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Dividing Protein Interaction Networks for Modular Network
Comparative Analysis^

Pavol Jancura*,a, E lena M archioria
aInstitu te  fo r  Com puting and Inform ation  Sciences, Radboud U niversity N ijmegen, Postbus 9010, 6500 GL

Nijmegen, The Netherlands

A b stract

The increasing growth of da ta  on protein-protein interaction (PPI) networks has boosted research 
on their com parative analysis. In particular, recent studies proposed models and algorithms for 
performing network alignment, th a t is, the comparison of networks across species for discovering 
conserved functional complexes. In this paper, we present an algorithm  for dividing P P I networks, 
prior to  their alignment, into small sub-graphs th a t are likely to  cover conserved complexes. This 
allows one to  perform  network alignment in a m odular fashion, by acting on pairs of resulting small 
sub-graphs from different species. The proposed dividing algorithm  combines a graph theoretical 
property  (articulation) with a biological one (orthology). Extensive experiments on various PP I 
networks are conducted in order to  assess how well the sub-graphs generated by this dividing 
algorithm  cover protein functional complexes and whether the proposed pre-processing step can 
be used for enhancing the performance of network alignment algorithms. Source code of the 
dividing algorithm  is available upon request for academic use.
Key words: protein interaction network division, m odular network alignment

1. In tro d u ctio n

W ith the exponential increase of da ta  on protein interactions obtained from advanced technolo­
gies, da ta  on thousands of interactions in hum an and most model species have become available 
(e.g. Bader et al., 2001; Xenarios et al., 2002). P P I networks offer a powerful representation for 
better understanding m odular organization of cells, for predicting biological functions and for 
providing insight into a variety of biochemical processes.

* T h is  m anuscript is an extended version of th e  conference paper Jan cu ra  et al. (2008b) presented a t th e  T hird  
IA P R  International Conference on P a tte rn  Recognition in B ioinform atics, M elbourne, A ustralia, 2008. 
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Recent studies consider a com parative approach for the analysis of P P I networks from different 
species in order to  discover common protein groups, called conserved complexes, which are likely 
to  be related and to  share similar functionality in a cell (Sharan and Ideker, 2006; Srinivasan et al., 
2007). This problem is known as protein network alignment. Algorithms for this task typically 
model this problem by means of a merged graph representation of the networks to  be compared, 
called alignment (or orthology) graph, and then formalize the problem of searching (merged) con­
served complexes in the alignment graph as an optim ization problem. Due to  the com putational 
in tractability  of the resulting optim ization problem, greedy algorithms are commonly used.

One can identify two m ain network alignment categories. Local network alignment, th a t iden­
tifies the best local m apping for each local region of sim ilarity between input networks, and global 
network alignment, th a t searches for the best single mapping across all parts  of the input networks, 
even if it is locally sub-optim al in some regions of the networks. If a m ethod aligns networks of 
ju st two species, it is called pairwise network alignment, while if it can handle more than  two 
networks, it is called multiple network alignment.

M any m ethods for network alignment have been proposed. We describe them  briefly in the 
next section on related work.

The aim of this paper is not to  propose yet another network alignment algorithm, bu t to  show 
how P P I networks can be divided, prior to  their alignment, into small sub-graphs th a t are likely 
to  cover conserved complexes.

Conserved complexes discovered by com putational techniques have in general small size (that 
is, number of proteins) compared to  the size of the P P I network they belong to. Moreover, PP I 
networks are known to have a scale-free topology where most proteins participate in a small 
number of interactions while a few proteins, called hubs, contain a high number of interactions. 
As indicated by a recent study, hubs whose removal disconnects a P P I network (articulation hubs) 
are likely to  appear in conserved interaction patterns (Przulj, 2005).

These observations motivate the introduction of an algorithm  for dividing P P I networks, called 
D iv ide, th a t combines biological (orthology) and graph theoretical (articulation) information: it 
detects small groups of ortholog articulations, called centers, which are then expanded into subsets 
of ortholog nodes. This algorithm  has the desirable property of being parameterless.

The effectiveness and robustness of D iv ide  is assessed experim entally in the following three 
ways.

F irst, we show th a t the sub-graphs generated by D iv ide  indeed cover ” true” conserved pro­
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tein complexes. This is done by measuring the overlap of these sub-graphs with MIPS curated 
functional complexes restricted to  those proteins belonging to  an orthologous pair.

Next, we show th a t the generated sub-graphs cover protein complexes com putationally pre­
dicted. Specifically, we compare these sub-graphs with the conserved complexes predicted by 
one state-of-the-art pairwise local alignment algorithm, called MaWish (Koyutiirk et al., 2006b). 
We investigate experim entally how D iv ide  biases the search process of MaWish, and whether the 
generated sub-graphs contain information to  be used for discovering new conserved complexes. 
Results of an extensive experim ental analysis indicate th a t indeed D iv ide  generates sub-graphs 
containing conserved complexes th a t are not detected by MaWish.

Finally, we consider two case studies of m odular network alignment. In the first case study, 
D iv ide  is used to  generate sub-graphs, which are then pairwise merged using the networks merging 
model of MaWish. We apply iterative exact search to  the resulting alignment graphs. Results 
of experiments show ability to  detect a high number of accurate conserved complexes. In the 
second case study, D iv ide  is used for enhancing an existing m ethod for discovering conserved 
functional complexes, called MNAligner (Li et al., 2007). MNAligner consists of two m ain steps: 
first, candidate functional complexes within one species are detected using a clustering algorithm  
(MCODE); next, an exact optim ization algorithm  is applied for m atching the resulting candidate 
functional complexes with sub-graphs of the other species in order to  extract conserved complexes. 
Results of experiments show th a t by applying D iv ide  to  orthologs nodes prior to  clustering 
enhances the performance of this algorithm.

To the best of our knowledge, we propose the first algorithm  which directly tackles the m odular­
ity  issue in network alignment by showing th a t D iv ide  generates sub-graphs th a t cover conserved 
complexes and can be used for performing m odular pairwise network alignment.

In general, these results substantiate the im portant role of the notions of orthology and artic­
ulation in m odular com parative P P I network analysis.

This paper contains and extends m aterial from two previous conferences’ papers of Jancura 
et al. (2008a,b). It is organized as follows. In the next section we discuss related works. Section
3 describes the graph-theoretic terminology used in the paper. The D iv ide  algorithm  is intro­
duced in Section 4. Section 5 summarizes the da ta  and the type of assessment employed in the 
experim ental analysis. In Section 6 the robustness of D iv ide  is assessed by analysing how the 
generated sub-graphs cover ” true” complexes. In Section 7 the sub-graphs generated by D iv ide 
are compared with the complexes predicted by MaWish. In Section 8 m odular network alignment
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is performed on the two case studies above described. Finally, we conclude and briefly address 
future work in Section 9.

2. R ela ted  W ork

Recent overviews of approaches and issues in com parative biological networks analysis have 
been presented by Sharan and Ideker (2006) and Srinivasan et al. (2007) since the first formulation 
of network alignment introduced by Kelley et al. (2003).

In general, network alignment m ethods have been proposed for discovering conserved m etabolic 
pathways, conserved functional complexes, and for detecting functional orthologs. For instance, in 
Kelley et al. (2003) introduced an approach for detecting conserved m etabolic pathways between 
two species. A local protein network alignment m ethod based on this approach was proposed to 
discover conserved complexes (Sharan et al., 2004, 2005a). This m ethod was further extended 
to  the alignment of multiple species by Sharan et al. (2005b). Moreover, the approach of Kelley 
et al. (2003) m otivated Bandyopadhyay et al. (2006) to  develop a m ethod for identifying functional 
orthologs.

O ther alignment techniques for discovering conserved pathways based on the species conserva­
tion were proposed (e.g., Shlomi et al., 2006; Qian et al., 2009; P inter et al., 2005; Cheng et al., 
2008; Li et al., 2007; Koyuturk et al., 2006a), as well as m ethods handling network structures more 
general than  single pathways (Wernicke and Rasche, 2007; Yang and Sze, 2007; Dost et al., 2008; 
Blin et al., 2009; Bruckner et al., 2009).

