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DNA methylation is an essential epigenetic modification that plays a key role associated with the regulation of gene
expression during differentiation, but in disease states such as cancer, the DNA methylation landscape is often deregu-
lated. There are now numerous technologies available to interrogate the DNA methylation status of CpG sites in a tar-
geted or genome-wide fashion, but each method, due to intrinsic biases, potentially interrogates different fractions of the
genome. In this study, we compare the affinity-purification of methylated DNA between two popular genome-wide
techniques, methylated DNA immunoprecipitation (MeDIP) and methyl-CpG binding domain-based capture (MBDCap),
and show that each technique operates in a different domain of the CpG density landscape. We explored the effect of
whole-genome amplification and illustrate that it can reduce sensitivity for detecting DNA methylation in GC-rich regions
of the genome. By using MBDCap, we compare and contrast microarray- and sequencing-based readouts and highlight the
impact that copy number variation (CNV) can make in differential comparisons of methylomes. These studies reveal that
the analysis of DNA methylation data and genome coverage is highly dependent on the method employed, and con-
sideration must be made in light of the GC content, the extent of DNA amplification, and the copy number.

[Supplemental material is available online at http://www.genome.org. The data from this study have been submitted to
Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) under SuperSeries accession no. GSE24546.]

DNA methylation, which is one of the most studied epigenetic

marks, involves the addition of a methyl group to the 5 position

of the cytosine pyrimidine ring and occurs primarily at CpG di-

nucleotides in mammals ( Jones 1999). DNA methylation patterns

are established early in development and are associated with the

regulation and maintenance of gene expression during differenti-

ation (Sorensen et al. 2010). Methylation patterns can also be dis-

rupted in many disease states, and in particular, changes in DNA

methylation at CpG island-associated promoters can play a role in

the development of cancer ( Jones and Baylin 2002, 2007; Jaenisch

and Bird 2003).

There are now numerous methods available for determining

CpG methylation status (for review, see Laird 2010), including

methods focused at the level of CpG islands (Ponzielli et al. 2008;

Kaminsky et al. 2009), individual promoters (Weber et al. 2005,

2007; Novak et al. 2008), and, increasingly, genome-‘‘scale’’

(Meissner et al. 2008; Gu et al. 2010) and genome-wide methods,

either at high (Lister et al. 2009) or low resolution (Serre et al. 2009;

Ruike et al. 2010). These later methods can be broadly classified

into the following designations: reduced representation approaches

that are based on methylation-sensitive (e.g., HELP) (Oda et al.

2009) or specific (e.g., CHARM) (Irizarry et al. 2008) restriction

digestion (for review, see Jeddeloh et al. 2008), affinity-based

methods such as methyl-DNA immunoprecipitation (MeDIP)

(Weber et al. 2005, 2007; Novak et al. 2008) and methyl-CpG

binding domain-based capture (MBDCap) (Rauch et al. 2006,

2008; Serre et al. 2009), and the more direct bisulphite treatment-based

methods (Lister et al. 2009); coupling of reduced representation and

bisulphite treatment has now been demonstrated (Meissner et al.

2008; Gu et al. 2010), and other combinations are also possible.

However, there are still many challenges involved in interpreting

data from DNA methylation-based assays, due to complex effects,

both technical and biological that are introduced at various steps

in the procedure, in addition to implicit biases from the methods

employed. These include cellular purity and DNA quality, DNA

amplification bias in GC-rich regions, and the effects of copy

number aberrations. The focus of this study is on DNA methylation

analyses using affinity-based approaches, in combination with

promoter DNA microarrays or high-throughput DNA sequencing

readouts.

Chromatin immunoprecipitation (ChIP) has been used ex-

tensively to study protein–DNA interactions (Ren et al. 2000), and

recently, an extensive benchmarking study has been conducted

comparing microarray platforms and analysis methods ( Johnson

et al. 2008). Comparison studies for DNA methylation platforms

are now starting to emerge (Li et al. 2010). MeDIP uses an antibody

to 5-methyl-cytosine, targeting single-stranded DNA (Weng et al.
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2009; Ruike et al. 2010), while the MBDCap approach uses the

methyl-CpG binding domain of the MBD2 protein to capture

double-stranded DNA (Serre et al. 2009). Furthermore, the MBDCap

approach can use a series of salt fractionation steps that allows

specific methylation density to be assessed (Fig. 1A). Methylation

status of the immunoprecipitated DNA isolated from MeDIP or

MBDCap is analyzed using tiling microarrays or high-throughput

sequencing, and multiple platforms of each are available. Because

DNA is often limiting and derived from mixed cell types, especially

in studies with clinical samples, it can be difficult to isolate sufficient

amounts of pure DNA to hybridize to microarrays directly or to se-

quence. DNA amplification techniques have been developed to

address this problem (Paris 2009). Here, we show that DNA ampli-

fication can result in depletion of GC-rich regions and therefore

may particularly impact on the interpretation of DNA methylation

in CpG islands. Most importantly, copy number variation (CNV)

can impact on the interpretation of DNA methylation levels, and in

cancer, this can be critical within the regions harboring gene am-

plification and/or deletions. Furthermore, promoter tiling array data

can be used to adjust for copy number changes, and we show that

copy number aberrations can have a significant impact on genome-

wide DNA methylation analysis.

