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A bstract
An overview is given of definitions and complexity results of a number 

of variants of the problem of probabilistic inference of the most probable 
explanation of a set of hypotheses given observed phenomena.

1 Introduction
Bayesian or probabilistic inference of the most probable explanation of a set 
of hypotheses given observed phenomena lies at the core of many problems in 
diverse fields. For example, in a decision support system that facilitates medical 
diagnostics (like the systems described in [1], [2], [3], or [4]) one wants to find the 
most likely diagnosis given clinical observations and test results. In a weather 
forecasting system  as in [5] or [6] one aims to predict precipitation based on me­
teorological evidence. But the problem is often also key in the computational 
models of economic processes [7, 8 , 9], sociology [10], and cognitive tasks as 
vision or goal inference [11, 12]. Although these tasks may superficially appear 
different, the underlying computational problem is the same: given a probabilis­
tic network, describing a set of stochastic variables and the (in)dependencies 
between them, and observations (or evidence) of the values for some of these 
variables, what is the most probable joint value assignment to (a subset of) the 
other variables?

Since probabilistic (graphical) models have made their entrance in domains 
like cognitive science (see e.g. the editorial of the special issue on probabilistic 
models of cognition in the TRENDS in Cognitive Sciences journal [13]), this 
problem now becomes more and more interesting for other investigators than 
those traditionally involved in probabilistic reasoning. However, the problem  
comes in many variants (e.g., with either full or partial evidence) and has many 
names (e.g., MPE, MPA, and MAP which may or may not refer to the same
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problem variant) that may obscure the novice reader in the field. Apart from 
the naming conventions, even the question how an explanation should be defined 
depends on the author (compare e.g. the approaches in [14], [15], [16], and [17]). 
Furthermore, some computational com plexity results may be counter-intuitive 
at first sight.

For example, finding the best (i.e., most probable) explanation is NP-hard 
and thus intractable in general, but so is finding a good enough explanation 
for any reasonable formalization of ‘good enough’. So the argument that is is 
sometimes found in the literature (e.g. in [13]) and that can be paraphrased as 
“Bayesian abduction is NP-hard, but we’ll assume that the mind approximates 
these results, so we’re fine” is fundamentally flawed. However, when constraints 
are imposed on the structure of the network or on the probability distribution, 
the problem may become tractable. In order words: the optimization criterion 
is not a source of complexity [18] of the problem, but the network structure is, 
in the sense that unconstrained structures lead to intractable models in general, 
while imposing constraints to the structure sometimes leads to tractable models.

W ith this paper we intend to provide the computational modeler, who de­
scribes phenomena in cognitive science, economics, sociology, or elsewhere, an 
overview of com plexity and tractability results in this problem, in order to as­
sist her in identifying sources of complexity. An example of such an approach 
can be found in [19]. Here the Bayesian Inverse Planning model for goal in­
ference [1 1 ] was examined and the conditions under which the model becomes 
intractable, respectively remains tractable were identified, allowing the modelers 
to investigate the (psychological) plausibility of these conditions.

While good introductions to explanation problems in Bayesian networks ex­
ist (see, e.g., [20] for an overview of explanation methods and algorithms), these 
papers appear to be aimed at the user-focused knowledge engineer, rather than 
at the computational modeler, and thus pay less attention to complexity issues. 
In this paper, we aim to bridge that gap, and focus on tractability issues in 
explanation problems, i.e., we address the question under which circumstances 
problem variants are tractable or intractable. We present definitions and com­
plexity results related to Bayesian inference of the most probable explanation, 
including some new or previously unpublished results. The paper starts with 
some needed preliminaries from probabilistic networks, graph theory, and com­
putational complexity theory. In the following sections the computational com­
plexity of a number of problem variants is discussed. The final section concludes 
the paper and summarizes the results.

2 Prelim inaries
In this section, we give a concise overview of a number of concepts from prob­
abilistic networks, graph theory, and complexity theory, in particular defini­
tions of probabilistic networks and treewidth, some background on complex­
ity classes defined by probabilistic Turing Machines and oracles, and fixed- 
parameter tractability. For a more thorough discussion of these concepts, the
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reader is referred to textbooks like [15], [21], [22], [23], [24], [25], and [26].

2.1 B ayesian N etw orks
A probabilistic network B is a graphical structure that models a set of stochastic 
variables, the (in-) dependencies among these variables, and a joint probability 
distribution over these variables. B includes a directed acyclic graph G =  
(V , A ), modeling the variables and (in-) dependencies in the network, and a 
set of parameter probabilities r  in the form of conditional probability tables 
(CPTs), capturing the strengths of the relationships between the variables. The 
network models a joint probability distribution Pr(V ) =  J} r¡=1 P r (v  | n (V  )) over 
its variables, where n (V ) denotes the parents of V in G. We will use upper case 
letters to denote individual nodes in the network, upper case bold letters to 
denote sets of nodes, lower case letters to denote value assignments to nodes, 
and lower case bold letters to denote joint value assignments to sets of nodes. 
We will use E  to denote a set of evidence nodes, i.e., a set of nodes for which a 
particular joint value assignment is observed.

Throughout this chapter, we will refer to the Brain tum or network, shown 
in Figure 1, as a running example. This network, adapted from Cooper [27], 
captures some fictitious and incomplete medical knowledge related to metastatic 
cancer.. The presence of metastatic cancer (modeled by the node M C ) typically 
induces the development of a brain tumor (B ), and an increased level of serum 
calcium ( I S C ). The latter can also be caused by Paget’s disease (P D ). A brain 
tumor is likely to increase the severity of headaches (H ). Long-term memory 
( M ) is probably impaired, or even malfunctioning. Furthermore, it is likely 
that a CT-scan (C T ) of the head will reveal a tumor if it is present, but it may 
also reveal other anomalies like a fracture or a lesion, which might explain an 
increased serum calcium.

