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Abstract
The cerebrospinal fluid (CSF) system provides nutrients to and removes waste products from the brain. Recent 
findings suggest, however, that in addition, the CSF contains message molecules in the form of actively released 
neuroactive substances. The concentrations of these vary between locations, suggesting they are important for the 
changes in brain activity that underlie different brain states, and induce different sensory input and behavioral out
put relationships.
The cranial CSF displays a rapid caudally-directed ventricular flow followed by a slower rostrally-directed subarach
noid flow (mainly towards the cribriform plate and from there into the nasal lymphatics). Thus, many brain areas 
are exposed to and can be influenced by substances contained in the CSF. In this review we discuss the produc
tion and flow of the CSF, including the mechanisms involved in the regulation of its composition. In addition, the 
available evidence for the release of neuropeptides and other neuroactive substances into the CSF is reviewed, 
w ith particular attention to the selective effects of these on distant downstream receptive brain areas. As a conclu
sion we suggest that (1) the flowing CSF is involved in more than just nutrient and waste control, but is also used 
as a broadcasting system consisting of coordinated messages to a variety of nearby and distant brain areas; (2) this 
special form of volume transmission underlies changes in behavioral states.
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Introduction
Behavioral observations as well as modern imaging tech
niques show that brain activity is an input-output pro
cess that depends on the physiological or behavioral 
state of the animal or subject. A state is a well-known 
concept in mathematical system theory and in computer 
science. A machine, but for that matter also an organ
ism or even a human, is at moment t1 in the same state 
as at moment t2, if for all possible input, the resulting 
internal and external reactions are the same. The states 
will be different if there is a particular input resulting in 
different reactions. Of course, the collection of all possi
ble input (and also reactions) is huge and in a particular 
scientific discipline one restricts oneself to a set of rele
vant inputs and reactions. Many well-known examples 
of states come from animal observations, and have been 
described as motivational, emotional and mental states, 
or simply brain states in animal and human behavioral 
studies [1-5] and in a phenomenological study [6].

Changes in behavioral states, which induce adaptive 
physiological mechanism s, require a com plex
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rearrangement of neural activity in a wide variety of 
brain areas. The hypothalamus, embedded in the limbic 
system is strongly involved when a motivational state 
changes [3-5,7,8]. Other brain areas, such as cortical 
regions or spinal cord, must be involved as well, in 
order to accom plish coordinated adaptations in the 
neural (sensory, motor and autonomic) as well as hor
monal systems, that underlie goal-directed behavior.

Neural networks involved in the coordination of these 
changes are complex. Synaptic communication plays a 
role whenever rapid changes in neural activity are neces
sary. However, non-synaptic or paracrine communica
tion has been proposed as a mechanism to coordinate 
changes in neuronal activity in multiple brain regions, 
for a prolonged period of time [5,7-11]. These mechan
isms, synaptic and non-synaptic, may serve the same 
goal, however, and are usually well coordinated, comple
mentary and mutually supportive, as will be discussed 
later. All changes induced by these mechanisms can be 
viewed as basic requirements for motivational changes. 
Many neuropeptidergic fiber systems descend over long 
distances, are abundantly present in behavior-relevant 
brain areas, contain mostly unmyelinated varicose fibers 
and lack synaptic contacts [7-15]. This combination of 
characteristics puts these fibers in a most favourable 
position to participate in changing the weight factors in 
the neural network involved in maintaining or switching 
between behavioral states [4 ,5]. In 1985, Nieuwenhuys 
[9] wrote (p 197): "I concur with the opinion of Chan- 
Palay that the periventricular part of the neural extracel
lular space presumably communicates via ependymal 
elements with the ventricular system, which in its turn 
may also represent an important communication chan
nel, acting as a vehicle for widespread distribution of 
neuroactive substances". From 1986, the term volume 
transmission has been used for this type of non-synaptic 
communication [16-21].

Many descending fibers showing paracrine characteris
tics are observed close to the ventricular system  
[12,14,15,22], which raises the question as to how far 
the cerebrospinal fluid (CSF), flowing through the ven
tricular system and the subarachnoid space surrounding 
the brain, could be involved in behavioral changes. As 
early as 1910, Cushing and Goetsch [23] discussed the 
CSF circulation as a possible way to send messages to 
distant parts of the brain. Using CSF, obtained from 
patients with a brain tumour causing obstructive 
hydrops, strong physiological reactions were observed in 
rabbits after CSF injections. Later on, Cushing coined 
the term "third circulation" for the CSF flowing caudally 
through, as well as around, the CNS. In 1932 Friedman 
and Friedman investigated the effects of CSF oxytocin 
on rabbit uterus contractions and noted that the con
centrations were effective [24]. Many years later, Borison

et al. noted that "the simple concept that the subarach
noid space constitutes a catch basin for interstitial fluid 
is no longer tenable. Rather, the CSF of that space must 
be considered as being in dynamic chemical communi
cation with all parts of the central nervous system" [25]. 
In 1998 a special m eeting was held in Los Angeles 
about a possible role of CSF in spreading the messages 
and Nicholson reported on signals that go with the flow 
[26]. In the present review we explore the hypothesis 
that neuropeptides can be released into the CSF as mes
sages to flow with the fluid, in order to induce changes 
in motivational states, by influencing appropriate recep
tors in distant brain areas.

The reviewed data concerning the CSF flow and the 
distribution of messages support earlier proposals by 
Sewards and Sewards [27,28] concerning vasopressin 
and corticotrophin releasing factor (CRF). In a recent 
paper, the presence of neuroendocrine signalling mole
cules in the CSF, led to the conclusion that they play an 
active role in the function of the nervous system [29], in 
full agreement with our proposal.
Production and circulation of CSF
Anatomically, the ventricular system of the vertebrate 
brain develops from a simple elongated cavity inside the 
neural tube, into a highly complex structure, filled with 
CSF (Fig 1) [10,30]. Vigh and others have extensively 
studied the specialisations and CSF-contacting neurons 
com posing and surrounding the ventricular walls 
[31-35].