Results

MeDIP and MBDCap enrich different fractions
of the genome based on CpG density

MeDIP and MBDCap are two capture methods commonly used

to interrogate genome-wide DNA methylation patterns. These two

techniques have inherent differences, namely, antibody versus MBD

capture. We asked if each method was comparable in the detection

of the same methylated genomic DNA sequences. Fully methylated

human genomic DNA treated with SssI methyltransferase was used

to benchmark the two affinity-based DNA methylation mapping

platforms. For the MBDCap comparison, the MethylMiner protocol

was used, where DNA can be eluted in a high-salt buffer (2 M NaCl)

as a single fraction, here referred to as MBD-SF, or eluted as distinct

subpopulations based on the degree of methylation, using an in-

creasing concentration of NaCl from 200 mM to 2000 mM. MBD-

Elu5 denotes the 1 M fraction of the elution series (Fig. 1A). After SssI

treatment, essentially every CpG site in the genome is methylated,

allowing a direct comparison of enrichment between MeDIP and

MBDCap, which was interrogated using Affymetrix Human Pro-

moter 1.0R arrays containing more than 4.5 million 25mer probes

spanning 23,155 promoters. Figure 1B shows summarized input-

subtracted promoter tiling array signals from MeDIP, MBD-Elu5,

and MBD-SF of fully methylated DNA after stratifying probes

according to the local genomic CpG density (for a formal definition,

see Methods). Several key observations can be made: First, the overall

degree of enrichment is higher for MBDCap-based procedures, es-

pecially for CpG-dense methylated DNA (probes with high local

Figure 1. (A) Schematic showing the capture of methylated DNA into
populations of single-stranded (MeDIP) or double-stranded (MBDCap)
fragments. (B) Summarized probe intensities for enrichment of fully
methylated DNA with MeDIP and two variations of MethylMiner-based
enrichment. X-axis shows the local CpG density group (1–50). Y-axis
shows the log2-scale input-normalized intensity. Each line shows the
median intensity for the input-normalized intensities for the probes in the
bin (here, for probes with GC content of 11 only). The intensities are
further normalized such that the median in the lowest bin is 0. The loca-
tion of probes within CpG islands is shown by the gray-shaded region,
corresponding to a local CpG density score between 12 and 40. (C )
Summarized read counts in bins of 1000 bases over the same genomic
regions interrogated by the Affymetrix Promoter 1.0R array. Each line
represents the median log2 read count (RCpM indicates read counts per
million mapped); the summaries are normalized such that the median
with the lowest bin is 0.
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CpG density); second, due to the nature of the salt elution steps,

MBD-Elu5 enriches primarily for CpG-dense material only, whereas

MBD-SF enriches for a broader range of CpG densities, albeit at a

lower average level. An attenuation of promoter microarray signal

was observed at the highest CpG density regions, and notably, the

attenuation seems to occur at a higher local CpG density for the

MethylMiner-based procedure than MeDIP. As MeDIP recovers

single-stranded DNA and MBDCap recovers double-stranded DNA,

it is possible that topoisomerase activity from M.SssI may com-

promise amplification of DNA recovered from MeDIP relative to

MBDCap (Matsuo et al. 1994). However, we found that enrichment

levels of methylated LNCaP DNA were also favored by MBDCap

in comparison to MeDIP for CpG dense regions, albeit at reduced

levels (Supplemental Fig. 1), supporting the use of MBDCap-based

procedures for favoring interrogation of CpG-rich regions.

Next we asked if the apparent CpG bias was also observed

with sequencing data. Similar to the previous experiment, fully

methylated DNA was used to perform the MBDCap enrichment,

and we analyzed the eluted DNA using a high-throughput sequenc-

ing readout. Using one lane of Illumina Genome Analyzer sequenc-

ing with 36-base single end reads for each of MBD-Elu5 and MBD-SF,

8,616,022 and 11,557,035 uniquely mapped reads were obtained,

respectively, to the reference human genome (see Methods). In

order to compare the methylation readout against promoter arrays,

the number of reads (in nonoverlapping 1000-bp bins) mapping

to the subset of the genome interrogated by the Affymetrix tiling

array was calculated. Figure 1C shows the read counts normalized

to depth, similarly grouped by local CpG density. Supplemental

Figure 2 shows enrichment profiles across the whole genome,

highlighting the different profile of enrichment (and CpG density)

of promoters compared to the entire genome. The CpG density

bins in Figure 1C represent approximately the local CpG den-

sity bins in Figure 1B, but the enrichment levels are not directly

comparable. Overall, a similar enrichment profile was observed

for the sequencing data, where MBD-Elu5 enriches for densely

methylated regions and MBD-SF enriches for a slightly broader

range of CpG density. As before, a slight drop in the number of reads

in very high CpG density regions was observed, but not to the same

extent as observed in the tiling array data. It is not clear whether the

decrease can be attributed to PCR-based amplification in the library

preparation or cluster generation step, or whether there are other

biases introduced in mapping reads to the genome, or whether this

is an inherent property of the affinity-based techniques.

Whole-genome amplification can bias DNA methylation
calls in CpG dense regions

Given the signal attenuation observed in the fully methylated

enrichment experiments, we next examined if this is due to whole-

genome amplification (WGA), a required step in the protocol to

generate enough material for hybridization to the promoter arrays. It

is well established that the GC content of a DNA template can affect

the efficiency of amplification, often resulting in a bias against the

GC-rich regions of the genome (Bredel et al. 2005; Pugh et al. 2008;

Teo et al. 2008). Johnson et al. (2008) also report a significant drop in

sensitivity, most notably for Affymetrix tiling arrays, when amplified

DNA is hybridized. Amplification bias is perhaps even more of a

potential concern in DNA methylation mapping, since CpG islands

are GC-rich by their very nature and therefore more prone to any

extant bias.

