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Abstract

Wk report a measurement of the flux of cosmic rays with unprecedented precision and statistics using the Pierre
Auger Observatory. Based on fluorescence observations in coincidence with at least one surface detector we derive
a spectrum for energies above 1018eV. We also update the previously published energy spectrum obtained with the
surface detector array. The two spectra are combined addressing the systematic uncertainties and, in particular, the
influence of the energy resolution on the spectral shape. The spectrum can be described by a broken power law E~Y
with index y = 3.3 below the ankle which is measured at loglLi(Earkie/eV) = 18.6. Above the ankle the spectrum is
described by a power law with index 2.6 followed by a flux suppression, above about login(EyeV) = 19.5, detected
with high statistical significance.
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1. Introduction

The flux of ultra-high energy cosmic rays exhibits
two important features. At energies above 4 x 1019eV
a suppression of the flux with respect to a power law
extrapolation is found [1. 2], which is compatible with
the predicted Greisen-Zatsepin-Kuz’min (GZK) effect
[3,4], but could also be related to the maximum energy
that can be reached at the sources. A break in the power
law, called the ankle, is observed at an energy of about
3x 1018eV [5, 6, 7, 8], This break in the energy spec-
trum has traditionally been attributed to the transition
from the galactic component of the cosmic ray flux to a
flux dominated by extragalactic sources [9, 10], In re-
cent years it became clear that a similar feature in the
cosmic ray spectrum could also result from the propa-
gation of protons from extragalactic sources, placing the
transition from galactic to extragalactic cosmic rays at a
much lower energy [11, 12], In this model the ankle is
produced by the modification of the source spectrum of
primary protons. This is caused by e* pair production
of protons with the photons of the cosmic microwave
background, leading to a well-defined prediction of the
shape of the flux in the ankle region.

Accurate measurement of the cosmic ray flux in the
ankle region is expected to help determine the energy
range of the transition between galactic and extragalac-
tic cosmic rays and to constrain model scenarios.

Two complementary techniques are used at the Pierre
Auger Observatory to detect extensive air showers ini-
tiated by ultra-high energy cosmic rays (UHECR): a
surface detector array (SD) and a fluorescence detec-
tor (FD). The SD of the southern observatory in Ar-
gentina consists of an array of 1600 water Cherenkov
detectors covering an area ofabout 3000 km2 on atrian-
gular grid with 1.5 km spacing. Electrons, photons and
muons in air showers are sampled at ground level with
a on-time of almost 100 %. In addition the atmosphere
above the surface detector is observed during clear, dark
nights by 24 optical telescopes grouped in 4 buildings.
These detectors are used to observe the longitudinal de-
velopment of extensive air showers by detecting the flu-
orescence light emitted by excited nitrogen molecules
and the Cherenkov light induced by the shower parti-
cles. Details ofthe design and status ofthe Observatory
are given elsewhere [13, 14, 15],

The energy spectrum of ultra-high energy cosmic
rays at energies greater than 2.5 x 1018 eV has been de-
rived using data from the surface detector array of the
Pierre Auger Observatory [2], This measurement pro-
vided evidence for the suppression of the flux above
4 x 1019 eV and is updated here. In this work we ex-

tend the previous measurements to lower energies by
analysing air showers measured with the fluorescence
detector that also triggered at least one of the stations
of the surface detector array. Despite the limited event
statistics due to the fluorescence detector on-time of
about 13 %, the lower energy threshold and the good en-
ergy resolution of these hybrid events allow us to mea-
sure the flux of cosmic rays in the region of the ankle.

The energy spectrum of hybrid events is determined
from data taken between November 2005 and May
2008, during which the Auger Observatory was still un-
der construction. Using selection criteria that are set out
below, the exposure accumulated during this period was
computed and the flux of cosmic rays above 1018 eV de-
termined. The spectrum obtained with the surface de-
tector array, updated using data until the end of Decem-
ber 2008, is combined with the hybrid one to obtain a
spectrum measurement over a wide energy range with
the highest statistics available.

2. Hybrid energy spectrum

The hybrid approach to shower observation is based
on the shower detection with the FD in coincidence with
at least one SD station. The latter condition, though in-
sufficient to establish an independent SD trigger [2, 16],
enables the shower geometry and consequently the en-
ergy ofthe primary particle to be determined accurately.
The reconstruction accuracy of hybrid events is much
better than what can be achieved using SD or FD data
independently [17], For example, the energy resolution
of these hybrid measurements is better than 6% above
1018 eV compared with about 15% for the surface de-
tector data.

Event reconstruction proceeds in two steps. First the
shower geometry is found by combining information
from the shower image and timing measured with the
FD with the trigger time of the surface detector sta-
tion that has the largest signal [18], In the second step
the profile of energy deposition of the shower is recon-
structed [19] and shower parameters such as depth of
shower maximum and primary particle energy are cal-
culated together with their uncertainties.

