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Abstract

Most Probable Explanation and (Partial) MAP are well-known problems in Bayesian networks that cor­
respond to Bayesian or probabilistic inference of the most probable explanation of observed phenomena 
given full or partial evidence. These problems have been studied extensively, both from a knowledge- 
engineering starting point (see [10] for an overview) as well as a complexity-theoretic point of view (see
[9] for an overview). Algorithms, both exact and approximate, are studied in e.g. [14, 17, 12, 20]. In this 
paper, we introduce two new notions of abduction-like problems in Bayesian networks, motivated from 
cognitive science, namely the problem of finding the most simple and the most informative explanation 
for a set of variables, given evidence. We define and motivate these problems, show that these problems 
are computationally intractable in general, but become tractable when some particular constraints are met.

1 Introduction
Abduction (the process of finding a suitable explanation of observed phenomena) is, according to the well- 
known philosopher Charles Sanders Pierce1 perhaps the most essential mechanism through which we ac­
quire knowledge or information. While since long obvious in fields like medicine (“which disease is causing 
these symptoms”), history (“which circumstances led to this uprising”), and the sciences (“what theory ex­
plains this behavior”), the problem becomes also more and more important in fields as cognitive science, 
e.g., in computational models of goal inference [1], action understanding [3], or vision [21].

In Bayesian networks, the abduction problem is often encoded as the problem of determining the joint 
value assignment to a set of variables in the network which has the highest posterior probability given the 
observed values of other variables in the network. This problem is known as M PE or (PARTIAL) M AP in 
the literature. The abduction problem in Bayesian networks (be it formalized as M PE or PARTIAL M AP) 
is intractable in general, yet can be constrained to make computation tractable [9]. For example, the M PE 
problem, where the network is bi-partitioned into a set of variables for which the most probable joint value 
assignment is sought (the explanation set) and a set of variables whose values are observed (the evidence), 
can be solved fast if the most probable explanation is very likely (and thus, correspondingly, competing 
explanations are very improbable) [2]. However, the bi-partition constraint is often not satisfied in practice 
or may lead to unexpected results, forcing us to solve a P a r t i a l  M AP problem (where only partial evidence 
is available, i.e., not all variables outside the explanation set are observed).

The merit of giving results that intuitively better match our notion of abduction (i.e., solving a PARTIAL 
M AP problem rather than a M PE problem) comes at the price of higher computational demands [15,13, 9]. 
Moreover, when used as a computational framework of cognitive tasks in which abduction plays a central 
role, it is questionable whether PARTIAL M AP is actually the most plausible underlying computational 
problem in such cognitive tasks. We will give two examples to illustrate this stance.

Exam ple 1.1. Mr. Jones typically comes to work by train. Today Mr. Jones is late while he has been seen to 
leave his house at the usual time. One explanation can be that the train is delayed. However, it might also

1See [5] for an overview of Pierce’s work on abduction.
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be the case that Mr. Jones was the unlucky individual who walked through 11th Street at 8.03 AM  and was 
shot during an armed bank robbery. When trying to explain why M r Jones is not at his desk on 8.30 AM, 
there are a number of variables we might take into account, for example whether he has to change trains. 
A whole lot of variables are typically not taken into account because they are normally not relevant in most 
o f the cases, fo r  example whether M r Jones walked on the left or right pavement in 11th Street. Only in 
the awkward coincidence that Mr. Jones was in the wrong place at the wrong time they become relevant to 
explain why he is not at work.

Is it plausible that, in order to determine the most likely cause of Mr. Jones’ lateness, we really marginal­
ize over all these unknown-and usually irrelevant-variables in order to infer the most likely explanation? Or 
do we actually think a train delay is a likely explanation because it explains his absence for the overwhelm­
ing majority of values for these variables, save that particular situation where he was walking on the left 
pavement and passed the bank at 8.03 AM while there was a shooting at that very moment? We will argue 
that the latter may be a more plausible cognitive model, congruent with recent findings in cognitive science.