Every (posterior) probability of interest in Bayesian networks can be com­
puted using well known lemmas in probability theory, like Bayes’ theorem  
(Pr(H  | E ) =  Pr(EPHEP)r(H) ), marginalization (P r(H ) =  ^ g, P r(H  A G  =  g¿)), 
and the property that Pr(V ) =  n=1 P r (v  |n(V¿)). For example, from the defi­
nition of the Brain Tumor network we can compute that Pr(b | M  =  imp A C T =  
fract) =  0.04 and that Pr(m c A —pd | M  =  norm A H  =  abs) =  0.16.

An important structural property of a probabilistic network is its treewidth . 
Treewidth is a graph-theoretical concept, which can be loosely described as 
a measure on the locality of the dependencies in the network. Formally, the 
treewidth of a probabilistic network, denoted by tw(B), is defined as the minimal 
width over all tree-decompositions of the moralization of G. The moralization 

of a directed graph G is the undirected graph, obtained by iteratively 
connecting the parents of all variables and then dropping the arc directions. 
The moral graph of the Brain Tumor network is shown in Figure 2.

A tree-decomposition  of an undirected graph is defined as follows [22]:
D e fin it io n  2 .1  ( tr e e -d e c o m p o s it io n ) . A tree-decomposition of an undirected 
graph G =  (V , E) is a pair (T, X ) , where T  =  (I, F ) is a tree and X  =  {X i |
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Pr(mc)Pr (pd)
Pr(b | mc)Pr(b | mc)
Pr(M = norm | b)Pr(M = imp | b) Pr(M = malf | b) Pr(M = norm | b) Pr(M = imp | b) Pr(M = malf | b)
Pr(H = sev | b) Pr(H = mod | b) Pr(H = abs | b) Pr(H = sev | b) Pr(H = mod | b) Pr(H = abs | b)

= 0.95 = 0.80 = 0.70 = 0.20

Pr(CT = tum | b, isc) = 0.80 Pr(CT = tum | b, isc) = 0.90 Pr(CT = tum | b, isc) = 0.05 Pr(CT = tum | b,isc) = 0.10
Pr(CT = fract | b, isc) = 0.18Pr(CT = fract | b, isc) = 0.01Pr(cT = fract | b, isc) = 0.55Pr(CT = fract | b, isc) = 0.40
Pr(CT = les | b,isc) = 0.02Pr(cT = les | b,!^) = 0.09Pr(CT = les | b,isc) = 0.40Pr(CT = les | b, isc) = 0.50

Figure 1: The Brain tum or network

= 0.20 = 0.05
= 0.50 = 0.40 = 0.10 = 0.70 = 0.25 = 0.05
= 0.70 = 0.25 = 0.05 = 0.30 = 0.20 = 0.50

= 0.20= 0.10
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Figure 2: The moral graph obtained from the Brain Tumor network

Figure 3: A tree-decomposition of the moralization of the Brain Tumor network

i € I } is a fam ily of subsets (called bags) of V , one for each node of T , such 
that

•  U i£i  X i =  V
•  for every edge (V, W ) € E  there exists an i € I  with V  €  X i and W  € X i, 

and
•  for every i , j , k € I  : i f  j  is on the path from  i to k in T , then X i OXk Ç X j.

The width of a tree-decomposition ((I,  F ), {X i | i € I }) is max | X i | - 1 .ie i
Treewidth is defined such that a tree (an undirected graph without cycles) 

has treewidth 1. A polytree (a directed acyclic graph that has no undirected 
cycles as well) with at most k parents per node has treewidth k . A tree- 
decomposition of the moralization of the B rain Tumor network is shown in 
Figure 3. The width of this tree-decomposition is 2, since this decomposition 
has at most 3 variables in each bag.
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In the remainder, we assume that the reader is familiar with basic concepts 
of computational complexity theory, such as Turing Machines, the complexity 
classes P and NP, and NP-completeness proofs. For more background we refer 
to classical textbooks like [24] and [25]. In addition to these basic concepts, to 
describe the complexity of various problems we will use the probabilistic class 
PP, oracles, and fixed-parameter tractability.

The class PP contains languages L accepted in polynomial time by a Prob­
abilistic Turing Machine. Such a machine augments the more traditional non- 
deterministic Turing Machine with a probability distribution associated with 
each state transition, e.g. by providing the machine with a tape, randomly 
filled with symbols [28]. If all choice points are binary and the probability of 
each transition is 2 , then the m ajority  of the computation paths accept a string 
s if and only if s € L. This majority, however, is not fixed and may depend 
on the input, e.g., a problem in PP may accept ‘yes’-instances with size n with 
probability 1 +  . This makes problems in PP intractable in general, in contrast 
to the related complexity class BPP which is associated with problems which 
allow for efficient randomized computation. BPP, however, accepts ‘yes’-inputs 
with a bounded majority (say |  ). This means we can amplify the probability of 
a correct answer arbitrary close to one by running the algorithm a polynomial 
amount of times and taking a majority vote on the outcome. This approach 
failes for unbounded majorities as 1 as allowed by the class PP: here an
exponential number of simulations (with respect to the input size) is needed to 
meet a constant treshhold on the probability.

The canonical PP-complete problem is Ma jsa t : given a Boolean formula 4, 
does the majority of the truth instantiations satisfy 4? Indeed it is easily shown 
that Majsat  encodes Sa tisfia bility : take a formula 4  with n variables and 
construct ^ =  4  V x n+1. Now, the majority of truth assignments satisfy ^ if 
and only if 4  is satisfiable, thus NP Ç PP. In the field of probabilistic networks, 
the problem of determining whether the probability P r(X  =  x) >  q (known as 
the Inference  problem) is PP-complete.

A Turing Machine M  has oracle access to languages in the class A, denoted 
as M A , if it can “query the oracle” in one state transition, i.e., in O(1). We 
can regard the oracle as a ‘black box’ that can answer membership queries in 
constant time. For example, NPpp is defined as the class of languages which are 
decidable in polynomial time on a non-deterministic Turing Machine with ac­
cess to an oracle deciding problems in PP. Informally, computational problems 
related to probabilistic networks that are in NPpp typically combine some sort 
of selecting with probabilistic inference. The canonical NPPP-complete satisfia­
bility variant is E -M a jsa t: given a formula 4  with variable sets X 1 . . .  X k and 
X k+1. . .  X n , is there an instantiation to X 1 . . .  X k such that the majority of the 
instantiations to X k+1 . . .  X n satisfy 4? Likewise, PNP and Ppp denote classes 
of languages decidable in polynomial time on a deterministic Turing Machine 
with access to an oracle for problems in NP and PP, respectively. The canonical 
satisfiability variants for PNP and Ppp are L e x S a t  and M id S a t (given 4, what

2.2 C om putational C om plexity
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is the lexicographically first, respectively middle, satisfying truth assignment). 
These classes are associated with finding optimal solutions or enumerating so­
lutions.