We were initially alerted to a potential problem involving GC

bias when GSTP1, which is highly methylated at its CpG island-

associated promoter in prostate cancer and is unmethylated in

normal cells (Song et al. 2002; Nakayama et al. 2004), showed little

differential enrichment at the probe-level on the Affymetrix pro-

moter tiling arrays after MeDIP enrichment and WGA of prostate

cancer (LNCaP) and normal prostate epithelial cells (PrECs) (see

Supplemental Fig. 3A; Coolen et al. 2010). MeDIP-qPCR experi-

ments, used as a control before hybridization, confirmed a strong

affinity of methylated DNA at the GSTP1 locus, both before (77-

fold) and after (76-fold) amplification (Supplemental Fig. 3B). Con-

sequently, even though the degree of enrichment was maintained

between LNCaP and PrECs, the absolute copy number of GSTP1

molecules in the population decreased proportionally after WGA,

from 676 and 8.7 copies/ng beforehand to 32 and 0.43 copies/ng

afterward, respectively. These data suggest that DNA amplification

can result in an apparent loss of methylation detection for regions

of the genome that are amplified less efficiently, such as GC-rich

regions. To illustrate this further, Supplemental Figure 4 shows

probe-level data for the CpG-rich promoters of WNT2 and CAV2

and the CpG-poor promoters of AGR2, PTN, and SOSTDC1, all of

which are validated to be hypermethylated in prostate cancer

cells. For the WNT2 and CAV2 promoters, the microarray signal

representing differential methylation is observed only in regions

flanking the CpG island. We hypothesize that WGA has ablated

the absolute levels of these DNA molecules, similar to GSTP1.

Notably, the AGR2, PTN, and SOSTDC1 promoters, which are of

lower CpG content, exhibit a differential signal throughout the

region validated to be differentially methylated. It is realistic to

expect that many GC-rich regions, such as CpG islands, while

differentially enriched between populations before amplification,

become diluted to be below the lower detection limit on the pro-

moter microarray after WGA.

By using Affymetrix promoter tiling array data, the effect of

WGA was studied directly by comparing the probe intensities from

unamplified and amplified DNA from the same origin. For this

experiment, genomic input DNA was used, without a methylated

DNA affinity step. Figure 2 shows the distribution of the raw pro-

moter array signal intensity for both an unamplified and WGA

sample of the same input genomic DNA, across equally sized bins

of local CpG density. Here, only probes with a GC content of 8, 11,

and 14 (of the 25-mer probe) (Supplemental Fig. 5 displays the full

range of probe GC contents) are displayed. Notably, a substantial

drop in the promoter tiling microarray signal is observed for the

probes in CpG-rich regions (local CpG density greater than 12 de-

fines a CpG island). In addition, CpG-rich regions of the genome also

show some attenuation in the hybridization signal from unamplified

DNA when the probe GC content was greater than 11, suggesting

that other effects, such as cross-hybridization and probe-specific

temperature effects (Wei et al. 2008), may influence the signal ob-

served on microarrays. It is also noted that the observed CpG

density bias is not unique to the Affymetrix platform, since un-

amplified MeDIP-enriched fully methylated DNA samples ana-

lyzed on a NimbleGen platform (Gal-Yam et al. 2008) also exhibit

attenuation over probes with a broad range of GC contents (Sup-

plemental Fig. 6).

Since some form of genome-wide amplification is required to

obtain sufficient DNA for array experiments, we next asked if re-

cent variations to enhance the amplification of GC-rich regions

(Zhang et al. 2009) could reduce the attenuation observed on the

tiling arrays. Samples of unamplified genomic DNA with standard

WGA, additives with WGA (Betaine, DMSO, ethylene glycol, 1,2-

propanediol), and the different amplification conditions suggested

by Affymetrix for ChIP-chip experiments (Fig. 3) are compared. To
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summarize the results, a cumulative bias score was calculated to

quantify the signal attenuation in tiling array data across local CpG

density bins for each group of probes at a GC content (for details

of the bias score, see Methods; for explanation, see Supplemental

Fig. 7). As shown previously in Figure 2, more CpG-rich attenuation

(cumulative bias) at the higher probe GC content (greater than 11)

occurs for unamplified DNA (Fig. 3). However, all the different am-

plification conditions tested show a much greater bias score than

does unamplified DNA and did not reduce the signal attenuation

(Fig. 3).

Detection of differentially methylated regions

To explore the impact of these biases, we looked for differentially

methylated regions (DMRs) across the promoter regions represented

on the Affymetrix promoter tiling array, comparing the prostate

cancer (LNCaP) and normal epithelial (PrEC) cell lines. Using a sta-

tistical procedure similar to model-based analysis of tiling arrays

(MAT) (Johnson et al. 2006) at an estimated 5% false discovery rate

(see Methods), 7384, 4398, and 3815 DMRs were detected between

the two cell lines for MeDIP, MBD-Elu5, and MBD-SF, respectively.

Given the enrichment profiles from Figure 1, it is not surprising that

the detected DMRs showed CpG density distributions that reflect

the enrichment profile, as shown in Figure 4. The differentially

methylated promoters were split into hypermethylated (Fig. 4A)

and hypomethylated in cancer (Fig. 4B) to illustrate the asymmetry

in differential methylation between the cell lines. As expected,

MBD-Elu5 discovers substantially more DMRs in CpG-rich regions

and identifies the greatest proportion of CpG islands, and MBD-SF

finds DMRs in a broader range of CpG density, while MeDIP iden-

tifies the lowest percentage of CpG-rich regions.