The m ain goal of local protein network alignment is to  detect conserved protein complexes 
across species, by searching for local regions of input networks having both  high topological simi­
larity  between the regions and high sequence sim ilarity between proteins of these regions. Many 
pairwise local network alignment techniques have been introduced in recent years (see, e.g. Sha- 
ran  et al., 2005a; Hirsh and Sharan, 2007; Liang et al., 2006; Koyuturk et al., 2005; Narayanan 
and Karp, 2007; T ian and Samatova, 2009). In particular, Berg and Lassig (2006) introduced an 
alignment framework based on Bayesian theory. O ther approaches embed additional information 
into the local protein network alignment task (Guo and Hartem ink, 2009; Ali and Deane, 2009).

A first a ttem pt to  perform multiple network alignment using three species was done by Sharan 
et al. (2005b). However, the m ethod scales exponentially with the number of input species. 
Thus, new m ethods for aligning multiple species have been proposed (Flannick et al., 2006, 2009; 
Dutkowski and Tiuryn, 2007; Kalaev et al., 2009).
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The m ain goal of global protein network alignment is functional orthologs detection, because, 
in contrast to  local network alignment, each node in an input network is either m atched to  one 
node in the other network or has no m atch in the other network (Singh et al., 2007). Of course 
global protein network alignment can be also used for identifying conserved complexes.

The first systematic identification of functional orthologs based on protein network comparison 
was done by Bandyopadhyay et al. (2006). Singh et al. (2008b) explicitly used global multiple 
network alignment for detecting functional orthologs.

The first formal global network alignment m ethod was introduced by Singh et al. (2007). This 
m ethod has been followed by more works on global pairwise network alignment (Evans et al., 2008; 
Zaslavskiy et al., 2009; Klau, 2009; Chindelevitch et al., 2010). Singh et al. (2008a); Liao et al. 
(2009); Flannick et al. (2009) tackled global alignment of multiple species.

While the above works focus on alignment of networks, we deal with protein networks pre­
processing prior to  their alignment, in order to  perform m odular network alignment (Jancura 
et al., 2008b).

We tu rn  now to  the description of works related to  the m ain graph topological ingredient used 
in our method: hub articulation. Many papers have investigated the im portance of hubs in PP I 
networks and functional groups (Ekm an et al., 2006; Jeong et al., 2001; PrZulj, 2005; PrZulj et al., 
2004; R athod and Fukami, 2005; Ucar et al., 2006). In particular, it has been shown by Jeong 
et al. (2 0 0 1 ) th a t hubs with a central role in the network architecture are three times more likely 
to  be essential th an  proteins with only a small number of links to  other proteins. Moreover, if one 
takes functional groups in P P I networks, then, amongst all functional groups, cellular organization 
proteins have the largest presence in those hubs whose removal disconnects the network (PrZulj, 
2005). These works justify the use of articulation hubs for dividing P P I networks prior to  their 
alignment.

3. G raph T h eoretic  B ackground

Given a graph G =  (U, E ), nodes joined by an edge are called adjacent. A neighbor of a node 
u is a node adjacent to  u. The degree of u is the num ber of elements in E  containing the vertex u.

A graph G =  (U, E ) is called undirected if uu ' in E  implies u 'u  also in E; otherwise G is called 
directed. A directed acyclic graph is a directed graph th a t contains no cycles.

A sub-graph H (V, F ) of an undirected graph G(U, E ) is said to  be induced by the set of nodes 
V C U if and only if the set of edges F  C E  consists of all the edges th a t appear in G over the 
same vertex set V .

5
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A graph is connected if there is a pa th  from any node to  any other node. Let G(U, E )  be 
a connected undirected graph. A vertex u £ U is called articulation if the graph resulting by 
removing this vertex from G  and all its edges, is not connected.

A tree is a connected graph not containing any circle. A tree is called rooted tree if one vertex 
of the tree has been designated as the root. Given a rooted tree T (V, F ), the depth of a vertex 
v £ V  is the num ber of edges from the root to  v w ithout repetition of edges. Leaves of the tree T  
are vertices which have only one neighbor. The depth of a tree is the highest depth of its leaves. 
A spanning tree T(V, F ) of a connected undirected graph G (U ,E )  is a tree where V =  U and 
F  C E.

Given an edge-weighted (or node-weighted) graph G(U, E ) w ith a scoring function w : e £ 
E  ^  K (or w : u £ U ^  K). Total weight w(G) of G is the sum of weights of all edges (or nodes) 
in the graph:

w(G) w(e) (or w(G) w(u) ).
Ve£E Vu£U

Suppose a connected undirected graph G(U, E ) and a vertex u £ U are given. Let N (u) a set 
of all neighbors of u and N '(u) C N (u) be. A center of u is the set C(u) = N '(u )  U {u}.

Observe th a t a center can be expanded to  a spanning tree of G(U, E ). Moreover, the center as 
an initial set of expansion can be consider as a root if we merge all vertices of center to  one node. 
Such spanning tree created from a center, called centered tree, has zero depth all vertices of center 
and the vertices of i- depth are new nodes added in ith  iteration of expansion to  the spanning 
tree. Therefore a centered tree , can be generated as follows:

•  the 0 -depth of the centered tree is the center

•  the i-th  depth of the centered tree consists of all neighbors of (i — 1 )-th depth which are not 
yet in any lower depth of the centered tree yet.

Examples of a spanning and centered tree are shown in Figure 1.
A P P I network is represented by an undirected graph G(U, E ). U denotes the set of proteins 

and E  denotes set of edges, where an edge u u ' £ E  represents the interaction between u £ U 
and u ' £ U . Given P P I networks G (U ,E ) and H(V, F ). A vertex u £ U is orthologous if there 
exists at least one vertex v £ V such th a t uv is an orthologous pair. Orthologous articulation 
is an orthologous vertex which is an articulation. An orthology path is a p a th  containing only 
orthologous vertices.

6
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Figure 1: Exam ples of spanning and centered tree  in th e  sam e graph. T he dark  grey node in th e  left figure represents 
a  root. D ark grey nodes in th e  right figure represent a center. N um bers indicate depths of nodes in trees. Solid 
edges are edges of a  spanning tree. Dash edges are o ther edges of th e  graph.

4. D iv id e  A lgo rith m

Suppose given the P P I networks G and G 1 of two species. Let G(U, E ) and O C U be the set 
of vertices which are orthologous w .r.t. the vertices of G i. Suppose O contains n  elements. The 
D iv ide  algorithm  is shown in pseudo-code in Algorithm 1. It generates centers from orthologous 
articulations and expands them  into centered sub-trees containing only orthologous proteins. The 
m ain steps of D iv ide  are described in detail below.

C om p u tin g  A rticu la tion s (Line 1). Com putation of articulations can be performed in linear 
time by using, e.g., T arjan’s algorithm  described in Tarjan (1972) or Hopcroft and Tarjan (1973).

G reed y C o n stru ction  o f  C enters (Lines 3-10). The degree (in G) of all orthologous articu­
lations is used for selecting seeds for the construction of centers. Networks with scale-free topology 
appear to  have edges between hubs systematically suppressed, while those between a hub and a 
low-connected protein seem favoured (Maslov and Sneppen, 2002). Guided by this observation, 
we greedily construct centers by joining one orthologous articulation hub with its orthologous 
articulation neighbors, which will more likely have low degree.

Specifically, let A be the set of orthologous articulations of G. The first center consists of 
the element of A with highest degree and all its neighbors in A. The other centers are generated 
iteratively by considering, a t each iteration, the element of A  w ith highest degree among those 
which do not occur in any of the centers constructed so far, together with all its neighbors in A

7



203 which do not already occur in any other center. The process term inates when all elements of A
204 are in at least one center. Then an unambiguous label is assigned to  each center.
205

Figure 2: Exam ples of centers of centered trees (left figure) and of th e ir initial expansion (right figure). Seeds of 
centers are solid nodes. D ark gray nodes are th e  rest of centers connected to  a seed by solid edges. Light gray 
nodes are orthologous proteins which are not articu lations. E m pty nodes are non-orthologous proteins. D ot edges 
are th e  rest of edges in th e  graph. In th e  second (right) graph dash edges indicate th e  expansion and connect nodes 
of centers (zero dep th  centered trees) w ith  nodes of th e  first dep th  centered trees. Nodes on th e  gray background 
indicate th e  overlap am ong centered trees.