An other potential problem when using PARTIAL M AP as the underlying computational model is that 
the choice of the explanation set is crucial: we seek to find the most probable joint value assignment to 
that set of variables, i.e., the explanation set is given in the input. The question what constitutes a good 
explanation will be illustrated in the following example.

Exam ple 1.2. Dr Brown is examining M r Smith. She notices an increased body temperature and M r 
Smith complains o f  shortness o f  breath, coughing with phlegm, and pain while breathing. A correct, but 
hardly informative, explanation o f  these signs is ‘Mr. Smith is ill.' This explanation has a higher probability 
(say 0.998) than the much more informative explanation ‘Mr. Smith has pneumonia.' which may have 
a probability o f  0.96. The latter explanation o f course has more explanatory power at the cost o f  little 
probability mass, and is thus preferred over the form er although this explanation has a higher probability.

Note that there are many situation-specific circumstances that may determine whether a more specific 
explanation is needed. While a general practitioner will need an explanation that is specific enough to suc­
cessfully describe medication, Mr. Smith’s project manager needs only a general explanation why he won’t 
be at his desk for some time. Sometimes it might be costly to determine more specific explanations. Typi­
cally there is a trade-off between specificity and probability and the impact of making the wrong decision is 
crucial in determining the probability threshold.

In this paper we introduce two new notions of abduction in Bayesian networks, namely finding the 
explanation that assumes as little as possible o f  the values o f  other variables that are not observed (which 
we will denote as the M o s t  S im ple E x p la n a t io n  problem), and finding the explanation that carries 
the most information given some probability threshold (which we will denote as the MOST INFORMATIVE 
E x p la n a t io n  problem). After the introduction of some preliminaries in Section 2, the problem variants 
will be formalized in Section 3 and 4, respectively. We will give complexity results for the problems in 
general and show under which constraints these problems are feasible. We conclude the paper in Section 5.

2 Preliminaries
A Bayesian or probabilistic network B is a graphical structure that models a set of stochastic variables, the 
(in-)dependencies among these variables, and a joint probability distribution over these variables. B in­
cludes a directed acyclic graph G  =  (V , A ), modeling the variables and (in-) dependencies in the network, 
and a set of parameter probabilities r  in the form of conditional probability tables (CPTs), capturing the 
strengths of the relationships between the variables. The network models a joint probability distribution 
P r(V ) =  n n = i Pr(Vi | n(Vi)) over its variables, where n(Vi) denotes the parents of Vi in G . We will use 
upper case letters to denote individual nodes in the network, upper case bold letters to denote sets of nodes, 
lower case letters to denote value assignments to nodes, and lower case bold letters to denote joint value 
assignments to sets of nodes. Every (posterior) probability of interest in Bayesian networks can be com­
puted using well known lemmas in probability theory, like Bayes’ theorem (P r(H  | E ) =  Pr(EPHE)r(H)), 
marginalization (P r (H ) =  J2gi P r (H  A G =  gi )), and the factorization property of Bayesian networks 
(P r(V ) =  f]n=i Pr(Vi | n(Vi ))). More background can be found in textbooks like [14] and [8].

In the remainder, we assume that the reader is familiar with basic concepts of computational complexity 
theory, such as Turing Machines, the complexity classes P and NP, and NP-completeness proofs. For 
more background we refer to classical textbooks like [6]. In addition to these basic concepts, to describe



the complexity of various problems we will use the probabilistic classes PP and BPP, oracles, and fixed- 
parameter tractability.