Next, MBD-SF enriched DNA was analyzed from the two cell

lines using both promoter tiling array (MBDCap-chip) and high-

throughput sequencing (MBDCap-seq), allowing us to compare

directly the concordance of the two readouts. Since the tiling ar-

rays only measure promoters, the sequencing data were summa-

rized into bins of read counts at promoters so they could be directly

compared. The statistical procedures used to detect differentially

methylated promoters from the two platforms are fundamentally

different, due to the nature of the data (probe intensities vs. read

counts, see Methods). However, P-values should be on scales that

Figure 2. Box-and-whisker plots of unnormalized log2-scale microarray
intensities for unamplified and WGA-amplified genomic DNA. To control
for the association between probe GC content and intensity, probes with
GC content of 8, 11, and 14 (out of 25) are shown in A–C, respectively.
Plots for the remaining probe GC contents (and further experimental
samples) are shown in Supplemental Figure 5. Probes are grouped into 50
equally sized bins genome-wide-based on their local CpG density, as
shown in Figure 1, B and C. Box-and-whisker plots show the 25th and 75th
percentile as the bottom and top of the box, and the band represents the
median; the whiskers show the lowest data point within 1.5 interquartile
range (IQR) of the 25th percentile and the highest data point within 1.5
IQR of the 75th percentile.

Figure 3. Observed cumulative bias of various amplification methods.
X-axis denotes the probe GC content. Y-axis denotes the cumulative bias
score, which captures the cumulative signal attenuation over the 50 bins
of local CpG density (for definition, see Methods). Each line represents
a different amplification strategy.
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are directly comparable. The P-values from each platform are back-

transformed into Z-scores (i.e., quantiles of a standard normal

distribution) to summarize the evidence for differential methyla-

tion, signed according to the direction of the change. Differential

methylation Z-scores for both platforms are shown in Figure 5A.

As expected, there is a general concordance (r = 0.46) since the

two platforms are comparing enriched DNA from the same origin.

One noticeable difference between the platforms is the range of

Z-scores, with sequencing data giving a much larger range of evi-

dence for differential methylation. Although it is not certain that

every promoter-level difference above a threshold is indeed dif-

ferentially methylated, the much wider range of Z-scores suggests

the sequencing-based data have a higher sensitivity. Furthermore,

comparison of MBDCap-seq data and quantitative Sequenom

bisulphite-based DNA methylation data highlights a strong con-

cordance (r = 0.81) (Supplemental Fig. 8). Figure 5A highlights that

all six hypermethylated genes discussed previously are called dif-

ferentially methylated by one of the readouts. Notably, the GSTP1

CpG island promoter shows a significantly higher number of reads

in the region around the gene’s transcription start site (TSS) for the

cancer cells, but similar to the MeDIP-chip data (Fig. 5A), there

is little evidence of differential methylation from the MBDCap-

chip data (Supplemental Fig. 8). Similarly, the promoter of CAV2, a

CpG-rich region, shows strong differential methylation for the

sequencing but not for the microarray. The promoters of SOSTDC1

and AGR2, from low CpG density regions, are found by the micro-

array and only show moderate differential methylation in the se-

quencing data (Supplemental Fig. 9). Differential methylation calls

for PTN and WNT2 are reasonably concordant. Furthermore, if a

Z-score cutoff of three is set, the promoter array only detects 256

of the 2854 promoters detected by the sequencing data as differ-

entially methylated, suggesting that its sensitivity is much lower.

However, the tiling array also finds 246 regions differentially meth-

ylated that the sequencing data does not, suggesting there may also

be inherent biases in the genomic regions that are suitable for

sequencing.

We next explored the CpG density of the concordant and

discordant promoters (as defined by Z-score cutoffs; see Methods)

that were detected using the two platforms (Fig. 5B), split into

groups of hyper- and hypomethylated regions. The array-based

Figure 4. Box-and-whisker plots of CpG density for putative DMRs (at estimated false discovery rate of 5%) between LNCaP and PrEC cells. Shown are
hypermethylated (A) and hypomethylated (B) regions.

Figure 5. Comparison of MBD-SF tiling array and sequencing data. (A) Differential methylation Z-scores between LNCaP and PrEC cells using MBD-
SF-seq (y-axis) and MBD-SF-chip (x-axis). The six validated genes that are shown in Supplemental Figures 3A and 4 are indicated with black dots. The
remaining dot colors are chosen according to the differential methylation concordance between MBD-SF-seq and MBD-SF-chip Z-score as depicted in B.
Note that some truly differentially methylated promoters, such as WNT2, are deemed ‘‘Indeterminate’’ by this concordance classification. (B) Box-and-
whisker plots of CpG density for concordant and discordant differentially methylated promoters, with colors corresponding to the cutoffs shown in A. (C )
Box-and-whisker plots of sequencing mapability of the concordant and discordant differentially methylated promoters, using the colors from A.
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readout detects a smaller percentage of CpG-rich regions in com-

parison with the sequencing-based data, supporting the observa-

tion that DNA amplification and other biases have a direct im-

pact on the regions detected. The majority of regions detected by

microarray and not by sequencing are in low CpG density regions.

Conversely, sequencing-only detections are largely from CpG-rich

regions. Furthermore, promoters deemed differentially methylated

by microarray but not by sequencing, on average, have lower

mapability (Fig. 5C). However, it should be noted that the probes

in these same microarray-only detected regions exhibit a slightly

higher probe copy number (see Supplemental Fig. 10).