In complexity theory, we are often interested in decision problems, i.e., prob­
lems for which the answer is yes or no . Well-known complexity classes like P 
and NP are defined for decision problems and are formalized using Turing Ma­
chines. In this paper we will also encounter function problems, i.e., problems 
for which the answer is a function of the input. For example, the problem of 
determining whether a solution to a 3 S a t instance exists, is in NP; the problem  
of actually finding such a solution is in the corresponding function class FNP. 
Function classes are defined using Turing Transducers, i.e., machines that not 
only halt in an accepting state on a satisfying input on its input tape, but also 
return a result on an output tape.

A problem is called fixed param eter tractable for a parameter l [26] if it can 
be solved in time, exponential only in l and polynomial in the input size n, 
i.e. when the running time is O ( f  (l) • n c) for an arbitrary function f  and a 
constant c, independent of n. In practice, this means that problem instances 
can be solved efficiently, even when the problem is NP-hard in general, if l is 
known to be small. If an NP-hard problem n  is fixed param eter tractable for a 
parameter l then l is denoted a source of complexity of n  [18].

3 C om putational C om plexity
The problem of finding the most probable explanation for a set of variables 
in Bayesian networks has been discussed in the literature using many names, 
like Most Probable Explanation (MPE) [29], Maximum Probability Assignment 
(MPA) [30], Scenario-Based Explanation [31], (Partial) Abductive Inference or 
Maximum A Posteriori hypothesis (MAP) [32]. MAP also doubles to denote 
the set of variables for which an explanation is sought [30]; for this set, also the 
term explanation se t is coined [32]. In recent years, more or less consensus is 
reached to use the terms MPE and Partial MAP to denote the problem with full, 
respectively partial evidence. We will use the term explanation set to denote the 
set of variables to be explained, and intermediate nodes to denote the variables 
that constitute neither evidence nor the explanation set. The formal definition 
of the canonical variants of these problems is as follows.
M PE
In sta n ce: A probabilistic network B =  (G, r ) , where V  is partitioned into a 
set of evidence nodes E  with a joint value assignment e, and an explanation 
set M .
O u tp u t: The most probable joint value assignment m  to the nodes in M  with 
evidence e, or ±  if Pr(m , e) =  0 for every joint value assignment m  to M .
P artial M A P
In sta n ce: A probabilistic network B =  (G, r ) , where V  is partitioned into a 
set of evidence nodes E  with a joint value assignment e, a set of intermediate
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nodes I, and an explanation set M .
O u tp u t: The most probable joint value assignment m  to the nodes in M  
given evidence e, or ±  if Pr(m  | e) =  0 for every joint value assignment m  to 
M .

We assume that the problem instance is encoded using a reasonable encoding 
as is customary in computational com plexity theory. For example, we expect 
that numbers are encoded using binary notation (rather than unary), that prob­
abilities are encoded using rational numbers, and that the number of values for 
each node in the network is bounded. In principle, it is possible to “cheat” on 
the complexity results by completely discarding the structure in a network B 
and encode n stochastic binary variables using a single node with 2n values that 
each represent a particular joint value assignment in the original network. The 
CPT of this node in the thus created network B' (and thus the input size of the 
problem) is exponential in the number of variables in the original network, and 
thus many computational problems will run in time, polynomial in the input 
size, which of course does not reflect the actual intractability of this approach.

In the next sections we will discuss the complexity of M PE and P a r t ia l  
M A P, respectively. We then enhance both problems to enumeration  variants: 
instead of finding the most probable assignment to the explanation set, we are 
interested in the complexity of finding the k-th most probable assignment for 
arbitrary values of k. Lastly, we discuss the complexity of approximating M PE  
and P a r t ia l  M A P and their parameterized  complexity.

4 M P E  and variants
Shimony [33] first addressed the complexity of the M PE  problem. He showed 
that the decision variant of M PE  was NP-complete, using a reduction from 
V ertex  C o v er . As already pointed out by Shimony, reductions from several 
problems are possible, yet using V ertex  C over  allows particular constraints 
on the structure of the network to be preserved. In particular, it was shown 
that M P E  remains NP-hard, even if all variables are binary and both indegree 
and outdegree of the nodes is at most two [33].

An alternative proof, using a reduction from Satisfiability , will be given 
below. In this proof, we need to relax the constraint on the outdegree of the 
nodes, however, in this variant M PE  remains NP-hard when all variables have 
either uniformly distributed prior probabilities (i.e., Pr(V =  t r u e ) =  Pr(V  =  
false) =  1 ) or have deterministic conditional probabilities (Pr(V  =  true  | 
n (V )) is either 0 or 1). The main merit of this alternative proof is, however, 
that a reduction from Satisfiability  may be more familiar for readers not 
acquainted with graph problems. We first define the decision variant of M PE:
M P E -D
In sta n ce: A probabilistic network B =  (G, r ) , where V  is partitioned into a 
set of evidence nodes E  with a joint value assignment e, and an explanation 
set M; a rational number 0 <  q <  1.
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Figure 4: The probabilistic network corresponding to —(X 1 V X 2) A —X 3

Q u estio n : Is there a joint value assignment v  to the nodes in M  with 
evidence e  with probability Pr(v, e) >  q?