The class PP contains languages L accepted in polynomial time by a Probabilistic Turing Machine. 
Such a machine augments the more traditional non-deterministic Turing Machine with a probability distri­
bution associated with each state transition, e.g., by providing the machine with a tape, randomly filled with 
symbols [7]. If all choice points are binary and the probability of each transition is 2, then the majority 
of the computation paths accept a string s if and only if s G L. This majority, however, is not fixed and 
may (exponentially) depend on the input, e.g., a problem in PP may accept ‘yes’-instances with size n  with 
probability 2 +  . This makes problems in PP intractable in general, in contrast to the related complexity 
class BPP which is associated with problems which allow for efficient randomized computation2. BPP 
accepts ‘yes’-inputs with a bounded3 majority (say f ). This means we can amplify the probability of a 
correct answer arbitrary close to one by running the algorithm a polynomial amount of times and taking a 
majority vote on the outcome. This approach fails for unbounded majorities as 2 +  as allowed by the 
class PP: here an exponential number of simulations (with respect to the input size) is needed to meet a 
constant threshold on the probability of answering correctly.

The canonical PP-complete problem is M a jsa t : given a Boolean formula ^, does the majority of the 
truth instantiations satisfy ^? Indeed it is easily shown that M ajsat  encodes the NP-complete Sa tisfia ­
b il ity  problem: take a formula ^  with n  variables and construct ^  ^  V x n+1. Now, the majority of 
truth assignments satisfy ^  if and only if ^  is satisfiable, thus NP C PP. In probabilistic networks, the 
In fer en c e  problem of determining whether the probability P r(X  =  x) >  q is PP-complete.

A Turing Machine M  has oracle access to languages in the class A, denoted as M A , if it can “query the 
oracle” in one state transition, i.e., in O (1). We can regard the oracle as a ‘black box’ that can answer mem­
bership queries in constant time. For example, NPpp is defined as the class of languages which are decidable 
in polynomial time on a non-deterministic Turing Machine with access to an oracle deciding problems in 
PP. Informally, computational problems related to probabilistic networks that are in NPpp typically com­
bine some sort of selecting with probabilistic inference. The canonical NPPP-complete satisfiability variant 
is E -M a js a t:  given a formula ^  with variable sets x 1 . . .  x k and x k+1. . .  x n , is there an instantiation to 
x 1 . . .  x k such that the majority of the instantiations to x k+1. . .  x n satisfy ^?

A problem is called fixed parameter tractable [4] for a parameter l if it can be solved in time, exponential 
only in l and polynomial in the input size n, i.e., when the running time is O( f  (l) • n c) for an arbitrary 
function f  and a constant c, independent of n. In practice, this means that problem instances can be solved 
efficiently, even when the problem is NP-hard in general, if l is known to be small. If an NP-hard problem 
n  is fixed parameter tractable for a parameter l then l is denoted a source o f  complexity [18] of n :  bounding 
l renders the problem tractable, whereas leaving l unbounded ensures intractability under usual complexity- 
theoretic assumptions like P =  NP.

To conclude this preliminaries section, we define decision variants of the M PE and PARTIAL M AP 
problems as follows4:

M PE
Instance: A probabilistic network B =  (G , r ) ,  where V  is partitioned into a set of evidence nodes E  with 
a joint value assignment e, and an explanation set M ; a rational number 0 <  q <  1.
Question: Is there a joint value assignment m  to the nodes in M  with evidence e  with probability
P r(m , e) >  q?

PARTIAL M AP
Instance: A probabilistic network B =  (G , r ) ,  where V  is partitioned into a set of evidence nodes E  with 
a joint value assignment e, an explanation set M , and a set of intermediate variables I; a rational number
0 <  q <  1.
Question: Is there a joint value assignment m  to the nodes in M  with evidence e  with probability
P r(m , e) >  q?

M PE has been proven NP-complete by Shimony [15] and is fixed parameter tractable in graphs with 
bounded treewidth and when the most probable explanation has a high probability [17, 2]. Pa rtia l  M AP

2Indeed BPP is assumed to be equal to P by many complexity theorists.
3To be precise: polynomially bounded in the input size.
4Observe that we consistently use marginal probabilities Pr(m, e) here rather than conditional probabilities Pr(m | e). This is due 

to the different complexity results for MPE defined with marginal and conditional probabilities [9].



has been proven to be NPPP-complete by Park and Darwich [13]. In contrast with M PE, PARTIAL M AP 
remains intractable when the network has bounded treewidth or when the most probable explanation has a 
high probability, yet is fixed parameter tractable when both conditions are met [9].