The CSF has an essentially unidirectional flow [36]; 
caudal through the ventricular system and in different 
directions through the cisternal subarachnoid spaces 
surrounding the brain, providing the brain with a pro
tective environment. The CSF can be characterized by 
its open com m unication with the extracellular fluid 
(ECF) of the neuropil, to such an extent that CSF has 
been described as a reservoir of cerebral ECF [37]. The 
intercellular junctions between the ependymal cells 
determine the extent of this communication, and there 
are many regional differences [32]. In addition, recent 
investigations suggest that this open communication is 
biased in the sense that CSF has rapid and widespread 
access to the ECF, causing local interstitial oedema 
when CSF-pressure is rising, like after acute hydroce
phalus [38,39]. In the opposite direction, however, only 
about 10 to 15% of the ECF drains into the CSF [40,41]. 
The intercellular junctions in the superficial and perivas
cular glial limiting membranes may play a role here by 
providing a separation between subarachnoid and peri
vascular CSF space and brain ECF.

Therefore, CSF-ECF exchange of neuroactive sub
stances is a variable and complicated process. Concen
trations vary over time and in addition there may be 
large regional concentration differences of substances.

http://www.cerebrospinalfluidresearch.com/content/7/1/1
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Figure 1 A schem atic  d iag ra m  o f  s tru c tu re s  and  specia lized  cell typ es b o rd e rin g  th e  d iffe re n t p arts  o f  th e  m a m m a lia n  v e n tr ic u la r  
system , and in  contact w ith  th e  cerebrosp inal f lu id  (CSF). The complexity o f the system suggests that CSF functions are not lim ited to 
metabolic support o f the brain and the release o f waste products. Abbreviations: CO: caudalopening o f the c e n tra lc a n a lo f the spinalcord;H: 
hypothalamic CSF-contacting neurons; HY: Hypophysis; LV: lateralventricle; ME: median eminence; O: vascular organ o f the term inallam ina; PIN: 
pinealorgan; R: raphe nuclei; RET: retina; RF: Reissner's fiber; SE: septalregion; SCO: subcommissuralorgan; SP: medullo-spinalCSF-contacting 
neurons; TEL: telencephalon; TF: te rm ina lfilum ; (Fig. 1 was kindly provided by Prof. B. Vigh. For details about specific celltypes, the reader is 
referred to: Vigh and Vigh-Teichmann, [31], and to Vigh et al, [32]).

Such differences arise following massive local release of 
substances in the brain, but exist in the CSF as well, 
where concentrations can vary by a factor of 10 in dif
ferent regions of the ventricular system [36,42].

CSF has a high salt concentration (>150 mmol/l) and 
low protein concentration (ca. 200-700 ^g protein/ml). 
It serves as a transport medium, carrying nutrients for 
cells and removing products of their metabolism. How
ever, CSF not only contains polypeptides which pass 
through the blood-brain barrier but also harbours pep
tides and proteins manufactured locally. The CSF pro
tein population differs in com position from that of 
plasma due to inherent CSF functions, such as ongoing 
proteolytic processes involved in cell surface remodeling, 
protein shedding, and synthesis of regulatory peptides

[36,43,44]. Blood-derived labelled proteins, administered 
peripherally, appear first in the lumbar CSF and only 
later in the cisternal or ventricular CSF [36], while their 
concentration remains highest in the lumbar subarach
noid space. The additional 20% of the CSF peptides are 
brain-derived, however, and have the highest concentra
tion in ventricular CSF steadily decreasing along the 
flow pathway through the subarachnoid space [36]. 
Apparently, gradients in CSF levels exist and concentra
tion differences of such peptides along the rostrocaudal 
axis of the central nervous system tell us something 
about their sources. In summary, the CSF shows an 
essentially unidirectional flow and may contain brain- 
derived peptides moving with the flow.

http://www.cerebrospinalfluidresearch.com/content/7/1/1
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Production and sources o f CSF
In the human brain, about 75% of CSF is secreted by the 
choroid plexuses inside the lateral ventricles [45]. The 
additional 25% is contributed by the ECF across the 
ependymal layer [46]. CSF production in the young 
human brain is about 500 ml/day or about 340 ^l/min 
[40 ,45]. This reduces to about 250 m l/day for the 
elderly, [47]. The adult brain contains a constant volume 
of about 140 ml of CSF, of which 30 ml occurs in the 
ventricles and about 110 ml in the subarachnoid spaces 
[40]. Therefore, human CSF is com pletely replaced 
about three times every 24 hours. In the young adult 
rat, which has about 200 ^l CSF, it takes about 2 hours 
to replace the CSF whereas in 30 month-old rats with 
300 l̂, it may take up to 8 hours for complete replace
ment [48].

The production of CSF is under control of factors 
working on both sides of the choroid plexus [29]. On 
the vascular or basal side of the epithelium, noradrener
gic and cholinergic nerves may exert direct control, 
diminishing or increasing production, respectively, as 
reviewed by Perez-Figares et al [46]. On the ventricular 
side substances present in the CSF may influence recep
tors on the apical surface of the choroid plexus epithe
lium. Serotonin, for example, is probably released into 
the CSF by the supraependymal plexus (see below) and 
regulates CSF production via binding to 5-HT2C recep
tors, thereby reducing CSF secretion. Similar mechan
ism s have been proposed to explain the effects of 
dopamine, norepinephrine, melatonin and several pep
tides, among them vasopressin (See [46] for review).

In addition, the composition of CSF is dependent on 
the activity of surrounding brain tissue [29,36] and on 
the activity of a specific circumventricular (CVO) organ, 
the subcommissural organ and Reissner's fiber complex 
(Fig 1) [49,50]. Reissner's fiber develops and extends 
from the subcommissural organ in a caudal direction, 
eventually reaching and even extending from the caudal 
tip of the central canal of the spinal cord (Fig 1) [51,52]. 
In the adult human brain, the subcommissural organ 
and Reissner's fiber can no longer be detected [52], sug
gesting that the fiber plays a special role during the 
development of the mammalian CNS [50]. This fiber is 
composed of aggregated glycoproteins and has the capa
city to bind substances present in the CSF and most 
probably affects the clearance of monoamines from the 
CSF [53,54].

