , K ) . (2)
The covariance matrix K  is generated by a kernel function «, K ij =  « ( x 1, x j ). 
Possible choices for « are, for example, the linear kernel «Linear or the Gaussian 
kernel KGaUss defined below,

d
KLinear(x \ x ^) ^   ̂ ,

1=1

K G a u s s ( a : \  X J ) =  exp ~  v l ) 2

where s is a length-scale parameter.
A Gaussian process is in fact equivalent to a Bayesian interpretation of linear 

regression. Let
U(x) =  0 (x )T9 = ^ 2  ° i M x )  , 

i
be a linear combination of (a possibly infinite number of) basis functions ^ (-)  
where 9 is a weight vector. If the weight vector 9 is drawn from a Gaussian dis­
tribution, this induces a probability distribution over functions U (•) =  0(-)T9. 
This distribution is a Gaussian process.

3.2. Non-Parametric Models for Utility Functions
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The left-hand side of Figure 1 is a graphical representation of preference 
learning using the GP representation of the utility function. The utility function 
values U (x1) , . . . ,  U (xN) are correlated, and depend on the prior estimates ^  
and K .

3.3. Dual Formulation of the GP

Inspired by the representer theorem [42] — that makes use of both the para­
metric model and the flexibility of the GP formalism -  we use a dual representa­
tion for the utility function. The dual representation has a parametric form on 
which multi-task learning can be easily implemented by employing the theory 
of hierarchical modeling for parametric models. In the dual representation, the 
utility function U(x), x  G X  is defined as follows

N
U(x) =  £  a i«(x, x i) , (3)

i=1
where x i G X , « is the kernel function, and a  ~  N ( ^ a , X a ). The vector of 
parameters a  with dimension N  — the number of inputs — compactly captures 
the information collected from the data set related to a subject. Even though 
a  is a parameter, it does not specify the form of the utility function — as the 
representation of the utility function in Equation (3) is data dependent. The 
data-dependent a  parameter can give further insights about the importance of 
each data point and can be used to obtain sparseness and detect outliers [24].

The right-hand side of Figure 1 is a graphical representation of preference 
learning using the dual representation of the GP. The utility function is de­
termined by the parameter a .  Furthermore, a  depends on the hierarchical 
prior estimates ^ a and S a . The utility function values U (x 1) , . . . ,  U (xN) are 
conditionally independent given a .

3.4. Equivalence of the GP Representations

In this section we analyze the relation between the two Gaussian process 
representations of the utility function given in Sections 3.2 and 3.3. We show
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below that the two representations induce the same Gaussian distribution over 
the utility function for any subset Z  C X .

Let UZ be the vector U  restricted to the index set Z , and let a  ~  N ( ^ a , S a ) 
be a Gaussian distributed variable. From Equation (3) follows tha t UZ is a 
linear combination of Gaussian distributed variables and has therefore a mul­
tivariate Gaussian distribution. The distribution over a  induces the following 
distribution over UZ

Uz  ~  N (K (Z , X )Ma, K (Z , X )£ „ K (Z , X )T) . (4)

The two Gaussian distributions from Equations (4) and (2) restricted to Z  C X  
are the same when

K (Z , X )^ a  =  ^Z ,
K (Z , X ) S a K (Z , X )T =  K (Z , Z ),

with ^ Z the vector ^  restricted to the index set Z . This leads to the following 
result.

T h e o re m  3.1 (P rim a l-D u a l E qu iva lence). The utility model U(x) =  
a*«(x, x*) with a  ~  N ( ^ a , S a ) arad x G X  =  {x1, . . . ,  x N } is equiv­

alent with the standard GP formulation U  ~  N ( p ,  K ) when

K ^ a  =  ^  , (5)
S a  =  K +  , (6)

with K  + the pseudo-inverse of K .

P ro o f: Equation (6) follows directly from the definition of the pseudo-inverse,

K K +  K  =  K  .