The number of differentially methylated promoters identified

by sequencing data is ultimately dependent on read depth. To es-

timate whether the saturation of promoter differential methylation

has been achieved with the current sequencing depth, the MBD-

SF-seq data set for LNCaP cells and PrECs was down-sampled at

various fractions, and a curve was fitted to the number of differen-

tially methylated promoters. The presented experiments capture an

estimated 60%–68% of the differentially methylated promoters,

while doubling the number of mapable reads will result in an es-

timated 78%–89% sensitivity (see Methods; Supplemental Fig. 11).

Copy number, input DNA, and DNA methylome data

Another important yet subtle aspect of identifying epigenetic

changes, especially in a cancer setting, is the impact of copy number

aberrations on the DNA methylation signal. Copy number aberra-

tions can have a direct effect on transcript levels (Stranger et al. 2007).

The effect is less clear in DNA methylome data, but the expectation

is that genetically amplified (deleted) regions of the genome should

be captured at a higher (lower) rate if the DNA is methylated. In

the analysis of the ChIP-chip experiments, it is common practice to

subtract the genomic DNA input signals from the immunoprecipi-

tation signals in order to account for copy number, while indirectly

this adjustment can also account for hybridization, sonication, or

probe-specific effects. In two-color microarray experiments, this ad-

justment is done explicitly (Gal-Yam et al. 2008). Early sequencing-

based DNA methylation mapping exercises have not included input

DNA controls (Serre et al. 2009), and if included, biases are known

to exist (Teytelman et al. 2009; Vega et al. 2009). It is highlighted

here that signals from the input DNA can adequately identify copy

number aberrations, and this knowledge will be critical to disen-

tangling differential methylation from changes in copy number.

To validate the use of genomic input DNA tiling array data to

account for copy number changes, Affymetrix SNP 6.0 array data

were collected on the same two cell lines that have genome-wide

DNA methylation data. To define copy number changes between

the two cell lines, the input DNA tiling arrays were processed

similarly to the gene expression data, resulting in a promoter-level

summary of the change in copy number after accounting for

probe-specific effects (see Methods) (Irizarry et al. 2003). Figure 6

shows the change in copy number between the two cell lines for

chromosome 5 (for all other chromosomes, see Supplemental Fig.

12), emphasizing the strong association between promoter-level

summaries of genomic input DNA on the promoter tiling array

(Fig. 6A), and summarized SNP and copy number probes from the

genotyping arrays (Fig. 6B). It also demonstrates the potential of

using promoter-level summaries of input DNA signals for discov-

ering copy number aberrations in the absence of directly collecting

SNP array data or similar. Figure 6C shows the relationship be-

tween smoothed estimates of copy number (see Methods) for the

two platforms, suggesting the genome-wide correspondence of copy

number changes is quite high (r = 0.86).

Next, we highlight that the effects of copy number aberra-

tions are prominent in affinity-based epigenome data, affecting both

DNA methylation and ChIP assays. The differential methylation

Figure 6. Using promoter tiling arrays to estimate changes in copy number. (A) Y-axis is the difference in copy number between the prostate cancer and
normal epithelial cell line using the Affymetrix Promoter 1.0R array along human chromosome 5. The gray line represents kernel-smoothed differences
over 200 kb. (B) Y-axis shows the difference in copy number using the Affymetrix SNP 6.0 array along the same region of chromosome 5. The gray line
represents kernel-smoothed differences over 50 kb. (C ) X-axis and y-axis represent the smoothed copy number changes between the prostate cancer and
epithelial cell lines for the Promoter 1.0R and SNP 6.0 arrays, respectively, genome-wide over a common set of loci.
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detection exercise (using MBD-SF on prostate cancer LNCaP and

PrEC lines) was extended to the entire genome, using read counts

over 1500 base pair bins, and Z-scores were computed for each re-

gion. Figure 7A illustrates changes in MBDCap-seq read counts

along chromosome 13. As expected, they are correlated with changes

in copy number (Fig. 7B) for the same regions. Figure 7C shows the

distribution of DMR Z-scores genome-wide, stratified by their cor-

responding change-in-copy-number status. Taken together, these

observations underscore the need to integrate CNV explicitly with

epigenome analyses. Interestingly, there is a large (;10 M base pairs)

region near 70 MB on chromosome 13 that shows deletion (SNP

array data), but no corresponding change in methylation (MBDCap-

seq). The MBDCap-seq data from the rest of this chromosome sug-

gest that it is a region of hypermethylation, implying a potential

link between regional hypermethylation and genome stability.

Discussion
With the rapid growth of the different genome-wide technologies

available for DNA methylation analysis (Lister et al. 2009; Oda

et al. 2009; Serre et al. 2009; Ruike et al. 2010), it is timely to stop

and reevaluate the limitations and benefits of the different tech-

niques. We have evaluated the technical and data analysis aspects

of promoter-level tiling microarray and genome-wide sequencing-

based DNA methylation data and find that there are several hur-

dles that need to be overcome before a high sensitivity platform

with genome-wide methylation coverage will emerge. Perhaps not

unexpectedly, different enrichment techniques and readouts give

different snapshots of the DNA methylome. Knowledge of in-

herent biases and limitations of each method should encourage

protocol improvements and facilitate data integration from mul-

tiple platforms, as well as the development of improved bioinfor-

matics tools to extract meaningful biological interpretation.