206 In itia l E xp an sion  (Lines 11-16). By construction, centers cover all orthologous articulations.
207 A rticulation hubs are often present in conserved sub-graphs detected by means of com parative
208 methods. Therefore, assuming th a t the m ajority of the remaining nodes belonging to  conserved
209 complexes are neighbors of articulation hubs, we add to  each center all its neighbouring orthologous
210 proteins, regardless whether they are or not articulations. We perform this step for all centers in
211 parallel.
212 We m ark these new added proteins with the label of the centers to  which they have been added.
213 These new added proteins form the first depth centered trees.
214 Observe th a t there m ay be a non-em pty overlap between first depth centered trees (as illus-
215 tra ted  in the right pa rt of Figure 2).
216
217 P ara lle l E xpan d in g  o f  T rees (Lines 17-27) Successive depths of trees are generated by
218 expanding all nodes with only one label which occur in the last depth of each (actual) centered
219 tree. We add to  the corresponding trees all orthologous neighbors of these nodes which are not yet
220 labeled. Then we assign to  the newly added nodes the labels of the centered trees they belong to.
221 This process is repeated until it is impossible to  add unlabelled orthologous proteins to  at least
222 one centered tree.

8



223 Observe th a t each iteration yields to  possible overlap between newly created depths (see the
224 left part of Figure 3).
225

Figure 3: Exam ples of parallel expansion of trees (left figure) and of th e  final assigning rem aining nodes (right 
figure). Seeds of centers are solid nodes. D ark gray nodes are th e  rest of centers connected to  a  seed by solid edges. 
Light gray nodes are orthologous proteins which are not articulations. E m pty nodes are non-orthologous proteins. 
Dash edges indicate th e  process of expansion. Dot edges are th e  rest of edges in th e  graph. Nodes on th e  gray 
background create th e  overlap. N um bers are labels of trees assigned to  nodes during expansion.

226 A ssign in g  R em a in in g  N o d es  to  T rees (Lines 28-42). The remaining orthologous nodes,
227 th a t is, those not yet labeled, are processed as follows. F irst, unlabelled nodes which are neighbors
228 of multi-labeled nodes are added to  the corresponding centered trees. Then the newly added nodes
229 are m arked with these labels. This process is iterated  until there are no unlabelled neighbors of
230 multi-labeled nodes.
231 Nodes which are not neighbors of any labeled protein are still unlabelled. We assume th a t they
232 may possibly be part of conserved complexes which do not contain articulations. Hence we create
233 new sub-trees by joining together all unlabelled orthologous neighbor proteins.
234 An example of these final steps is shown on the right part of Figure 3.
235 In the end, the algorithm  produces the list of subsets of orthologous nodes, where each subset
236 of nodes corresponds to  the nodes of one particular tree constructed by the algorithm. The subsets
237 generate induced sub-graphs of the divided P P I network.
238

239 C o m p le x ity . The algorithm  divides only orthologs of a given P P I network where the number
240 of all orthologs is n  =  |O |. It performs a parallel breadth-first search (BFS). In general, BFS
241 has O (|V | +  |E |) complexity, where V and E  denote the number of nodes and edges, respectively.
242 However, the D iv ide  algorithm  constructs trees considering only orthologous nodes, so the number
243 of edges, which are traversed, is |O '| — 1, where |O '| is the num ber of orthologous vertices of the

9



A lgo rith m  1 Divide algorithm
Input: G, G i: P P I networks, O: orthologous nodes of G with respect to  Gi 
O utput: S: list of subsets of O 

1: A =  {orthologous articulations of G}
2: S = < >
3: rep eat {Construction of centers}
4: root =  element of A with highest degree not already occurring in S 
5: s =  {root} U {neighbors of root in A not already occurring in S}
6: S  =  < s , S >
7: u n til all members of A occur in S 
8: d = 0

9: Assign depth d to  all elements of S 
10: Assign label ls to  each s in S  and to  all its elements 
11: for s in S  do
12: s =  s U {all neighbors of s in O}
13: Assign label ls to  all neighbors of s in O 
14: en d  for 
15: d =  1
16: Assign depth d to  all elements of S  having yet no depth assigned 
17: rep eat {Expand one depth centered trees from nodes with one label}
18: N  =  {unlabelled neighbors in O of elements in s of depth d having only one label }
19: for n  in N  do
20: Assign to  n  all labels of its neighbors of depth d having only one label 
21: for ls € n  do 
22: s =  s U {n}
23: en d  for 
24: en d  for 
25: d =  d + 1
26: Assign depth d to  all elements of S  having yet no depth assigned 
27: u n til S does not change
28: rep eat {Expand one depth centered trees from nodes with multiple labels}
29: R =  {unlabelled proteins in O with at least one multi-labeled protein as neighbor }
30: for r  in R  do
31: Assign to  r  all labels of its neighbors 
32: for ls € r  do 
33: s =  s U {r}
34: en d  for 
35: en d  for
36: u n til S does not change
37: rep eat {Assign labels to  remaining elements}
38: choose an unlabelled element u  of O
39: t  =  {u} U {all elements of O which can be reached alongside an orthology pa th  from u} 
40: Assign label lt to  t  and to  all its elements 
41: S = <  t, S  >
42: u n til O does not contain any unlabelled node

10
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constructed sub-tree. The possible overlap between trees can increase the num ber of traversed 
edges and visited vertices. In the worse case all orthologous vertices are visited by each center (all 
nodes are in the overlap). So, if the number of centers is k, the complexity of D iv ide  is O(kn).

5. E x p erim en ta l A n alysis

The effectiveness and robustness of the proposed pre-processing m ethod is assessed experimen­
tally in the following three ways.

F irst, we show th a t the sub-graphs generated by D iv ide  indeed cover ” true” conserved protein 
complexes. This is done by measuring the overlap of the generated sub-graphs with yeast MIPS 
curated functional complexes restricted to  those proteins belonging to  an orthologous pair.

Next, we show th a t the resulting sub-graphs cover protein complexes com putationally pre­
dicted by one state-of-the-art alignment algorithm  (Koyutiirk et al., 2006b), MaWish, in order 
to  investigate whether the sub-graphs contain information th a t could be used to  discover new 
conserved complexes.

Finally, we consider two instances of m odular network alignment. In the first instance, D iv ide 
is used to  generate sub-graphs which are pairwise merged using the MaWish network alignment 
model. Then iterative exact search is applied to  detect conserved complexes in the resulting 
alignment graphs. In the second instance of m odular network alignment, D iv ide  is used to 
generate sub-graphs, which are then used by the recent network alignment algorithm  MNAligner, 
for discovering conserved functional complexes.

We conduct experiments on the following pairs of organisms:

•  Saccharomyces cerevisiae versus Caenorhabditis elegans (yeast-nematode),

•  Saccharomyces cerevisiae versus Drosophila melanogaster (yeast-fly) and

• Saccharomyces cerevisiae versus Homo sapiens (yeast-human).

Publicly available da ta  were used, available at the web-page of MaWish1. These da ta  consist of 
protein interactions obtained from the BIND (Bader et al., 2001) and DIP (Xenarios et al., 2002) 
molecular interaction databases, and the list of potential orthologous and paralogous pairs, which 
are derived using BLAST E-values (for more details see Koyutiirk et al., 2006b). Table 1 and 
Table 2 report the number of interactions and proteins in the considered species, and the number 
of potential orthologous pairs between species considered in the alignment task, respectively.

1h t tp : / / v o r l o n .c a s e . edu/~m xk331/softw are/
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S. cerevisiae C. elegans D. m elanogaster H. sapiens
# p ro te in s 5157 3345 8577 4541

^ in te rac tio n s 18192 5988 28829 7393

Table 1: P rotein  interaction network properties of yeast, nem atode, fly and hum an.