The subcommissural organ itself is under serotonergic 
control [55], while the choroid plexus is under control 
of the autonomic nervous system, which in turn is con
trolled by a number of hypothalamic regions. These cir
cum stances make it clear that CSF production and 
composition is under the influence of an extensive set 
of regulatory brain mechanisms. In addition, changes in

CSF- and intracranial pressure or a developing hydroce
phalus seem to be involved in regulatory feedback con
trol mechanisms [56]. In summary, both the production 
and the composition of the CSF are controlled by a vari
ety of mechanisms.
Flow and destiny o f the CSF
CSF is constantly flowing inside the central nervous sys
tem, driven by the arterio-venous pressure gradient and 
the secretory processes at the choroid plexuses [36]. 
Two different kinds of flow, bulk flow and laminar flow, 
have to be distinguished, since the mechanisms are very 
different and probably subservient to very different 
functions.

The bulk of the CSF flows in a caudal direction via 
the third ventricle and the cerebral aqueduct to the 
fourth ventricle. From there it flows either via the lateral 
apertures of Luschka in all sub-primate vertebrates, and 
via the additional median aperture of Magendie in pri
mates only [57] into the subarachnoid space including 
cisternae magna and pontis, surrounding the brainstem 
[58,59]. Some flow may continue through the central 
canal of the spinal cord but most of the subarachnoid 
CSF flow apparently divides in the cisterna magna into a 
cortical, rostrally directed, and a lumbar, caudally direc
ted, component [36]. Inside the ventricular system, tur
bulences can occur at the entrance to the narrowest 
parts such as the cerebral aqueduct and central canal, 
which may hinder the flow of the CSF. Such turbulences 
are probably reduced by the presence of Reissner's fiber 
[60]. In the central canal of the rat spinal cord, CSF has 
been observed to continue flowing caudally at a speed 
of about 1 cm/min [60]. At the caudal tip of the spinal 
cord in the filum terminale, one opening (rat) or several 
openings (guinea pig, rabbit) (Fig 1) allow the CSF to 
access the subarachnoid space [61]. The CSF surround
ing the spinal cord may either rapidly re-enter the spinal 
cord and central canal via perivascular spaces [62], or 
leave perispinal spaces to be released into lymphatic or 
venous vessels [63]. Recent human studies suggest that 
spinal CSF absorption via perispinal spaces alongside 
the exiting spinal nerves may account for one third of 
total CSF absorbed in the resting state and considerably 
more in active individuals [45].

Concerning the cranial CSF surrounding the brain, 
m ost textbooks tell us that arachnoid granulations, 
penetrating the dura and extending into the superior 
sagittal sinus, compose the main outlet system for CSF 
absorption in the human. Recent animal investigations, 
however, have shown that at least 50% and perhaps up 
to 80% or more of the CSF leaves the cranial cavity 
through the cribriform plate, via the perineuronal spaces 
surrounding the olfactory nerves, to drain into the nasal 
and cervical lymphatics (Fig 2) [64-70]. This rostral out
flow of CSF contains considerable amounts of interstitial
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Figure 2 A schem atic d iag ram  sh ow in g  th e  d ire c tio n  o f  th e  CSF b u lk  f lo w  in th e  m am m a lian  b ra in  based on  a m id sag itta l section  o f 
th e  ra t b ra in , k in d ly  p rov ided  by P ro f. L.W. Swanson. The fo llow ing  regions are indicated: telencephalon (pink shades); diencephalon 
(interbrain) and brainstem areas (yellow shades); cerebellum d o rsa lto  the brainstem (light blue); sectioned fiber tracts (black). CSF (blue arrows) 
flows from  the lateralventricles to the third ventricle via the interventricular foramen (IVF), and flows caudally along the dorsaland ventra ls ide 
o f thalamic adhesion, to  the cerebralaqueduct (AQ) and fourth ventricle (V4). Some CSF may continue flow ing caudally through the central 
ca n a lo f the sp inalcord (CC), but most leaves the ventricular system via the lateralapertures and flows through the subarachnoid space, 
surrounding the brain. This ex te rna lflow  is indicated here along the dorsaland ventra ls ide o f the brain but occurs also along a llo th e r external 
brain surfaces. The destination o f the subarachnoid flow  is the cribriform plate o f the e thm oida lbone, containing the penetrating olfactory 
fibers, where CSF is released in sm alllym phatic  vessels. Additionalabbreviations: V3(p, h, m, t, pi): regions and recesses o f the third ventricle; 
Circumventricular organs: 1: subfornical organ; 2: organum vasculosum o f the lamina terminalis; 3: median eminence; 4: subcommissuralorgan; 5: 
p inealorgan; 6: area postrema; AL, IL and NL: different lobes o f pituitary; Fiber bundles crossing the midline, coloured black, are not relevant for 
the present review.

fluid, especially from midbrain areas [71,72], and plays 
an important role in CNS immune system interactions 
[68,73].

The flow of CSF is indicated in Fig 2. Additional CSF 
absorption pathways may exist alongside the vessels of 
the cavernous sinus and via small lymphatic vessels 
emerging from the perineuronal space of other cranial 
nerves, like the trigeminal nerve [69]. These cranial CSF 
exits operate in parallel to the spinal CSF exits to the 
lymphatic system, mentioned before [63]. Bringing these 
data together, it seems to be reasonable to hypothesize 
that of all CSF produced continuously in the human 
brain, about one third leaves via the spinal vessels and 
one third via the nasal lymphatics, which leaves about 
one third for absorption through the arachnoid granula
tions into the superior sagittal sinus. The balance 
between these absorption pathways may vary consider
ably, however, depending on body position, physical 
activity and other possible factors.

The driving force of the CSF bulk flow is actively sup
ported by arterial pulsations as proposed by Bering [74], 
in the choroid plexus or by arterial and brain expansion 
mechanisms [75-78]. A decade ago, these temporarily 
neglected expansion m echanism s started to receive 
attention again because of potential clinical relevance 
[46,79-83] and age related changes [84].