Comparisons of affinity-based methylome mapping tech-

niques are now beginning to appear (Li et al. 2010). Here, a com-

parison of MBDCap- and MeDIP-based affinity capture strategies

was performed, as well as a comparison of promoter tiling arrays

and sequencing-based readouts. In addition, we highlight the tech-

nical limitations due to WGA, describe a novel method to assess

amplification genome-wide with tiling arrays, and illustrate bio-

logical biases attributable to copy number that are relevant to the

effective analysis of the DNA methylome. By using fully methyl-

ated DNA and LNCaP DNA, enrichment profiles were compared

across the CpG density spectrum of MeDIP and two versions of

MBDCap: MBD-Elu5, the 1000-mM fraction that elutes densely

methylated DNA, and MBD-SF, a single elution encompassing all

methylated fractions. Our data reveal higher overall enrichment

using the methyl DNA binding domain protocol from MethylMiner,

compared with immunoprecipitation with the 5-methylcytosine

monoclonal antibody, especially in CpG-rich regions. MBD-Elu5

preferentially elutes CpG-rich DNA, while MBD-SF contains DNA

molecules spanning a broader range of CpG densities. For all

methods analyzed by promoter microarrays, a marked drop in sig-

nal intensity was observed at the CpG-dense regions, including at

many of the CpG islands. This attenuation was found to be largely

due to WGA but is also confounded by other effects, such as GC

content of the microarray probes and cross-hybridization, which

affects the signal and therefore sensitivity and dynamic range.

Interestingly, CHARM has compared favorably in performance to

MeDIP (Irizarry et al. 2008) and notably without an amplification

step. However, CHARM does require large amounts of starting DNA

and is typically used with a custom microarray.

Unfortunately for the MeDIP and MBDCap approaches, it is

rarely feasible to get sufficient affinity-purified DNA for genome-

wide analyses, thereby necessitating amplification before hybrid-

ization to microarrays. In some cases, pooling multiple samples

may be a reasonable alternative, but this results in a loss of valuable

replicate information. Furthermore, pooling affinity-purified DNA

is often not practical when analyzing DNA from low cell numbers,

such as formalin-fixed paraffin-embedded clinical samples. Our

results suggest that amplification reduces sensitivity and permits

only a subfraction of the genome to be interrogated. Specifically,

tiling array probes representing CpG-rich regions, which are argu-

ably of greatest interest for methylation mapping, appear to show

a lower intensity and a compressed dynamic range. As a result, the

ability to detect differential methylation using amplified DNA is

compromised at many CpG islands.

Sequencing-based assays require less starting material. How-

ever, amplification during the sequencing protocol also has the

potential to introduce some sequence bias in CpG-rich regions,

albeit to a lesser extent. Promoter tiling array and high-throughput

sequencing readouts of the same populations of MBDCap-enriched

methylated DNA were compared. Even though the concordance is

strong, it is the discordance that highlights the differences in the

Figure 7. Effects of copy number changes on differential methylation detection. (A) Differential methylation Z-score for between LNCaP and PrEC cells,
using MBD-SF-seq, for human chromosome 13. (B) Smoothed Affymetrix SNP 6.0 array data showing corresponding changes in copy number. (C )
Genome-wide distributions of Z-scores, stratified by the change-in-copy-number status of the corresponding regions.
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platform-specific snapshots of the methylome. DMRs that are de-

tected by sequencing and not by microarray are commonly located

in the CpG-rich regions of the genome, validating the loss in sen-

sitivity on microarrays that is partly attributable to WGA. Further-

more, sequencing-based assays are strongly affected by enrichment

levels, such that highly enriched regions are sequenced to a greater

depth, resulting in higher power to detect changes. Therefore,

microarrays may be better suited to interrogating regions of lower

enrichment, such as those in lower CpG density areas, where the

cost of sequencing to obtain sufficient coverage may become lim-

iting. To a smaller extent, some of the DMRs detected by microarrays

and not by sequencing are in regions of lower ‘‘mapability,’’ sug-

gesting microarrays may have improved sensitivity in these regions,

if unique probes can be designed. Furthermore, the extent to which

the genomic repeat elements are present in affinity-captured meth-

ylated DNA is largely unknown. Longer or paired-end reads will re-

sult in higher mapability, while paired-end reads will be essential

to studying the effects of repeat elements. Overall, sequencing data

appear to be more sensitive for the discovery of DMRs, in terms of

total detections, and they carry the obvious advantage that the entire

genome can be interrogated. However, the complexities introduced

by the enrichment levels, the amount of sequencing used, amplifi-

cation, methylated repeat elements, CpG density, and mapability

are cumulatively significant, suggesting that array and sequencing

platforms may be complementary for cost-effective and compre-

hensive analysis of differential methylation.

Last, we studied the subtle effects that CNV may introduce

into DNA methylation data sets. The use of input DNA hybridized

to tiling arrays for economical copy number aberration detection

was validated, and we highlighted that genetic changes can sig-

nificantly confound the identification of epigenetic differences, if

not explicitly integrated into the analysis. This will be of particular

importance when analyzing cancer methylomes, for example,

where copy number aberrations are widespread. Extrapolation of

the information within existing copy number databases or from

existing genomic DNA microarray or arrayCGH data should be

straightforward. However, the implication of our results is that, in

some cases, additional resources will need to be dedicated to collect

CNV information (e.g., CNV-seq) (Xie and Tammi 2009). Copy

number biases will not only confound genome-wide methylation

analyses but will also be present in other affinity-based epigenome

mapping exercises, such as chromatin immunopreciptation ex-

periments studying histone modifications.

Many exciting new approaches have recently emerged to

study genome-wide DNA methylation (Clarke et al. 2009; Lister

et al. 2009; Flusberg et al. 2010), and along with these novel ap-

proaches have come an abundance of challenges, mainly associ-

ated with the interpretation of the growing masses of data. A better

understanding of these technologies and the impact of current

laboratory protocols, such as MeDIP and MBDCap, will go a long

way toward the development of suitable and sensitive protocols for

the genome-wide analysis of the methylome.