Let 4  be a Boolean formula with n variables. We construct a probabilistic 
network B^ from 4  as follows. For each propositional variable X i in 4, a binary 
stochastic variable X i is added to B^, with possible values t r u e  and f a l s e  and 
a uniform probability distribution. These variables will be denoted as truth- 
setting variables X . For each logical operator in 4, an additional binary variable 
in B^ is introduced, whose parents are the variables that correspond to the input 
of the operator, and whose conditional probability table is equal to  the truth 
table of that operator. For example, the value t r u e  of a stochastic variable 
mimicking the and-operator would have a conditional probability of 1 if and only 
if both its parents have the value t r u e ,  and 0 otherwise. These variables will 
be denoted as truth-maintaining variables T . The variable in T  associated with 
the top-level operator in 4  is denoted as V^. The explanation set M  is V  \  V0. 
In Figure 4 the network B^ex is shown for the formula 4 ex =  — (X 1 V X 2) A —X 3.

Now, for any particular truth assignment x  to the set of truth-setting vari­
ables X  in the formula 4  we have that the probability of the value t r u e  of V0, 
given the joint value assignment to the stochastic variables matching that truth 
assignment, equals 1 if x  satisfies 4, and 0 if x  does not satisfy 4. W ith evi­
dence V  ̂ =  t r u e ,  the probability of any joint value assignment to M  is 0 if the 
assignment to X  does not satisfy 4, or the assignment to T  does not match the 
constraints imposed by the operators. However, the probability of any satisfying 
(and matching) joint value assignment to M  is , where # 0  is the number of 
satisfying truth assignments to 4 . Thus there exists an instantiation m  to M  
such that Pr(m , V0 =  t r u e )  >  0 if and only if 4  is satisfiable. Note that the 
above network B^ can be constructed from 4  in polynomial time.
R e su lt  4 .1 . M PE -D  is NP-complete, even when all variables are binary, the 
indegree of all variables is a t m ost two, and either the outdegree of all variables is
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two or the probabilities of all variables are determ inistic or uniformly distributed. 
C o ro lla ry  4 .2 . M PE  is NP-hard under the same constraints as above.

The exact complexity of the functional variant of M PE  is discussed in [34]. 
The proof uses a similar construction as above, however, the prior probabilities 
of the truth-setting variables is not uniform, but depends on the index of the 
variable. More in particular, the prior probabilities p 1, . . .  , pi , . . .  ,p n for the 
variables X 1, . . . ,  X i , . . . ,  X n are such that p i =  2 — Iñ+r. This ensures that a 
joint value assignment x  to X  is more probable than x' if and only if the corre­
sponding truth assignment x^ to X 1, . . . ,  X n is lexicographically ordered before 
x0. Using this construction, Kwisthout [34] reduced M PE  from the L e x S a t-  
problem of finding the lexicographically first satisfying truth assignment to a 
formula 4 . This shows that M PE  is FPnp-complete and thus in the same com­
plexity class as the functional variant of the T r a v e l in g  SALESMAN-problern
[35].
R e su lt  4 .3  ([34]). M PE  is FPnp-complete, even when all variables are binary 
and the indegree of all variables is at m ost two.

Kwisthout [34, p. 70] furthermore argued that the proposed decision variant 
M P E -D  does not capture the essential complexity of the functional problem, 
and suggested the alternative decision variant M PE-D': given B and a desig­
nated variable M  € M  with designated value m, does M  have the value m in 
the most probable joint value assignment m  to M ? This problem turns out to 
be PNP-complete, using a reduction from the decision variant of L exSa t .
R e su lt  4 .4  ([34]). M P E -D ' is PNP-complete, even when all variables are bi­
nary and the indegree of all variables is at m ost two.

Bodlaender et al. [30] used a reduction from 3 S a t in order to prove a num­
ber of complexity results for related problem variants. A 3 S a t  instance (U, C ), 
where U denotes the variables and C the clauses, was used to construct a prob­
abilistic network B(UC) with explanatory set X  U Y . The construction was 
such that for any joint value instantiation x  to X  U Y  that set Y  to t r u e ,  x  
was the most probable explanation for B(UC) if (U, C ) was not satisfiable, and 
the second most probable explanation if if (U, C ) was satisfiable. Using this 
construction, they proved (among others) the following complexity results.
R e su lt  4 .5  ([30]). The IS-AN-MPE problem (given a network B =  (G, r ) ,  an 
explanatory set M , evidence e , and an jo in t value assignment m  to M : is m  
the m ost probable jo in t value assignment1 to M ) is co-NP-complete.
R e su lt  4 .6  ([30]). The BETTER-MPE problem (given a network B =  (G, r ) ,  
an explanatory set M , evidence e, and an jo in t value assignment m  to M : find 
a jo in t value assignment m' to M  which has a higher probability than to m )  is 
NP-hard.

1Or one of the most probable assignments in case of a tie.
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5 Partial M A P
Park and Darwiche [36] showed that the decision variant of Partial  M A P is 
NPPP-complete, using a reduction from Majsat  (given a Boolean formula 4  
partitioned in two sets X a  and X B : is there an truth instantiation to X a  such 
that the majority of the truth instantiations to X B satisfies 4?). The proof 
structure is similar to the hardness proof of M PE, however, the nodes model­
ing truth setting variables are partitioned into the evidence set X a  and a set 
of intermediate variables X B . Furthermore, q is set to 2. Using this structure 
NPPP-completeness is proven with the same constraints on the network struc­
ture as in Result 4.1. However, Park and Darwiche also prove a considerably 
strengthened theorem, using an other (and notably more technical) proof:
R e su lt  5 .1  ([36]). P a r t i a l  M A P -D  remains NPpp-complete when the network 
has depth 2, there is no evidence, all variables are binary, and all probabilities 
lie in the interval [ 1  — e, 1  +  e] for any fixed e >  0 .

Park and Darwiche [36] show that a number of restricted problem variants 
remain hard. If there are no intermediate variables, the problem degenerates to 
M PE-D  and thus remains NP-complete. On the other hand, if the explanation 
set is empty, then the problem degenerates to Inference  and thus remains 
PP-complete. If the number of variables in the explanation set is logarithmic 
in the total number of variables the problem is in Ppp since we can iterate over 
all joint value assignments of the explanation set in polynomial time and infer 
the joint probability using an oracle for In fe r e n c e . If the number of inter­
mediate variables is logarithmic in the total number of variables the problem  
is in NP since we can verify in polynomial time whether the probability of any 
given assignment to the variables in the explanation set exceeds the threshold, 
by summing over the polynomially bounded number of joint value assignments 
of the other variables. However, when the number of variables in the explana­
tion set or the number of intermediate variables is O (ne) the problem remains 
NPPP-complete, since we can ‘blow up’ the general proof construction with a 
polynomial number of unconnected and deterministic dummy variables such 
that these constraints are met. Lastly, the problem remains NP-complete when 
the network is restricted to a polytree.
R e su lt  5 .2  ([36]). P a r t i a l  M A P -D  remains NP-complete when restricted to 
polytrees.