3 Most Simple Explanations
In this section we will introduce Most Simple Explanations as an alternative notion of Bayesian abduction 
with partial evidence. Our approach is partially inspired by the Decision by Sampling model of Stewart 
et al. [16], where the authors “...do not assume that people have stable, long-term internal scales along 
which they represent value, probability, temporal duration, or any other magnitudes.”, but, “...assume that 
people can only sample items from  memory and then judge whether a target value is larger or smaller than 
these items.” [16, p. 2]. This was recently confirmed by Vul et al. [19]: few samples from a probability 
distribution are often adequate to make reasonably well decisions.

Based on the intuitive observation that we often do not take information into account (for example, 
whether Mr. Jones was walking on the left or right pavement) unless we have reason to believe that this 
might influence the most probable explanation, we suggest that the P a r t i a l  M AP problem, in which 
marginalization of the intermediate variables takes place, might not be the formalism that describes hu­
man behavior best in such circumstances. Instead, we suggest that one does not choose the most probable 
explanation—based on a marginalization of potentially many intermediate variables—but one rather picks 
the most simple explanation, i.e., the explanation that assumes as little as possible of the values of the inter­
mediate variables. This can be seen as an implementation of Occam's razor within the context of Bayesian 
abduction. We formalize this as follows: select the joint value assignment to the explanation set that is the 
most probable explanation for the majority of joint value assignments to the intermediate variables.

To stick with the Mr. Jones-example: for almost every joint value assignment to the intermediate vari­
ables Time-Of-Passing, Shooting-at-Bank, Pavement-walking-on, Bus-17-riding-by, Color-of-Mr.Jones’- 
suit etcetera, the explanation “Train-is-delayed = t r u e ” would be the most probable explanation of Mr. 
Jones’ absence at work. That would be the most simple explanation assuming in general no particular value 
assignments to the color of Mr. Jones’ suit or whether bus 17 or 29 was riding by. Only for a particular 
combination of circumstances, the most probable explanation would shift to “Mr.Jones-got-shot-on his-way- 
to-work = TRUE”. Thus, when picking a few arbitrary samples out of this vast domain space, chances are 
high that all of them have “Train-is-delayed = t r u e ” as the most probable explanation.

Typically, such a decision might be difficult to make when there are multiple competing alternatives. In 
such cases, apart from solving M PE problems, we may have a difficult task in deciding upon the majority. 
This is reflected in the computational complexity result of M ost  Sim ple  E x pla n a tio n .

3.1 Computational Complexity
We will prove that M ost  S im ple  Expla n a tio n  is NPPP-complete, and thus resides in the same complex­
ity class as Pa rtia l  M AP. First we give a decision variant of the M o st  S im ple  Ex pla n a tio n  problem.

M o st  S im ple  E xpla nation

Instance: A probabilistic network B =  (G , r ) ,  where V  is partitioned into a set of evidence nodes E  with 
a joint value assignment e, an explanation set M , and intermediate variables I; a rational number
0 <  q <  1.
Question: Is there a joint value assignment m  to the nodes in M  such that for the majority of instantiations
1 to I, P r(m , i, e) >  q?