Methods

Cell lines and culture conditions
LNCaP prostrate cancer cells were cultured as described previously
(Song et al. 2002). Normal PrECs (Cambrex Bio Science catalog
no. CC-2555) were cultured according to the manufacturer’s in-
structions in Prostate Epithelial Growth Media (PrEGM; Cambrex
Bio Science catalog no. CC-3166).

Methylation profiling by MeDIP

DNA was extracted from the cell lines using the Puragene extrac-
tion kit (Gentra Systems). For fully methylated positive control
DNA, CpG genome universal methylated DNA was obtained from
Millipore (catalog no. 57821). The MeDIP assay was performed
on 4 mg of sonicated genomic DNA (300–500 bp) in 13 IP buffer
(10 mM sodium phosphate at pH 7.0, 140 mM NaCl and 0.05%
Triton X-100). Ten micrograms anti-5-methylcytosine mouse
monoclonal antibody (Calbiochem clone 162 33 D3 catalog no.
NA81) was incubated overnight in 500 mL 13 IP buffer, and the
DNA/antibody complexes were collected with 80 mL Protein A/G
PLUS agarose beads (Santa Cruz sc-2003). The beads were washed
three times with 13 IP buffer at 4°C and twice with 1 mL TE buffer
at room temperature. The immune complexes were eluted with
freshly prepared 1% SDS and 0.1 M NaHCO3, and the DNA was
purified by phenol/chloroform extraction and ethanol precipita-
tion and resuspended in 30 mL H2O. Input samples were processed
in parallel.

Isolation of methylated DNA by MBDCap

The MethylMiner Methylated DNA Enrichment Kit (Invitrogen)
was used to isolate the methylated DNA. One microgram of ge-
nomic DNA was sonicated to 100–500 bp. Then 3.5 mg (7 mL) of
MBD-Biotin Protein was coupled to 10 mL of Dynabeads M-280
Streptavidin according to the manufacturer’s instructions. The
MBD-magnetic beads conjugates were washed three times and
resuspended in 1 volume of 13 bind/wash buffer. The capture re-
action was performed by adding 1 mg sonicated DNA to the MBD-
magnetic beads on a rotating mixer for 1 h at room temperature.
All capture reactions were done in duplicate. The beads were
washed three times with 13 bind/wash buffer. The methylated
DNA was eluted in one of two ways: (1) as a single fraction with a
high-salt elution buffer (2000 mM NaCl), denoted MBD-SF; or (2)
as distinct subpopulations based on the degree of methylation
using an increasing NaCl concentration of the elution buffer, from
200 mM to 2000 mM in a stepwise gradient (elution 1, 200 mM;
elution 2, 350 mM; elution 3, 450 mM; elution 4, 600 mM; elution
5, 1000 mM; and elution 6, 2000 mM). Each fraction was con-
centrated by ethanol precipitation using 1 mL glycogen (20 mg/mL),
1/10th volume of 3 M sodium acetate (pH 5.2), and two sample
volumes of 100% ethanol, and was resuspended in 60 mL H20.

WGA and promoter array analyses

Immunoprecipitated DNA and input DNA from MeDIP immuno-
precipitations and MBD-Capture reactions were amplified with
GenomePlex Complete WGA Kit (Sigma catalog no. WGA2), ac-
cording to the manufacturer’s instructions. Fifty nanograms of
DNA was used in each amplification reaction. The reactions were
cleaned up using cDNA cleanup columns (Affymetrix no. 900371),
and 7.5 mg of amplified DNA was fragmented and labeled accord-
ing to Affymetrix Chromatin Immunoprecipitation Assay Protocol
P/N 702238 Rev. 3. Affymetrix GeneChip Human Promoter 1.0R
arrays (P/N. 900777) were hybridized using the GeneChip Hybrid-
ization wash and stain kit (P/N 900720).

Amplification bias experiments

WGA reactions were performed in the presence of reagents known
to enhance the amplification of GC-rich DNA (Zhang et al. 2009).
Betaine (Sigma B0300-IVL; final 2.2 M), ethylene glycol (Sigma
E-9129; lot 23H00252; final 1.075 M), 1,2 propanediol (Sigma
398039; final 0.816M), and DMSO (Stratagene catalog no. 600260-
53; final 4%) were used in separate 100 mLWGA reactions. Following
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the amplification, the DNA was purified, labeled, fragmented, and
hybridized to the Affymetrix GeneChip Human Promoter 1.0R
arrays as described above.

Local CpG density

We use the definition of local CpG density given by Pelizzola et al.
(2008), with a window of 600 bp (Pelizzola et al. 2008) since we
hybridize genomic DNA fragments with an average length of 600
bases, and individual probes are measuring signal from adjacent
genomic regions and are thus affected by the number of CpG sites
in this region. Briefly, the local CpG density is a weighted count of
CpG sites in the genome upstream and downstream 600 bases
from a given point of interest (e.g., microarray probe location).
Weight decreases linearly from 1 at the center of the point of interest
to 0 at 600 bases up- or downstream. The score is a reflection of the
number of CpG sites in close proximity to the point of interest.

Cumulative signal attenuation

The cumulative bias score captures the degree of attenuation at
high local CpG density for a set of probes with given probe GC
content. Using the statistics (median, 25th percentile, and 75th
percentile) from bins 3–17 for each combination of probe GC
content and sample, a median and variance for the combination
were calculated. The cumulative bias is the sum of absolute de-
viations from the calculated median and variance among the 50
bins for the combination. A pictorial description is given in Sup-
plemental Figure 7.