If K  is invertible, for any ^  there exists a ^ a  th a t satisfies Equation (5). This 
property does not necessarily hold if K  is not invertible. □
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The equivalence between the primal and the dual representations holds when 
we apply the model in a transductive setting, i.e., only to inputs x  G X . The 
two representations are not equivalent anymore when we apply the model to a 
new test point x* G X .

4. L ea rn in g  th e  U tility  F u n c tio n

In order to learn a subject’s preferences, we treat the vector of parameters 
a  as a random variable. After performing an experiment and observing its 
outcome, the posterior distribution over a  is computed using Bayes’ rule,

P (a |X , O, ^ , £ )  <x P (a )P (O |X , a )
N

=  P ( a )  P (y i |x i1, . . . ,  x iK , a )  , 
i=1

with X  =  {(xi1, . . . ,  x iK), i =  1 , . . . ,  N }, observations O =  {yi , i =  1 , . . . ,  N }, 
and likelihood terms as given in Equation (1). We make the common assump­
tion of a Gaussian prior distribution. Note that the maximum of the posterior 
distribution gives a good estimate for a  and can easily be computed. The entire 
distribution over a  is, however, needed in the context of multi-task learning. 
The exact posterior distribution is intractable, therefore, we approximate it with 
a Gaussian. The Gaussian approximation is a good approximation of the poste­
rior because with few data points the posterior is close to a Gaussian due to the 
prior, and with many data points the posterior approaches again a Gaussian as 
a consequence of the central limit theorem [6]. Two types of approaches exist for 
approximating the posterior distribution i) deterministic methods for approxi­
mate inference (e.g., Laplace’s method [35], Expectation Propagation [37]); ii) 

methods based on sampling. Since the sampling methods are computationally 
expensive, and the deterministic methods are known to be very accurate for 
these types of models [25] we focus on deterministic methods. In Appendix A 
we present two methods for approximate inference in the probabilistic choice 
models introduced in Section 2.
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5. M u lti-T ask  P re fe re n c e  L ea rn in g

In this section we consider learning the utility function in a multi-task set­
ting. We implement the multi-task learning using Bayesian hierarchical model­
ing. We derive a method for gathering data from previous subjects into a single 
distribution that is used as a prior distribution for a new subject.

Assume that we have M  subjects for which we already learned preferences, 
each of them with his own set of experiments and responses. The inference 
problems for all the subjects are coupled by having the same prior over the 
parameters a j , i.e., we set P ( a j ) =  N ( a j |^ , S ) a Gaussian prior with the same 
^  and S  for all subjects. The posterior distribution for each subject is assumed 
to  be (close to) a Gaussian with mean and variance S j . A penalized version 
of the maximum likelihood values for the prior mean ^  and the prior variance S , 
can be obtained by specifying a hyper prior distribution over ^  and S , P (^ , S ). 
We assume a normal-inverse-Wishart distribution as the hyper prior since it is 
the conjugate prior for the multivariate distribution,

PQlx, S ) =  AT(/x|/x0, - £ ) I W ( £ | t , S 0) . n
The normal-inverse-Wishart distribution can be specified by means of the scale 
matrix So with precision t , and mean ^ 0 with precision n. We assume that 

=  0 and S 0 =  1.

EM  Algorithm for Learning the Hierarchical Prior

The hierarchical prior is obtained by maximizing the penalized loglikelihood 
of all data. This optimization is performed by applying the Expectation Maxi­
mization algorithm [23, 46], which reduces to the iteration (until convergence) 
of the following two steps.

E -step : For each subject j , estimate the sufficient statistics (mean and 
covariance matrix S j ) of the posterior distribution over a j , given the 
current estimates, and S (t), of the hierarchical prior. The E-step is 
performed using one of the inference techniques mentioned in Appendix A.
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1 M 
/LX( i + 1 )  = — Y ' f l j  ,

M j=1

M -step : Re-estimate the parameters of the hierarchical prior:

t +  M
M

M
V i+V i+1)T +  ¥ E SJ+  j= i

1  +  -  ^ (i+1)) (^ j -  ^ (i+1))T 
j= i

(7)

where and S j are the posterior mean and variance for subject j  com­
puted based on the previous prior mean ^ (i) and variance S (t). The up­
date equation for the variance relates to the variance of a mixture model: 
the last term  on the right-hand side of Equation (7) computes the variance 
in the individual means and the second term  the average of the individual 
variances in the mixture components.