The laminar flow of CSF occurs in a thin layer along 
the ventricular walls and is not necessarily restricted to 
directions from rostral to caudal. Directional beating of 
ependymal cell cilia lining the ventricular wall, seems to 
be the most important factor for this flow [60,85,86]. 
The ciliary movements may contribute to the mixing of 
the CSF, are supported by a sialic acid-induced hydra
tion mantle on the ventricular surfaces and are stimu
lated by release of serotonin from the supraependymal 
serotonergic terminals. In addition to transport of neu
roactive substances, a rostrally-directed laminar flow  
may be crucial for newborn neurons to reach their final 
location (see below). Both bulk and laminar flow seem  
to be prerequisites for normal CSF functioning, since 
disturbance of either the ciliary movements or Reissner's 
fiber both perturb CSF flow to such an extent that 
hydrocephalus develops [87,88].

In summary, the flow of the CSF comprises two differ
ent mechanisms. Bulk flow is driven by arterio-venous 
pressure gradients and arterial pulsations, traversing the 
ventricular system in a caudal direction towards the 
brainstem apertures. From there the subarachnoid CSF 
flow can be described as bidirectional: either descending 
to the spinal cord or ascending to the dorsal and rostral 
parts of the brain. Since in the latter, cranial, compart
ment the main exit of the CSF appears to be along the 
olfactory nerves through the cribriform plate, there

http://www.cerebrospinalfluidresearch.com/content/7/1/1
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must be an important rostrally directed vector in this 
subarachnoid CSF flow. The laminar flow occurs only 
inside the ventricular system in a very thin layer along 
the walls in a variety of directions and driven by the 
beating of the cilia of local ependymal cells. Interruption 
of either bulk or laminar flow results in hydrocephalus. 
The CSF circulation during development and aging of the 
CNS
Recently, it was shown in mice that ependymal ciliary 
beating, inducing laminar flow, is a prerequisite for the 
migration of new neurons from the subventricular zone 
to the anteriorly located olfactory bulb [89]. Even in the 
adult human brain, newly formed neuroblasts follow  
this path between the subventricular zone and the olfac
tory bulb. This path is referred to as the rostral migra
tory stream [90]. Apparently, supported by gradients of 
brain-derived neurotrophic factor (BDNF) levels in the 
CSF [91], the neuroblasts know how to go with the 
laminar flow.

Experimental evidence suggests that during develop
ment of the brain, messages from specific parts of the 
ventricular system are essential for the formation of the 
layered structure of the cortex [92]. This suggests that 
specific messages released into the CSF at a specific 
time point, influence not only functional but also impor
tant structural aspects of distant target areas. In addi
tion, such findings suggest that the targets for CSF 
messages may not be limited to the periventricular areas 
inside the brain but may be present at the outer surface 
of the brain as well.

The features of the walls lining the ventricular system 
also change over time. In the rat brain, ependymal cells 
appear from gestational day 16 [93]. The function of the 
ependymocytes as well as the permeability of the epen
dyma is age-dependent [94-96] and contributes to the 
changes with age in composition of the CSF [48,96]. In 
elderly humans CSF production and flow rate decrease, 
affecting protein concentrations [36] demonstrating that 
clear functional changes occur in the third circulation 
with increasing age.

Clinical evidence shows that changes occurring in the 
composition of the CSF and in the homeostatic balance 
of freely exchanging CSF and ECF compartments with 
age [36], are possibly involved in brain diseases such as 
Alzheimer's [48,97]. On the one hand, such changes in 
the composition of the CSF may profoundly affect the 
paracrine messages transmitted via the CSF. On the 
other hand, it may facilitate new opportunities for the 
treatment of brain diseases as prospects are improved 
for drug delivery and brain targeting via the CSF for 
multiple brain diseases [98]. In summary, CSF flow  
plays an important role in the structural development of 
the CNS. The laminar flow is involved in the guidance 
of neuroblasts and the bulk flow in delivering messages

obtained from the brainstem to guide cortical develop
ment. The composition of CSF and CSF-ECF exchange 
are profoundly affected by the aging process and may be 
related to brain diseases, suggesting an opportunity for 
treatment by targeting drugs via the CSF.
CSF composition, sources, targets and exchange with ECF 
Sources of CSF contents
In addition to blood-derived proteins in the CSF 
(approximately 80%), the other proteins (about 20%) ori
ginate from within the CNS, from neurons, glial and 
leptom eningeal cells [36]. The choroid plexus itself 
synthesizes proteins, some of them abundantly, such as 
transthyretin, a carrier for thyroid hormones. Once 
secreted into the CSF, such proteins are thought to 
influence distant parts of the brain [99]. The direct or 
indirect activation of brain areas bordering the ventricu
lar system or subarachnoid space has been shown to 
result in increased levels of neuropeptides released into 
the CSF [100-102]. The circadian variations in CSF con
centrations without concomitant changes in peripheral 
concentrations provide additional evidence for selective 
release of neuropeptides such as oxytocin into the CSF 
[103-106]. Specific dendritic release mechanisms occur 
in brain areas such as the paraventricular and supraoptic 
hypothalamic nuclei, leading to as much as a thousand 
fold increase in the local ECF peptide concentrations 
[107]. Experiments involving ablation and transplanta
tion of the suprachiasmatic nucleus in the golden ham
ster showed that the release of a diffusible signal was 
m ost likely carried by the flow of CSF [108,109]. 
Recently, it has been shown that in the diurnal grass rat, 
the suprachiasmatic nucleus releases at least some of its 
contents into the CSF in order to reach specific target 
areas [110]. Taking together the available evidence, we 
suggest that the active release of neuropeptides into the 
CSF has to be considered as a probable mechanism for 
message transmission via the CSF to distant brain areas, 
as was previously discussed during a special conference 
in 1998 [26].

In addition to the neuronal release from specific brain 
areas, the presence of widespread supraependymal cell 
clusters, fibers and plexuses of neuronal and other cellu
lar elem ents, including macrophages, have been 
described since the early seventies [32,111]. Their abun
dant presence near the median eminence suggests that 
these supraependymal elements are involved in a variety 
of functions [112-117] (Fig 3A, B). Among these, seroto
nergic fibers have been described as originating from 
the raphe nuclei with nerve terminals located in the 
CSF. These fibers are thought to release their content 
differentially from several parts of the ventricular walls 
of the mammalian ventricular system into the flowing 
CSF [111,112,117-121] (Fig 3C).

http://www.cerebrospinalfluidresearch.com/content/7/1/1
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Figure 3 (A and B) sh ow  scanning e lec tron  m ic roscopy o f  sup raependym al s tru c tu res  in th e  ra t brain. A: Partially ensheathed fibers and 
term inal arborizations;B: cellular structures w ith  short fiber extensions, on the ventricular surface o f the ependymal cells;Fig 3C: a schematic 
diagram o f the ependymal layer w ith  supra- and subependymal cellular structures contacting the CSF at the ventricular side o f the layer;the * 
indicates a supraependymal terminal extending into the CSF, as described for serotonergic fibers. Figs 3A and 3B were reprinted from  [121], w ith  
permission o f Springer-Verlag. Fig 3C was kindly provided by Prof. B. Vigh.