Pair of species #ortho logous pairs
S. cerevisiae vs C. elegans 2746

S. cerevisiae vs D. m elanogaster 15884
S. cerevisiae vs H. sapiens 6690

Table 2: N um ber of po ten tial orthologous pair for considered species: yeast-nem atode, yeast-fly and yeast-hum an.

5.1. Handling redundant alignments and complexes
A general issue in network alignment m ethods is th a t the solutions produced usually consider­

ably overlap with each other; in other words they are highly redundant. Specifically, two clusters 
of nodes are said to  be redundant if more than  r%  of the nodes in the smaller complex occur in the 
other complex, where r  is a threshold value th a t determines the extent of allowed overlap between 
clusters.

Recall th a t most network alignment m ethods construct an alignment graph, which is a merged 
representation of the protein interaction networks being compared. Then, alignment solutions 
or alignments are network structures of interest found by searching the alignment graph. Each 
discovered alignment corresponds to  a set of complexes, one for each given organism, which are 
conserved to  each other. Thus, a set of alignment solutions gives separate collections of conserved 
complexes for the species being compared.

Obviously, one m ay observe the redundancy at two levels: alignment level and protein level. 
The first level is when alignments found in the alignment graph highly overlap. The second one 
is when conserved protein complexes in one collection highly overlap.

As mentioned above, in the experim ental analysis of this study we use two alignment methods, 
MaWish and MNAligner. At the alignment level, MaWish filters out redundant solutions (r =  80%) 
retaining only alignments with bigger score. MNAligner is a global network alignment m ethod 
where the com puted mapping between orthologs is a one-to-one mapping resulting in solutions 
th a t do not overlap.

At the node (protein) level MaWish does not handle possible occurrence of redundant complexes. 
Moreover, despite the fact th a t MNAligner performs global alignment, it may produce intersecting 
complexes when applied to  sub-graphs generated by D iv ide, because such sub-graphs m ay overlap. 
Therefore, in bo th  instances of m odular network alignment here considered, we will have to  handle 
redundant protein complexes.
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298 In general if two complexes have a high intersection, one of them  is discarded (see, e.g. Sup-
299 porting M ethods of Sharan et al. (2005b)). However, this approach for handling redundancy is
300 not very satisfactory, since detected conserved complexes could possibly cover part of a ‘tru e ’
301 functional module either due to  constraints on the topology and homology similarity, or due to
302 missing interactom e data. Therefore, detected complexes having high overlap m ay still represent
303 different parts of one bigger module.
304 In Liang et al. (2006) the following alternative m ethod is proposed for merging redundant
305 solutions. If two clusters are highly intersecting then they are merged into a single cluster by
306 taking the union of the two clusters. Three or more clusters are merged by the rule of single
307 linkage, th a t is, the merging relation is transitive. We refer to  this m ethod as chain-rule merging.
308 A drawback of this procedure is th a t it may merge protein complexes whose intersection is not any
309 more above the required threshold due to  the transitive relation used. Therefore parts of different
310 modules might be merged. Furtherm ore, application of the chain-rule merging can produce one
3 11 or few very big modules containing several possible functional complexes.
312 These observations motivate the introduction of the following procedure for dealing with highly
313 intersecting complexes. Specifically, we modify the chain-rule merging as follows. A set of com-
314 plexes is merged if every possible pair of complexes contained in this set is redundant.
315 If we represent complexes by means of nodes and connect two nodes by an edge if they are
316 redundant then the problem of finding a maximal set of complexes which can be merged according
317 to  the above rule can be reduced to  the problem of finding a maximal clique in th a t graph. Conse-
318 quently, finding all such maximal sets is equivalent to  the problem of finding all maximal cliques,
319 which is an intractable optim ization problem. Nevertheless, in our setting the resulting graph is
320 rather sparse and contains relatively few nodes, which allows us to  apply an exact algorithm  for
321 finding all maximal cliques in graph (here we use the algorithm  of Bron and Kerbosch (1973)).
322 We refer to  the modified merging procedure as clique-rule merging. In our experim ental analysis
323 the redundancy threshold r  =  80% is used.

324 6. D iv ide  gen era tes su b -grap h s covering ” tr u e ” p ro te in  con served  com p lexes

325 Let D iv ide  sub-graphs denote the sub-graphs generated by D iv ide. We compared D iv ide
326 sub-graphs with ” true” protein conserved complexes. To this aim, we evaluated the quality of
327 sub-graphs generated by D iv ide  using known yeast complexes catalogued in the MIPS database2

2h t t p : / / m ip s.helm holtz-m uenchen.d e /g e n r e /p r o j /y e a s t /
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(Guldener et al., 2005). Category 550, which was obtained from high throughput experiments, 
is excluded and we retained only m anually annotated complexes up to  depth 3 in the MIPS tree 
category structure as standard  of tru th  for quality assessment. From each of these complexes we 
extracted the subset of proteins consisting of only orthologous proteins, where sets with less than  
three elements were filtered out. We call the resulting set of proteins yeast M IP S (conserved) 
complex.

Table 3 reports the number of yeast sub-graphs and yeast conserved complexes of the alignment 
tasks for the given pairs of species (yeast-nematode, yeast-fly and yeast-human) after and before 
the application of the filtering procedures above described.

A lignm ent task # su b -g rap h s /'/y<:asl M IPS complexes /'/ y< :asl MaWish complexes
S. cerevisiae vs C. elegans 53 (235) 56, 45 (135) 27 (83)

S. cerevisiae vs D. m elanogaster 119 (408) 111, 99 (205) 99 (411)
S. cerevisiae vs H. sapiens 67 (253) 77, 63 (161) 57 (276)

Table 3: N um ber of yeast sub-graphs and yeast conserved complexes for a  given alignm ent task: yeast-nem atode, 
yeast-fly or yeast-hum an. In brackets th e  num ber of sub-graphs and complexes before removing sets w ith less th an  
th ree  elem ents is given. T he second num ber in th e  yeast M IPS complexes colum n is th e  num ber of complexes after 
big-sized complexes have been removed.

The intersection rate between a sub-graph and a complex is used, com puted as follow. Let 
G =  (U, E ) be a sub-graph and let C  be a protein complex of one organism. The intersection rate 
of G and C  is

|U n  c  | / |C  |.

In case more D iv ide  sub-graphs have equal intersection ra te  with a given complex, we chose 
the sub-graph of smallest size. This sub-graph provides a best coverage of the considered complex, 
because it needs the smallest number of proteins to  achieve th a t intersection rate.

The relation between the intersection rate of yeast D iv ide  sub-graphs and a ” true” complex, 
and the size of a ” true” complex are shown in the left column of Figure 4 for yeast-nematode, 
yeast-fly or yeast-hum an alignment task. Low intersection rates m ostly correspond to  complexes 
of big size (see left upper part of the plots).

Because conserved complexes have in general small size, we incorporated this prior information 
in our analysis and filtered out complexes of big size from the list of yeast MIPS complexes, since 
they were not considered to  be conserved. To this end, we used the conserved complexes predicted 
by MaWish (see also the next section). For yeast-nem atode and yeast-hum an the biggest yeast 
MaWish complex has size 12, for the yeast-fly alignment task the biggest MaWish complex consists 
of 21 proteins. Using these param eter values for the threshold to  filter out yeast MIPS complexes 
considered too large, we got 45 yeast MIPS complexes w .r.t. nem atode, 99 complexes w .r.t. fly
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Figure 4: Intersection ra te  vs. size of yeast complexes for th e  alignm ent task . Left column: yeast M IPS complexes. 
Right column: yeast MaWish complexes.
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and 63 complexes w .r.t. hum an (see Table 3). As shown in Table 4 the average intersection rate 
increased for the small yeast MIPS complexes while the num ber of considered complexes does not 
decrease significantly.