We construct a probabilistic network B^ from an E-MAJSAT instance (^, E , M ), where ^  is a Boolean 
formula with n  variables, partitioned into sets E  =  x 1 . . .  x k and M  =  x k+1. . .  x n for some number
0 <  k < n. For each propositional variable x i in >̂, a binary stochastic variable X i is added to B^, with 
possible values t r u e  and f a l s e  and a uniform probability distribution. These stochastic variables in B^ 
are bi-partitioned into sets X E and X M according to the partition of ^. For each logical operator in ^, an 
additional binary variable in B^ is introduced, whose parents are the variables that correspond to the input of 
the operator, and whose conditional probability table is equal to the truth table of that operator. For example, 
the value t r u e  of a stochastic variable mimicking an and-operator would have a conditional probability of
1 if and only if both its parents have the value tr u e , and 0 otherwise. The variable associated with the



Figure 1: Example of construction of a probabilistic network B^ex for the Boolean formula ^ ex =  - ( x 1 V
x 2) A (x3 V x4) with E  =  {x 1 , x 2} and M  =  j x 3 , x 4}

top-level operator in ^  is denoted as V^. Figure 1 shows the graphical structure of the probabilistic network 
constructed for the E-MAJSAT instance (̂ >ex, E, M ), where ^ ex =  —(x 1 V x 2) A (x3 V x 4), E  =  {x1; x 2}, 
and M  =  {x3, x 4}.

Theorem  3.1. M o s t  S im ple E x p la n a t io n  is NPpp-complete.

Proof. Membership in NPpp follows from the following algorithm: non-deterministically guess a value 
assignment m , count the joint value assignments i to I  such that P r(m , i, e) >  q and decide whether this 
is a majority. This can be done using a non-deterministic algorithm with an oracle for problems in # P , 
since deciding whether there exists a joint value assignment i such that P r(m , i, e) >  q is in NP, and thus 
the counting problem is in # P  by definition. Hence the problem is in N P #P = NPpp since # P  is Turing 
reducible to PP.

To prove NPPP-hardness, we reduce M ost  S im ple  Ex pla n a tio n  from E-M a jsa t . We fix q =  1. 
Let (^, E , M ) be an instance of E-M ajsat  and let B^ be the network constructed from that instance as 
shown above. If there exists a satisfying solution to (^, E , M ), then there is a truth instantiation to E  such 
that for the majority of truth instantiations to M , ^  is satisfied. For any particular corresponding joint value 
assignment x E to X E in B ^, Pr(V^ =  TRUE, x E, x M) =  1 for a particular joint value assignment x M to 
X M, if and only if the corresponding truth instantiation to M  satisfies ^, and 0 otherwise. Correspondingly, 
if (^, E , M ) is satisfiable, then Pr(V^ =  TRUE, x E, x M) =  1 for the majority of joint value assignments 
x M to X M, and thus the M ost  S im ple  Expla n a tio n  instance (B^, V^ =  t r u e , X e ) is satisfied.

Now assume (B^, V^ =  TRUE, X E, q =  2) is satisfied, i.e., there exists a joint value assignment x E 
to X E such that for the majority of joint value assignments x M to X M , Pr(V^ =  TRUE, x E , x M ) >  2. 
Then there exists a truth instantiation to E  (namely the truth instantiation that corresponds to the joint value 
assignment x E) such that the majority of truth instantiations to M  satisfies ^, and thus the E-MAJSAT 
instance (^, E , M ) is satisfied. Since the reduction can obviously be done in polynomial time, this proves 
that M o st  S im ple  Expla n a tio n  is NPPP-complete. □

Note that M ost  S im ple  E xplan ation  remains NPPP-complete, even if all variables are binary, each 
node has at most two incoming arcs, and the probability distribution of each variable is either uniform or 
deterministic. If I  =  0 then M ost  S im ple  E xpla n a tio n  degenerates to M PE and hence is NP-complete. 
If M  =  0 then M ost  S im ple  E x plan ation  remains #P-com plete via a reduction of #S at, using a 
similar construction as above, the proof of which is omitted for reasons of space.