In addition to the supraependymal elements, many 
fibers containing specific neuroactive substances can be 
observed in the subependymal layer. Many of these are 
of hypothalamic origin and may contain peptides like 
luteinising hormone releasing hormone (LHRH), CRF or 
adreno-corticotropic horm one (ACTH) [12,14,122]. 
Others originate in the dorsal periaqueductal gray to 
descend towards the cervical and upper thoracic spinal 
cord, many of them contacting the perivascular spaces 
[22]. Many of these descending fibers are characterized 
by large numbers of varicosities or local swellings con
taining numerous vesicles but without synaptic speciali
sations. The presence of such varicosities suggests that a 
single fiber may release its contents over large distances, 
by non-synaptic release or exocytosis, either into the 
CSF or for diffusion into the bordering ECF to influence 
a population of receptive neurons [12,14,31,32].

From the available data, no clear general function can 
be derived for these supra- and sub-ependymal ele
ments. However, their differential distribution over spe
cific regions of the ventricular walls strongly suggests 
two possibilities: local effects and/or specific effects on 
receptive distant target areas. Two interesting cases of

substances released into the third ventricle, going with 
the flow to reach their target areas, have been studied in 
detail so far: melatonin and the LHRH system, also 
known as the gonadotropin-releasing hormone (GnRH) 
system.

The pineal gland produces the hormone melatonin at 
night. The gland is located dorsal to the third ventricle 
and has access to the CSF via the pineal recess [123]. In 
a series of experiments in sheep, it was shown that the 
main effects of the pineal gland occurred through  
release of melatonin into the dorsal tip of the third ven
tricle. At the exit of the pineal gland, concentrations 
were about 10 times higher than in the rest of the ven
tricular system and about 100 times higher than in per
ipheral blood [123,124]. Melatonin is not only secreted 
into the CSF but also into the general circulation  
[124,125], which makes the situation more complex. 
Melatonin also regulates the CSF levels of another hor
mone, estradiol [126], which may result in additional 
indirect effects. However, its main site of action to con
trol reproduction is located in the premammillary 
hypothalamic nucleus, where it stimulates luteinizing 
horm one secretion in the ewe [127]. Apparently,
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transport mechanisms from the pineal gland via the CSF 
to the premammillary hypothalamus are involved.

Another example is posed by the neuropeptide: LHRH 
also known as GnRH. This neuropeptide is released in a 
pulsatile manner into the portal system and stimulates 
the pulsatile gonadal hormone production of the pitui
tary [128,129]. However, GnRH is released into the CSF 
as well, and this CSF GnRH neither functions as a feed
back system for controlling GnRH production, nor does 
it directly affect the pituitary gland [130]. The influx of 
peripheral GnRH across the blood-brain barrier into the 
CSF is so limited that it cannot explain the observed 
levels of CSF GnRH which are comparable to those in 
the portal blood stream [131]. These findings, combined 
with detailed measurement of GnRH concentrations at 
different sites in the ventricular system suggest that 
GnRH is released directly into the CSF and the third 
ventricle. This occurs at the level of the median emi
nence, and possibly the organum vasculosum of the 
lamina terminalis (OVLT) (indicated as ME and O in 
Fig 1) where GnRH immunoreactive (IR) perikarya and 
axons are very abundant [128,131]. The authors con
clude that the function of CSF GnRH expresses itself in 
behavioral effects, induced by volume transmission via 
the flow of CSF to affect distant brain areas, such as 
periaqueductal gray (PAG) and hippocampal regions. 
These regions contain, indeed, high densities of GnRH 
receptor expressing neurons, while GnRH-IR axons are 
either scarce (PAG) or completely lacking [12,15,131]. 
The PAG is strongly involved in sexual behavior 
[132-135] which can be elicited by intraventricular (icv) 
but not by intravenous administration of GnRH [136]. 
These findings concerning the distribution and beha
vioral effects of melatonin and GnRH via the CSF com
prise, in our view, com pelling evidence for CSF 
messages controlling aspects of behavior.

That the exact site of release of a neuropeptide into 
the ventricular system is the determining factor for its 
given effects, has been shown in experiments involving 
transplants of the suprachiasmatic nucleus in the 
hypothalamus [109,137]. Research aimed at identifying 
the mechanisms regulating food intake, such as experi
ments involving delivery of substances into either the 
third or the fourth ventricle, with an open or an experi
m entally-closed cerebral aqueduct, have shown that 
caudally-flowing substances and neuropeptides (glucose, 
leptin, neuropeptide tyrosine (NPY) reach specific recep
tive areas to influence food intake [138-140]. Appar
ently, most factors, influencing food intake, like cocaine- 
and amphetamine-regulated transcript (CART), bombe
sin and oxytocin, exert their effects in the caudal brain
stem [141-144], while other factors are only effective in 
or around the third ventricle (NPY and calcitonin  
[140,145].