2.1. Eventselection and reconstruction

To ensure good energy reconstruction only events that
satisfy the following quality criteria are accepted:

e Showers must have a reconstructed zenith angle
smaller than 60 °.



¢ In the plane perpendicular to the shower axis, the
reconstructed shower core must be within 1500 m
of the station used for the geometrical reconstruc-
tion.

¢ The contribution of Cherenkov light to the overall
signal of the FD must be less than 50 %.

e The Gaisser-Hillas fit [19, 20] of the recon-
structed longitudinal profile must be successful
withA/Ndof < 2.5.

¢ The maximum of the shower development, Xmax,
must be observed in the field of view of the tele-
scopes.

¢ The uncertainty in the reconstructed energy, which
includes light flux and geometrical uncertainties,
must be cr{E)/E < 20 %.

e Only periods during which no clouds were de-
tected above the Observatory are used.

To avoid a possible bias in event selection due to
the differences between shower profiles initiated by pri-
maries of different mass, only showers with geome-
tries that would allow the observation of all primaries
in the range from proton to iron are retained in the data
sample. The corresponding fiducial volume in shower-
telescope distance and zenith angle range is defined as a
function of the reconstructed energy and has been veri-
fied with data [21], About 1700 events fulfil the selec-
tion criteria for quality and for fiducial volume.

A detailed simulation of the detector response has
shown that every FD trigger above E = 1018 eV pass-
ing all the described selection criteria is accompanied
by a SD trigger of at least one station, independent of
the mass and direction of the incoming primary parti-
cle [22],

2.2. Exposure calculation

During the time period discussed here the southern
Auger Observatory was in its construction phase with
the number of available SD stations increasing from
around 630 to a nearly fully completed instrument with
1600 detectors. Over the same period the FD was en-
larged from 12 to 24 telescopes. In addition to these
large scale changes, smaller but important changes oc-
cur on much shorter timescales due, for example, to
hardware failures. The data-taking of the fluorescence
detector is furthermore influenced by weather effects
such as storms or rainfall. These and other factors that

Figure 1: Distribution of events observed with the fluorescence detec-
tor as a function ofthe distance ofthe shower core from the telescopes
for data and Monte Carlo simulation.

affect the efficiency ofthe data-taking must be taken into
account in the determination of the aperture.

The total exposure is the integral over the instanta-
neous aperture and can be written as

&E)= i f f

T Q. >sgen
where dO = sinftWd</> and Q are respectively the dif-
ferential and total solid angles, 9 and 4>are the zenith
and azimuth angles and dS = dx x dy is the horizon-
tal surface element. The final selection efficiency e in-
cludes the efficiencies of the various steps of the analy-
sis, namely the trigger, reconstruction and selection ef-
ficiencies and also the evolution of the detector during
the time period T. It has been derived from Monte Carlo
simulations that scan an area 5gen large enough to en-
close the full detector array.

The changing configuration of the SD array is taken
into account for the determination of the hybrid on-time.
In addition, within time intervals of 10 min. the status
of all detector components of the Pierre Auger Obser-
vatory down to the level of single PMTs of the fluo-
rescence detector is determined. Moreover all known
inefficiencies such as DAQ read-out deadtimes are con-
sidered.

The longitudinal profile of the deposition of en-
ergy simulated with the QGSJet-11 [23, 24] and Sibyll
2.1 [25, 26] hadronic interaction models and the
CONEX [27] air shower simulation program are the ba-
sis for an extensive set of Monte Carlo simulations. The
exact data taking conditions are reproduced by means of
a detailed detector simulation within the Auger analysis
framework [28], All atmospheric measurements, e.g.

s(E, t,9,(p, x,y) costfdSdQdf, (1)
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Figure 2: The hybrid exposure for different primary particles together
with the difference to the mixed composition used for the flux mea-
surement.

scattering and absorption lengths, as well as monitoring
information such as the noise caused by night sky back-
ground light and PMT trigger thresholds are taken into
account.

The reconstruction of the simulated showers is then
performed in exactly the same way as for the data and
good agreement between data and Monte Carlo simu-
lations is obtained. As an example, we show in Fig. 1
the distribution ofevents observed with the fluorescence
detector as a function of the distance of the shower core
from the telescopes.

Fig. 2 shows the hybrid exposure of events fulfill-
ing all of the quality and fiducial volume cuts that have
been applied, for proton and iron primaries. As can be
seen, the cuts adopted lead to only a small dependence
of the exposure on the mass composition which can be
assumed to be dominated by hadrons [29, 30], The sys-
tematic uncertainty arising from our lack of knowledge
of the mass composition is about 8% at 1018 eV and de-
creases to less than 1% above 1019eV. We assume a
mixed composition of 50 % proton and 50 % iron nu-
clei for the flux determination and include the remaining
composition dependence in the systematic uncertainty.
The dependence of the exposure on the assumed model
of hadronic interactions was found to be less than 2%
over all the energy range.