In each E-step, the distribution over a j is approximated with a multivariate 
Gaussian. Therefore, in our hierarchical framework each utility function can 
still be interpreted as an (approximate) Gaussian process (cf. Section 3.4). The 
derivation of the EM algorithm is given in Appendix B.

6. E x p e rim e n ts

We validated our approach for hierarchical preference learning on an audio- 
logical data set. The data set consists of evaluations of sound quality from 14 
normal-hearing and 18 hearing-impaired subjects, which we considered as two 
separate data  sets. Each person was subjected to 576 paired-comparison listen­
ing experiments of the form (x 1, x 2,y), where x 1 and x 2 represents two input 
sounds processed with two different settings of the hearing-aid parameters, and 
y =  {1, 2} denotes which of the two alternatives was preferred by the subject. 
A detailed description of the data set can be found in [2].

The goal of the validation was to check whether the preferences of a new 
subject can be learned more accurately by using the available preferences of
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a group of subjects. To answer this question we compared the performances 
obtained using a hierarchical model learned from the group of subjects versus 
a model which assumes no information about the new subject’s preferences. 
Each subject was characterized by a utility function which describes his/her 
preferences. The utility function for the j t h  subject was parametrized by the 
vector a j as discussed in Section 3. In a simulation, the j t h  subject was left out. 
The data set for the left-out subject, was split into training (used for learning 
preferences) and testing (the accuracy of the predictions on the test data was 
used as a measure of how much we learned about subject’s preferences). The 
EM algorithm described in the previous section was used to gather data from 
the rest of the subjects in a probability distribution over a j , which was used as 
the starting prior for the left-out subject. The values of the hyper-parameters 
of the hierarchical prior were set to n =  0 and t =  1. Predictions were made on 
the test data using a model with a flat prior which assumes no information, and 
a model which uses the hierarchical prior. For each subject, we averaged the 
results using 10-folds cross-validation. Furthermore, the results were averaged 
within each group of normal-hearing and hearing-impaired subjects. The plots 
on the left-hand side of Figure 2 give the percentage of predictions on which 
the two models (the one with the hierarchical and the one with the flat prior) 
disagree, with respect to the total number of predictions made; the dashed line 
refers to a linear kernel, the dotted line to a Gaussian kernel. As it can be seen 
from the plots, the difference between the two models decreases as a function of 
the number of observations. The plots on the right-hand side of Figure 2 show 
the percentage of correct predictions made using the hierarchical prior, with 
respect to the number of predictions on which the two models disagree. It can 
be seen from the plots that especially in the beginning of the learning process, 
with few observations, the model with a prior learned from the community of 
other subjects significantly outperforms the model with a flat prior.
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Figure 2: Left: percentage of th e  num ber of predictions on which th e  two models (w ith the  
hierarchical and w ith a flat prior) disagree. Right: percentage of th e  num ber of tim es the  
prediction accuracy using th e  hierarchical prior is b e tte r  th an  th e  prediction accuracy w ith 
a  flat prior. For th e  G aussian kernel we set s =  1; th e  results are ra th e r insensitive to  the  
specific choice for th is  param eter. Top and b o ttom  rows refer to  experim ents on th e  d a ta  set 
from norm al-hearing and hearing-im paired subjects, respectively.

7. C onclusions a n d  F u tu re  W ork

We have introduced a hierarchical modeling approach for learning related 
functions of multiple subjects performing similar tasks using Gaussian processes. 
A hierarchical prior was used from which model parameters were sampled in 
order to enforce a similar structure for the utility function of each individual 
subject.