It follows as a corollary that the functional problem variant Partial  M A P  
is NPPP-hard in general with the same constraints as the decision variant. In 
addition, Kwisthout [34] shows that Partial M A P is FPNpPP-complete and 
remains FPNP-complete on polytrees. This result shares the constraints with 
Result 4.3.
R e su lt  5 .3  ([34]). P a r t i a l  M A P is FPnp -complete, even when all variables 
are binary and the indegree of all variables is at m ost two.
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R e su lt  5 .4  ([34]). P a r t ia l  M A P remains FPnp-complete on polytrees, even 
when all variables are binary and the indegree of all variables is at m ost two.

Some variants of Partial M A P can be formulated. For example, in [37] the 
C ond  M A P-D  problem was defined as follows: Given a probabilistic network 
B =  (G , r ) , with explanation set M  and designated variable C with designated 
value c, and a rational number q; is there a joint value assignment m  to M  such 
that Pr(C  =  c| m ) >  q?

It can be easily shown that the hardness proofs of Park and Darwiche [36] 
for Partial M A P-D  can also be applied, with trivial adjustments, to C ond 
M A P-D .
R e su lt  5 .5  ([37, 36]). C on d  M A P -D  is NPpp-complete, even when all vari­
ables are binary and the indegree of all variables is at m ost two.
R e su lt  5 .6 . C ond  M A P -D  remains NP-complete on polytrees, even when all 
variables are binary and the indegree of all variables is at m ost two.

6 Enum eration variants
In practical applications, one often wants to  find a number of different joint value 
assignments with a high probability, rather than just the most probable one [38, 
39]. For example, in medical applications, one wants to suggest alternative (but 
also likely) explanations to a set of observations. One might like to prescribe 
medication that treats a number of plausible (combinations of) diseases, rather 
than just the most probable combination. It may also be useful to examine 
the second-best explanation to gain insight in how good the best explanation is, 
relative to other solutions, or how sensitive it is to changes in the parameters of 
the network [40].

Kwisthout [41] addressed the computational complexity of M PE  and Pa r ­
tial  M A P when extended to the k-th most probable explanation, for arbitrary 
values of k. The construction for the hardness proof of K th M PE is similar 
to that of Result 4.3, however, the reduction is made from K t h Sat (given a 
Boolean formula 4, what is the lexicographically k-th satisfying truth assign­
ment?) rather than Le x Sa t . It is thus shown that K th M PE  is FPPP-complete 
and has a PPP-complete decision variant, even if all nodes have indegree at 
most two. Finding the k-th MPE is thus considerably harder (i.e., complexity- 
wise) than M PE , and also harder than the PP-complete iNFERENCE-problem 
in Bayesian networks. The computational power of Ppp and FPpp (and thus the 
intractability of K th M PE) is illustrated by Toda’s theorem [42] which states 
that Ppp includes the entire Polynomial Hierarchy (PH).
R e su lt  6 .1  ([41]). K th  M PE  is FPpp-complete and has a Ppp-complete deci­
sion variant, even if  all nodes have indegree at m ost two.

The K th P artial M AP-problem is even harder than that, under usual
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assumptions2 in complexity theory. Kwisthout proved [41] that a variant of the 
problem with bounds on the probabilities (B o u n d ed  K th  P a r t ia l  M A P) is 
FPPPPP -complete and has a PPPPP -complete decision variant, using a reduction 
from the KTHNumSAT-problem (given a Boolean formula 4  whose variables are 
partitioned in two subsets X a  and X B and an integer l, what is the lexico­
graphically k-th satisfying truth assignment to X a  such that exactly l truth 
assignments to X B satisfy 4?). The proof of Park and Darwiche [36] that shows 
that P a r t ia l  M A P remains NP-complete on polytrees, mentioned in the previ­
ous section, can be easily modified to reduce K th  P a r t ia l  M A P on polytrees 
from the FPPP-complete problem K th 3 S a t  [44], hence finding the k-th Partial 
MAP on polytrees remains FPPP-complete.
R e su lt  6 .2  ([41]). K th  P a r t ia l  M A P is FPpp -complete and has a Ppp - 
complete decision variant, even if  all nodes have indegree at m ost two.
R e su lt  6 .3  ([41]). K th  P a r t ia l  M A P remains FPpp-complete on polytrees, 
even if  all nodes have indegree at m ost two.

7 A pproxim ation R esults
While sometimes NP-hard problems can be efficiently approximated in polyno­
mial time (e.g., algorithms exist that find a solution that may not be optimal, 
but nevertheless is guaranteed to be within a certain bound), no such algo­
rithms exist for the M PE  and P a r t ia l  M A P problems. In fact, Abdelbar and 
Hedetniemi showed that there can not exist an algorithm that is guaranteed 
to find a joint value assignment within any fixed bound of the most probable 
assignment, unless P =  NP [45]. That does not imply that heuristics play no 
role in finding assignments; however, if no further restrictions are assumed on 
the graph structure or probability distribution, no approximation algorithm is 
guaranteed to find a solution (in polynomial time) that has a probability of at 
least 1  times the probability of the best explanation, for any fixed r.

In fact, it can be easily shown that no algorithm can guarantee absolute 
bounds as well. As we have seen in Section 4, deciding whether there exist a 
joint value assignment with a probability larger than q is NP-hard for any q 
larger than 0. Thus, finding a solution which is ‘good enough’ is NP-hard in 
general, where ‘good enough’ may be defined as a ratio of the probability of the 
best explanation or as an absolute threshold.