The full MC simulation chain has been cross-checked
with air shower observations and the analysis of laser
shots that are fired from the Central Laser Facility [31]
and detected with the fluorescence detector. Follow-
ing this analysis the exposure has been reduced by 8%
to account for lost events and an upper limit to the re-
maining systematic uncertainty of 5% was derived [32],

By combination with the uncertainty related to mass
composition the total systematic uncertainty of the hy-
brid exposure is estimated as 10 % (6 %) at 1018 eV
(> 1019 eV).

2.3. Energyspectrum from hybrid data
The flux of cosmic rays J as a function of energy is
given by

T(Fg = d4Nmc .
( dfdrdOdi
where Nnt is the number of cosmic rays with energy
E incident on a surface element d/1, within a solid an-
gle dO and time d/. ANse\(E) is the number of de-
tected events passing the quality cuts in the energy bin
centered around E and having width AE. &{E) is the
energy-dependent exposure defined above.

The measured flux as function of energy is shown in
Fig. 3. A break in the power law of the derived en-
ergy spectrum is clearly visible. The position of this
feature, known as the ankle, has been determined by
fitting two power laws J = kE~y with a free break
between them in the energy interval from 1018eV to
1019 5eV. The upper end of this interval was defined
by the flux suppression observed in the spectrum de-
rived using surface detector data [2], The ankle is
found at loglo(£akie/eV) = 18.65 + 0.09(stat)+|:|;j"(sys)
and the two power law indices have been determined
as j\ = 3.28 + 0.07(stat)+"]*(sys) and y2 = 2.65 +
0.14(stat)+|'j®(sys), ("2/ndof = 10.2/11), where the
systematic uncertainty is due to the residual effect of
the unknown mass composition.

The energy estimation of fluorescence measurements
relies on the knowledge of the fluorescence yield. Here
we adopt the same absolute calibration [33] and the
wavelength and pressure dependence [34] as in Ref. [2],
This is currently one of the dominant sources of sys-
tematic uncertainty (14%). The fraction of the energy
of the primary particle that is carried by muons and
neutrinos and does not contribute to the fluorescence
signal has been calculated based on air shower simu-
lations and goes from about 14% at 1018 eV to about
10% at 1019V [35], The systematic uncertainty de-
pending on the choice of models and mass composi-
tion is about 8 % [36], Further systematic uncertainties
in the absolute energy scale are related to the absolute
detector calibration (9.5 %) and its wavelength depen-
dence (3 %) [37], Uncertainties of the lateral width of
the shower image and other reconstruction uncertainties
amount to about 10 % systematic uncertainty in the en-
ergy determination. Atmospheric conditions play a cru-
cial role for air shower observations with fluorescence

- ANz\eé(E) &{lE) , gZ)
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Figure 3: The energy spectrum of ultra-high energy cosmic rays de-
termined from hybrid measurements ofthe Pierre Auger Observatory.
The number of events is given for each of the energy bins next to
the corresponding data point. Only statistical uncertainties are shown.
The upper limits correspond to the 68% CL. A fitwith a broken power
law is used to determine the position ofthe ankle.

detectors. An extensive program of atmospheric moni-
toring is conducted at the Pierre Auger Observatory al-
lowing the determination of the relevant parameters and
the associated uncertainties [31, 38, 39, 40], The to-
tal systematic uncertainty in the energy determination is
estimated as 22% [41], Indirect methods of determin-
ing the energy scale, which do not involve the fluores-
cence detector calibration, seem to indicate an energy
normalizationthat is higher than the one used here by an
amount comparable to the uncertainty given above [42].

3. Update of Surface Detector Spectrum

Here we update the published energy spectrum based
on surface detector data [2] using data until the end of
December2008. The exposure is now 12,790 km2 sr yr.
The event selection requires that the detector station
with the highest signal be surroundedby operational sta-
tions and that the reconstructed zenith angle be smaller
than 60° [16], More than 35,000 events fulfill these cri-
teria.

The energy estimator of the surface detector is cor-
rected for shower attenuation effects using a constant-
intensity method. The calibration of this energy es-
timator with fluorescence measurements has been up-
dated using the increased data set of high-quality hybrid
events [41],

Because of the energy resolution of the surface detec-
tor data (about 20% at the lowest energies, improving to
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Figure 4: Energy spectrum, corrected for energy resolution, derived
from surface detector data calibrated with fluorescence measurements.
The number of events is given for each ofthe energy bins next to the
corresponding data point. Only statistical uncertainties are shown.
The upper limits correspond to 68% CL.

about 10% at the highest energies), bin-to-bin migra-
tions influence the reconstruction of the flux and spec-
tral shape. To correct for these effects, a forward-folding
approach is applied. MC simulations are used to deter-
mine the energy resolution of the surface detector and
a bin-to-bin migration matrix is derived. The matrix is
then used to find a flux parameterisation that matches
the measured data after forward-folding. The ratio of
this parameterisation to the folded flux gives a correc-
tion factor that is applied to the data. The correction to
the flux is mildly energy dependent and is less than 20%
over the full energy range. Details will be discussed in
a forthcoming publication.