We are interested in further improvements of the model. Particularly, we 
plan to investigate how to select, in an active way, the most informative ex­
periments in order to learn subjects’ preferences. Furthermore, it might be 
interesting to automatically cluster, either beforehand or as an integral part of
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the algorithm, the subjects into groups with similar behavior—in the current 
study we manually clustered the data set into two sets of normal-hearing and 
hearing-impaired subjects.

A. M e th o d s  for A p p ro x im a te  In fe ren ce

We present two methods for approximate inference suited to the probabilistic 
choice models introduced in Section 2.

Laplace’s method

In the Laplace approximation [35], the posterior distribution is approximated 
by a Gaussian with mean equal to the maximum a posteriori solution

6* =  argmax L(6) , e
where

N 1 
Lie) = '£,logP(k\xi l , . . . ,  xiK, e )--(9-  fx)TS-\d - ax) ,

i= 1
and variance equal to the inverse of the Hessian, the second derivative of L(6). 

ADF and EP

Assumed Density Filtering and Expectation Propagation [39, 37] are ap­
proximation techniques in which the terms of the likelihood corresponding to 
the observed data are added in a sequential way. At each step the result of the 
inclusion is projected back into the assumed density (we choose for the assumed 
density a Gaussian). The projection is done by minimizing the Kullback-Leibler 
divergence between the real posterior and the approximate density. For assumed 
densities in the exponential family this reduces to moment matching, i.e., the 
new approximate posterior is the Gaussian which has the same mean and vari­
ance as the real posterior.

For a linear utility model U(x, 6) =  $ (x )T6 and K  =  2, the computation 
of the posterior approximation can be simplified from d dimensions (where d is 
the dimension of 6) to 1 dimension. The likelihood function depends on 6 only
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through its projection onto a particular direction defined by the input $ (x ). 
The key idea is then to decompose 6 such that one of the components of the 
decomposition is perpendicular to S 1/2$ (x ) (as was, for example, done in [4]). 
The computations needed for the normalization constant can be simplified as 
follows

(9 ($(*) 0))fif(g\Mis)

g ( r ] J $ ( x ) T '£,$(x) + $ ( x ) T f i )  \  ,
V /  /  N(n|0,i)

where g is the logistic function and

(g ($ (x )T6))n (e |M,S ) =  ƒ  g ($ (x )T6) N (6 | ^  S ) d6 .
Similarly, computing the mean and covariance of the real posterior can be re­
duced to 1 dimension. The same idea of efficiently updating the posterior dis­
tribution is extended to generalized linear models in [34] using the Laplace 
approximation.

B . E M  D eriv a tio n

The basic idea in Bayesian hierarchical modeling is to assume that the pa­
rameters for individual models are drawn from the same hierarchical prior dis­
tribution. We make the common assumption of a Gaussian prior distribution, 
P ( a j ) =  N ( a j |^ , S ) with the same ^  and S  for all models. This prior is 
updated using Bayes’ rule based on the observations from each scenario, result­
ing in a posterior distribution for each individual model. Because the posterior 
is intractable, we approximate it with a Gaussian. The hierarchical prior is 
obtained by maximizing the log-likelihood of all data in a so-called type-II max­
imum likelihood approach. This optimization is performed by applying the EM 
algorithm [23, 46], which reduces to the iteration (until convergence) of the 
following two steps.
E -s tep : Estim ate the sufficient statistics (mean and covariance matrix ) 

of the posterior distribution corresponding to each individual model j ,  
given the current estimates ( ^ (i) and S (t)) of the hierarchical prior.
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1 M
f“+1> = (8)

M -step : Re-estimate the parameters of the hierarchical prior:

j=1
M

T +  M  
M

V i+V i+1)T + ^ E SJ+ j= i
i  +  -  ^ (i+i)) (^ j -  ^ (t+i))T 

j= i
(9)

The term  5^M=1 (^ j — ^ (i+1))(^ j — ^ (i+1))T, in Equation (9), measures 
the variance between the most probable estimates for different subjects, 
and the term  Yl jLi  ^  measures the variance of the probabilities P ( a J ) 
around these most probable estimates, averaged over all the subjects.
In very high dimensions, some of the eigenvalues of the covariance matrix 
S  may tend to infinity. For numerical stability, we therefore add a small 
constant 3  to the diagonal of S -1 , and set

s  ^  ( s -1 +  3 1 ) - 1  ,

after each update (9).