Observe that M PE  is a special case of P a r t ia l  M A P, in which the set of 
intermediate variables I  is empty, and that the intractability of approximating 
M P E  extends to P a r t ia l  M A P. Furthermore, Park and Darwiche [36] proved 
that approximating P a r t i a l  M A P on polytrees within a factor of 2n is NP- 
hard for any fixed e, 0 <  e <  1 , where n is the size of the problem.
R e su lt  7 .1  ([45]). M PE  cannot be approximated within any fixed ratio unless 
P =  NP.

2To be more precise, the assumptions that the inclusions in the Counting Hierarchy [43] are strict.
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R e su lt  7 .2  ([33]). M PE  cannot be approximated within a fixed bound unless 
P =  NP.

8 F ixed Param eter R esults
In the previous sections we saw that finding the best explanation in a probabilis­
tic network is NP-hard and NP-hard to approximate as well. These intractability 
results hold in general, i.e., when no further constraints are put on the problem 
instances. However, polynomial-time algorithms are possible for M PE  if certain 
problem param eters are known to be small. In this section, we present known 
results and corollaries that follow from these results. In particular, we discuss 
the following parameters: probability ( P r o b a b i l i t y - l  M PE, P r o b a b i l i ty -  
l  P a r t ia l  M A P ), treewidth ( T r e e w id th - l  M PE, T r e e w id t h - l  P a r t ia l  
M A P), and, for P a r t ia l  M A P, the number of intermediate variables ( I n te r -  
m e d ia te - l  P a r t ia l  M A P). In all of these problems, the input is a probabilistic 
network and the parameter l as mentioned. Also, for the P a r t ia l  M A P vari­
ants combinations of these parameters will be discussed, in particular probability 
and treewidth ( P r o b a b i l i t y - l  T r e e w id th -m  P a r t ia l  M A P) and probabil­
ity and number of intermediate variables ( P r o b a b i l i t y - l  In term e d ia te -m  
P a r t i a l  M A P).

Bodlaender et al. [30] presented an algorithm to decide whether the most 
probable explanation has a probability larger than q, but where q is seen as a 
fixed parameter rather than part of the input. The algorithm has a running 
time of O (2 log 1-q • n), where n denotes the number of variables. When q is 
a fixed parameter (and thus assumed constant), this is linear in n; moreover, 
the running time decreases when q increases, thus for problem instances where 
the most probable explanation has a high probability, deciding the problem is 
tractable. The problem is easily enhanced to a functional problem variant where 
the most probable assignment (rather than true  or FALSE) is returned.
R e su lt  8 .1  ([30]). P r o b a b i l i t y - l  M PE  is fixed-parameter tractable.
C o ro lla ry  8 .2 . Finding the m ost probable explanation can be done efficiently 
i f  the probability of that explanation is high.

Sy [29] first introduced an algorithm for finding the most probable expla­
nation, based on junction tree techniques, which in multiply connected graphs 
runs in time, exponential only in the maximum number of node states of the 
compound variables. Since the size of the compound variables in the junction 
tree is equal to the treewidth of the network plus one, this algorithm is expo­
nentially only in the treewidth of the network3. Hence, if treewidth is seen as a 
fixed parameter, then the algorithm runs in polynomial time.

3Note that the number of values per variable may be high, thus rendering the algorithm intractable even for networks with low treewidth. However, the conditional probability distri­bution of each variable is part of the problem instance, so even when there are many values per variable, the algorithm still runs in time, polynomial in the input size.
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C o ro lla ry  8 .4 . Finding the m ost probable explanation can be done efficiently 
i f  the treewidth of the network is low.

Sy’s algorithm [29] in fact finds the k most probable explanations (rather 
than only the most probable) and has a running time of O(k • n |C|), where 
| C  | denotes the maximum number of node states of the compound variables. 
Since k may become exponential in the size of the network this is in general 
not polynomial, even with low treewidth; however, if k is regarded as parameter 
then fixed parameter tractability follows as a corollary.
R e su lt  8 .5  ([29]). T r e e w id t h - l  K th  M PE  is fixed-parameter tractable.
C o ro lla ry  8 .6 . Finding the k-th m ost probable explanation can be done effi­
ciently if  both k and the treewidth of the network are low.

When we consider Partial M A P then restricting either the probability or 
the treewidth is insufficient to render the problem tractable. This latter result 
follows from the NP-completeness result of Park and Darwiche [36] for Partial 
M A P restricted to polytrees with at most 2 parents per node, i.e., networks 
with treewidth at most 2. Furthermore, it is easy to see that deciding Partial 
M A P includes solving the Inference  problem, even if l, the probability of 
the most probable explanation, is very high. Assume we have a network B 
with designated binary variable V . Deciding whether Pr(V  =  tr u e ) >  2 is 
PP-complete in general (see e.g. [34, p.19-21] for a completeness proof, using a 
reduction from M a jsa t ). We now add a binary variable C to our network, with 
V as its only parent, and probability table Pr(C =  true  | V  =  t r u e ) =  l +  e 
and Pr(C  =  true  | V  =  false) =  l — e for an arbitrary small value e. Now, 
Pr(C  =  t r u e ) >  l if and only if Pr(V =  tr u e ) >  2, so determining whether 
the most probable explanation of C has a probability larger than l boils down 
to deciding Inference  which is PP-complete.
R e su lt  8 .7  ([36]). T r e e w id t h - l  P a r t i a l  M A P is NP-complete for  l >  2.
R e su lt  8 .8 . P r o b a b i l i t y - l  P a r t ia l  M A P is PP-complete independent of the 
probability I of the m ost probable explanation.

However, the algorithm of Bodlaender et al. [30] can be adapted to find par­
tial MAPs as well. The algorithm iterates over a topological sort 1 , . . . ,  i , . . . ,  n 
of the nodes of the network. At one point, the algorithm computes Pr(V¿+ 1 1 v) 
for a particular joint value assignment v  to V1, . . . ,  V¿. In the paper it is con­
cluded that this can be done in polynomial time since all values of V1 , . . . , Vi are 
known at iteration step i. To obtain an algorithm for finding partial MAPs, we 
just skip any iteration step i if Vi is an intermediate variable, and we compute 
P r(V + 1) by computing the probability distribution over the ‘missing’ values V¿. 
This can be done in polynomial time if either the number of intermediate vari­
ables is fixed or the treewidth of the network is fixed. A similar result can be 
shown for the C on d  M A P problem variant.