Untargeted promoter-level analysis of promoter array data

A probe-level score for the difference of interest was calculated
(LNCaP signal� PrEC signal) and smoothed using a trimmed mean
(600-bp window) and searched for a significant and persistent
difference. To calculate a false discovery rate, the order of the
probes is randomized and the same procedure is followed. The
method is implemented in the regionStats function of the Repi-
tools package (Statham et al. 2010).

Targeted promoter-level analysis of promoter
array and sequencing data

For tiling array data, a probe-level score for the difference of in-
terest was calculated (LNCaP signal � PrEC signal) using all the
probes within 750 bases of every TSS. A one-sample t-statistic was
then calculated to determine whether the average probe-level score
for each TSS is significantly different from zero, as implemented in
the blockStats function of the Repitools package (Statham et al.
2010). P-values are calculated from t-statistics. For sequencing data,
the number of reads that mapped to within 750 bases of every TSS
was counted. Then, an exact test for the difference in counts be-
tween LNCaP and PrEC was calculated using the Bioconductor
edgeR package (Robinson et al. 2010).

Data normalization

The normalization for Affymetrix Human Promoter 1.0R arrays
follows the adjustment proposed from the model-based analysis of
tiling arrays (MAT) ( Johnson et al. 2006), which compensates for
the global effects of base composition and probe copy number.

By the nature of high-throughput sequencing experiments,
each sample is sequenced to a different depth. The compensation
for total read depth occurs at the following stages: (1) in the analysis
of MBDCap-enriched SssI-treated DNA, signal levels are presented as

read counts per million uniquely mapped, as shown in Figure 1C
(promoters) and Supplemental Figure 2 (genome); and (2) the
differential analysis of read counts at promoters, for comparing
LNCaP-MBDCap versus PrEC-MBDCap, explicitly compensates for
read depth (i.e., library size) in the edgeR software (Robinson et al.
2010).

Back-transformed Z-scores

To put observed differences between LNCaP and PrEC cells on
a common scale, for both the tiling array and sequencing plat-
forms, P-values were back-transformed into signed Z-scores. For
each P-value, the Z-score is the value, z, of the standard normal
distribution such that Pr(Z > z) = p/2, where p is the P-value. Re-
gions with higher signal (or higher relative count) in LNCaP cells
will have positive Z-scores, otherwise they will be negative.

Mapping Genome Analyzer sequencing reads

We mapped 36 base pair reads to the hg18 reference genome using
Bowtie (Langmead et al. 2009), with up to three mismatches. Reads
that mapped more than once (i.e., identical start sites) to a single
genomic location were excluded.

Concordance of DMRs between promoter arrays
and sequencing

Promoters were deemed to be concordant and hypermethylated if
both platforms give a Z-score greater than 3 and to be concordant
and hypomethylated if both Z-scores are less than �3. Hyper-
methylated discordant promoters were defined as one platform
having a Z-score greater than 3 and the other platform with a
Z-score less than 1.5. Similarly, cutoffs of�3 and�1.5 were used to
define discordant hypomethylated promoters. Note that promoters
deemed as differentially methylated by one platform and not by the
other (i.e., between 1 and 3 or between�3 and�1) are considered
indeterminate.

Down-sampling analysis

The counts were down-sampled for each gene promoter to accu-
mulate total read counts between 20% and 100% of the original
data set (10 data sets are sampled for each level of down-sampling).
For each down-sampled data set, the number of DMRs (using an
absolute Z-score cutoff of 3) was calculated. Using the median
number of DMRs for each level of subsampling, a nonlinear curve
of the form axc/(b + xc) was fitted (using the R nls function) in order
to estimate the total number of DMRs (i.e., parameter a). The 95%
confidence interval for the total number of DMRs is (5555, 6323).
The data sets sampled at 100% reveal 3777 DMRs.

Smoothed copy number estimates

The change in copy number has been smoothed using a truncated
Gaussian kernel smoother using a bandwidth of 50/200 kb (pro-
moter/SNP array), using the implementation in the aroma.core
R package (Bengtsson et al. 2008).

Mapability

Using Bowtie, all possible 36-bp reads from the entire human ge-
nome were mapped back to the genome. At every base, a read can
either be unambiguously mapped starting at a given position or
not. Mapability is the proportion of such reads that can be mapped
for a given genomic region.
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Erratum

Genome Research 20: 1719–1729 (2010)

Evaluation of affinity-based genome-wide DNA methylation data: Effects of CpG density,
amplification bias, and copy number variation
Mark D. Robinson, Clare Stirzaker, Aaron L. Statham, Marcel W. Coolen, Jenny Z. Song, Shalima S. Nair,
Dario Strbenac, Terence P. Speed, and Susan J. Clark

Panels A and B in Figure 7 were incorrectly reversed in the text and the figure legend. The corrected text and
legend are as follows:

The first full sentence in the top left column of page 1725 should read as follows:

Figure 7B illustrates changes in MBDCap-seq read counts along chromosome 13. As expected, they are
correlated with changes in copy number (Fig. 7A) for the same regions.

The corrected figure legend should read as follows:

Figure 7. Effects of copy number changes on differential methylation detection. (A) Smoothed Affymetrix
SNP 6.0 array data showing corresponding changes in copy number for human chromosome 13. (B)
Differential methylation Z-score between LNCaP and PrEC cells, using MBD-SF-seq. (C) Genome-wide
distributions of Z-scores, stratified by the change-in-copy-number status of the corresponding regions.

The authors apologize for any confusion this may have caused.
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