Another issue concerns the selection of only one D iv ide  sub-graph when com puting the inter­
section ra te  with a complex. D iv ide  sub-graphs having equal intersection rate with a complex 
may cover th a t complex in different ways. Therefore, one should consider the contribution to  the 
coverage of th a t complex provided by all these sub-graphs. This may be formalized by defining a 
so-called union intersection ra te  as follows. Let S  be a set of D iv ide  sub-graphs having the same 
intersection ra te  with a complex C . The union intersection rate is

I U  U n  c  | / |C  |.
G(U,E)eS

The average union intersection rate between yeast MIPS complexes and sub-graphs is shown in 
Table 4 for three alignment tasks. The union intersection ra te  is higher than  the intersection rate. 
Highest values are obtained for small-size complexes. For each alignment task, more than  70% 
coverage of yeast MIPS complexes is achieved. This means th a t some yeast MIPS conserved com­
plexes are split among sub-graphs, hence different parts of conserved complexes can be discovered 
by searching in these sub-graphs.

Considered yeast complexes C. elegans (%) D. m elanogaster (%) H. sapiens (%)
small-sized (union) 71.4 75.7 81.9

all (union) 64.5 71.3 74.8
small-sized 64 68 69.3

all 56 64.2 63.4

Table 4: Average of (union) intersection ra te  of yeast M IPS complexes and sub-graphs given an alignm ent task: 
yeast-nem atode, yeast-fly or yeast-hum an.

These results indicate th a t D iv ide  is able to  generate sub-graphs th a t highly cover ” true” 
conserved complexes. Lower intersection ra te  for yeast MIPS complexes could be due to  the fact 
th a t functional complexes in MIPS database are not biased on protein interaction conservation 
across species. Nevertheless, we achieved a satisfactory intersection ra te  for small-sized complexes, 
which are more likely to  be (part of) conserved protein complexes.

7. C om p arison  o f  D ivide Sub-graphs w ith  P red ic ted  C on served  C o m p lexes

Here we investigate how D iv ide  constrains the search process of MaWish, and whether the sub­
graphs generated by D iv ide  cover those produced by MaWish. To this end, we used the conserved 
complexes predicted by this alignment m ethod and processed by the clique-rule merging procedure,
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380 where complexes consisting of one or two proteins were filtered out. We call the resulting sets
381 MaWish complexes.
382 In the right column of Figure 4 one can observe th a t a number of yeast MaWish complexes are
383 fully covered and m any of those, which are not fully covered, intersect with a sub-graph at a rate
384 higher than  0.5.
385 Next we com puted the average intersection ra te  of MaWish complexes for each of the considered
386 alignment tasks of yeast-nematode, yeast-fly and yeast-human. For a given pair of organisms, we
387 com puted the number of conserved complexes for the first and for the second organism, and the
388 intersection ra te  between the complexes and sub-graphs of the first organism and of the second
389 organism, respectively. In all cases, we got almost or more th an  80% coverage of conserved
390 complexes (see Table 5).

A lignm ent task ^conserved  MaWish complexes intersection ra te  (%)
S. cerevisiae vs C. elegans 27, 24 87.0, 91.7

S. cerevisiae vs D. m elanogaster 99, 80 79.9, 84.8
S. cerevisiae vs H. sapiens 57, 63 84.7, 89.8

Table 5: Average intersection ra te  of MaWish conserved complexes and sub-graphs for a  given alignm ent task . In 
each colum n, th e  first num ber contains th e  num ber of conserved MaWish complexes of yeast and th e  second one th e  
num ber of conserved complexes of th e  second organism  in th e  considered alignm ent task .

391 Results of the experim ents indicate th a t D iv ide  can be used to  perform m odular network
392 alignment, since the sub-graphs it generates cover ” true” as well as predicted conserved complexes.
393 In order to  further substantiate this observation, we performed m odular network alignment on a
394 case study for Saccharomyces cerevisiae and Caenorhabditis elegans. These organisms are generally
395 used to  test the performance of alignment methods. Moreover, on these two organisms the worst
396 coverage for the yeast MIPS complexes and the best coverage for MaWish complexes were obtained.
397 Therefore they provide a hard benchm ark instance problem for testing the performance of the
398 m odular network alignment described below.

399 8. A p p lication s o f  M od u lar N etw ork  A lign m en t

400 In this section we investigate the ability of D iv ide  to  enhance the performance of alignment
401 methods.
402 Specifically, we apply D iv ide  to  two different alignment methods.
403 In the first case, we consider an instance of m odular local network alignment, called D ivA fu ll
404 (Jan cu rae t al., 2008a). D ivA fu ll employs D iv ide  to  generate sub-graphs, the MaWish alignment
405 model to  align them, and iterative exact search to  detect all possible solutions from the generated
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406 alignm ents. Therefore, application of D ivide allows one to  improve the search process by replacing

407 the  greedy search procedure of MaWish w ith an exact search algorithm .

408 In the second case we consider an instance of m odular global network alignm ent. Specifically,

409 we show how MNAligner (Li et al., 2007) can be enhanced by prior application of D iv id e . In order

410 to  detect conserved complexes using MNAligner a clustering algorithm  is applied which detects

411 poten tia l protein  complexes in one P P I network. The resulting complexes are then  aligned w ith

412 the  second P P I network and the conserved protein (sub-)complexes are detected. Here, we apply

413 D ivide before clustering in order to  bias the search for complexes tow ards regions centered around

414 a rticu lation  hubs. Results of experim ents indicate th a t this is an effective way of enhancing the

415 discovery of conserved complexes using MNAligner.

416 We discuss D ivA full and MNAligner more in detail in the next two sections. T hen we

417 in troduce validation m easures in order to  asses the quality  of the discovered protein  complexes

418 and the perform ance of the m ethods. Finally, we discuss results of experim ents.

419 8.1. D ivA full

420 D ivA full uses the dividing procedure to  generate sub-graphs for each of P P I networks given

421 by species to  be com pared. Next, pairs of the sub-graphs from different species are m erged using

422 the  MaWish network alignm ent model.

423 In th a t model, a weighted alignm ent graph  is constructed  from a pair of P P I networks and a

424 sim ilarity  score S , which quantifies the likelihood th a t two proteins are orthologous, is com puted.

425 A node in the  alignm ent graph  is a pair of orthologous proteins. Each edge in the alignm ent graph

426 is assigned a weight th a t is the  sum  of three scoring term s: for protein  duplication, m ism atches

427 for possible divergence in function, and m atch of a conserved pair of orthologous interactions. We

428 refer to  K oyutiirk et al. (2006b) for a formal description of these term s.

429 Induced sub-graphs of the resulting weighted alignm ent graph w ith to ta l weight greater th an

430 a given threshold are considered as relevant alignments. Each relevant alignm ent corresponds to

431 two putative conserved complexes, one for each species.

432 After m erging we search for these sub-graphs. This problem  is reduced to  the  (optim ization)

433 problem  of finding a m axim al induced subgraph. To tackle this problem , the search p a rt of MaWish

434 consists of an approxim ation greedy algorithm  based on local search, because the m axim um  in-

435 duced subgraph problem  is N P-com plete. This greedy algorithm  selects a t first one seed which

436 can likely contribute a t m ost to  the overall weight of a poten tia l subgraph. The seed is expanded

437 by adding (removing) nodes to  (from) the subgraph while the  actual subgraph weight increases.
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438 In contrast, D ivA full applies iteratively  an exact optim ization algorithm  (Wolsey, 1998) for

439 searching relevant alignm ents (m axim um  weighted induced sub-graphs) in the  alignm ent graphs

440 produced by m erging possible pairs of the sub-graphs, since their size is small. This search

441 algorithm  is described in detail below.

442 8.1.1. Search Algorithm

443 F irst, an exact optim ization algorithm  for finding the m axim um  weighted induced subgraph is

444 applied. Then the process is ite ra ted  by adding a t each ite ra tion  the constrain t which bounds the

445 weight of the induced subgraph by the weight of the solution found in the  previous iteration .

446 Formally, let f  be a function which com putes the weight of a subgraph in an inpu t graph  and

447 C  be a set of constrain ts which defines an induced subgraph of the  inpu t graph. Then we want

448 to  maximize the function f  on the set defined by constrains C, th a t is, to  solve the following

449 optim ization problem:

450 opt =  m ax f  (O p tP )

451 A lgorithm  2 illustrates the  resulting full-search procedure which uses the above constrained

452 optim ization problem  a t each itera tion  w ith different bound on the m axim um  allowed weight.