3.2 A Randomized Algorithm
A deterministic algorithm for M ost  S im ple  Expla n a tio n  might iterate over m  and count the joint value 
assignments i to I  for which argm axMP r(M , i, e) =  m , i.e., for which m  is the most probable explanation 
to M , and decide upon the majority. However, this algorithm trivially runs in exponential time, even if the 
treewidth of the network is bounded: there are exponentially many joint value assignments to M  U I. We 
present a randomized algorithm that performs much better in many circumstances.



for n  =  1 to N  do 
Choose i at random 
Determine m  =  argm axMP r(M , i, e)
Count the joint value assignments (m , i) 

end for
Decide upon the majority and output m maj

This randomized algorithm repeatedly picks a joint value assignment to I  at random, determines the most 
probable explanation, and at the end decides upon the majority. Due to its stochastic nature, this algorithm is 
not guaranteed to give correct answers all the time. However, the error margin e can be made sufficiently low 
by choosing N  large enough, where the threshold value of N  can be computed using the Chernoff bound: 
N  >  (p—i )2 ln . Assume we require an error margin of less than 0.1, then the number of repeats depends

on the probability of picking a joint value assignment i for which m m aj is the most probable explanation5. 
If this probability is high (say p  =  0.85), then N  can be fairly low (N  >  10), however, if the probability 
distribution is almost uniform then an exponential number of repetitions is needed.

If the majority is bounded (i.e., larger than a particular fixed threshold) we thus need only polynomially 
many repetitions to obtain any constant error rate, and thus the M o st  Sim ple  E x plan ation  problem is 
in NPbpp. When determining the most probable explanation is easy—in particular, when the treewidth of B 
is low— the algorithm thus runs in polynomial time. Since the treewidth of B is independent of the choice 
of m  and i, M o st  S im ple  E x plan ation  can be decided, with a small possibility of error, in polynomial 
time when the treewidth is low and the majority is sufficiently large.

This sampling approach is conceptually different from Monte-Carlo-like approximations of probabilistic 
inference (as might be used in an approximation algorithm for PARTIAL MAP), where the marginalization 
process is approximated by taking samples of the intermediate variables according to their prior probability 
distribution. We argue, in line with the Decision by Sampling model as discussed in the beginning of this 
section, that it may be plausible that one does not marginalize at all to obtain most probable explanations, 
but often bases ones judgement on what appears to hold for the vast majority of intermediate variables.

4 Most Informative Explanations
In this section we introduce Most Informative Explanations that enhance the traditional interpretation of 
Bayesian abduction with a notion of information-richness. This alternative interpretation is based on the 
intuitive idea that the explanation set (and thus the specificity of the most probable explanation) is not 
always fixed, but can be flexibly adjusted to be more general or more specific, depending on the probability 
of the most probable explanation for a particular size of the explanation set. Since we marginalize over 
variables outside both the evidence and the explanation set, the probability of the most probable explanation 
is by definition larger when the explanation set becomes smaller, however the information carried in that 
explanation is less specific, as was illustrated by the Dr. Brown-example in the introduction. In this section, 
we formalise this problem, analyse its computational complexity and show under what circumstances the 
problem becomes tractable.

4.1 Computational Complexity
The decision version of M ost  In form a tive  Expla n a tio n  will be formulated as follows.

M o st  Info rm a tiv e  E xplanation

Instance: A probabilistic network B =  (G , r ) ,  where V  is partitioned into a set of evidence nodes E  with 
a joint value assignment e, an explanation set M , and intermediate variables I; a rational number
0 <  q <  1 and a natural number 0 <  l <  |M |.
Question: Is there a joint value assignment m i to a subset of length l of the nodes in M  such that 
P r(m i, e) >  q?

Theorem  4.1. MOST INFORMATIVE EXPLANATION is NPpp-complete.

5For ease of exposure, we assume here that there are only two competing joint value assignments, and consequently, this probability 
is by definition larger than 2. If this assumption is violated, the standard Chernoff bound can not be used to compute N  for a given 
error margin.