In summary, about 80% of the CSF proteins are 
derived from the blood [146] while about 20% are pro
duced by the brain. Brain areas bordering the ventricular 
system as well as supra- and subependymal cells and 
fibers lining the ventricular walls are in the most favour
able position to add such substances to the CSF. Mela
tonin and GnRH, both released into the third ventricle 
but at different locations, and the experiments concern
ing substances controlling food intake administered into 
either the third or the fourth ventricle, and moving with 
the flow, are good examples for local additions into the 
CSF influencing remote brain areas. Apparently, the site 
of upstream release determines which downstream areas 
will be affected.
Flow-transport: speed and mechanisms
The question can be raised whether the flow-transport 
mechanisms work rapidly enough to induce behavioral 
effects in a relevant timescale. A quick survey of the lit
erature shows that the time between administration or 
release of neuropeptides into the CSF and the observed 
behavioral or physiological effects turns out to be very 
short. In a series of experiments involving respiratory 
and cardiovascular control m echanism s in the cat, 
effects of icv administration of respiratory stimulants 
such as vasopressin into the lateral ventricle were 
observed within two minutes at the ventral surface of 
the brainstem. Since this surface lies beyond the fora
mina of Luschka, this finding indicates that the stimulus 
was moving with the CSF flow in the cat brain at a 
speed of more than 1 cm/min [57]. A tracer like HRP 
carefully administered into the lateral ventricle of the 
cat in order to avoid direct pressure effects, penetrates 
the outer surface of the brainstem within four or five 
minutes (see below) [25]. A similar rapid distribution of 
a tracer [14C]Inulin as well as of [125I]CRH after admin
istration into the lateral ventricle has been observed in 
the rat [147]. Other data obtained from the rat also 
show rapid flow transport of neuropeptides. a-Melano- 
cyte stimulating hormone (aMSH) injected into the lat
eral ventricle appeared within two m inutes in the 
cisterna magna [148]. ß-endorphin was observed in the 
CSF within minutes after electrical microstimulation of 
the arcuate hypothalamic nucleus, without any change 
in peripheral levels [100,149]. Both interleukin-1 and 
CRF have been shown to induce widespread effects 
throughout the brain, starting a few minutes after icv 
administration [150,151]. The effects of icv oxytocin on 
ventromedial hypothalamic neurons is manifest in under 
one minute [152]. Fenstermacher and his group showed 
a similar rapid distribution via the ventricular system, 
however their findings revealed that the flow over the 
cortical surface was considerably slower [146,153,154].

Recent measurements of the pulsatile flow rates in the 
cerebral aqueduct of the human brain by modern
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imaging and other techniques fully support the high 
speed of this CSF transport channel [75,78,83]. Maximal 
flow rates of 12 mm/s and higher were observed in the 
aqueduct [58,59], while at other sites like the spinal 
canal, the flow rate was almost negligible [58].

In summary, transport of CSF contents by bulk flow is 
fast, working on a time scale of minutes, and is directly 
relevant for behavioral and physiological adaptations. 
Exchange o f substances between CSF and ECF: mechanisms 
and targets
Exchange of fluid contents between the ECF in the neu
ropile and the ventricular CSF occurs via different 
mechanisms and at different rates: 1 : diffusion, 2: peri
vascular pump mechanisms, and 3: tanycytes and ECF- 
contacting neurons.

1: Diffusion. This is a rather slow process, depending 
on ECF diffusion parameters like volume fraction, tortu
osity and the diffusion coefficient of the neuroactive 
substance [155-157]. Diffusion in the ECF compartment 
may appear anisotropic, due to the hindrances imposed 
by local differences in tortuosity [155]. W hite matter 
tracts are guiding tracts for the interstitial fluid flow as 
well as for the dissemination of primary brain tumors 
[158]. Diffusion and exchange between cerebrospinal 
and extracellular fluid compartments may occur in both 
directions [37,77] through an uninterrupted single
layered lining of the ventricular system, consisting of 
several types of ciliated ependymal cells [95,159]. Due to 
the lack of tight junctions between ependymal cells, the 
CSF-ECF barrier can be described as open or non-exis
tent. In that respect, the CVO's form a notable excep
tion with a closed CSF-ECF barrier and an open blood- 
ECF barrier (usually called blood-brain barrier, or BBB), 
(see McKinley et al[160]). Interestingly from a cyber
netic point of view, the open CSF-ECF compartment 
throughout the brain is functionally separated from the 
open BBB-ECF compartment inside the CVO's. These 
two compartments can be described as being disjoint or 
even complementary, but the direct neuroanatomical 
relationships between the paraventricular hypothalamic 
nucleus and the CVO's [161-168] manage the bidirec
tional com m unication and mutual tuning of both 
compartments.

In general, concentration differences and gradients 
determine the direction of the diffusion between CSF 
and ECF. High levels of neuroactive substances in the 
CSF will enter the ECF, while high local concentrations 
in the ECF will diffuse into the CSF. For brain areas like 
the medial hypothalamus, as well as the periaqueductal 
gray, such diffusion processes will result in continuous 
equilibration processes in the levels of neuroactive sub
stances involved in the induction or maintenance of 
behavioral states. Widely divergent substances and tech
niques have been used to measure diffusion distances.

Diffusion over distances of 0.5 mm and at other sites up 
to 1 mm away from the wall of the third ventricle, from 
the cerebral aqueduct and from the floor of the fourth 
ventricle [25,147,151,169,170] are reasonable estima
tions. In rat brain, areas such as the lateral septum and 
parts of the bed nucleus of the stria terminalis, the dor
sal midline thalamus and habenular nuclei, the medial 
hypothalamic regions, the mesencephalic periaqueductal 
gray as well as several brainstem core and paracore 
areas [7] can, therefore, be influenced directly by the 
composition of the CSF. Diffusion of any relevant sub
stance from the CSF into these regions would influence 
a number of behavior-relevant brain functions [27].

Diffusion in the other direction, that is from the ECF 
into the CSF occurs as well and may also play a role 
over larger distances. This situation was observed after 
infusion of a small amount of beta-endorphin into the 
striatum of the rat [171]. Despite the considerable dis
tance to the ventricular system, the infused beta-endor- 
phin appeared in the CSF within 10 minutes, reaching 
peak values in the cisterna magna after about 30 min
utes [171]. This experiment shows that diffusion within 
the brain may occur over considerable distances and in 
a behaviour-relevant tim e-scale during the CSF-ECF 
exchange processes.

On the other hand, many different substances have 
been injected into the ventricular system of a variety of 
vertebrates and a speed and depth of penetration has 
been observed which far exceeds the capabilities of dif
fusion. Apparently, active transport processes are 
involved as well. Two of these will be described.