R e su lt  8 .3  ([29]). T r e e w i d t h - l  M PE  is fixed-parameter tractable.
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R e su lt  8 .9  (a d a p te d  from  [30]). P r o b a b i l i t y - l  T r e e w id th -m  P a r t ia l  
M A P and P r o b a b i l i t y - l  In term e d ia te -M  P a r t ia l  M A P are fixed-parameter 
tractable.
C o ro lla ry  8 .1 0 . Finding the P artia l M A P can be done efficiently if  both the 
probability of the m ost probable explanation is high, and either the treewidth of 
the network or the number of intermediate variables is low.

9 C onclusion
Inference of the most probable explanation is hard in general. Approximating 
the most probable explanation is hard as well. Furthermore, various problem  
variants, like finding the k-th MPE, finding a better explanation than the one 
that is given, and finding best explanations when not all evidence is available is 
hard. Many problems remain hard under severe constraints.

However, this need not to be ‘all bad news’ for the computational modeler. 
M P E  is tractable when the probability of the most probable explanation is 
high or when the treewidth of the underlying graph is low. P a r t ia l  M A P  
is tractable when both constraints are met, to name a few examples. The 
key question for the modeler is: are these constraints plausible with respect 
to the phenomenon one wants to  model? Is it reasonable to suggest that the 
phenomenon does not occur when the constraints are violated? For example, 
when cognitive processes like goal inference are modeled as finding the most 
probable explanation of a set of variables given partial evidence, is it reasonable 
to suggest that humans have difficulty inferring actions when the probability of 
the most probable explanation is low, as suggested by [19]?

We do not claim to have answers to such questions. However, the overview 
of known results in this paper may aid the computational modeler in finding 
potential sources of intractability. Whether the outcome is received as a bless­
ing (because empirical results may confirm  those sources of intractability, thus 
attributing more credibility to the model) or a curse (because empirical results 
refute those sources of intractability, thus providing counterexamples to the 
model) is beyond our control.

A cknow ledgem ents
The author has been supported by the OCTOPUS project under the responsi­
bility of the Embedded Systems Institute. This project is partially supported 
by the Netherlands Ministry of Economic Affairs under the Embedded Systems 
Institute program. The author wishes to thank Iris van Rooij and Hans Bod- 
laender for valuable suggestions on earlier versions of this paper.

16



R eferences
[1] Lucas, P. J. F., de Bruijn, N., Schurink, K., and Hoepelman, A. (2000) A 

probabilistic and decision-theoretic approach to the management of infec­
tious disease at the ICU. Artificial Intelligence in Medicine, 3, 251-279.

[2] van der Gaag, L. C., Renooij, S., W itteman, C. L. M., Aleman, B. M. P., 
and Taal, B. G. (2002) Probabilities for a probabilistic network: a case 
study in oesophageal cancer. Artificial Intelligence in Medicine, 25, 123­
148.

[3] Wasyluk, H., Onisko, A., and Druzdzel, M. J. (2001) Support of diagnosis of 
liver disorders based on a causal Bayesian network model. Medical Science 
Monitor, 7, 327-332.

[4] Geenen, P. L., Elbers, A. R. W., van der Gaag, L. C., and van der Lo- 
effen, W. L. A. (2006) Development of a probabilistic network for clinical 
detection of classical swine fever. Proceedings of the Eleventh Symposium  
of the International Society for Veterinary Epidemiology and Economics, 
pp. 667-669.

[5] Kennett, R. J., Korb, K. B., and Nicholson, A. E. (2001) Seabreeze predic­
tion using Bayesian networks. In Cheung, D. W.-L., Williams, G. J., and 
Li, Q. (eds.), Proceedings of the Fifth Pacific-Asia Conference on Advances 
in Knowledge Discovery and Data Mining, pp. 148-153. Springer Verlag, 
Berlin.

[6] Cofino, A. S., Cano, R., Sordo, C., and Gutierrez, J. M. (2002) Bayesian 
networks for probabilistic weather prediction. In van Harmelen, F. (ed.), 
Proceedings of the Fifteenth European Conference on Artificial Intelligence, 
pp. 695-699. IOS Press, Amsterdam.

[7] Demirer, R., Mau, R., and Shenoy, C. (2006) Journal of applied finance. 
Bayesian Networks: A Decision Tool to Improve Portfolio Risk Analysis, 
16, 106-119.

[8] Gemela, J. (2001) Financial analysis using Bayesian networks. Applied 
Stochastic Models in Business and Industry, 17, 57-67.

[9] Kragt, M. E., Newhama, L. T. H., and Jakemana, A. J. (2009) A Bayesian 
network approach to integrating economic and biophysical modelling. In 
Anderssen, R. S., Braddock, R. D., and Newham, L. T. H. (eds.), Pro­
ceedings of the 18th World IM ACS /  M ODSIM  Congress on Modelling and 
Simulation, pp. 2377-2383.

[10] Nedevschi, S., Sandhu, J. S., Pal, J., Fonseca, R., and Toyama, K. (2006) 
Bayesian networks: an exploratory tool for understanding ICT adoption. 
Proceedings of the International Conference on Inform ation and Commu­
nication Technologies and Development, pp. 277-284.

17



[11] Baker, C. L., Saxe, R., and Tenenbaum, J. B. (2009) Action understanding 
as inverse planning. Cognition, 113, 329-349.

[12] Yuille, A. and Kersten, D. (2006) Vision as Bayesian inference: analysis by 
synthesis? TRENDS in Cognitive Sciences, 10, 301-308.

[13] N. Chater, J. B. T. and Yuille, A. (2006) Probabilistic models of cognition: 
Conceptual foundations. TRENDS in Cognitive Sciences, 10, 287-291.

[14] P.Gardenfors (1988) Knowledge in Flux: Modeling the Dynam ics of Epis- 
temic States. MIT Press, Cambridge, MA.