A lg o rith m  2 Full Search A lgorithm  
In p u t:  G: alignm ent sub-graph, e >  0
O u tp u t:  List of heavy induced sub-graphs of G w ith weight >  e 

1: Form ulate the  problem  of M axInducedSubG raph for G as (O p tP ) 
2: m axw eight =  to  
3: C  =  C  +  {opt <  m axw eight}
4: w hile  m axw eight >  e do 
5: solve (O p tP ) by an exact m ethod 
6: if opt >  e th e n  
7: record discovered solution 
8: e n d  if 
9: m axw eight =  opt 

10: en d  w hile

453 8.1.2. Handling Redundant Solutions

454 D ivA full employs the  same filtering procedure as MaWish for dropping redundant alignm ents

455 of worse weights. Still, a redundancy among protein complexes m ay occur. Hence, we apply

456 clique-rule m erging as described in Section 5.1.

457 8.2. D ivide and MNAligner

458 MNAligner is a general tool for global alignm ent of m olecular networks. I t formalizes the

459 problem  of finding an optim al m apping between sim ilar nodes of two different networks as an
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integer quadratic  program m ing optim ization problem  which is relaxed to  quadratic  optim ization 

problem  (Q P). The optim al integer solution is ensured if appropriate sufficient conditions on the 

objective function are satisfied. However, Q P m ay have an integer solution also if the conditions 

are no t satisfied. We refer to  Li et al. (2007) for the detailed description of the  objective function 

and alignm ent algorithm .

D irect application of MNAligner is feasible only when small P P I networks are considered. 

Furtherm ore, the alignm ent algorithm  finds the global m apping bu t does not search for structu res 

of in terest in this m apping, such as being dense sub-graphs. Therefore an additional search for such 

s tructu re  is needed either before or after the  alignm ent. For instance, in one of the  applications 

of MNAligner described in Li et al. (2007) two large P P I networks are aligned in order to  detect 

conserved complexes. To overcome the problem  of large netw ork size, and to  bias the search 

tow ards detection of protein  complexes, the clustering algorithm  MCODE (Bader and  Hogue, 2003) 

is applied to  one of the networks prior the alignm ent. This algorithm  generates a set of clusters 

representing poten tia l functional p rotein  complexes. Each of these clusters is aligned w ith the 

second P P I network, resulting in the  detection of two sub-networks, one for each species being 

com pared.

A pplication of D iv id e  yields sub-graphs representing regions of in terest which potentially  cover 

a num ber of conserved complexes. We test w hether the application of D iv id e  prior to  the use 

of MCODE and MNAligner enhances the discovery of conserved complexes. Specifically, given two 

P P I networks G i and G 2, we divide G i using D iv id e . Each of the resulting sub-graphs is further 

processed by MCODE and  aligned w ith G 2 using MNAligner. In th is way two collections of conserved 

complexes are generated, one for each species. We repeat this process by dividing G 2 instead of 

G i . This gives again two collections of complexes. For each species, the union of the collections 

of detected  complexes from th a t species is considered. Because sub-graphs of D iv id e  overlap and 

MCODE m ay also construct overlapping clusters we process each final collection by m eans of the 

clique-rule m erging procedure and retain  only complexes of size greater or equal th a n  3. In such 

way we get two com plete collections of possible conserved complexes detectable by MNAligner.

These results are com pared w ith complexes produced when MCODE and  MNAligner are directly  

applied to  the P P I networks induced by orthologs. Specifically, we cluster the (orthologous sub­

network of) G i and align the resulting clusters w ith G 2 . We repeat the  process by interchanging 

the role of G i and G 2 . We again process the  results using the clique-rule m erging procedure and 

removing complexes of size less th an  3.
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492 In this way, we allow a fair com parison of results when only MCODE and  MNAligner are applied

493 and when D ivide is in troduced prior these steps. We restric t the use of MCODE on sub-networks

494 induced by orthologs, because D ivide divides only the orthologs of a P P I network.

495 8.3. Evaluation Criteria fo r  Conserved Complexes

496 We asses the perform ance of alignm ent m ethods by m easuring the quality  of detected  com-

497 plexes. A functional m odule m ay perform  one or more functions in an organism  and all proteins

498 contained in th a t module are associated w ith these functions. Based on th is assum ption, com-

499 pu ta tionally  derived protein  complexes m ay serve for predicting function of proteins. T hen the

500 quality  of a complex can be assessed by the function prediction of the proteins it contains.

501 Therefore, we m easure the enrichm ent of functional annotations of the protein  set in a com-

502 plex, as entailed by the gene ontology (GO) annotation  (A shburner et al., 2000), using one of the

503 well-established tools, the  O ntologizer3  (Robinson et al., 2004). Ontologizer m easures sta tistical

504 significance of an enrichm ent and assigns to  the  complex a p-value for each enriched function. The

505 p-value is corrected for m ultiple testing  by a classic Bonferroni correction procedure. Furtherm ore

506 Ontologizer also constructs a hierarchical directed acyclic graph  (DAG) consisting of all signifi-

507 cantly  enriched annotations and all their ancestor annotations up to  the  roo t in the  whole GO

508 hierarchy. Given a DAG of enrichm ents, the  level of an anno ta tion  is equal to  the  length of the

509 shortest p a th  from the roo t of GO hierarchy present in the  DAG to  th a t annotation .

510 A complex can be used as protein  function predictor if the following criteria  are satisfied:

511 1. a certain  GO anno ta tion  is significantly enriched by the proteins in the complex (p-value

512 <  0.05);

513 2 . a t least half of the proteins in the complex has th is significant annotation;

514 3. the  annotation  is a t least a t GO level four from the roo t in GO hierarchy.

515 In such a case the significantly enriched GO annotation  of the complex is used to  predict

516 protein  function of each of the proteins in th a t complex. If a complex does not satisfy the  above

517 conditions, no prediction can be made. Similar criteria  were used by, e.g. Liang et al. (2006). The

518 condition on GO hierarchy guarantees th a t the prediction about biological functions is sufficiently

519 specific and inform ative (Yon Rhee et al., 2008).

520 We validate the accuracy of the  predictions, and consequently the  quality  of a protein  complex,

521 in a way sim ilar to  th a t proposed by Deng et al. (2003). Specifically, given a protein  complex and

3 h ttp : / /com pbio .charite .de/index .php/on to log izer2 .h tm l
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522 the  corresponding DAG of enrichm ents, we restric t our validation only to  the  annotations which

523 are present in the DAG and are a t GO level four or higher. A protein p  of the complex having such

524 annotations is assum ed to  be not anno ta ted  and its functions are predicted. The predictions are

525 then  com pared w ith the annotations of the protein  p. The m ethod is repeated  for all anno tated

526 proteins in the  cluster. In the end, for each protein  p  we have:

527 •  Ap: the num ber of anno ta ted  functions for the  protein  p.

528 •  Pp : the num ber of predicted functions for the protein  p.

529 •  Op: the size of the overlap between the set of anno ta ted  functions and  the set of predicted

530 functions for the  protein  p.

531 Given this scheme, precision  (PR) and recall (RC) are com puted for each complex C  as follows:

S v p e c  OpP R (C )
S v p e c  Pp

534 K C { C )  — — ----------------- — .

z^Vpec  Ap

535 In the case of no prediction, precision and recall are set to  zero. W hen b o th  precision and

536 recall are close to  one then  function prediction of a protein complex is good. Therefore, we also

537 use the  following well-established m easure in inform ation retrieval (Rijsbergen, 1979) as suggested

538 by H andl et al. (2005), the F-measure  (FM ), defined as

=  2 ■ P R ( C ) - R C ( C )
539 ( > P R { C )  +  R C { C )  ’

540 where we assume th a t b o th  precision and recall are equally im portan t. We use the above

541 evaluation m easure to  validate the  quality  of a predicted complex w ith respect to  its ability  to

542 model the  functions of the proteins it contains.

543 In order to  assess w hether D ivide leads to  the  discovery of conserved complexes having a new

544 pu ta tive  function, we introduce the following two additional m easures, functional ratio (F N R )

545 and coverage ratio (C V R ).