Let D j denote the data obtained from subject j , D =  {D 1, . . . ,  D M} de­
note the data obtained from all subjects, A  =  { ^ j , S j ; j  =  1 , . . . ,  M } denote 
all parameters for all subjects, and A(i) =  { ^ (i), £ (i)} denote the parameters of 
the hierarchical prior at the t th  iteration. In order to obtain the estimates of 
the hierarchical prior in the (t +  1)th iteration, we maximize the penalized log 
likelihood of all data

log[P (D|A(t+1))P  (A(i+1))j
=  logP(D |A (i+1)) +  logP(A (i+1)) .

We note that
' P (A , D |A(i+1))log P  (D |A(i+1)) =  log P  (A|D, A(i+ 1))_ VA
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and thus,

log P  (D |A(i+1)) +  log P  (A(i+1))
' P  (A ,D |A (i+1))P  (A|D, A(t)) log dA +P  (A|D, A(i+1))_ 

log P  (A(i+1)) (10)
=  Q(A(t+1), A(t)) +  logP(A (i+1)) -  

i  P (A |D , A(t)) logP(A |D , A(t)) d A ,

( 1 1 )

with the “full data loglikelihood”

Q(A(t+ 1), A(t))
=  ƒ  P (A |A (t), D) logP(A , D |A(i+1)) d A ,

The EM algorithm that iteratively maximizes Q(A(i+1), A(t)) +  logP(A (i+1)) 
is guaranteed to converge to a local maximum of the data likelihood since the 
negative term  in Equation (10) can only make things better when A(i+1) =  A(t). 

Different subjects are only coupled through their joint prior, i.e., we have
M

P(A , D |A(i+1)) =  U  P (D j |a j ) P ( a j |A(t+1)) . 
j=1

Plugging this into Equation (11) we get 

Q(A(t+1), A(t))
t  M

= P (A |D , A(i)) ^ l o g  [p (D j |a j ) P ( a j |A(t+1)) 
j=1

M r
=  ^  /  P ( a j |Dj , A(t)) lo g P (a j |A(i+1)) d a j +

j=1
constants independent of A(i+1) .

Ignoring these constants and noting that we can skip the index of the integration 
variable, we get

Q(A(t+1), A(t)) =  M  ƒ ¿ P (a |£ > * ,A (t)) lo g P (a |A (i+1)) d a  .

18



Thus, at each step the following function is maximized

Q(A(t+1), A(t)) +  log P  (A(i+1))
¿P(a|^,AW)= M

logP(A (i+1)) .

log P  (a |A (i+1) ) d a  +

The maximum of this function can be found by computing the gradients with 
respect to A. For the prior over A defined as

P ( A) =  P(fi ,  S ) =  AT(fi\0, - S ) I W ( S |r ,  1 ) ,n
we get the updates from Equations (8) and (9). Note that considering the 
maximum-likelihood estimate, without the penalization term, i.e., maximizing 
Q(A(i+1), A(t)), has the nice interpretation of the negative Kullback-Leibler di­
vergence (up to again irrelevant constants independent of A(i+1)) between a 
single Gaussian P ( a |A (i+1)) and a mixture of Gaussians, where each of the 
Gaussians in the mixture corresponds to the posterior of a subject given the 
previous setting of prior mean and variance. The maximum of this function is 
then found by moment matching: we have to match the moments of the single 
Gaussian to the moments of the mixture of Gaussians. □
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