2: Perivascular pump mechanisms have been shown to 
play an important role in the distribution of CSF con
tents. The pump involves the perivascular space of ves
sels penetrating the outer surface of the brain and is 
driven by the arterial pulsations of the cerebral vessels 
[172,173]. The differences between the passive diffusion 
processes are striking. While the diffusion rate of the 
neuroanatomical tracer horseradish-peroxidase (HRP) in 
brain tissue amounts to less than 1 mm/hr, after an 
intraventricular or cisternal injection, HRP can be 
observed along all microvessels of the neuraxis. HRP 
molecules penetrated deeply (several mm) within five 
minutes [172]. This fast spread occurs along perivascular 
spaces and is aided by a paravascular fluid circulation 
system, driven by the pulsations of the cerebral arteries. 
In parallel to an inward flow along the arterial perivas
cular spaces, an outward flow may occur along the 
venous paravascular routes, adding interstitial fluid to 
the ECF/CSF in the subarachnoid space [172,174]. The 
existence of these paravascular routes provides the neu
roactive CSF contents with a widespread and fast portal 
to enter less superficial brain areas and to affect a much 
larger variety of regions in brain or spinal cord
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[62,175,176]. A more recent study, in which the tracer 
[14C]inulin was used, confirmed the rapid and extensive 
distribution of icv-injected substances. Interestingly, it 
was concluded that the paravascular fluid circulation 
may even preferentially target specific brain areas like 
the hippocampus, the basal forebrain including the 
hypothalamus and the ventral brainstem surface [147]. 
This perivascular pump has been described as a "power
ful mechanism for the distribution of therapeutic mole
cules within the brain" [173]. Similar mechanisms may 
support neuropeptides released into the CSF to reach 
remote destinations. GnRH, for example, could reach 
the hippocampal regions, which are richly supplied with 
GnRH receptors while a GnRH innervation is virtually 
lacking [131].

3: In addition to the slow diffusion mechanisms for 
local/regional effects and the rapid perivascular pump 
mechanisms, involving the whole or some preferential 
large parts of the brain, special ependymal cells (tany- 
cytes) and neurons contact the CSF in order to interna
lize specific constituents, to release them at specific sites 
and for specific purposes, and are not covered by the 
general mechanisms mentioned before.

Tanycytes com pose a specific group of ependymal 
cells. Those lining the ventral part of the third ventricle 
have basal processes that extend to the hypophyseal- 
portal vasculature as well as into the mediobasal 
hypothalamus, suggesting a role in pituitary and neural 
control. As reviewed by Bruni [95] and Rodriguez et al. 
[177], multiple tanycyte functions have been proposed 
over time. Tanycytes can be observed also in the walls 
of the lateral and fourth ventricles as well as along the 
central canal of the spinal cord [178]. Tanycyte exten
sions apparently radiate from the third ventricle into 
hypothalamic nuclei, but also laterally into the caudate 
putamen or, from the floor of the fourth ventricle, ven
trally into the lower brainstem areas [178]. Several types 
of tanycytes have been described with specifically differ
ent endocytotic mechanisms [179,180]. Some of these 
recent experiments compared peripheral and icv admin
istration of tracers and neuropeptides and the distribu
tion and tanycyte-labelling patterns inside the brain 
were very different [179,181]. This suggests that tany- 
cytes of a given type are specifically selective, each one 
retrieving a different substance from the CSF and 
underlining the highly specific nature of tanycyte mes
sages. Our understanding of the functional effects tany- 
cyte messages is only preliminary and major steps for 
elucidating their role, remain to be taken.

Very recently, melanocortin-concentrating-hormone- 
(MCH) immunoreactive ependymal cells, extending 
between the floor of the 4th ventricle and the midbrain 
raphe nuclei have been reported [182]. The authors con
cluded that these elongated tanycytes internalized MCH

released from the hypothalamus into the CSF, to act on 
specific target neurons in the dorsal raphe nucleus. 
Since serotonergic neurons are numerous in this mid
brain raphe nucleus, internalization of MCH followed by 
release from these specific tanycytes may have far-reach
ing effects on serotonergic transmission and therefore 
on behavior.

Additionally, neurons may directly contact the CSF 
[31,32]. Such neurons have been observed at a consider
able distance from the ventricular system. Some use 
selective receptor-m ediated uptake m echanism s to 
obtain specific substances from the CSF and have been 
observed in brain areas such as the hippocampus, sep
tum and cortex [170]. Other CSF-contacting neurons 
were observed in anterodorsal thalamus, supramammil- 
lary nucleus, dorsal raphe nucleus, the floor of the 
fourth ventricle as well as in the lateral superior olive 
nucleus [178]. This implies, for example, that if the 
supramammillary region is functionally affected by the 
CSF contents, the activity of the whole septohippocam- 
pal complex is involved, linking functional (learning) 
and behavioral (fear/anxiety) consequences to the com
position of the CSF. In particular, the dorsal raphe 
nucleus seems to have strong links with the CSF, with 
several CSF-contacting groups of neurons [178,183] in 
addition to the special tanycytes, m entioned before. 
Recently, it was shown that the locus coeruleus accumu
lates about 50% of a nerve growth factor, not by neuro
nal transport mechanisms but directly from the CSF 
[184]. Taken together with the special MCH-transmit- 
ting ependymal cells, [182], the activity of the raphe 
neurons or the serotonergic system, as well as the locus 
coeruleus neurons or the noradrenergic system, are 
under control of factors circulating in the CSF. Consid
ering that most of these findings are very recent, it is 
only to be expected that during the next few years more 
brain areas and more functional and transmitter systems 
will be discovered that derive part of their controlling 
information from CSF.

In summary, the interaction between the CSF and its 
contents occurs in three different but complementary 
ways: 1 ) diffusion: a slow and local process, over short 
distances, 2) via perivascular spaces and an active overall 
pump system driven by the vascular system, and 3) spe
cific uptake mechanisms: depending on the receptors 
exposed to the CSF.