546 Let A be the collection of all functions predicted by the complexes detected  by the original

547 m ethod and let B  be the collection of all function predicted by the complexes detected  by the

548 combined m ethod. Furtherm ore, denote by CX the  set of all complexes which are predicted to

549 have a function from the function collection X . Then

F N R -  l B ^ Al
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The first measure, FNR, computes the ratio of new functions discovered over the set of all 

functions discovered by the combined method. The latter one computes the ratio between the 

number of complexes which are predicted to have the new functions and the total number of 

complexes detected by the combined method.

Notice tha t all measures above defined treat each species separately rather than explicitly 

evaluating the conservation hypothesis implied by each pair of conserved complexes aligned. Such 

evaluation could, in principle, be performed by comparing the results to a reference set of conserved 

modules (Yosef et al., 2008). To date, however, most such references are not comprehensive enough 

and contain only a small number of cases to learn from (Yosef et al., 2008). One exception is the 

Biocarta4 (Nishimura, 2001) database which contains many human-mouse conserved pathways.

Finally, it should be also noted tha t the functional annotations for the annotated proteins are 

incomplete. Thus, we may have a high confidence in the assignment of the function to a protein 

based on the GO annotation. However, tha t protein can have a particular true function which has 

not yet been annotated, tha t is, it has not been experimentally validated.

8.4 . A  Case Study: Saccharomyces cerevisiae vs Caenorhabditis Elegans

We present results on the considered case study as follows. We summarize the application of 

D ivide algorithm on particular PPI networks. Then we show how the iterative exact search of 

D ivA full improves on MaWish results. Finally, we discuss results of MNAligner combined with 

D ivide.

8.4 .I . Application o f D ivide

Results of application of the D ivide algorithm to the PPI networks of Saccharomyces cerevisiae 

and Caenorhabditis elegans are following.

For Saccharomyces cerevisiae, 697 articulations, of which 151 orthologs, were computed, and 

83 centers were constructed from them. Expansion of these centers into centered trees resulted in 

639 covered orthologs. The algorithm assigned the remaining 153 orthologous proteins to 152 new 

sub-trees.

For Caenorhabditis elegans, 586 articulations, of which 158 orthologs, were computed, and 112 

centers were constructed from them. Expansion of these centers into centered trees resulted in

4 h ttp : / / w w w .biocarta .com /genes/a llPathw ays.asp
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580 339 covered orthologs. The algorithm  assigned the rem aining orthologous 294 proteins to  288 new

581 sub-trees.

582 We observed th a t  the last rem aining orthologs assigned to  sub-trees were ’iso lated’ nodes, in

583 the sense th a t they  were ra th e r d istan t from each other and not reachable from ortholog paths

584 stem m ing from centers.

585 We obtained 235 sub-trees for Saccharomyces cerevisiae and 400 sub-trees of Caenorhabditis

586 elegans. Nodes of each such tree induce a P P I  sub-graph.

587 8.4.2. D iv A fu ll and  MaWish

588 D iv A fu ll constructs alignm ent graphs between each two P P I sub-graphs containing more

589 th an  one orthologous pair. In such way, we obtained 884 alignm ent graphs, where the biggest one

590 consisted of only 31 nodes.

591 We applied A lgorithm  2 to  each of the resulting alignm ent graphs. Zero weight threshold

592 (e =  0 ) was used for considering an induced subgraph as a heavy subgraph or a legal alignm ent.

593 R edundant graphs were filtered using r  =  80% as the threshold for redundancy.

594 D iv A fu ll discovered 151 solutions (alignm ents) while MaWish yielded 83 solutions. Between

595 these two set of solutions we found 70 redundant alignm ents, whose pair of weights are p lo tted

596 on the left p a rt of Figure 5. Among these, 48 (31.8% of D iv A fu ll results) were equal (red

597 crosses in the diagonal) and 22 (14.6%) different. 8  (5.3%) (green crosses below the diagonal) w ith

598 b e tte r D iv A fu ll alignm ent weight, and 13 (8 .6 %) (blue crosses above the diagonal) w ith b e tte r

599 MaWish alignm ent weight (for 1 (0.7%) pair it was undecidable because of rounding errors during

600 com putation).

601 D iv A fu ll found 81 (53.6%) new alignm ents, th a t is, not discovered by MaWish. The right plot

602 of Figure 5 shows the binned d istribu tion  of weights of these alignm ents, together w ith the new 17

603 ones discovered by MaWish bu t not by D iv A fu ll. There is no significant difference between the

604 overall weight average of the D iv A fu ll (0.8) and the MaWish (0.86) results.

605 Further, we investigate conserved complexes derived from the alignm ents discovered. Recall,

606 each set of discovered alignm ents gives two collections of conserved complexes, one for each species

607 being com pared, which are processed by clique-rule m erging algorithm  and only complexes of size

608 greater th an  2 are considered.

609 D iv A fu ll discovered a higher num ber of protein complexes th an  MaWish and the same is

610 observed when only those complexes which satisfy the criteria  for being a functional predictor are

611 considered. Concretely, for Saccharomyces cerevisiae D iv A fu ll found 46 complexes of which 39
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DivAfull v s  M aW ish 
redundant alignm ents between S . cerev isiae  and C . e legans

DivAfull v s  M aW ish 
nonredundant alignm ents between S .  cerevisiae  and C . e legans

Figure 5: A nalysis of all a lignm ents discovered by MaWish and D ivA full. Left figure: D istribu tion  of pairs of 
weights for paired  red u n d an t alignm ents, one obtained from  MaWish and one from  D ivA fu ll. W eights of a lignm ents 
found by D ivA fu ll are on th e  x-axis, those found by MaWish on th e  y-axis. is a  paired redundan t alignm ent. 
R ight figure: Interval weight d istribu tions of non-redundant alignm ents discovered by MaWish and D ivA full. T he 
x-axis shows weight intervals, th e  y-axis th e  num ber of alignm ents in each interval.

612 are functional predictors, and for Caenorhabditis elegans D ivA full found 28 complexes of which

613 18 are functional predictors. In contrast, MaWish found 27 complexes of which 24 are potential

614 predictors for Saccharomyces cerevisiae and 24 complexes of which 13 are functional predictors for

615 Caenorhabditis elegans.

616 We m easured the GO enrichm ent of these complexes and com puted the average of their preci-

617 sions, the average of their recalls, and the average of their F-m easures. The results are reported

618 in Table 6 and Table 7 for Saccharomyces cerevisiae and Caenorhabditis elegans, respectively.

619 For Saccharomyces cerevisiae, when considering all modules, we observe lower average precision

620 and average F-m easure of D ivA full m odules th a n  of MaWish complexes (the upper p a rt of Table

621 6). However, the difference in F-m easures is subtle and average recalls are same. Thus, complexes

622 of b o th  m ethods are, in to ta l, of com parable quality. W hen focused on functional predictors (the

623 bo ttom  p a rt of Table 6), D ivA full clearly outperform s MaWish functional predictors.

M ethod # M o d u les Precision (± ¿) Recall (±<5) F-m easure (±<5)
D ivA full

MaWish
46
27

0.73 (±0.33) 
0 .7 5  (±0.30)

0 .5 2  (±0.30) 
0 .5 2  (±0.26)

0.59 (±0.31) 
0 .6 0  (±0.28)

D ivA full
MaWish

39
24

0 .8 6  (±0.13) 
0.84 (±0.13)

0 .6 1  (±0.22) 
0.58 (±0.20)

0 .7 0  (±0.20) 
0.67 (±0.18)

Table 6: T he average of precisions, th e  average of recalls, and th e  average of F-m easures of yeast p rotein  m odules. 
T he upper p a r t reports results for all complexes, th e  b o tto m  p a rt for all functional predictors.