[15] Pearl, J. (1988) Probabilistic Reasoning in Intelligent System s: Networks 
of Plausible Inference. Morgan Kaufmann, Palo Alto, CA.

[16] Poole, D. and Provan, G. M. (1990) W hat is the most likely diagnosis? In 
Bonissone, P., Henrion, M., Kanal, L., and Lemmer, J. (eds.), Proceedings 
of the Sixth Annual Conference on U ncertainty in Artificial Intelligence, 
pp. 89-106. Elsevier Science, New York, NY.

[17] Chajewska, U. and Halpern, J. (1997) Defining explanation in probabilistic 
systems. In Geiger, D. and Shenoy, P. (eds.), Proceedings of the Thirteenth  
Conference on Uncertainty in Artificial Intelligence, pp. 62-71. Morgan 
Kaufmann, San Francisco, CA.

[18] van Rooij, I. and Wareham, T. (2008) Parameterized complexity in cogni­
tive modeling: Foundations, applications and opportunities. The Computer 
Journal, 51, 385-404.

[19] Blokpoel, M., Kwisthout, J., van der Weide, T. P., and van Rooij, I. 
(2010) How action understanding can be rational, Bayesian and tractable. 
Manuscript under review for Proceedings of CogSci2010.

[20] Lacave, C. and Diez, F. J. (2002) A review of explanation methods for 
Bayesian networks. The Knowledge Engineering Review, 17, 107-127.

[21] Jensen, F. V. and Nielsen, T. D. (2007) Bayesian Networks and Decision  
Graphs, second edition. Springer Verlag, New York, NY.

[22] Robertson, N. and Seymour, P. D. (1986) Graph minors II: Algorithmic 
aspects of tree-width. Journal of Algorithms, 7, 309-322.

[23] Kloks, T. (1994) Treewidth LNCS 842. Springer-Verlag, Berlin.
[24] Garey, M. R. and Johnson, D. S. (1979) Computers and Intractability. A 

Guide to the Theory of NP-Completeness. W. H. Freeman and Co., San 
Francisco, CA.

[25] Papadimitriou, C. H. (1994) Computational Complexity. Addison-Wesley.

18



[26] Downey, R. G. and Fellows, M. R. (1999) Param eterized complexity. 
Springer Verlag, Berlin.

[27] Cooper, G. F. (1984) NESTOR: A computer-based medical diagnostic aid 
that integrates causal and probabilistic knowledge. Technical Report HPP- 
84-48. Stanford University.

[28] Gill, J. T. (1977) Computational com plexity of Probabilistic Turing Ma­
chines. SIA M  Journal of Computing, 6 .

[29] Sy, B. K. (1992) Reasoning MPE to multiply connected belief networks 
using message-passing. In Rosenbloom, P. and Szolovits, P. (eds.), Pro­
ceedings of the Tenth National Conference on Artificial Intelligence, pp. 
570-576. AAAI Press, Arlington, Va.

[30] Bodlaender, H. L., van den Eijkhof, F., and van der Gaag, L. C. (2002) 
On the complexity of the MPA problem in probabilistic networks. In van 
Harmelen, F. (ed.), Proceedings of the 15th European Conference on A rti­
ficial Intelligence, pp. 675-679.

[31] Henrion, M. and Druzdzel, M. J. (1990) Qualitative propagation and 
scenario-based approaches to explanation of probabilistic reasoning. In 
Bonissone, P., Henrion, M., Kanal, L., and Lemmer, J. (eds.), Proceedings 
of the Sixth Conference on Uncertainty in Artificial Intelligence, pp. 10-20. 
Elsevier Science, New York, NY.

[32] Neapolitan, R. E. (1990) Probabilistic Reasoning in Expert Systems. Theory 
and Algorithms. W iley/Interscience, New York, NY.

[33] Shimony, S. E. (1994) Finding M APs for belief networks is NP-hard. A rti­
ficial Intelligence, 6 8 , 399-410.

[34] Kwisthout, J. (2009) The Computational Complexity of Probabilistic Net­
works. PhD thesis Faculty of Science, Utrecht University, The Netherlands.

[35] Krentel, M. W. (1988) The complexity of optimization problems. Journal 
of Computer and System  Sciences, 36, 490-509.

[36] Park, J. D. and Darwiche, A. (2004) Complexity results and approximation 
settings for MAP explanations. Journal of Artificial Intelligence Research, 
21, 101-133.

[37] Chickering, M. and Halpern, J. (eds.) (2004) M onotonicity in Bayesian  
Networks. Arlington: AUAI press.

[38] Santos, E. (1991) On the generation of alternative explanations with impli­
cations for belief revision. In D ’Ambrosio, B., Smets, P., and Bonissone, P. 
(eds.), Proceedings of the Seventh Conference on Uncertainty in Artificial 
Intelligence, pp. 339-347. Morgan Kaufmann, San Mateo, CA.

19



[39] Charniak, E. and Shimony, S. E. (1994) Cost-based abduction and MAP 
explanation. Artificial Intelligence, 6 6 , 345-374.

[40] Chan, H. and Darwiche, A. (2006) On the robustness of most probable ex­
planations. Proceedings of the 22nd Conference on Uncertainty in Artificial 
Intelligence, pp. 63-71.

[41] Kwisthout, J. (2008) Complexity results for enumerating MPE and Partial 
MAP. In Jaeger, M. and Nielsen, T. (eds.), Proceedings of the Fourth 
European Workshop on Probabilistic Graphical Models, pp. 161-168.

[42] Toda, S. (1991) PP  is as hard as the polynomial-time hierarchy. SIAM  
Journal of Computing, 20, 865-877.

[43] Torán, J. (1991) Complexity classes defined by counting quantifiers. Jour­
nal of the ACM, 38, 752-773.

[44] Toda, S. (1994) Simple characterizations of P (# P )  and complete problems. 
Journal of Com puter and System  Sciences, 49, 1-17.

[45] Abdelbar, A. M. and Hedetniemi, S. M. (1998) Approximating MAPs for 
belief networks is NP-hard and other theorems. Artificial Intelligence, 102, 
21-38.

20