The existence of these mechanisms fully supports the 
original notion of Borison et al, (1980) that "the simple 
concept that the subarachnoid space constitutes a catch 
basin for interstitial fluid is no longer tenable. Rather, 
the CSF of that space must be considered as being in 
dynamic chemical communication with all parts of the 
central nervous system" [25]. These mechanisms are in 
full agreement with the conclusions drawn by Abbott
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after a careful discussion of available data about intersti
tial fluid (ISF = ECF) flow, including the CSF [185] 
"Chemical signals produced within the brain are able to 
use the flowing ECF (= ISF) as a communication route", 
with rapid bulk flow occurring within the CSF system, ... 
"or vectorial signalling from upstream to downstream 
sites". These mechanisms are ... "extending the sphere of 
influence of a bioactive molecule beyond that which  
could be achieved by diffusion"... "and provide the basis 
for a site specific communication pathway, by which 
m olecules released from site A could be specifically 
designed to be carried to and influence site B" (pp 
550,551). Specificity and range would be determined by 
factors like the anatomy of the communication route, by 
the presence of appropriate receptors and by activation 
mechanisms to limit or confine the signal spread [185]. 
Abbott (2004) concludes that "the ability to predict the 
effects of ECF/ISF flow ... is likely to play an important 
role in developing future therapeutic strategies for CNS 
targeting and repair".
Neuropeptides form an integral part o f the CSF 
composition
In the preceding sections, it has been mentioned that 
many neuropeptides have been found in the CSF. For 
many of them, CSF levels bear hardly any relationship 
to peripheral levels in the blood, and they are actively 
secreted by choroid plexus, glial and neuronal cells into 
the CSF [36]. Active release of neuropeptides from brain 
areas bordering the ventricular system with the aim or 
at least the effect of influencing downstream brain areas 
at a distance, has been repeatedly observed for a range 
of different neuropeptides and transmitters 
[12,14,36,42,99,102,108,123,129-131,136,184,186-188]. 
Sewards and Sewards [28] discussed extensively the evi
dence available for the neuropeptides vasopressin and 
corticotrophin-releasing-hormone, and concluded that 
these were actively secreted into the CSF to influence 
downstream receptive areas involved in specific kinds of 
behavior.

An interesting recent paper [189] showed the exis
tence of numerous nanoparticles in the CSF, composing 
a "matrix of membrane- and protein rich nano-scaled 
structures with many transduction components bounded 
by lipid membranes". They concluded that this "bulk 
flow of nanostructures generates a more dispersed signal 
delivery, of longer duration", in order to "regulate brain 
behaviors known to require slower, more gradual, and 
more sustained modulations, such as reported for sleep, 
appetite, mood and vasomotor regulation". This conclu
sion is in full agreement with our hypothesis as pro
posed in the present review.

In summary, there are convincing indications for neu
ropeptide release into the CSF, and for transport via the 
CSF bulk flow as a special kind of volume transmission

towards receptive brain areas, to propose a message 
function for specific CSF contents.
Behavioral effects of CSF contents
The question that remains is: what are the functional 
significances and the specific contributions of such rela
tively uncontrolled and broad-spectrum CSF-release sys
tems, in addition to precisely targeted synaptic or more 
diffuse non-synaptic release mechanisms? Many 
instances have been discussed above such as melatonin, 
GnRH, feeding experiments with administration into the 
3rd or 4th ventricle, that provide evidence for peptidergic 
and other signals that arrive at their target areas via the 
CSF at a concentration level sufficient to induce obvious 
behavioral changes. Taken together, with the many 
papers reporting that administration of substances into 
CSF is much more effective than peripheral administra
tion for inducing behavioral changes, we judge the evi
dence as overwhelming for the statement that the CSF 
(the third circulation) contains meaningful messages to 
be recognized by the appropriate sensitive brain target 
areas to elicit a neural and physiological/behavioral 
response. Therefore, we support the view that broad
casting messages via the CSF is an appropriate way to 
put several parts of the CNS into a behavioral state. 
Such a brain state is subservient to the performance of 
specific behaviors or groups of behavioral elements that 
share a common motivational system and may include 
the temporary suppression of specific behavioral or phy
siological reactions. These CSF messages have to be 
considered as a partially-independent signal. Simulta
neously, these messages are constantly supporting, sus
taining and in mutual exchange with the ECF contents 
released by axon terminals all over the brain and specifi
cally in brain areas adjoining the CSF.

Sewards and Sewards [28] proposed that the presence 
of elevated CSF levels of CRF are involved in the moti
vation of fear while the presence of vasopressin is 
involved in the power-dom inance drive m otivation. 
They hypothesized that the elevated neuropeptide levels 
in the CSF are detected and transduced into neuronal 
activities by, predominantly, hypothalamic neurons in 
the vicinity of the third ventricle. The purpose of this 
system  was proposed to maintain a state of fear or 
anger and consequent vigilant or aggressive behavior, 
after the initial fear- or anger-inducing stimulus itself is 
no longer perceptible [27]. In other words, CSF m es
sages prolong the duration of a motivated state. Interest
ingly, important destination areas for this transmission 
(the medial hypothalamus, periaqueductal gray, midline 
thalamus and medial) prefrontal cortex are all bordering 
the CSF system, at the inner or outer surface of the 
brain. In addition, each of these destination areas is 
extensively connected to other parts of the limbic
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system and functionally involved in a range of differently 
motivated behaviors [27].

The time scale of these effects, starting within minutes 
but extending over time [57] up to more than an hour 
[190,191] are fully appropriate to induce and sustain 
behavioral changes reflecting a modified behavioral state 
of the animal. The anatomical observations of many var
icose peptidergic fibers present close to and in parallel 
to the ventricular system [12-15,22] suggests that mes
sages arriving via the axons by terminal and varicosity 
release may be supported by messages arriving via the 
CSF in a mutually sustaining way, because of the free 
exchange between ECF and CSF. Such sustaining CSF 
messages in harmonic balance with neuronal communi
cation mechanisms are in a perfect position to play a 
role in the rise and decline of successive motivational 
states and for necessary transitional states.

Conclusions
There is considerable evidence that peptidergic and 
other substances are actively secreted into and distribu
ted via the CSF spreading with surprising speed to many 
brain areas. We propose that they can be considered 
functionally as messages, because their presence can 
influence the activity of specific groups of receptive neu
rons, located near the ventricular and subarachnoid sur
faces of the brain, downstream from the site of release. 
As such messages remain active considerably longer 
than a few seconds, they may form part of the mechan
isms underlying the changes in successive behavioural 
states.
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