624 For Caenorhabditis elegans, when considering all modules, a b e tte r average functional enrich-

625 m ent is achieved for D ivA full modules (the upper p a rt of Table 7). Considering all functional

626 predictors, MaWish complexes have a higher average precision bu t a b e tte r recall is obtained by
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627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

M ethod # M o d u les Precision (± ¿) Recall (±<5) F-m easure (±<5)
D ivA full 28 0 .5 6  (±0.44) 0 .4 6  (±0.40) 0 .4 9  (±0.40)

MaWish 24 0.50 (±0.48) 0.38 (±0.40) 0.41 (±0.42)
D ivA full 18 0.87 (±0.12) 0 .7 1  (±0.25) 0 .7 6  (±0.21)

MaWish 13 0 .9 3  (±0.10) 0.70 (±0.27) 0 .7 6  (±0.22)

Table 7: T he average of precisions, th e  average of recalls, and th e  average of F-m easures of nem atode protein  
modules. T he upper p a r t rep o rts results for all complexes, th e  b o tto m  p a rt for all functional predictors.

D ivA full modules. However, in total, they are of the same quality as shown by the average of 

F-measures (the bottom  part of Table 7).

Species # F u n c tio n s FN R # P re d ic to rs CV R
yeast 144 0.23 39 0.26

nem atode 90 0.06 18 0.17

Table 8: T he to ta l num ber of biological functions predicted  by D ivA full functional predictors and th e ir functional 
ra tio  and th e  to ta l num ber of D ivA full functional predictors and th e ir  coverage ra tio  com puted  w ith respect to  
MaWish results.

Furthermore, it is interesting to investigate whether D ivA full modules also provide new pre­

dictions. By computing functional and coverage ratio over all functions predicted by D ivA full 

functional predictions with respect to biological functions of MaWish predictions, Table 8 shows 

tha t there is a particular fraction of new discoveries for both species.

To sum up, we may conclude tha t D ivA full discovered a higher number of conserved complexes 

of the comparable or higher quality than MaWish. D ivA full also achieved new predictions.

8.4.3. D ivide and MNAligner

MNAligner applies MCODE to each sub-graph produced by D ivide before using the alignment 

procedure. Despite of the high number of generated sub-graphs generated by D ivide, many of 

them  have an empty set of complexes detected by MCODE. Indeed, the final number of conserved 

complexes is low, 12 complexes for Saccharomyces cerevisiae and 10 modules for Caenorhabditis 

elegans. However, almost the same number of complexes is discovered when MCODE is directly 

applied on orthologous sub-networks of the species being compared (see Tables 9 and 10, respec­

tively). These results seem to indicate tha t the low number of discovered complexes is due to 

characteristics of MCODE’s clustering approach.

Tables 9 and 10 show the average of precisions, the average of recalls, and the average of 

F-measures of the detected complexes for Saccharomyces cerevisiae and Caenorhabditis elegans, 

respectively, after measuring their GO enrichment.

From Table 9 it can be seen th a t the complexes of Saccharomyces cerevisiae discovered when 

D ivide was applied, and their subset of functional predictions, significantly outperformed the
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M ethod #M o d u les Precision ( ± i ) Recall (±<5) F-m easure f ± d  )
D iv ide +  MNAligner 12 0 .7 4  (±0.25) 0 .5 3  (±0.28) 0 .6 0  (±0.27)

MNAligner 13 0.69 (±0.24) 0.48 (±0.27) 0.53 (±0.28)
D iv ide +  MNAligner 11 0 .8 1  (±0.09) 0 .5 8  (±0.24) 0 .6 5  (±0.21)

MNAligner 12 0.75 (±0.12) 0.52 (±0.24) 0.58 (±0.24)

Table 9: MNAligner: T he average of precisions, th e  average of recalls, and th e  average of F-m easures of yeast pro tein  
modules. T he upper p a r t rep o rts results for all complexes, th e  b o tto m  p a rt for all functional predictions.

M ethod #M o d u les Precision ( ± i ) Recall (±<5) F-m easure f ± d  )
D iv ide +  MNAligner 10 0 .7 2  (±0.39) 0 .5 5  (±0.4) 0 .5 9  (±0.37)

MNAligner 11 0.38 (±0.45) 0.34 (±0.43) 0.35 (±0.43)
D iv ide +  MNAligner 8 0 .9 0  (±0.11) 0.68 (±0.31) 0.74 (±0.23)

MNAligner 5 0.83 (±0.15) 0 .7 5  (±0.29) 0 .7 7  (±0.24)

Table 10: MNAligner: T he average of precisions, th e  average of recalls, and th e  average of F-m easures of nem atode 
p rotein  m odules. T he upper p a r t rep o rts resu lts for all complexes, th e  b o ttom  p a r t for all functional predictions.

complexes and predictions of the straightforward application of MNAligner (with MCODE).

For Caenorhabditis elegans, if we consider all modules, again better results are achieved when 

D ivide is incorporated prior the clustering and alignment steps (the upper part of Table 10). 

When we focused on functional predictions, the application of D ivide lead to results of higher 

precision but lower recall, which also affected the F-measure (the bottom  part of Table 10). How­

ever, from 10 conserved complexes discovered when D ivide is applied, 8 are potential functional 

predictions, but, in the case when orthologous sub-networks are not divided, more than the half 

of the results do not satisfy criteria for functional prediction.

Species ^F u n c tio n s FN R ^ P re d ic to rs CV R
yeast 109 0.28 11 0.36

nem atode 48 0.46 8 0.25

Table 11: T he to ta l num ber of predicted  biological functions and th e ir  functional ra tio  and th e  to ta l num ber of 
functional predic tors and th e ir  coverage ra tio  as resu lt when D iv ide is com bined w ith (MCODE and) MNAligner 
com puted w ith respect to  th e  resu lts of stra ightforw ard  application  of (MCODE and) MNAligner.

In the end, we computed functional and coverage ratio over all functions and their functional 

predictions detected with the method which includes D ivide with respect to the results of the 

application of MCODE and MNAligner. Table 11 indicates th a t in both species a quarter or even 

more of the results are new discoveries.

In summary, the application of D ivide resulted in new and in the m ajority of the cases better 

results despite the fact tha t the same clustering technique was applied on D ivide sub-graphs as 

on the original whole orthologous sub-networks before the division. This shows tha t D ivide can 

positively bias the search for improving detection of conserved complexes by means of modular 

global network alignment.
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9. C o n clu sio n

This paper introduced a heuristic algorithm, D ivide, for dividing protein interaction networks 

in such a way tha t conserved functional complexes are covered by generated sub-graphs. To the 

best of our knowledge, this is the first algorithm for this task, which can be used to perform 

modular network alignment of protein interaction networks (Jancura et al., 2008a,b).

The selection of centers is biased on the orthology information but it can be changed for another 

property. Hence, the D ivide algorithm can be applied to perform modular network alignment of 

other type of networks.

We showed experimentally tha t the sub-graphs th a t were generated by D ivide covered part 

of predicted conserved complexes. In some cases these sub-graphs covered different parts of one 

conserved complex. We tested experimentally the ability of D ivide to be used for performing 

modular network alignment. Specifically, we performed two comparative experimental analysis.

In the first experiment we used the D ivA full algorithm, which uses D ivide prior to the 

alignment phase, as done by Jancura et al. (2008a). Comparison between results of MaWish and 

D ivA full indicated tha t D ivA full is able to discover new alignments which significantly increase 

the number of discovered complexes. Moreover, complexes discovered by D ivA full showed compa­

rable or improved GO enrichment, as measured by precision, recall, and F-measure, and provided 

new prediction of protein functions. This application shows th a t using D ivide one can enhance 

the search strategy by replacing greedy with exact search in the alignment graph, resulting in the 

discovery of new conserved complexes.

In the second experiment an instance of global network alignment approach, called MNAligner, 

was considered. This method employs a pre-processing step before computing the alignment of 

two P PI networks. The results showed tha t the application of D ivide enhanced the quality of 

the results. This indicates the regions around articulation hubs constructed by D ivide provide 

a beneficial search bias for detecting functional complexes and enhancing the performance of 

MNAligner.

In summary these results showed tha t D ivA full can be successfully applied to discover con­

served protein complexes and to ’refine’ state-of-the-art algorithms for network alignment.

Another advantage of applying the D ivide algorithm for performing modular protein network 

alignment is tha t it allows one to parallelise alignment methods. For instance, the full search 

algorithm D ivA full can be run independently on each alignment graph constructed on sub-graphs 

generated by D ivide.
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In future work we in tend to  employ the D ivide algorithm  for m ultiple network alignm ent 

problem.
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