The energy spectrum, after correction for the energy
resolution, is shown in Fig. 4 together with the event
numbers of the underlying raw distribution. Combining
the systematic uncertainties of the exposure (3%) and
ofthe forward folding assumptions (5%), the systematic
uncertainty of the derived flux is 6%.

4. The Combined Auger spectrum

The energy spectrum derived from hybrid data is
combined with the one obtained from surface detector
data using a maximum likelihood method. Since the
surface detector energy estimator is calibrated with hy-
brid events, the two spectra have the same systematic
uncertainty in the energy scale. On the other hand, the
normalisation uncertainties are independent. They are
taken as 6 % for the SD and 10% (6 %) for the hybrid



Table 1: Fitted parameters and their statistical uncertainties character-
ising the combined energy spectrum.

parameter power laws power laws
+ smooth function

y {E < ¢ankle) 3.26 + 0.04 3.26 + 0.04

k)gio(zankle/eV)  18.61 +0.01 18.60 +0.01

y2{E > ;ankle) 2.59 £ 0.02 2.55+0.04

10gjn(¢break/eV)  19.46 + 0.03

73(¢ > ¢break) 43 +0.2

log1o(;i/2/eV) 19.61 +0.03

login( Wc/eV) 0.16 + 0.03

;r/indof 38.5/16 29.1/16

flux at 1018eV (> 1019eV). These normalisation un-
certainties are used as additional constraints in the com-
bination. This combination procedure is used to derive
the scale parameters, k. for the fluxes that are to be ap-
plied to the individual spectra. These are ksD = 1.01
and fiiij = 0.99 for the surface detector data and hybrid
data respectively, showing that agreement between the
measurements is at the 1% level.

The combined energy spectrum scaled with ¢ 3 is
shown in Fig. 5 in comparison with the spectrum ob-
tained with stereo measurements of the HiRes instru-
ment [43], An energy shift within the current system-
atic uncertainties of the energy scale applied to one or
both experiments could account for most of the differ-
ence between the spectra. The ankle feature seems to be
somewhat more sharply defined in the Auger data. This
is possibly due to a systematic energy offset between the
experiments. However, for a complete comparison, care
must also be taken to account for energy resolution and
possible changes in aperture with energy.

The characteristic features of the combined spectrum
are quantified in two ways. For the first method, shown
as a dotted red line in Fig. 5, we have used three power
laws with free breaks between them. A continuation
of the power law above the ankle to highest energies
can be rejected with more than 20 cr. For the second
characterisation we have adopted two power laws in the
ankle region and a smoothly changing function at higher
energies which is given by

J(E: E > cankle) ) L (3)
logicElogio fig \ ’
1+ eXp\f lgiowe ~ /
where Ei/2is the energy at which the flux has fallen to
one half ofthe value of the power-law extrapolation and

W, parametrizes the width of the transition region. It is
shownas a black solid line in Fig. 5. The derived param-
eters (quoting only statistical uncertainties) are given in
Tab. 1

At high energies the combined spectrum is statis-
tically dominated by the surface detector data. The
agreement between the index of the power law above
the ankle, y2- measured with the combined spectrum
(2.59 + 0.02) and with hybrid data (2.65 + 0.14), also
demonstrates the good agreement between the two mea-
surements.

5. Summary

We have measured the cosmic ray flux with the
Pierre Auger Observatory by applying two different
techniques. The fluxes obtained with hybrid events and
from the surface detector array are in good agreement
in the overlapping energy range. A combined spectrum
has been derived with high statistics covering the en-
ergy range from 1018eV to above 102ueV. The domi-
nant systematic uncertainty of the spectrum stems from
that of the overall energy scale, which is estimated to be
22%.

The position of the ankle at log,,(/,;nkk/cV) =
18.61 + 0.01 has been determined by fitting the flux
with a broken power law E~y. An index ofy = 3.26 +
0.04 is found below the ankle. Above the ankle the
spectrum follows a power law with index 2.55 + 0.04.
In comparison to the power law extrapolation, the spec-
trum is suppressed by a factor two at login(.Ei/2/eV) =
19.61 + 0.03 . The significance of the suppression is
larger than 20cr. The suppression is similar to what
is expected from the GZK effect for protons or nuclei
as heavy as iron, but could in part also be related to a
change ofthe shape of the average injection spectrum at
the sources.
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