Proof. Membership can be shown by non-deterministically guessing m l and deciding, using the PP oracle, 
whether P r (m l, e) >  q. NPPP-hardness follows since MOST INFORMATIVE EXPLANATION has PARTIAL 
M AP as a special case: take l =  |M |. □

If l =  0 then M o st  In form ative  E x plan ation  degenerates to In fe r e n c e . If l =  |M | then 
M o st  In form ative  E xplan ation  degenerates to Pa rtia l  M AP, and if in addition I  =  0 then M ost 
In form ative  Expla n a tio n  degenerates to M PE. Furthermore, M ost  In form a tive  Ex plan ation  
inherits the constraints and inapproximability results of PARTIAL M AP [9].

While P a r t i a l  M AP is fixed parameter tractable for (1 — p, tw ), i.e., P a r t i a l  M AP can be solved 
fast when the treewidth of the network is bounded and the most probable explanation has a high probability, 
this may not hold for M o s t  I n f o r m a t iv e  E x p la n a t io n  since we need to choose m l which by itself 
is a source of complexity. However, Bodlaenders algorithm for PARTIAL M AP, which is fixed parameter 
tractable for (1 — p, tw) [9], can be adjusted by branching on each l-sized subset of the explanation set. Since 
there are (|M|) many such subsets, the number of subsets to consider is low when either l is low (the subset

is small) or |M | — l is low (the subset is large), but increases with l approaching . Therefore, M ost 
In form ative  E x plan ation  is fixed parameter tractable for both (1 — p, tw, l) and (1 — p, tw, |M | — l). 
Since M ost  In fo rm a tiv e  Ex pla n a tio n  is a generalization of both Pa rtia l  M AP (for l =  |M |) and 
In fer en c e  (for l =  0) it follows that M ost  In form a tive  E x plan ation  remains intractable for the 
sets of parameters (1 — p, l), (1 — p, |M | — l) and (tw, |M | — l), but is fixed parameter tractable for the set 
of parameters (tw, l). We do not know whether MOST INFORMATIVE EXPLANATION is fixed parameter 
tractable for the subset (1 — p, tw ).

5 Conclusion
In this paper we proposed two alternative notions of abduction in probabilistic networks, based on observa­
tions and intuitions in cognitive science. M o s t  S im ple  E x p la n a t io n  focuses on the problem of finding a 
parsimonious explanation, M o s t  S im ple  E x p la n a t io n  focuses on the problem of finding an informative 
explanation.

We proved NPPP-hardness of both problem variants, placing them in the same complexity class as 
P a r t i a l  M AP, however, with different fixed parameter tractability results. In particular, M o s t  S im ple 
E x p la n a t io n  is fixed parameter tractable when the treewidth of the network is bounded and there is a 
bounded majority of the joint value assignments to I  for which a particular explanation m  is the most proba­
ble explanation6. Informally, one can envisage some sort of sampling: if m  is the most probable explanation 
for almost all joint value asignments to the set of intermediate varables I, then only a few samples will 
suffice to say so with a relatively healthy error margin7. We see MOST INFORMATIVE EXPLANATION as 
an extension, rather than an alternative, to P a r t i a l  M AP. The formulation of the problem variant with a 
flexible size of the explanation set may serve as a starting point for more thorough investigations regarding 
the computational model of the cognitive task of deciding what to explain.

We do not put forward claims on whether M o st  S im ple  Expla n a tio n  or Pa rtia l  M AP (or yet an 
other notion of abduction) better represent the cognitive processes that are modeled by abductive Bayesian 
reasoning. One highly speculative hypothesis might be that a ‘sampling’ approach (i.e., M ost  S im ple  
E x pla n a tio n ) is used when the set of intermediate variables I  does not contain variables whose values 
may have a non-trivial impact on the most probable explanation, and a ‘marginalization’ approach (i.e., 
Pa rtia l  M AP) is used when they do. Further elaboration, however, is beyond the scope of this paper.
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